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Abstract. Consider a network revenue management model in which a seller offers
multiple products, which consume capacitated resources. The seller uses an anonymous
posted-price policy, and arriving customers strategize on (a) when and (b) which product
to purchase to maximize their utility, based on heterogeneous product valuations. Such
models, whereby customers are both forward looking and choosewhat to buy, have not yet
been amenable to analysis, mainly because their associated dynamic mechanism design
counterparts are multidimensional; that is, they involve constraints with multivariate
private information (the product valuations). Within the context of the aforementioned
model, we present a novel decomposition approach that enables us to deal with the
underlying multidimensional mechanism design problem. Using this approach, we derive
for all nonanticipating dynamic pricing policies an upper bound to expected revenues. We
use our bound to conduct theoretical and numerical performance analyses of static pricing
policies. In our theoretical analysis, we derive guarantees for the performance of static
pricing, for the classical fluid-type regime where inventory and demand grow large. Our
numerical analysis shows static pricing to be able capture at least 75%–90% of maximum
possible expected revenue under a wide range of realistic problem parameters.
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1. Introduction
1.1. Motivation
Dynamic pricing is by now considered a mature
technology that has enabled firms to boost their
revenues and extract greater value from their cus-
tomers, notably in the retail, airline, and hospitality
industries (Talluri and Van Ryzin 2006, chapter 10).
For customers, however, it is well understood that
interacting with a firm using dynamic pricing over
some period of time raises their awareness of and
familiarity with its pricing policies. In turn, this en-
ables them to strategize their purchasing decisions.

Customers usually strategize along two dimen-
sions: (1) when to buy and (2) what to buy. That is, they
might delay a purchase in anticipation of a future
price reduction, and they might purchase a cheaper
substitute (see the empirical studies by Li et al. 2014
andMoon et al. 2017 on the retail and airline industries,
respectively). Such strategizing is today abetted by an
abundanceof online tools explicitlydesigned to facilitate
best responses to dynamic pricing.1

What pricing policy to follow in the face of cus-
tomers who strategize on when and what to buy is an

unexplored and open question. In particular, papers
in the literature have thus far dealt exclusively with
either one of the two extremes whereby one of the two
aforementioned strategic dimensions is missing. For
example, a large body of work has studied forward-
looking customers strategizing onwhen to buy but has
done so merely within single-product settings or
models in which customers have no alternatives to
choose from. Conversely, another large body of work
on assortment optimization and choice modeling has
studied customers who choose what to buy from
multiple product offerings but acting myopically.
Whereas there are plenty of applications that could fit
in either of these two extreme cases, at the same time,
however, there is a vast swatch of practical settings in
which customers strategize both on their time of
purchase and preferred product, as supported by
empirical evidence within the retail industry.
That no paper has thus far dealt with customers

who choose both when and what to buy attests to the
technical challenges that combining these two di-
mensions of strategic behavior represents. In partic-
ular, the first dimension—choice over when to buy—
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introduces game theoretic interactions, which make
deriving an optimal, that is, revenue-maximizing,
dynamic pricing policy intractable in general, even
in a single-product model (Pai and Vohra 2013).
Nonetheless, researchers have been able to leverage,
among others, mechanism design techniques to pro-
vide approximation analyses and characterizations of
optimal policies under certain conditions.Notably, such
techniques require customers’ private information to
be univariate, allowing to capture just their valuation
of a single preferred product. Simultaneously con-
sidering the second dimension of strategic behavior—
choice over what to buy—requires multivariate private
information to allow for multiple product valuations
and therefore invalidates all extant approaches.

1.2. Technical Advancements and Contributions
This paper makes a first step toward analyzing pric-
ing in the face of strategic customers who choose both
when and what to buy in a network revenue man-
agement (NRM) context. The analysis is made possible
through a novel decomposition approach that enables
us to deal with dynamic mechanism design problems
that involve multivariate private information. In par-
ticular, we illustrate in a dynamic mechanism design
problem for NRM, how customers’ incentive com-
patibility and individual rationality constraints that
involve multiple product valuations can be decom-
posed to constraints that involve single product valu-
ations in a meaningful way that enables a character-
ization of the optimal mechanism.

Building on this technical advancement, we derive
an upper bound on the expected revenues generated
by any dynamic pricing policy in a canonical NRM
model extended to allow customer product choice
and forward-looking behavior. Establishing an upper
bound is important as it can serve to benchmark the
performance of proposed dynamic pricing policies in
such a setting. Because our bound is obtained as the
optimal value of a simple optimization problem, it
could potentially enable both theoretical and nu-
merical performance analyses of pricing policies.

Indeed, using our upper bound, we provide a
theoretical performance analysis of static pricing in
NRM with strategic customers choosing what and
when to buy. In particular, we derive lower bounds
on the expected revenues static pricing can generate
relative to those generated by any dynamic pricing
policy, including the optimal revenues, under all
possible problem instances. In an asymptotic, fluid-
type regime we derive a constant-factor guarantee,
showing that static pricing can always capture at least
1/4 of optimal revenues. For settings in which in-
ventory is scarce, the guarantee is further improved
to a factor that relates to the ratio of unserved cus-
tomers to total number of customers. Specifically, as

available inventory relative to demand goes to zero,
almost all customers are unserved, and our guarantee
converges to 1. Guarantees of the type we provide
have assumed a place of prominence in a number of
operational problems ranging from revenue man-
agement to inventory and supply chainmanagement.
We interpret these guarantees as a strong indicator of
the robustness of static prices across parameter regimes.
Finally, we provide a numerical performance anal-

ysis of static pricing in ourNRMmodel, using ourupper
bound and simulation. The analysis shows that reve-
nues under static pricing are within 75%–90% of our
bound under a wide range of realistic problem in-
stances. That the simplest pricing policy captures
such a high percentage of our bound consistently
across all experiments provides some evidence about
the bound’s strength and practical relevance and also
supports our aforementioned claim about the ro-
bustness of static prices across parameter regimes.We
further explore, for various parameter choices, how
performance of static pricing responds to product
proliferation, product differentiation, product com-
plexity, and load factor, relative to dynamic pricing.

1.3. Literature Review
Our paper lies at the intersection of two very broad
streams of work in revenue management (RM). The
first one, usually referred to as RMwith forward-looking,
or strategic, customers, dealswith customers interested in
purchasing a single product and choosing when to do
so. The second stream, usually referred to RM with
customer choice, dealswithmyopic customers choosing
among offered product assortments. Here, we make no
attempt to survey either of these streams, but rather
focus on the papers that are the closest to ours.
RM with strategic customers: Among the papers in

this stream, closest to ours are papers using dynamic
mechanism design. One of the earliest papers in this
area by Vulcano et al. (2002) considers the sale of a
single typegoodvia sequencesof auctions (as opposed to
posting prices). Gallien (2006) studies a discounted
infinite horizon extension of the classical single-product
RM model with customers who are impatient as their
product valuation decays exponentially over time. By
assuming that, for all customers, this decay occurs at a
constant rate that is common knowledge, the author
applies the Myersonian approach (Myerson 1981) to
analyze the dynamic mechanism problem and how it
can be implemented via a pricing policy. Said (2012)
considers the same setting and models customers’
impatience in a similar fashion. However, customers
cannot conceal their presence and depart from the
system at some exogenous rate. The author shows that
the decision maker can implement the efficient allo-
cation using a sequence of ascending auctions. Li (2009)
and Board and Skrzypacz (2016) design efficient and
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optimal mechanisms, respectively, in finite-horizon
variants of the model considered by Gallien (2006) and
Said (2012). Pai and Vohra (2013) also study a similar
single-product finite-horizon RM setting but model the
customers’ impatience differently. In particular, cus-
tomers have heterogenous deadlines, as opposed to
time-decaying valuations. The authors argue that
tractability in their model hinges on these deadlines
being common knowledge. Chen and Farias (2018)
introduce a model that allows for heterogeneity in
customers’ impatience to be private information and
derive a 29% guarantee for a class of dynamic policies.

All these papers study RM with a single product.
Gao et al. (2019) consider two competing firms: one
using a fixed price policy and the other running an
auction. They find that customers with either high or
lowwaiting cost choose to obtain service from the bid-
based firm,whereas thosewithmoderatewaiting cost
choose the fixed-price firm.

To the best of our knowledge, the paper by Chen
et al. (2018) is perhaps the first paper that uses the
dynamic mechanism design approach to study cus-
tomer forward-looking behaviors in an NRM setting
with multiple products that are produced with multi-
ple resources. The authors show that the optimal pricing
policy in a corresponding fluid myopic customer set-
ting is optimal in an asymptotical regime in the sto-
chastic forward-looking customer setting. We note that
both that and our present paper use dynamic mecha-
nism design approaches to study NRM problems with
forward-looking customers. However, these two pa-
pers have the following fundamental distinctions:

1. From a modeling perspective, Chen et al. (2018)
assume that each customer is exogenously linked to a
single product and is restricted to purchase this product
regardless of the availability and the prices of other
products. Therefore, each customer’s decision is only
when to buy their (exogenously determined) desired
product. In contrast, we allow each customer to choose
among all available products. Therefore, customers’
decisions are when to buy and what product to buy.

2. From a methodologic perspective, in Chen et al.
(2018), customer private information on the product
valuation is one-dimensional. Therefore, by forcing a
customer to truthfully report her nonvaluation pri-
vate information, theMyersonian approach (Myerson
1981, a standard approach in solving mechanism
design problems wherein customer private infor-
mation is one-dimensional) can be directly applied to
solve these problems. In contrast, in the mechanism
design problem in the present paper, customer pri-
vate information on the product valuation is multi-
dimensional. Therefore, we cannot directly apply the
Myersonian approach to analyze our model. We
propose a novel decomposition approach that allows
us to cast a relaxation of the mechanism design problem

withmultidimensional customer private information on
product valuations as a series of mechanism design
problems wherein customer private information on
product valuation is one dimensional.
RM with customer choice: Papers in this stream

study the problem of selling multiple (substitutable)
products, which are produced from multiple capaci-
tated resource types, to customers arriving over afinite
horizon. The decision maker’s decision is to dynam-
ically determine either the set of products to offer to
customers, given some exogenously determined prod-
uct prices (quantity-based RM), or the prices to post
for each product (price-based RM). When facing sub-
stitutable products, arriving customers usually pur-
chase at most one product unit among those offered.
As before, we make no attempt to survey this vast
literature. For some recent work on quantity-based RM
with customer choice, we refer the reader to Liu andVan
Ryzin (2008), Zhang (2011), Jasin andKumar (2012), Li
et al. (2015), Jagabathula (2016), Jagabathula and
Rusmevichientong (2016), Kunnumkal and Talluri
(2016), and Wang and Wang (2016). For price-based
RMwith customer choice, see Maglaras andMeissner
(2006), Song and Xue (2007), Aydin and Porteus
(2008), Dong et al. (2009), Akcay et al. (2010), Besbes
andZeevi (2012), Jasin (2014), Li et al. (2015), Chen et al.
(2016), Jagabathula and Rusmevichientong (2016),
Li and Huh (2011), Yan et al. (2016), Gao et al. (2017),
and Ferreira et al. (2018). All papers that study RM
with customer choice that we are aware of, however,
assume that customers are myopic. In contrast, our
paper allows for forward-looking customers.

2. Model
Consider a decision maker (DM) in charge of selling n
different products to customers in continuous time
over a fixed season [0,T]. Products, indexed by
j ∈ {1, . . . , n}, correspond to bundles of m resources,
indexed by i ∈ {1, . . . ,m}. In particular, the jth product
is a bundle including Aij ∈ {0, 1} units of the ith re-
source. Both resources and products are indivisible.
In the beginning of the season, the DMhas some given
inventory of resources x0 ∈ Rm available, with no
replenishment opportunity thereafter. That is, at t � 0
the DM possesses xi0 units of the ith resource.2

The DM implements an anonymous posted price
mechanism by dynamically posting prices for each
product. Let πt ∈ Rn be the posted prices at time t. In
case a customer decides to purchase a unit of product j
at time t, the DM generates revenues of πj

t and her ith
resource inventory is reduced by Aij. We denote the
resource inventory the DM possesses at time t by Xt.
Customers arrive according to a Poisson process

of rate λ. Each customer values each product differ-
ently, and her valuations decay at an exponential rate
throughout time. That is, if a customer’s valuation for
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the jth product at time t is vj, then at time τ ≥ t it is
vje−dj(τ−t), where dj is a decay rate. To introduce some
notation, we denote all distinguishing characteristics
of a customer by the tuple φ≜ (tφ,vφ, dφ), where tφ ∈
[0,T] is her arrival time, vφ ∈ Rn+ is the vector of her
product valuations on arrival, and dφ ∈ Rn+ her asso-
ciated valuation decay rates. For simplicity, we refer
to φ as the customer’s type and denote by Φ the set of
all possible types. We assume that customer φ’s
valuation vjφ for any product j is independent from all
her other characteristics tφ, v

−j
φ , dφ. Also, customer

valuations for each product j are independent and
identically distributed, with fj, Fj and F̄j denoting the
corresponding probability density function (p.d.f.),
cumulative distribution function (c.d.f.), and comple-
mentary cumulative distribution function (c.c.d.f.), all
assumed to be continuous.

At any time t ≥ tφ after her arrival, customer φ
chooses to either stay in the system, or permanently
exit by purchasing at most one unit of a product type
among the n alternatives. Let τφ ∈ [tφ,T] be the time
that customer φ chooses to exit, and ajφ ∈ {0, 1} the
indicator of whether she chooses to purchase one unit
of product j at that time. We denote by pφ the corre-
sponding payment that customer φ makes to the DM
at time τφ, that is, pφ ≜πT

τφ
aφ. The tuple yφ ≜ (τφ,aφ, pφ)

characterizes all actions taken by customer φ. Cus-
tomers derive utility

U φ, yφ
( )

≜
∑n
j�1

v j
φe

−dj
φ

τφ−tφ( )a jφ − pφ.

This utility model is in line with other papers in the
literature by assuming time-value-of-money consid-
erations to be negligible, therefore discounting only
valuations (Desiraju and Shugan 1999, Aviv and
Pazgal 2008). This valuation discounting goes be-
yond time-value-of-money considerations, and could
be, for example, because of seasonal or fashionable
products becoming less desirable.

The type of each customer is her private informa-
tion. That is, the DM does not observe customers who
have arrived but delay their (potential) purchases.
Instead, the customer-related information accessible
to the DM at some time t pertains to historical sales
and is given by St ≜ {(τφ,aφ) : τφ ≤ t, 1Taφ � 1}, where
1 is the vector of ones. We denote the filtration in-
duced by this information with F t ≜ σ(St−). Customers
observe posted-price information Pt ≜ {πs : s ≤ t}; let
Ct ≜ σ(Pt) be the associated filtration.

We assume that the DM has the power to commit
to a pricing policy, which she announces at the be-
ginning of the game. In this context, the DM and
the customers are playing a dynamic game. Specifi-
cally, at t � 0, the DM chooses a dynamic pricing
policy π� {πj

t : t∈ [0,T], j∈ {1, . . . ,n}} that she commits

to post prices with and that is common knowledge to
all customers. The set of admissible pricing policies,
denoted byΠ, consists of policies such that, for all t ∈
[0,T] and j ∈ {1, . . . , n}, (a) πj

t is F t-progressive and
that (b) an infinite price is posted for all products
that include a resource whose inventory has been
depleted, that is, πj

t �∞ if there exists an i ∈ {1, . . . ,m}
such that Xi

t− � 0 and Aij � 1, for all t ∈ [0,T] and
j ∈ {1, . . . , n}.
In response, customers are forward looking and

seek to maximize their expected derived utilities,
using (symmetric) stopping and purchasing rules
contingent on their types that constitute a symmet-
ric Markov perfect equilibrium. In particular, under
policy π ∈ Π, customer φ follows actions yπφ ≜ (τπφ,
aπφ, p

π
φ), where (τπφ, aπφ) are Ct-progressive stopping

and purchasing rules that solve3 the optimal stop-
ping problem

maximize E U φ, yφ
( ) ⃒⃒

Ctφ

[ ]
subject to τφ ∈ tφ,T

[ ]
, aφ ∈ 0, 1{ }n, 1Taφ ≤ 1,

with the expectation above assuming that other cus-
tomers use symmetric stopping and purchasing rules,
and pπφ ≜πT

τπ
φ
aπφ. For any pricing policy π ∈ Π, we

denote the set of all customers’ actions it induces
with yπ≜{yπφ :φ∈Φ}, its expected revenues with Jπ≜
E[∑φ∈HTp

π
φ], where Ht ≜ {φ : tφ ≤ t} is the set of cus-

tomer types that arrive up to time t, for all t ∈ [0,T].
We shall refer to an admissible pricing policy that

maximizes expected revenues as revenue-maximizing
and to the expected revenues it generates as optimal
revenues. Let J� denote the optimal revenues, that is,

J� ≜ sup
π∈Π

Jπ.

3. Upper Bound on Optimal Revenues
We derive an upper bound on J� that could serve as a
useful benchmark in theoretical or numerical ana-
lyses of pricing policies for our fairly general model.
To this end, we first present some useful properties of
customers’ best response in Section 3.1. Then, in
Section 3.2, we consider a suitably constructed dy-
namic mechanism design problem. Our analysis intro-
duces a novel decomposition approach for multivariate
incentive compatibility and individual rationality con-
straints, thereby enabling us to arrive at a tractable
formulation that yields a useful upper bound on J�.

3.1. Properties of Customers’ Best Responses
We show that under any admissible policy, customers
act so that they derive nonnegative utility almost
surely and that they choose not to purchase a product
if customers with higher valuation for it choose not to
purchase, ceteris paribus. For any φ ∈ Φ, j ∈ {1, . . . ,n},
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letφj,w ≜ (tφ, v1φ, . . . , vj−1φ ,w, vj+φ 1, . . . , vnφ,dφ)becustomer
φ whose valuation for the jth product is w.

Proposition 1. Under any policyπ ∈Π, any customerφ ∈Φ
acts so that (a) U(φ, yπφ) ≥ 0 and (b) (1 − aπ,jφ )aπ,jφj,v′

� 0, for
all j ∈ {1, . . . ,n} and v′ ≤ vjφ.

Proof of Proposition 1. Fix a policy π ∈ Π and a cus-
tomer φ ∈ Φ. At time τπφ, we have

∑n
j�1

aπ,jφ � 1 if max
j∈ 1,...,n{ }

vjφe
−dj

φ
τπ
φ
−tφ

( )
− π

j
τπ
φ
≥ 0

0 otherwise,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
yielding (a) U(φ, yπφ) ≥ 0. To show (b), fix any j ∈
{1, . . . ,n} and any v′ ≤ vjφ. Note that aπ,jφ , aπ,jφj,v′

∈ {0, 1}.
Therefore, it is equivalent to prove that if aπ,jφ � 0, then
aπ,jφj,v′

� 0. To prove this result, we derive two use-

ful properties.
First, we prove that if aπ,jφ � 0, then τπφj,v′

∈ [tφ, τπφ]. To
this end, consider any stopping rule τ and purchas-
ing rule a such that τ ∈ [τπφ,T], a ∈ {0, 1}n, and
1Ta ≤ 1. Then,

U φj,v′ ,y
π
φ

( )
�U φ,yπφ

( )
≥E

∑n
j′�1

vj
′
φe

−dj′
φ

τ−tφ( )aj′ −∑n
j′�1

πj′
τa

j′
⃒⃒⃒⃒
⃒Cτπφ

[ ]

�∑
j′ ��j

E vj
′
φe

−dj′
φ

τ−tφ( )−πj′
τ

⃒⃒⃒⃒
Cτπ

φ
,aj

′ �1
[ ]

×P aj
′ �1

⃒⃒
Cτπ

φ

( )
+E vjφe

−dj
φ

τ−tφ( )−πj
τ

⃒⃒⃒
Cτπ

φ
,aj�1

[ ]
×P aj�1

⃒⃒
Cτπ

φ

( )
≥∑

j′ ��j
E vj

′
φe

−dj′
φ

τ−tφ( )−πj′
τ

⃒⃒⃒⃒
Cτπ

φ
,aj

′ �1
[ ]

×P aj
′ �1

⃒⃒
Cτπ

φ

( )
+E v′e−d

j
φ

τ−tφ( )−πj
τ

⃒⃒⃒
Cτπ

φ
,aj�1

[ ]
×P aj�1

⃒⃒
Cτπ

φ

( )
�E

∑n
j′�1

vj
′
φj,v′

e−d
j′
φ

τ−tφ( )aj′ −∑n
j′�1

πj′
τa

j′
⃒⃒⃒⃒
⃒Cτπφ

[ ]
,

where the first equality follows from aπ,jφ � 0 and
vj

′
φj,v′

� vj
′
φ for all j′ �� j, the first inequality follows from

(τπφ,aπφ) being customer φ’s best response, and the
second inequality follows from the property that
v′ ≤ vjφ. Thus, we established that the utility that
customer of type φj,v′ would derive by following
(τπφ,aπφ) is greater than or equal to the expected utility

he would have derived in case he had followed any
other stopping and purchasing rules (τ,a) at time τπφ.
Formally, if we let y≜ (τ, a,πT

τa), we have

τπφ,a
π
φ

( )
∈ argmax

τ∈
[
τπ
φ
,T

]
a∈ 0,1{ }n
1Ta≤1

E U φj,v′ , y
( )⃒⃒⃒

Cτπ
φ
, aπ,jφ � 0

[ ]
.

In other words, if a customer of type φj,v′ has not
stopped by time τπφ and aπ,jφ � 0, then it is optimal
to stop at time τπφ. This implies that if aπ,jφ � 0,
then τπφj,v′

∈ [tφ, τπφ].
Second, we prove that if τπφ ≥ τπφj,v′

and aπ,jφj,v′
� 1, then

aπ,jφ � 1. Consider any stopping and purchasing rules
such that τ ∈ [τπφj,v′

,T], a ∈ {0, 1}n, and 1Ta ≤ 1. Let
y≜ (τ, a,πT

τa). We have

0 ≤ U φj,v′ , y
π
φj,v′

( )
− E U φj,v′ , y

( )⃒⃒⃒
Cτπ

φj,v′

[ ]
� v′e

−dj
φ

τπ
φj,v′

−tφ
( )

− π
j
τπ
φj,v′

− E U φj,v′ , y
( )⃒⃒⃒

Cτπ
φj,v′

[ ]
� v′e

−dj
φ

τπ
φj,v′

−tφ
( )

− π
j
τπ
φj,v′

−∑
j′ ��j

E vj
′
φe

−dj′
φ

τ−tφ( ) − πj′
τ

⃒⃒⃒⃒
Cτπ

φj,v′
, aj

′ � 1
[ ]

× P aj
′ � 1

⃒⃒
Cτπ

φj,v′

( )
− E v′e−d

j
φ

τ−tφ( ) − πj
τ

⃒⃒⃒
Cτπ

φj,v′
, aj � 1

[ ]
× P aj � 1

⃒⃒
Cτπ

φj,v′

( )

� v′
e
−dj

φ
τπ
φj,v′

−tφ
( )

− E e−d
j
φ

τ−tφ( ) ⃒⃒⃒Cτπ
φj,v′

, aj � 1
[ ]

P aj � 1|Cτπ
φj,v′

( )
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

−πj
τπ
φj,v′

+E πj
τ

⃒⃒
Cτπ

φj,v′
,aj�1

[ ]
P aj�1

⃒⃒
Cτπ

φj,v′

( )
−∑

j′ ��j
E vj

′
φe

−dj′
φ

τ−tφ( )−πj′
τ

⃒⃒⃒⃒
Cτπ

φj,v′
,aj

′ �1
[ ]

×P aj
′ �1

⃒⃒
Cτπ

φj,v′

( )
≤ vjφA−πj

τπ
φj,v′

+E πj
τ

⃒⃒
Cτπ

φj,v′
,aj�1

[ ]
P aj�1

⃒⃒
Cτπ

φj,v′

( )
−∑

j′ ��j
E vj

′
φe

−dj′
φ

τ−tφ( )−πj′
τ

⃒⃒⃒⃒
Cτπ

φj,v′
,aj

′ �1
[ ]

P aj
′ �1

⃒⃒
Cτπ

φj,v′

( )
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� vjφe
−dj

φ
τπ
φj,v′

−tφ
( )

− π
j
τπ
φj,v′

−∑
j′ ��j

E vj
′
φe

−dj′
φ

τ−tφ( ) − πj′
τ

⃒⃒⃒⃒
Cτπ

φj,v′
, aj

′ � 1
[ ]

× P aj
′ � 1

⃒⃒
Cτπ

φj,v′

( )
− E vjφe

−dj
φ

τ−tφ( ) − πj
τ

⃒⃒⃒
Cτπ

φj,v′
, aj � 1

[ ]
× P aj � 1

⃒⃒
Cτπ

φj,v′

( )
� vjφe

−dj
φ

τπ
φj,v′

−tφ
( )

− π
j
τπ
φj,v′

− E U φ, y
( )⃒⃒

Cτπ
φj,v′

[ ]
� U φ, yπφj,v′

( )
− E U φ, y

( )⃒⃒
Cτπ

φj,v′

[ ]
.

The first and the sixth equalities follow from the
property that aπ,jφj,v′

� 1. The first inequality follows
from the property that yπφj,v′

is customer φj,v′ ’s best
response. The second inequality follows from the
property that v′ ≤ vjφ and the property that τ ≥ τπφj,v′
and P(·) ≤ 1 imply A ≥ 0. Therefore, if we let y≜ (τ,a,
πT
τa), then we have

τπφj,v′
, aπφj,v′

( )
∈ argmax

τ∈
[
τπ
φj,v′

,T

]
a∈ 0,1{ }n
1Ta≤1

E U φ, y
( )⃒⃒

Cτπ
φj,v′

, aπ,jφj,v′
� 1

[ ]
.

This implies that if τπφ ≥ τπφj,v′
and aπ,jφj,v′

� 1, then aπ,jφ � 1.
From the two properties that we proved, it follows

that aπ,jφ � 0 implies aπ,jφj,v′
� 0 for all v′ ≤ vφ. To see this,

suppose aπ,jφ � 0 and aπ,jφj,v′
� 1. Then aπ,jφ � 0 and the first

property implies τφj,v′ ≤ τφ. In addition, aπ,jφj,v′
� 1, τφj,v′ ≤

τφ and the second property implies aπ,jφ � 1, a
contradiction. ∎

3.2. A Dynamic Mechanism Design Problem
Given the complexity of themodel in Section 2, we are
going to instead study a suitable dynamic mecha-
nism design problem, with the DM (the principal)
choosing a mechanism that assigns products at certain
prices to arriving customers (the agents), depending on
how they choose to report their type, which includes
their arrival time and product valuation.

The mechanism design problem will be formulated
to closely mimic the interactions of the DM and the
customers in our original model while being amendable
to analysis. Therefore, for brevity, we simply emphasize
below the ways the two models differ. Also, for expo-
sition purposes we overload notation to make the con-
nections between the two models clearer.

Transactions are governed by a mechanism that
assigns products to customers, after they report their

types.4 A customer who reported her type to be φ ∈ Φ
is assigned yφ ≜ (τφ,aφ, pφ), where τφ ∈ [tφ,T] is the
time that the DMdecides to sell precisely one product
unit to that customer or refuse to sell any product to
him, ajφ ∈ {0, 1} is an indicator for whether φ is allo-
cated with one unit of product j ∈ {1, . . . , n}, and pφ is
the price paid by the customer. We denote such a
mechanism, that is, the set of all these allocation and
payment rules, with y≜ {yφ : φ ∈ Φ}.
The information set of the DM at time t is given by

Gt ≜ σ(Ht), where Ht ≜ {φ : tφ ≤ t} is the set of cus-
tomer reports made up to time t. We shall say that a
mechanism y is feasible if yφ satisfies the following
properties for all φ ∈ Φ: (we denote the class of all
feasible mechanisms with Y)
1. Causality: τφ is a Gt-measurable stopping time

and (aφ, pφ) are Gτφ -measurable.
2. Substitutability: The DM allocates at most one

product to a customer, that is, 1Taφ ≤ 1, a.s.
3. Limited Inventory: The DM does not run out of

inventory, that is,∑
φ∈HT

∑n
j�1

Aija
j
φ ≤ xi0,∀i ∈ 1, . . . ,m{ }, a.s. (1)

4. Nonnegative prices: The DM charges prices that
are nonnegative, that is, pφ ≥ 0, a.s.
Under some feasible mechanism y, customer φ

derives utilityU(φ, yφ), when truthfully reporting her
type. Otherwise, if misreporting her type as φ̂, she
derives utility U(φ, yφ̂). When choosing to misreport
her type, customer φ can only reveal her arrival time
no earlier than her true arrival and no later than the
end of the season, that is, tφ̂ ∈ [tφ,T].
By choosingmechanism y, theDM collects expected

revenue V(y)≜E[∑φ∈HT pφ]. Consider the following
optimization problem for choosing y,

maximize V y
( )

subject to y ∈ Y

E−φ U φ, yφ
( )[ ] ≥ E−φ U φ, yφ̂

( )[ ]
,

∀ φ, φ̂ : tφ̂ ∈ tφ,T
[ ] (IC)

U φ, yφ
( ) ≥ 0, ∀ φ (IR)
1 − ajφ
( )

ajφj,v′
� 0, ∀ φ, j, v′ ≤ vjφ. (2)

That is, the DM chooses a feasible mechanism to
maximize her expected revenues, subject to the in-
centive compatibility (IC) and individual rationality
(IR) constraints. The previous formulation deviates
from classical mechanism design problems by requiring
that (i) the (IR) constraint holds almost surely and
that (ii) a customer is not assigned a product if it is not
assigned to another customer who has a higher valua-
tion on it. These deviations ensure that the mechanism
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induces similar properties to the ones we derived in
Section 3.1.

3.2.1. Analysis. Let Jmd be the optimal value of the
mechanism design problem (2). We first argue that it
provides an upper bound to the expected revenues in
our original model in Section 2, under any admissible
pricing policy she might follow (proofs of Lemmata
are included in the e-companion).

Lemma 1. For any pricing policy π ∈ Π, Jπ ≤ Jmd, and
J� ≤ Jmd.

The mechanism design problem (2) involves cus-
tomers who have multivariate, heterogeneous valu-
ations for the different products. The (IC) and (IR)
constraints in the problem then involve utilities
that couple all this private information. This cou-
pling represents a major technical challenge as it
precludes the application of the standard Myerso-
nian solution approach (Myerson 1981). To over-
come this challenge, we consider decomposing the
utility of each customer as follows: we consider
separate utility components associated with each
product, that is,

Uj φ, yφ
( )

≜ vjφe
−dj

φ
τφ−tφ( )ajφ − pjφ, (3)

where pjφ≜ pφa
j
φ is the price that customer φ pays for

product j. We then replace the (IC) and (IR) con-
straints in Problem (2) with the constraints associated
with each product in a decoupled fashion. The result-
ing (IC) constraint associated with the jth product, for
example, would be

E−φ Uj φ, yφ
( )[ ] ≥ E−φ Uj φ, yφ̂

( )[ ]
,∀ φ, φ̂ : tφ̂ ∈ tφ,T

[ ]
.

Reformulating Problem (2) by decoupling the original
(IC) and (IR) constraints would be a step closer to
enabling the application of theMyersonian approach.
Unfortunately, such a reformulation would yield a
stricter, rather than a relaxed reformulation, because
it would shrink the set of feasible mechanisms. To see
this, note that mechanisms satisfying the decoupled
constraints also satisfy the original (IC) and (IR)
constraints, but not vice versa.

To counterbalance this, we restrict agents by allow-
ing them to misreport only their product valuations,
which provides a relaxation. We are able to show that
the resulting reformulation, with the decoupled (IC)
and (IR) constraints and the aforementioned restric-
tion, yields a net relaxation to Problem (2). Formally,

consider the following problem and let Ĵ be its opti-
mal value.

maximize E
∑
φ∈HT

∑n
j�1

pjφ

[ ]
(4)

subject to E−φ Uj φ, yφ
( )[ ] ≥ E−φ Uj φ, yφj,w

( )[ ]
,

∀ j, φ, w ≥ 0 ICj
( )

E−φ Uj φ, yφ
( )[ ] ≥ 0, ∀ j, φ IRj

( )
1Taφ ≤ 1, ∀ φ∑
φ∈HT

∑n
j�1

Aija
j
φ ≤ xi0, ∀ i

aφ ∈ 0, 1{ }n, ∀ φ.

Proposition 2. The optimal value of Problem (4) pro-
vides an upper bound to the optimal value of Prob-
lem (2), that is Jmd ≤ Ĵ.

Proof of Proposition 2. In this proof, for notational
clarity, we define bjφ ≜ e−d

j
φ
(τφ−tφ)ajφ. Consider any y ∈ Y

that is feasible to optimization problem (2). We use y to
construct a feasible solution to optimization problem (4),
denoted by {ŷjφ}. In particular, for all j and φ, let

âjφ ≜ ajφ, p̂jφ ≜ vjφb
j
φ −

∫ vj
φ

v′�0
bjφj,v′

dv′, τ̂φ≜ τφ.

To show feasibility of {ŷjφ}, we first derive two useful
properties. First, we use the envelope theorem to
express the utility of a φ-customer under yφ as

E−φ U φ, yφ
( )[ ]

� E−φ
∫ vj

φ

v′�0
∂U

∂vjφ
φj,v′ , yφj,v′

( )
dv′ +U φj,0, yφj,0

( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� E−φ

∫ vj
φ

v′�0
bjφj,v′

dv′ +U φj,0, yφj,0

( )[ ]
.

Second, the utility of a φ-customer when reporting
valuation w for the jth product can be expressed

E−φ U φ,yφj,w

( )[ ]
�E−φ

∑n
j�1

vjφb
j
φj,w

−pφj,w

[ ]

�E−φ
∑n
j�1

vjφj,w
bjφj,w

−pφj,w
+ vjφ−w
( )

bjφj,w

[ ]
�E−φ U φj,w,yφj,w

( )
+ vjφ−w
( )

bjφj,w

[ ]
�E−φ

∫ w

v′�0
bjφj,v′

dv′ +U φj,0,yφj,0

( )[
+ vjφ−w
( )

bjφj,w

]
,
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where for the last equality we used the previ-
ous property.

Now, for all j ∈ {1, . . . ,n}, φ ∈ Φ, w ≥ 0 we have that

E−φ Uj φ, ŷφ
( ) −Uj φ, ŷφj,w

( )[ ]
� E−φ

∫ vj
φ

v′�0
bjφj,v′

dv′ − vjφ − w
( )

bjφj,w

[
−
∫ w

v′�0
bjφj,v′

dv′
]

� E−φ U φ, yφ
( ) −U φ, yφj,w

( )[ ]
≥ 0,

where the first equality follows by substituting for ŷjφ,
the second equality from the two properties above,
and the inequality follows the (IC) constraint that (the
feasible) y satisfies in optimization problem (2). There-
fore, {ŷjφ} satisfies (ICj) in optimization problem (4).

Furthermore, for any φ ∈ Φ, j∈ {1, . . . ,n}, E−φ[Uj(φ,
ŷφ)] �E−φ[

∫ vj
φ

v′�0b
j
φj,v′

dv′] ≥0. Therefore, {ŷjφ} satisfies (IRj)
in (4). The remaining constraints are also satisfied given
that y ∈ Y.

To complete the proof, we show that the objective
of (4) evaluated at {ŷjφ} is greater than or equal to the
objective of (2) evaluated at y:

E
∑
φ∈HT

∑n
j�1

p̂jφ

[ ]

� E
∑
φ∈HT

∑n
j�1

E−φ p̂jφ
[ ][ ]

� E
∑
φ∈HT

∑n
j�1

E−φ vjφb
j
φ −

∫ vj
φ

v′�0
bjφj,v′

dv′
[ ][ ]

� E
∑
φ∈HT

∑n
j�1

E−φ vjφb
j
φ −

∫ vj
φ

v′�0
bjφj,v′

dv′
( )

ajφ

[ ][ ]

� E
∑
φ∈HT

∑n
j�1

E−φ vjφb
j
φ −U φ, yφ

( )([[
+U φj,0, yφj,0

( ))
ajφ
]]

� E
∑
φ∈HT

∑n
j�1

vjφb
j
φ −U φ, yφ

( )([
+U φj,0, yφj,0

( ))
ajφ

]

≥ E
∑
φ∈HT

∑n
j�1

vjφb
j
φ −U φ, yφ

( )( )
ajφ

[ ]

� E
∑
φ∈HT

∑n
j�1

vjφb
j
φ − ∑n

j′�1
vj

′
φb

j′
φ − pφ

( )( )
ajφ

[ ]

� E
∑
φ∈HT

∑n
j�1

pφa
j
φ

[ ]

� E
∑
φ∈HT

pφ

[ ]
� V y

( )
,

where the third equality follows from Proposition
1(b); the first inequality follows the (IR) constraint
that U(φj,0, yφj,0

) ≥ 0 and the property that ajφ ≥ 0; the
eighth equality follows from that

∑
j� 1najφ � 1, or pφ � 0

if
∑

j� 1najφ � 0. We conclude that Jmd ≤ Ĵ. ∎

We can now apply the Myersonian approach to the
relaxed problemabove to obtain an upper bound to its
optimal value Ĵ. In particular, for any χ ∈ [0, 1], con-
sider the problem

maximize E
∑
φ∈HT

∑n
j�1

vjφ −
F̄j v

j
φ

( )
fj v

j
φ

( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠b̃jφ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

subject to Eφ

∑n
j�1

b̃jφ

[ ]
≤ χ

E
∑
φ∈HT

∑n
j�1

Aijb̃
j
φ

[ ]
≤ xi0 ∀ i

b̃jφ ∈ 01[ ] ∀ φ j.

(5)

and let J̃χ denote its the optimal value.

Lemma 2. We have Ĵ ≤ J̃1. Furthermore, for any χ ∈
[0, 1], χJ̃1 ≤ J̃χ.

The final step is to derive an upper bound to J̃χ

using the optimal value of an optimization problem
that is motivated by a fluid-type approximation of an
NRM model in which customers were to behave
myopically. Specifically, for any χ ∈ [0, 1] consider

maximize λT
∑n
j�1

qjF̄j qj
( )

subject to
∑n
j�1

F̄j qj
( ) ≤ χ

λT
∑n
j�1

AijF̄j qj
( ) ≤ xi0, ∀ i (6)

and let J̄χ be its optimal value and qχ an optimal so-
lution. To prove our result, we also enforce hereafter a
standard assumption on the product valuation mar-
ginal distribution functions:

Assumption 1. The virtual value function v − F̄j(v)
fj(v) is non-

decreasing for all v ≥ 0, j ∈ {1, . . . ,n}.
Lemma 3. For any χ ∈ [0, 1], J̃χ ≤ J̄χ.

To summarize, by combining the results in this
section, we obtain

Jπ ≤ J� ≤ Jmd ≤ Ĵ ≤ J̃1 ≤ 1
χ
J̃χ ≤ 1

χ
J̄χ, (7)

which leads to the following.
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Theorem 1 (Revenue Bound). For any dynamic pricing
policy π ∈ Π and χ ∈ (0, 1],

Jπ ≤ J� ≤ 1
χ
J̄χ.

The decomposition approach we introduced in our
analysis and enabled us to provide a first characterization
of optimal revenues in NRM with forward-looking
customers with product choice does not come without
its limitations. First, it necessitates the assumption of
independent valuations. Second, it provides as an upper
bound theoptimal valueof (6), an optimization problem
in which fluid customer streams are also decomposed.

4. Performance Analysis of Static Pricing
We now leverage the upper bound we derived to
conduct in our model a novel performance analysis of
static pricing, that is, policies that post a constant price
for each product throughout the selling season. Our
analysis is twofold. First, we derive an analytical result,
specifically guarantees for the performance of static
pricing in the classical fluid-type regime where in-
ventory anddemandgrow large. Second,we conduct a
numerical analysiswhereinwe explore the performance
of static pricing under realistic ranges for problem
parameters and commonly used demanddistributions.

4.1. Theoretical Performance Analysis
Formally, we shall refer to an admissible pricing
policy as static if it posts a constant price for each
product as long as inventory is available. That is, for a
static pricing policy π̄ ∈ Π, there exist prices q̄ ∈ Rn

such that for all t ∈ [0,T] and j ∈ {1, . . . , n}

π̄
j
t � ∞ if ∃ i : Xi

t− � 0 and Aij � 1,
q̄j otherwise.

{
We are now going to construct a static pricing policy
backed by a performance guarantee in a fluid-type
approximation regime. Our analysis of static pricing
is at some points similar and at some other points
different from analyses of static pricing in the liter-
ature, such as Gallego and Van Ryzin (1994) or Talluri
and Van Ryzin (1998). For example, different from
these papers, we consider a parameterized bound on
the number of items purchased in expectation that is
lower than 1. In particular, we use the parameter χ
introduced previously to derive a meaningful bound.
To see this, fix some χ ∈ (0, 1] and consider the static
pricing policy π̄χ ∈ Π that posts prices qχ ∈ Rn (recall
that qχ is an optimal solution to Problem (6)). Note
that under any static pricing policy π̄, the customers’
best-response actions yπ̄ can be readily seen to be
myopic. Formally, under a static pricing policy π̄,
customer φ’s dominant equilibrium is to behave
myopically, that is, for all φ ∈ Φ, (a) τπ̄φ � tφ; (b) 1Taπ̄φ �
1 if and only if maxj{vjφ − π̄

j
tφ} ≥ 0; and, (c) aπ̄,jφ � 1 only

if vjφ − π̄
j
tφ ≥ vj

′
φ − π̄

j′
tφ for all j′ �� j. We then have the

following performance guarantee for π̄χ.Finally, con-
sider a sequence of systems where in the Nth system
we have λ(N) � Nλ and x(N)

0 � Nx0. That is, we pro-
portionally scale up the customer arrival rate and the
DM’s initial inventory for all resources. Let Jπ(λ(N), x(N)

0 )
denote the DM’s expected revenues under policy π ∈ Π
for the Nth system, and J�(λ(N), x(N)

0 ) denote the as-
sociated optimal revenues. For this high-volume re-
gime, it can be readily seen that

Jπ̄χ λ N( ), x N( )
0

( )
J� λ N( ), x N( )

0

( ) ≥ χ 1 −min χ,
∑m

i�1 xi0
λTr

{ }( )
−O

1̅̅̅
N

√
( )

,

for all π ∈ Π and χ ∈ (0, 1]. By appropriately assigning
a value on χ, we obtain the following.

Proposition 3 (Performance Guarantee). For the static
pricing policy π̄χ,

Jπ̄χ

J�
≥ χ 1 −min χ,

∑m
i�1 xi0
λTr

{ }( )
− maxj q

j
χ∑n

j�1 q
j
χF̄j q

j
χ

( ) mχ̅̅̅̅̅̅
2λT

√ ,

where r≜ minj
∑

i� 1mAij denotes the minimum num-
ber of resources required for any product.

Proof of Proposition 3. First, we establish the following
useful property:

1 −∏k
j�1

1 − ζj
( ) ≤ ∑k

j�1
ζj, ∀ k ∈ N, andζ ∈ Rk

such that0 ≤ ζ ≤ 1.

(8)

We prove it via induction. It is trivially true for k � 1.
Suppose it is true for some k ≥ 1. Then,

1 −∏k+1
j�1

1 − ζj
( ) ≤ 1 − 1 −∑k

j�1
ζj

( )
1 − ζk+1
( )

� ∑k+1
j�1

ζj − ∑k
j�1

ζj
( )

ζk+1 ≤ ∑k+1
j�1

ζj.

For each customer φ ∈ Φ and j ∈ {1, . . . ,n}, let β
j
φ≜

1 if vjφ−qjχ ≥maxj′ ��j(vj′φ−qj
′
χ)+

0 otherwise.

{
Denoting the indica-

tor function with 1{·}, we have

Jπ̄χ � E
∑
φ∈HT

∑n
j�1

qjχ1 aπ̄χ,j
φ � 1

{ }[ ]

≥ ∑n
j�1

qjχE
∑
φ∈HT

1 β
j
φ � 1

{ }[ ]

− ∑n
j�1

qjχ

( )
E

∑
φ∈HT

1
∑n
j�1

βjφ ≥ 2

{ }[ ]

− max
j

qjχ

( )∑m
i�1

E
∑
φ∈HT

∑n
j�1

Aij

([
×1 β

j
φ � 1

{ }
− xi0

)+]
.

(9)
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Now,we analyze the three terms in (9) separately. For
the first term in (9), we have∑n

j�1
qjχE

∑
φ∈HT

1 β
j
φ � 1

{ }[ ]
� ∑n

j�1
qjχE |HT |[ ]E 1 β

j
φ � 1

{ }[ ]
� λT

∑n
j�1

qjχE 1 β
j
φ � 1

{ }[ ]
≥ λT

∑n
j�1

qjχP vjφ ≥ qjχ and vj
′
φ < qj

′
χ,∀j′ �� j

( )
� λT

∑n
j�1

qjχF̄j q
j
χ

( )∏
j′ ��j

Fj′ qj
′
χ

( )
≥ λT

∑n
j�1

qjχF̄j q
j
χ

( )∏n
j′�1

Fj′ qj
′
χ

( )
� λT

∑n
j�1

qjχF̄j q
j
χ

( )( ) ∏n
j�1

Fj qjχ
( )( )

≥ λT
∑n
j�1

qjχF̄j q
j
χ

( )( )
1 −∑n

j�1
F̄j qjχ
( )( )

� 1 −∑n
j�1

F̄j qjχ
( )( )

J̄χ,

where the first equality follows fromWald’s identity;
the third equality follows from the independence of
customers’ valuations for different products; the second
inequality follows from Fj(qjχ) ≤ 1; the third inequality
follows from (8).

Now, we establish two upper bounds of
∑

j� 1nF̄j(qjχ).
The first is simply the first constraint in (6),

∑
j�

1nF̄j(qjχ) ≤ χ. The second follows from the second set
of constraints in (6),∑m

i�1
xi0 ≥

∑m
i�1

λT
∑n
j�1

AijF̄j qjχ
( )( )

� λT
∑n
j�1

F̄j qjχ
( ) ∑m

i�1
Aij

( )
≥ λTr

∑n
j�1

F̄j qjχ
( )

.

These two upper bounds of
∑

j� 1nF̄j(qjχ) jointly imply∑n
j�1

qjχE
∑
φ∈HT

1 β
j
φ � 1

{ }[ ]
≥ 1 −min χ,

∑m
i�1 xi0
λTr

{ }( )
J̄χ.

For the second term in (9), we have∑n
j�1

qjχ

( )
E

∑
φ∈HT

1
∑n
j�1

βjφ ≥ 2

{ }[ ]

� ∑n
j�1

qjχ

( )
E |HT |[ ]E 1

∑n
j�1

βjφ ≥ 2

{ }[ ]

� λT
∑n
j�1

qjχ

( )
E 1

∑n
j�1

β
j
φ ≥ 2

{ }[ ]
� 0,

where the second equality follows fromWald’s identity
and the third equality follows from the property that
for any j, j′ with j �� j′, P(vjφ − qjχ � vj

′
φ − qj

′
χ) � 0.

For the third term in (9), we first establish upper
bounds to the mean and the variance of

∑
φ∈HT

∑
j�

1nAij1{βjφ � 1}. To ease notation, we denote this term
by Bi. For the mean of Bi,

E Bi[ ] � E |HT |[ ]E ∑n
j�1

Aij1 β
j
φ � 1

{ }[ ]

� λTE
∑n
j�1

Aij1 β
j
φ � 1

{ }[ ]

� λTE
∑n
j�1

Aij1 β
j
φ � 1

{ }⃒⃒⃒⃒⃒∑nj�1 Aij

[
1 β

j
φ � 1

{ }
≤ 1

]

≤ λT 1 −∏n
j�1

Fj qjχ
( )Aij

( )

≤ λT
∑n
j�1

AijF̄j qjχ
( )( )

≤ xi0,

where the first equality follows fromWald’s identity;
the third equality follows from the property that for
any j, j′ with j �� j′, P(vjφ − qjχ � vj

′
φ − qj

′
χ) � 0; the second

inequality follows from (8); the third inequality holds
because qχ satisfies the inventory constraint in (6). For
the variance of Bi,

Var Bi[ ] � E |HT |[ ]Var ∑n
j�1

Aij1 β
j
φ � 1

{ }[ ]

+ E
∑n
j�1

Aij1 β
j
φ � 1

{ }[ ]( )2
Var |HT |[ ]

� E |HT |[ ]Var ∑n
j�1

Aij1 β
j
φ � 1

{ }⃒⃒⃒⃒⃒
[

× ∑n
j�1

Aij1 β
j
φ � 1

{ }
≤ 1

]

+ E
∑n
j�1

Aij1 βjφ � 1
{ }⃒⃒⃒⃒⃒∑nj�1 Aij

[(

× 1 β
j
φ � 1

{ }
≤ 1

])2
Var |HT |[ ]

≤ 2λT,

where the first equality follows from the property that if
N is a random variable andX1, . . . ,XN are independent
and identically distributed (i.i.d.), then Var[∑n� 1NXn] �
E[N]Var[Xn]+ (E[Xn])2Var[N]. The second equality
follows from P(vjφ − qjχ � vj

′
φ − pj

′
χ) � 0, for any j, j′ with
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j �� j′. The inequality follows from E[|HT |] �Var[|HT |] �
λT and the condition

∑n
j�1Aij1 × {βjφ � 1} ∈ [0,1]. There-

fore, we have

E Bi − xi0
( )+[ ] ≤ 1

2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var Bi[ ] + xi0 − E Bi[ ]( )2√(

− xi0 − E Bi[ ]( )) ≤
̅̅̅̅
λT
2

√
,

where the first inequality follows from equation (18)
in Gallego and Van Ryzin (1994); the second inequality
follows the boundsE[Bi] ≤ xi0 andVar[Bi] ≤ 2λT. Using
this property, we can now bound the third term in (9)

max
j

qjχ

( )∑m
i�1

E
∑
φ∈HT

∑n
j�1

Aij1 β
j
φ � 1

{ }([

−xi0
)+]
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j

qjχ

( )
m

̅̅̅̅
λT
2

√
.

Using (7), (9), and the bounds we derived on the three
terms of the latter, we conclude that

Jπ̄χ

J�
≥ χJπ̄χ

J̄χ
≥ χ 1 −min χ,

∑m
i�1 xi0
λTr

{ }( )
− maxj q

j
χ∑n

j�1 q
j
χF̄j q

j
χ

( ) mχ̅̅̅̅̅̅
2λT

√ . ∎

Corollary 1 (Asymptotic Performance Guarantee). For the
static pricing policy π̄χ,

Jπ̄χ λ N( ), x N( )
0

( )
J� λ N( ), x N( )

0

( ) ≥ 1
4
−O N−1/2( )

.

Furthermore, if
∑

i� 1mxi0λTr ≤ 3
4, we have

Jπ̄χ λ N( ), x N( )
0

( )
J� λ N( ), x N( )

0

( ) ≥ 1 −
∑m

i�1 xi0
λTr

−O N−1/2( )
.

The first part of Corollary 1 provides an asymptotic
constant factor guarantee for static pricing perfor-
mance, namely 1/4. The second part is relevant for
problem instances in which available inventory is low
relative to demand. In particular, if we interpret

∑m
i�1 x

i
0

r
as the maximum number of customers that available
inventory can serve, Corollary 1 says that if that
number is 3/4 of the number of expected customers
(λT) or less, then we obtain a stronger bound. Namely,
we then get an asymptotic guarantee that is equal to

1 −
∑m

i�1 x
i
0

λTr , that is, loosely speaking, the ratio of un-
served customers to total number of customers. As
inventory availability is reduced, more customers

tend to be unserved, and performance of static pricing
becomes closer to being optimal.
Finally, we note that the guarantee we provide here

for static pricing is worse than that of Chen et al.
(2018). We hypothesize the following two reasons:
first, we deal with customers who strategize both on
when and what to buy, instead of only on when.
Dealing with more strategic customers could then
undermine the efficacy of static pricing. Second, herein
we deal with an intractable multidimensional mecha-
nism design problem. Consequently, we have to use a
decomposition approach, which, being approximate,
could also introduce some loss.

4.2. Numerical Performance Analysis
Our theoretical treatment yielded a uniform guar-
antee that static pricing is capable of capturing a certain
fraction of revenues relative to dynamic pricing in our
model. As is often the case with guarantees of this kind,
we expect, in realistic settings, the revenues captured
by static pricing to exceed what is prescribed by the
guarantee. This is because the guarantee, being applied
to all possible problem instances, tends to be driven by
worst-case instances.
We conduct numerical studies that enable us to

quantify how well static pricing policies perform
under realistic parameter choices. In particular, we
generate multiple problem instances, for which we
simulate the selling process and record the DM’s
revenues when using a judiciously chosen static pricing
policy. By comparing the average recorded revenues
with one of the upper boundswe derived, we find static
pricing policies capable of capturing at least 75%–90%
of the optimal revenues. That the simplest pricing
policy captures such a high percentage of our bound
consistently across all experiments provides some
evidence about the bound’s practical relevance and
also supports our claim about the robustness of static
prices across parameter regimes.
Furthermore, considering a wide range of param-

eter values enables us to conduct a sensitivity anal-
ysis. We find that static pricing policies tend to per-
form better for lower load factors, which is consistent
with Corollary 1, and higher product proliferation.
Their performance remains almost constant as product
complexity, product differentiation and market scale
vary. Details on the experimental setup and the results
are included in the e-companion.

5. Concluding Remarks
In this paper, we made a first step toward connecting
two very broad streams of literature within revenue
management: papers dealing with forward-looking cus-
tomers and papers dealing with customer product
choice. Today’s electronic commerce landscape facilitates
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customers’ strategic responses to firms’ pricing policies
in choosingwhen to buy andwhat to buy (often among a
plethora of alternatives). We expect, therefore, re-
search in revenue management that accounts for both
these important facets of customer behavior to be-
come increasingly more relevant and popular. Herein,
we started off from a canonical network revenue man-
agement model and extended it to allow customers to
strategize on when and what to buy, guided by het-
erogeneous product valuations andheterogeneous decay
rates. After pointing out the unique technical challenges
that merging forward-looking behavior with customer
product choice represents, we presented a novel de-
composition approach within dynamic mechanism de-
sign that enabled us to provide a first characterization of
optimal revenues, namely an upper bound.

Our decomposition approach did not comewithout
its limitations. First, it precluded us from modeling
the interactions between products in an exact way.
Instead, the fluid customer streams were decoupled
midway in our analysis. This approximation could
have introduced some loss in our performance guar-
antee. Second, the approach necessitated the assump-
tion of independent customer valuations across prod-
ucts. How to circumvent these limitations represents
interesting challenges and could help tighten the anal-
ysis. However, it will also require new approaches
because coupling customer streams and/or allowing
correlated valuations are likely to bringone back in front
of the technical barriers of multidimensional mecha-
nism design that our approach got round.

Our upper bound analysis could form the basis for
subsequent research, as it may serve as a tool for
benchmarking candidate (dynamic) pricing policies.
Indeed, we provided a performance analysis of static
pricing policies, by comparing expected revenueswithin
that class of policies with our upper bound. This enabled
us to derive guarantees for the performance of static
pricing, and an insightful numerical analysis.

Endnotes
1The website keepa.com, for example, provides retail customers
seeking to purchase goods on the amazon.con platform with un-
precedented detail in historical price and stock information for
their desired product, alongside information on related alternative
product offerings.
2To ease notation, we use bold font to denote vectors that suppress
dummy product or resource superscript indices.
3We do not prove existence in general. We only demonstrate exis-
tence of such an equilibrium stopping rule for a specific class of
pricing policies, and they exist trivially for static prices.
4We restrict ourselves to direct mechanisms.
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