Publications

23.

Belmont, B.J. and Niles, J.C.; Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction; PLOS ONE; 2012 7(10):e46868. [PMID: 23056498]

22.

Zhao, W., Dauwels, J., Niles, J.C. and Cao, J; Computational synchronization of microarray data with application to Plasmodium falciparum; Proteome Science; 2012; 10 Suppl 1:S10. [PMID: 22759568]

21.

Niles, J.C.; Malarial parasites accumulate labile zinc pools; Chemistry and Biology; 2012; 19(6):660-661. [PMID: 22726676]

20.

Goldfless, S.J.*, Belmont, B.J.*, Liu, J.F., de Paz, A.M. and Niles, J.C.; Direct and specific chemical control of eukaryotic translation with a synthetic RNA-protein interaction; Nucleic Acids Research; 2012; 40(9):e64. * = Equal contribution. [PMID: 22275521]

19.

Kang, J.W., Lue, N., Kong, C.R., Barman, I., Dingari, N.C., Goldfless, S.J., Niles, J.C., Dasari, R.R., Feld M.S.; Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis; Biomedical Optics Express; 2011; 2(9):2484-2492. [PMID: 21991542]

18.

Bow, H., Pivkin I.V., Diez-Silva, M., Goldfless, S.J., Dao, M., Niles J.C., Suresh, S. and Han, J.; A microfabricated deformability-based flow cytometer with application to malaria; Lab on a Chip; 2011; 11(6), 1065-1073. [PMID: 21293801]

17.

Belmont, B.J. and Niles, J.C.; Engineering a direct and inducible protein-RNA interaction to regulate RNA biology; ACS Chemical Biology; 2010; 5(9), 851-861. [PMID: 20545348]

16.

Niles, J.C., DeRisi, J.L. and Marletta, M.A.; Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers; Proceedings of the National Academy of Sciences USA; 2009; 106(32), 13266-13271. [PMID: 19633187]

15.

Niles, J.C. and Marletta, M.A.; Utilizing RNA aptamers to probe a physiologically important heme–regulated cellular network; 2006; ACS Chemical Biology; 1(8), 515–524. [PMID: 17168539]

14.

Niles, J.C., Wishnok, J.S. and Tannenbaum, S.R.; Peroxynitrite–induced oxidation and nitration products of guanine and 8–oxoguanine: Structures and mechanisms of product formation; Nitric Oxide; 2006; 14, 109–121. [PMID: 16352449]

13.

Henderson, P.T., Neeley, W.L., Delaney, J.C., Gu, F., Niles, J.C., Tannenbaum, S.R., and Essigmann, J.M.; Urea lesion formation in DNA produced by 7,8–dihydro–8–oxoguanine oxidation and hydrolysis: a novel pathway to a potent source of point mutations; Chemical Research in Toxicology; 2005; 18(1), 12–18. [PMID: 15651843]

12.

Niles, J.C., Wishnok, J.S., and Tannenbaum, S.R.; Spiroiminodihydantoin and guanidinohydantoin are the dominant products of 8–oxoguanosine oxidation at low fluxes of peroxynitrite: Mechanistic studies with 18O; Chemical Research in Toxicology; 2004: 17(11), 1510–1519. [PMID: 15540949]

11.

Niles, J.C., Wishnok, J.S., and Tannenbaum, S.R.; Mass Spectrometric identification of 4–hydroxy–2,5–dioxo–imidazolidine–4–carboxylic acid during oxidation of 8–oxoguanosine by peroxynitrite and KHSO5/CoCl2; Chemical Research in Toxicology; 2004: 17(11), 1501–1509. [PMID: 15540948]

10.

Yu, H, Niles, J.C., Wishnok, J.S., and Tannenbaum, S.R.; Spirodihydantoin is a minor product of 5–hydroxyisourate in urate oxidation; Organic Letters; 2004: 6(19), 3417–3420. [PMID: 15355066]

9.

Lee, J.M., Niles, J.C., Wishnok, J.S. and Tannenbaum, S.R.; Peroxynitrite reacts with 8–nitropurines to yield 8–oxopurines; Chemical Research in Toxicology; 2002; 15(1), 7–14. [PMID: 11800591]

8.

Niles, J.C., Wishnok, J.S., and Tannenbaum, S.R.; A novel nitroimidazole compound formed during the reaction of peroxynitrite with 2',3',5'–tri–O–acetyl–guanosine; Journal of the American Chemical Society; 2001; 123(49), 12147–12151. [PMID: 11734012]

7.

Niles, J.C., Wishnok, J.S., and Tannenbaum, S.R.; Spiroiminodihydantoin is the major product of the 8–oxo–7,8–dihydroguanosine reaction with peroxynitrite in the presence of thiols and guanosine photooxidation by methylene blue; Organic Letters; 2001; 3(7), 963–966. [PMID: 11277770]

6.

Niles, J.C., Wishnok, J.S., and Tannenbaum, S.R.; A novel nitration product formed during the reaction of peroxynitrite with 2,3,5–tri–O–acetyl–8–oxoguanosine: N–nitro,N'–[1–(2,3,5–tri–O–acetyl–β–D–erythro–pentofuranosyl)–2,4–dioxo–imidazolidin–5–ylidene]guanidine, Chemical Research in Toxicology; 2000; 13(5), 390–396. [PMID: 10813656]

5.

Niles, J.C., Burney, S., Singh, S.P., Wishnok, J.S., and Tannenbaum, S.R.; Peroxynitrite reaction products of 3',5'–di–O–acetyl–8–oxo–2'–deoxyguanosine; Proceedings of the National Academy of Sciences, USA; 1999; 96(21), 11729–11734. [PMID: 10518518]

4.

Burney, S, Niles, J.C., Wishnok, J.S., Dedon, P.C. and Tannenbaum, S.R.; DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite; Chemical Research in Toxicology; 1999; 12(6), 513–520. [PMID: 10368314]

3.

Tretyakova, N. Yu, Niles, J.C., Burney, S., Wishnok, J.S. and Tannenbaum, S.R.; Peroxynitrite–induced reactions of synthetic oligonucleotides containing 8–oxoguanine; Chemical Research in Toxicology; 1999; 12(5), 459–466. [PMID: 10328757]

2.

Burney, S., Caulfield, J.L., Niles, J.C., Wishnok, J.S. and Tannenbaum, S.R.; The chemistry of DNA damage from nitric oxide and peroxynitrite; Mutation Research; 1999; 424, 37–49. [PMID: 10064848]

1.

Butt, J.N., Niles, J, Armstrong, F.A., Breton, J. and Thomson, A.J.; Formation and properties of a stable "high potential" copper–iron–sulphur cluster in ferredoxin; Nature Structure Biology; 1994; 1(7), 427–432. [PMID: 7664060]