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Abstract. We developed DELPHI, a novel epidemiological model for predicting
detected cases and deaths in the prevaccination era of the COVID-19 pandemic. The
model allows for underdetection of infections and effects of government interventions.
We have applied DELPHI across more than 200 geographical areas since early April
2020 and recorded 6% and 11% two-week, out-of-sample median mean absolute per-
centage error on predicting cases and deaths, respectively. DELPHI compares favorably
with other top COVID-19 epidemiological models and predicted in 2020 the large-scale
epidemics in many areas, including the United States, United Kingdom, and Russia,
months in advance. We further illustrate two downstream applications of DELPHI,
enabled by the model’s flexible parametric formulation of the effect of government inter-
ventions. First, we quantify the impact of government interventions on the pandemic’s
spread. We predict, that in the absence of any interventions, more than 14 million indi-
viduals would have perished by May 17, 2020, whereas 280,000 deaths could have been
avoided if interventions around the world had started one week earlier. Furthermore,
we find that mass gathering restrictions and school closings were associated with the
largest average reductions in infection rates at 29:9 6 6:9% and 17:366:7%, respectively.
The most stringent policy, stay at home, was associated with an average reduction in in-
fection rate by 74:463:7% from baseline across countries that implemented it. In the sec-
ond application, we demonstrate how DELPHI can predict future COVID-19 incidence
under alternative governmental policies and discuss how Janssen Pharmaceuticals used
such analyses to select the locations of its Phase III trial for its leading single-dose vac-
cine candidate Ad26.Cov2.S.

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2022.2306.
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1. Introduction
The ongoing COVID-19 pandemic is the deadliest in
recent history. As of June 1st, 2022, thereweremore than
530million confirmed cases of COVID-19 and 6.3million
deaths. In late March 2020, we developed DELPHI, a
new epidemiological model that aims to predict the pan-
demic’s evolution. DELPHI extends a classical SEIR
model (Kermack andMcKendrick 1927) to include addi-
tional outcomes, such as deaths, account for underdetec-
tion of infections, and estimate the effect of changing
government interventions. Since its inception, DELPHI
has been one of the top four models consistently incor-
porated into the U.S. Centers for Disease Control and
Prevention’s (CDC) core ensemble forecast (Dean et al.

2020) and has been utilized by various health and
federal agencies, including the Federal Reserve, for
pandemic planning. DELPHI was used by Janssen Phar-
maceuticals to select the locations of its multicenter
Phase III trial for its single-dose vaccine candidate
Ad26.Cov2.S and by Hartford Healthcare, a major hos-
pital system in the United States, to plan intensive care
unit capacity.

A key strength of DELPHI is its explicit, flexible, and
parametric modeling of government interventions. Dur-
ing the COVID-19 pandemic, governments around the
world enacted wide-ranging nonpharmaceutical inter-
ventions (NPIs), including social distancing, school clo-
sures, and lockdowns, at different stages of their local
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epidemics. This variation helps DELPHI to identify the
effects of different interventions, which, in turn, allows
for predictions of alternative scenarios and can inform
policymaking.

We demonstrate two applications of DELPHI that
leverage our modeling of government interventions.
First, through parameter calibration to time series of
observed cases and deaths in various countries, DELPHI
can estimate the effect of different NPIs accounting for
country-specific baseline infection and case fatality rates.
In Section 4.1.1, we estimate that school closings and
mass gathering restrictions were among the most effec-
tive measures in reducing the rate of infection during
the early stages of the pandemic. Although these policies
incur a significant social burden, they can be effective
in controlling the extreme growth in infections when
other preventative measures (e.g., masks) are not widely
implementable and while treatment options are being
evaluated and developed. Had these restrictions been
implemented just one week earlier, most — up to 90%
— of the deaths in the early stages of the pandemic could
have been avoided.

Another major application of DELPHI is the assess-
ment of alternative scenarios to inform policymaking.
By utilizing the estimated effect of different NPIs, we
can create a scenario analysis toolkit to simulate the pan-
demic forward under different government policies. In
Section 4.2, we illustrate Janssen Pharmaceuticals’ (a
Johnson & Johnson company) use of this scenario analy-
sis toolkit in mid-to-late 2020 to identify countries with
predicted high COVID-19 incidence as candidate sites
for their multicenter Phase III randomized trial of their
leading vaccine candidate Ad26.Cov2.S.

DELPHI has been applied to 167 geographic areas
(countries/provinces/states) worldwide as of end of
April 2020 and more than 215 as of end of September
2020, covering all six populated continents. Its results
have also been available since early April 2020 on www.
covidanalytics.io. In this paper, we document the cali-
bration, quantitative results, and insights obtained from
the DELPHI model during the prevaccination era of the
COVID-19 epidemic and illustrate two key applications.

1.1. Literature
Many epidemiological models were developed to de-
scribe the evolution of the COVID-19 epidemic. Most
aremechanistic and represent some variation of the clas-
sical Susceptible-Exposed-Infectious-Recovered (SEIR)
compartmentalmodel (Kermack andMcKendrick 1927),
which partitions a population into mutually exclusive
and exhaustive compartments and describes infection
dynamics with differential equations. Some of these
models are marginal in that they do not have different
compartments for different age, sex, or occupation
strata (Gu 2020), whereas others account for population

substructure (PSI-DRAFT 2020). A subset of models
parameterize the force of the infection as a function of
predictors such as proxies of behavior (e.g., cell phone-
derived mobility data, credit card spending data) or gov-
ernmental policies (Chinazzi et al. 2020, Woody et al.
2020). Nonmechanistic models use machine-learning
(Rodriguez et al. 2020) or statistical time-series modeling
to forecast the evolution of outcomes (Mehrotra and Ivan
2020). For a comprehensive review of COVID-19 models,
seeDean et al. (2020).

DELPHI is a mechanistic compartmental model. For
each country or state, it describes government policies
as composites of elemental NPIs, including lockdown,
school closures, gathering size restrictions, and restric-
tions on nonessential businesses. DELPHI parameter-
izes the net impact of government policies on the
activity of the epidemic as a nonlinear function of the
effects of the elemental NPIs and estimates the latter
by fitting them to time series of COVID-19 cases and
deaths. DELPHI also accounts for the improvement in
the management of COVID-19 patients over time by
modeling the mortality of the disease as a function of
time and allows for different dynamics for those who
recover versus those who die from the disease. It is
one of the models most consistently included in the
CDC ensemble forecast (top 4 out of 30 submitted
models) (Ray et al. 2020), and its favorable perform-
ance is demonstrated in Section 3.2.

We believe that the flexibility of the aforementioned
modeling choices largely belies the successful projec-
tions of the epidemic’s trajectory in more than 200 coun-
tries on all six populated continents. Furthermore, by
estimating the effects of elemental NPIs, we can inform
policymaking (Section 4.1.1), estimate the impact of
delays in deploying early interventions (Section 4.1.2),
and inform the design of clinical trials (Section 4.2).

2. The DELPHI Model
DELPHI is a closed system in that it does not include
demography (births, non-COVID-19 deaths) or migra-
tion. It partitions the population in 11 mutually exclu-
sive and exhaustive compartments (Figure 1(a)):

• Susceptible (S): People who are susceptible to
SARS-CoV-2 infection.

• Exposed (E): Early-infected persons who are not
yet contagious and are in the incubation period.

• Infected (I): People currently infected and
contagious.

• Undetected (UR and (UD): Infected people who are
not detected (and are not counted among the known
cases) because they did not get tested. It is assumed that
these compartments do not contribute to the infection
process because the corresponding persons develop
symptoms and are then self-quarantined. Some will die
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(UD) with marginal probability of death µ̃(t), and the
rest will recover.

• Detected, Hospitalized (DHR and (DHD): People
who are infected, confirmed, and have severe enough
disease to be hospitalized (and effectively quarantined
and not contributing to the infectious process). Some
will die (DHD) with marginal probability of death µ̃(t),
and the rest will recover (DHR).

• Detected, Quarantined (DQR and (DQD): People
who are infected, detected through testing, and home-
quarantined so that they do not infect others. Some of
these people will die (DQD) with marginal probability
of death µ̃(t), and the rest will recover (DQR).

• Recovered (R): People who have recovered from
the disease and are assumed to have acquired natural
immunity. This immunity does not wane for the time
horizon of the model.

• Deceased (D): People who have died from
COVID-19.

In a given area (state/country), the full mathemati-
cal formulation of the model is as follows:

dS
dt

� −α̃γ(t)S(t)I(t)

dE
dt

� α̃γ(t)S(t)I(t) − βE(t)

dI
dt

� βE(t) − rdI(t)

dUR

dt
� rd(1 − µ̃(t))(1 − pd)I(t) − σUR(t)

dDHR

dt
� rd(1 − µ̃(t))pdphI(t) − κDHR(t)

dDQR

dt
� rd(1 − µ̃(t))pd(1 − ph)I(t) − σDQR(t)

Figure 1. The DELPHIModel

(a)

(b) (c)

Note: (a) FlowDiagram of DELPHI; (b) standardmodeling for recoveries and deaths; (c) updated modeling for recoveries and deaths
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dUD

dt
� rdµ̃(t)(1 − pd)I(t) − τ̃UD(t)

dDHD

dt
� rdµ̃(t)pdphI(t) − τ̃DHD(t)

dDQD

dt
� rdµ̃(t)pd(1 − ph)I(t) − τ̃DQD(t)

dTH
dt

� rdpdphI(t)

dDD
dt

� τ̃(DHD(t) +DQD(t))

dDT
dt

� rdpdI(t)

dR
dt

� σ(UR(t) +DQR(t)) + κDHR(t)

dD
dt

� τ̃(UD(t) +DQD(t) +DHD(t)):
At the beginning of the epidemic, the system above
starts at t � 0 with the initial condition S(0) �N − k̃1 −
k̃2 ,E(0) � k̃1 , I(0) � k̃2 , and all other compartments start-
ing at 0, with k̃1 , k̃2 country-specific fitted parameters.
As described later in the current section, the model is
restarted after an epidemic wave has been observed. For
each wave, we reset t→ 0 and use as a starting condi-
tion the distribution of the compartments that was
reached in the previous period for all compartments
except S, E, and I. The starting values of the latter are
refit using k̃1 and k̃2 :

S(0)�N− k̃1 − k̃2−R(0)−∑
i∈{R,D}

DHi(0)+DQi(0)+Ui(0), E(0)� k̃1 , I(0)� k̃2 :

In Figure 1(a), nodes represent compartments and
arrows the allowable transitions. The variables that gov-
ern the dynamics are listed in proximity to the associated
transitions. Variables with a tilde (̃ ) are fitted to the
time series of known cases and deaths in each area
(country/state/province). The remaining are fixed to
global values informed from a literature review of 174
papers, which was current when DELPHI was devel-
oped (Bertsimas et al. 2020):

• α̃ is the baseline infection rate.
• γ(t) measures the effect of government response

and is defined as

γ(t) � 1+ 2
π
arctan

−(t− t̃0)
k̃

( )
+ c̃exp −(t− ˜tjump)2

2̃d
2

( )
,

(1)

where the parameters t̃0 and k̃ capture, respectively,
the timing and the strength of the response. This func-
tion is refit to data when the model is restarted (e.g.,
with the emergence of a new wave, as described later).
The exponential term intends to reflect a resurgence in
infections due to relaxation of governmental policy
and societal response; c̃ controls the magnitude of the
resurgence, ˜tjump the time when the resurgence peaks,

and d̃ the duration of the resurgence phase. The effec-
tive infection rate in the model is α̃γ(t), which is time
dependent. The exponential resurgence term was
added to the model in late June 2020, when we
observed the first large resurgence in the pandemic
(before July the model assumed c̃ � 0). The 2

π constant
normalizes the arctan function. For example, before
July 2020, during the first wave, c̃ � 0 (no resurgence),
γ(t) had range [0, 2], and γ(t) � 1 when t � t0.

• rd is the detection rate. This equals to log2
Td

, where Td

is the median time to detection (fixed to be 2 days); see
Wang et al. (2020).

• β is the rate of infection leaving incubation phase.
This equals to log2

Tβ
, where Tβ is the median time to leave

incubation (fixed at 5 days), see Lauer et al. (2020).
• σ is the rate of recovery of nonhospitalized

patients. This equals to log2
Tσ

, where Tσ is the median
time to recovery of nonhospitalized patients (fixed at
10 days); see Hu et al. (2020), Kluytmans et al. (2020).

• κ is the rate of recovery under hospitalization. This
equals to log2

Tκ
, where Tκ is the median time to recovery

under hospitalization (fixed at 15 days); see Grein et al.
(2020) and Liu et al. (2020b).

• τ̃ is the death rate, the reciprocal of the average time
it takes for patients to move from the UD,DHD, and
DQD to the death compartment D. This captures the
speed atwhich patients die.

• µ̃(t) is the time-varying marginal probability of
death among all infected patients, also known as the
infection fatality rate. This function is refit to data
when the model is restarted. It is parameterized as a
monotone function of time

µ̃(t) � (µ̃0 −µmin) 1+
2
π
arctan(−r̃mt)

( )
+µmin,

where µ̃0 is the initial probability of death (at the time
the model is (re)started), µmin is its minimum, and r̃m
is a daily decay rate for mortality. In most areas, mor-
tality is monotonically decreasing (r̃m > 0), reflecting
improvements in patient management. A negative
decay rate would correspond to a worsening of the
probability of death over time, as was observed in
some areas when the capacity of the local health sys-
tem was exceeded. In the version of the model before
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June 2020, we assumed that r̃m � 0 because the mortal-
ity rate was relatively constant in the early pandemic
when optimal patient management was not univer-
sally followed:

• pd is the probability that a contagious person will
be detected. It is fixed at 20% based on various early
estimations of the detection probability in countries
with earlier outbreaks (Krantz and Rao 2020, Niehus
et al. 2020, Wang et al. 2020).

• ph is the probability that a detected case will be hos-
pitalized and is set to 15%; see Arons et al. (2020) and
Xu et al. (2020).

DELPHI is fit separately in each area (country/state/
province, as applicable) and over successive “training
windows” that begin when a newwave has lasted for at
least one month. For each area and training window, we
fit 13 parameters from the list above (k̃1 , k̃2 for the initial
condition and α̃, µ̃, τ̃, t̃0 , k̃, c̃, ˜tjump, d̃, µ̃0 , r̃m from the list
above) by minimizing a weighted mean squared error
(MSE) loss. Let DT(t) and DD(t) denote the number of
reported total detected cases and detected deaths,
respectively, on day t. Then, the loss function for a train-
ing period of T days is defined as∑T
t�1

t2

T2 ·
(
D̂T(t) −DT(t)

)2 +λ2 ·∑T
t�1

t2

T2 ·
(
D̂D(t) −DD(t)

)2
,

where D̂T(t) and D̂D(t) are predicted detected cases
and deaths, respectively. The factor t2

T2 gives more
prominence to more recent data, because recent errors
are more likely to propagate into future errors. The

lambda factor λ �min DT(T)
3·DD(T) , 10
{ }

balances the fitting

between detected cases and deaths; this rescaling coef-
ficient was obtained experimentally through cross-
validation.

The training windows are dynamically updated,
with the goal that each should cover a period in which
the enacted measures are not strengthened. Manually
tracking policy changes to trigger a retraining proven
impractical, given that DELPHI was applied to a large
number of areas. Therefore, retraining the model was
triggered once a new wave that has lasted for at least
one month was detected by tracking the data. In that
case, the start date of the training period was set as to

be the beginning of that wave. The rationale behind
this heuristic is that, usually, stricter measures are
enacted once a newwave is evident and on the rise. As
an example, for the United States, in July 2020 retrain-
ing was triggered, with the new training period start-
ing from June 2020, and similarly in November 2020,
with a start from October 2020. We specifically exclude
historical data starting before an area recorded more
than 100 cases for numerical stability and to exclude
sporadic outbreaks before the actual epidemic.

To optimize over the highly nonconvex search
space, we utilize both a local truncated Newton algo-
rithm (TNC) (Nocedal and Wright 2006) and a global
optimization method of dual annealing (DA) (Xiang
et al. 1997). TNC is utilized to produce forecasts on a
daily basis, whereas DA, being more computationally
expensive, is performed on a weekly basis to shift and
readjust the parameters more significantly if the
underlying mechanics have changed (e.g., in the case
of a new wave of cases). Parameters are fit by using
bounds of plus/minus 620% deviation around the
latest value for TNC and bounds of 650% deviation
for DA. When we first trained the model, we used
parameter ranges that were obtained from initial esti-
mates derived in studies in South Korea and China,
620%.
We would illustrate this with a specific example

focused on the region of Georgia. Table 1 shows the
parameters and their bounds for the update on Octo-
ber 23, 2020, when we utilized both TNC and DA. We
only show a selection of parameters to improve read-
ability. For example, we see that on October 22, 2020,
the estimated rate of death in Georgia was 0.042, mean-
ing that the average time till death for COVID-19 fatal-
ities was 1

0:042 � 23:8 days. We train TNC and DA using
bounds of 20% and 50%, respectively, around the latest
parameters trained on the previous day. We utilize the
rolling training window of historical data mentioned
above, leaving out one week of data as validation.
As we observe from the table, theMAPE on the valida-
tion set from TNC is lower, and thus the optimized
parameters from TNC are accepted, whereas the DA
parameters are discarded. After this update, we would
continue to use TNC to update the parameter daily
until October 30, 2020, when both algorithms are

Table 1. Parameter Update for Georgia on October 23, 2020

Parameter Date Infection Rate α̃ Rate of Death τ̃ Resurgence Magnitude c̃ MAPE

2020-10-22 0.409 0.042 0.924
2020-10-23 (TNC Bounds) (0.327, 0.491) (0.034, 0.050) (0.739, 1.109) N/A
2020-10-23 (TNC Result) 0.395 0.036 1.108 1.02%
2020-10-23 (DA Bounds) (0.205, 0.614) (0.021, 0.063) (0.462, 1.386) N/A
2020-10-23 (DA Result) 0.366 0.021 0.059 1.14%

MAPE refers to the mean average percentage error on the 7-day holdout validation set.
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utilized again to select the best-performing parame-
ters. This dual-track approach allows efficient optimi-
zation and ensures close data fit. We next discuss three
key characteristics of the DELPHI model that allow it
to flexibly fit a wide range of time-series of observed
data.

2.1. Accounting for Underdetection
Only a subset of the SARS-CoV-2 infections are identified
through testing. This is because testing resources were
scarce in the beginning of the epidemic; some patients
will never develop symptoms that are severe enough to
prompt them to seek testing or care, some may attribute
any symptoms to another infection, such as the common
cold, and some may refrain from getting tested for other
reasons (e.g., to avoid losing time from work). Although
in reality, the likelihood that a patient will be identified
through testing varies across areas and over time, DEL-
PHI treats the probability of detection, pd, as a global
constant nuisance parameter. The probability pd is not iden-
tifiable in each area from the available data, namely
detected cases and deaths. Fixing it to 20% (which repre-
sents average estimates in different countries from the
early studies) is, in practice, no different from assuming
other reasonable estimates that vary by area. The model
has enough degrees of freedom to adjust the values of
other area-specific, partially identified parameters (e.g.,
the area-specific reproduction rate).

Allowing both the detection probability and the
reproduction rate to vary by area or over time offers no
additional advantage for predicting detected cases and
deaths and may occasionally lead to overfitting issues
(see, e.g., Lourenço et al. 2020). In sensitivity analyses
(Section 3.3), we show that predictions of detected
cases and deaths are robust to moderate deviations
from the value of pd � 20%.We also modeled the detec-
tion probability as functions of observable data, such
as the number of tests that were administered over
time in a country, but this did not improve the out-of-
sample empirical performance of themodel.

DELPHI’s goal is not to infer the number of all,
detected and undetected, infections. If one wished to
point-identify the true detection probability, more and
different input data, such as random serology testing,
would be required. However, such data were, and still
are, very sparse, most often pertaining to specific cities
and counties (see Bendavid et al. 2020, Doi et al. 2021,
Sood et al. 2020, and Streeck et al. 2020 for examples)
and only occasionally to countries (mostly in Europe,
(see, e.g., Erikstrup et al. 2020 and Wise 2020).

2.2. Separation of Recovery and Deaths
DELPHI’s compartmental structure allows for differ-
ent transition rates for recovery and death processes

by using the auxiliary compartments UR, UD (for
undetected patients), DHR, DHD (for the hospital-
ized), and DQR, DQD (for detected patients), which
were described earlier. Figure 1, (b) and (c), explains
how this is achieved. In Figure 1(b), the outflow
from the I compartment is

dI
dt

−
� −(ν + τ̃)I,

where ν is the rate of recovery and τ is the rate of
death. This implies a fixed probability of death equal
to τ̃

ν+τ̃. By contrast, the structure in Figure 1(c) decou-
ples the probability of death µ̃ from the transition
rates τ̃ and ν.

2.3. Modeling Effect of Increasing
Government Response

As shown in Figure 2, DELPHImodels different phases
for the government response during a pandemic by
means of the area-specific function γ(t) in (1), which
includes sigmoid (arctan) and exponential terms. The
concave-convex nature of the arctan term accounts for
the first three phases. The early, concave part models
initial limited changes in behavior in response to early
information, when most people continue business-as-
usual activities. The transition from the concave to the
convex part of the curve quantifies the sharp decline in
infection rate as policies go into full force and people’s
behavior changes sharply. The latter convex part of the
curve models a flattening out of the response as the
government measures reach saturation, representing
the diminishing marginal returns in the decline of
infection rate. The exponential termmodels a potential
resurgence in cases, for instance, due to premature
relaxation of societal restrictions or some change in
behavior.

In (1), parameters t̃0 and k̃ control the timing of
such measures and the rapidity of their penetration,
whereas the c̃, ˜tjump, d̃ controls the timing, magnitude,
and duration of a resurgence. In Section 4.1, we
explain that (1) forms the basis for modeling a wide
variety of policies as the composite of elemental inter-
ventions, such as including social distancing, school
closings, and stay-at-home orders.

2.4. Implementation and Availability
DELPHI was created in early April 2020 and has been
continuously updated to reflect new observed data. The
codebase is available on GitHub (https://github.com/
COVIDAnalytics/DELPHI), with the primary model
written in Python 3.7 using the SciPy and NumPy libra-
ries. The implementation is alsomultiprocessing friendly,
which allows it to scale easily (using servers/machines
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with multiple CPUs/threads) to the high number of
areas themodel is fitted on every day.

3. Results and Performance Analysis
In this section, we present the results of the DELPHI pre-
dictive model and its performances in terms of mean
absolute percentage error (MAPE) and rootmean squared
error (RMSE) across time and regions and benchmark it
against the state-of-the-art COVID-19 models used by the
CDC. We also analyze the sensitivity of DELPHI to per-
turbations in its parameters.

3.1. Forecasting Results
Table 3 reports the median MAPE and RMSE for the
observed cumulative numbers of cases and deaths in
each area of the world for two periods. The first uses
data through April 27, 2020, and evaluates models up
until May 12, 2020. The second uses data up to Septem-
ber 21, 2020, and evaluates models through October 6,
2020. During the second period, there was a resurgence
of the epidemic, the management of the disease was
better understood, and new treatment protocols were
in place. For both periods, DELPHI seems to predict
the epidemic progression relatively well in most areas,
with< 10%MAPE on reported cases and < 15%MAPE

on reported deaths. The worldwide median MAPE
was 5.8% for detected cases and 10.6% for deaths. The
areas with the highest MAPEwere typically those with
the fewest deaths, as shown in the selected examples in
Table 2. Analogously, the median RMSE for deaths in
both periods was <100 across all regions, which is
remarkable given that the RMSE is not scaled by the
observed number of deaths and the high number of
deaths per region (e.g., by the second period, a major-
ity of areas in North America and Europe were report-
ing more than 5,000 cumulative deaths). The median
RMSE on cases is also remarkable, at just above 2,000
cases in the second period, given the daily median
number of recorded cases across all areas (~ 60,000).

The worldwide median MAPE for deaths in the sec-
ond period is smaller than in the first (4.8% vs. 10.8%,
respectively). This may be partially explained by the
better fitting of the probability of death µ̃(t) in the sec-
ond period, when the cumulative number of deaths
was higher and also the higher variability of MAPE
when the denominator (observed deaths) is small
(analogously to the observation in Table 2).

We now further illustrate the performance of DEL-
PHI with two major countries with very different
curves. Figure 3, (a) and (b), shows our projections of
the number of cases in Russia and the United Kingdom

Figure 2. Illustration of the response function γ(t) for the particular set of parameters t̃0 � 10, k̃ � 5, c̃ � 1, ˜tjump � 25, and d̃ � 2

i:e, :γ(t) � 1+ 2
πarctan − t−10

5

( )
+ exp − (t−25)2

8

( )( )
.

Table 2. Breakdown of Cumulative Number of Deaths vs. Corresponding Prediction MAPE for Large Errors on the
Prediction Period of April 28 to May 12

Country/Province Bahrain Djibouti Guinea Kazakhstan Sri Lanka Oman Qatar Venezuela

Cumulative deaths as of May 11, 2020 8 3 11 32 9 17 14 10
MAPE on deaths 89.6% 193.1% 53.3% 62.6% 54.5% 44.0% 106.9% 48.1%
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made on three different dates and compares them
against historical observations. The results for Russia
and the United Kingdom are consistent with the over-
all performances across all countries of all regions, as
described extensively in the rest of the section. Con-
cretely, the graphs suggest that DELPHI achieves
strong predictive performance, because the model has
been consistently predicting, with high accuracy, the
overall spread of the disease for several weeks across
regions with different epidemiological characteristics.
Notably, DELPHI was able to anticipate, as early as
April 17, the dynamics of the pandemic in the United
Kingdom (resp. Russia) up to May 12. At a time when
100,000− 110,000 (resp. 30,000− 35,000) cases were
reported, the model was predicting 220,000− 230,000
(resp. 225,000− 235,000) cases by May 12, a prediction

that was realized a month later. In the case of Russia,
DELPHIwas able to predict that the countrywas going
to become a global hotspot as well as to accurately esti-
mate the magnitude of the first wave of the outbreak,
even at an early stage of the pandemic (less than
0.025% of the population infected, versus more than
0:16% a month later, which has put the country at the
4th rank worldwide in terms of cumulative number of
cases).

3.2. Comparison With Other Models
DELPHI compares favorably with other top-performing
models submitted to the CDC ensemble forecast in pre-
dicting the number of deaths in the United States four
weeks ahead (the longest time point in the CDC en-
semble predictions). As comparator models we selected

Figure 3. Cumulative Number of Cases in the United Kingdom (a) and Russia (b) According to Our Projections Made at
Different Points in Time Against Actual Observations

(a) (b)

Note: There predicted curves largely overlap with the actual curve: (a) United Kingdom; (b) Russia.

Table 3. Median Country-Level Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE) of the
Predicted Number of Cases and Deaths in Each Region

Median MAPE Cases Median MAPE Deaths Median RMSE Cases Median RMSE Deaths
Region No. of Areas (10th, 90th percentile) (10th, 90th percentile) (10th, 90th percentile) (10th, 90th percentile)

April 28th
Africa 19 14.7% (3.1, 32.0) 23.4% (11.8, 60.3) 138.7 (27.0, 1019.6) 4.8 (1.1, 27.5)
Asia 32 4.8% (2.1, 18.4) 14.4% (2.9, 65.2) 677.3 (51.5, 9778.1) 13.0 (1.0, 151.6)
Europe 42 3.4% (0.8, 12.9) 9.0% (2.3, 24.3) 238.1 (15.4, 3276.4) 14.8 (1.6, 236.2)
North America 10 7.9% (3.9, 28.3) 12.6% (2.8, 23.6) 594.4 (36.1, 1947.5) 16.3 (4.0, 132.3)
Oceania 2 3.2% (2.4, 4.1) 12.0% (11.0, 13.0) 68.6 (49.4, 87.8) 2.0 (1.8, 2.3)
South America 11 14.9% (7.6, 26.7) 6.1% (3.3, 30.1) 683.6 (31.4, 10815.0) 6.8 (0.6, 426.1)
United States 51 8.5% (1.9, 16.7) 7.8% (3.3, 25.1) 1231.6 (73.8, 4861.8) 33.5 (1.7, 210.7)
World 167 5.8% (1.5, 22.6) 10.6% (2.9, 36.6) 412.6 (26.1, 4788.7) 12.0 (1.3, 193.1)
September 22nd
Africa 53 5.2% (0.6, 30.4) 4.2% (0.0, 42.6) 364.5 (27.5, 2913.2) 8.8 (0.0, 121.7)
Asia 38 6.5% (1.7, 38.4) 8.3% (1.4, 26.8) 6311.3 (120.9, 53046.7) 47.4 (0.7, 719.5)
Europe 44 13.4% (3.8, 38.5) 7.7% (1.1, 22.5) 4452.9 (326.6, 22405.9) 43.6 (1.7, 776.5)
North America 14 7.3% (1.2, 17.1) 4.8% (1.0, 22.0) 2180.4 (187.5, 8656.7) 48.9 (2.0, 269.0)
Oceania 3 2.7% (1.6, 4.2) 1.1% (0.8, 7.1) 51.0 (16.0, 127.5) 0.8 (0.6, 3.8)
South America 13 9.4% (1.2, 15.5) 5.2% (2.1, 22.7) 5683.8 (473.2, 131184.4) 95.6 (3.5, 4438.1)
US 51 5.2% (1.3, 20.6) 3.0% (0.5, 15.0) 5323.5 (661.6, 17571.2) 66.9 (3.1, 275.0)
World 216 6.5% (1.2, 28.2) 4.8% (0.6, 27.6) 2170.0 (69.3, 18549.4) 31.2 (1.1, 505.3)

Projections in the first (resp. second) half of the table are made using data up to 04/27 (resp. 09/21) for the period from 04/28 to 05/12 (resp. 09/
22 to 10/06).
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those that submitted results to the CDC regularly dur-
ing the epidemic andwere thus consistently included in
the CDC ensemble forecasts. These were the models by
the University of Texas, Austin (UT-Mobility, Woody
et al. 2020), the Institute for Health Metrics and Evalua-
tion (IHME COVID-19 Health Service Utilization Fore-
casting Team and Murray 2020), Youyang Gu (Gu
2020), the Northeastern University’s Laboratory for the
Modeling of Biological and Socio-technical Systems

(MOBS-GLEAM_COVID, Chinazzi et al. 2020), Predic-
tive Science, Inc. (PSI-DRAFT 2020), the Los Alamos
National Laboratory (LANL COVID-19 Team 2020),
and the Notre Dame University (NotreDame-mobility,
Perkins and Espana 2020).

In Figure 4(a), we compare the out-of-sample MAPE
of these models for the number of cumulative deaths
four weeks in the future above using the actual weekly
predictions submitted to the CDC between July and

Figure 4. Comparison of 4-WeekMAPE on Deaths Prediction in the United States Between DELPHI and OtherModels Used by
the CDC

(a)

(b)

Note: (a) MAPE of DELPHI for United States wide 4-week ahead deaths prediction from July to September; (b) rank of DELPHI for United States
wide 4-week ahead deaths prediction from July to September.
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September 2020. This particular period was selected
because it encompassed the period of second resurgence
in the United States and its decay, making prediction
even more difficult. October 2020 was excluded because
the CDC ensemble forecast changed its submission and
reporting guidelines, prompting submission lapses in
many models. We observe that DELPHI consistently
achieves low MAPE and that its predictions are stable
with a MAPE, never exceeding 3.5% throughout the
period. Figure 4(b) further illustrates the performance of
DELPHI in comparison with other models by graphing
the weekly ranking (with respect to MAPE). We observe
that DELPHI consistently outperforms all other models,
holds the first rank for six out of 13 weeks, and never
drops below rank 4 among the eightmodels evaluated.

3.3. Sensitivity Analysis
We examined the impact on prediction of varying
each of the six fixed parameter of DELPHI in univari-
ate sensitivity analyses. For every fixed parameter
among β, rd, σ, κ, pd, and ph, we randomly perturbed
the parameter by a zero-centered normal noise term ε
with standard deviation of 20% of the nominal param-
eter’s absolute value, that is, ε ~N (0, (0:2 · |param | )2).
Then we fit the DELPHI model using data up to a cer-
tain prediction date using the perturbed fixed parame-
ter and compared its 30-day out-of-sample MAPE
with that of the baseline value.

We conducted these sensitivity analyses for all states
in the United States and in six countries around the
world with large outbreaks (Italy, Spain, Brazil, South
Africa, Japan, and Russia) for three prediction dates.

Figure 5, (a) and (b), records the quantile (box and
whisker) plots of the absolute difference between the
MAPE of the actual model and the perturbed model
for six parameters (β, rd,σ,κ,pd,ph), across the 56 areas
(50 U.S. states and six countries) for the three predic-
tion dates. We observe that for all six parameters,
across both cases and deaths, the effect of the perturba-
tion on the one-month MAPE is relatively small, with
interquartile range mostly falling between 65% for a
perturbation with a standard deviation of 20% of the
parameter value. This demonstrates that the results
from the DELPHI model are robust to a moderately
large perturbation to the underlying parameters.

4. Applications
DELPHI’s predictions of the epidemic’s trajectory
can inform decisions of policymakers and research
design, as shown in two selected applications. In the
first application, we consider different NPIs to limit
social interactions and mixing and extend the DEL-
PHI model to evaluate their impact on the trajectory
of the epidemic. The second application demon-
strates a scenario analysis toolkit that can inform the

planning of operations, staffing, inventories, or even
the development of research designs. This toolkit was
used by Janssen Pharmaceuticals to select candidate
sites for their Phase III trial of the single-dose
COVID-19 vaccine Ad26.Cov-2.S.

4.1. Application 1: Evaluating Different
Government Intervention Scenarios

In this section, we extend DELPHI to evaluate the
impact of government interventions. That allows us to
quantify the efficiency of NPIs and predict “what if”
scenarios under different policies, which enable policy-
makers to assess their COVID-19 response and decide
on their future interventions accordingly. We begin by
focusing on the effect of different interventions and
then analyze different “what if” scenarios.

4.1.1. Effect of Government Interventions. We can use
DELPHI to examine the association between five esca-
lating policy categories (1. no measure; 2. restrict travel
and work; 3. restrict mass gatherings, travel and work;
4. restrict mass gatherings, schools, travel and work;
and 5. stay at home) and the daily infection rate across
areas during the first training window up to May 19,
2020. For each area, we assign each day in the first
training window to one of the five policy categories
using data from the Oxford Coronavirus Government
Response Tracker (Hale et al. 2021) for countries other
than the United States and the Institute for Health
Metrics and Evaluation (Murray et al. 2020) for U.S.
states (detailed correspondence in the e-companion).

We assume that each of the five policy categories has
a global fixed effect across all areas. We use a two-step
approach. First, we estimate the γ(t) function for each
area and training window, which captures the net effect
of everything that affects infection rates, including gov-
ernment interventions, changes in behavior, workplace
policies, etc. In the second step, we treat the γ(t) func-
tions as known and use the presence or absence of the
aforementioned five policy categories to explain tempo-
ral changes in area-specific infection rates using the
algorithm below.

For each policy category i � 1, : : : , 5 and each area j,
we extract the average value of γ(t), γ̄ij across all times
for which policy i was in effect. Then we calculate the
residual fraction of infection rate under policy i, pi,
comparedwith the baseline policy of nomeasure as

pi :� 1
J

∑J
j�1

pij � 1
J

∑J
j�1

γ̄ij

γ̄1j
,

where J is the total number of areas we include and pij
is the residual fraction of infection rate under policy i
for a specific area j. We normalize the residual fraction
of infection rates for different areas because different
areas have different background infection rates α̃.
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The estimated “effects” of the five policy categories
on infection rates are associations rather than causal
estimates in that they may be confounded by other
unmeasured or unobservable factors. For example,
during the first wave, most governments had not yet
implemented a mask mandate, and thus we did not
include masks in the policy categories. However, some
did, and the effects of masking are aliased with the
effects of the five policies. On the other hand, the aver-
age effect of unaccounted for policies that are active
throughout the epidemic, such as contact tracing, is

absorbed by the area-specific parameter α̃j, which can-

cels out when estimating each pij � γ̄ ij

γ̄1j
. This suggests a

small impact of time-invariant unmeasured policies on
the estimates pi.

Table 4 shows the number of area days that each pol-
icy was implemented around the world and its average
effect over all areas and the standard deviation of the
area-specific estimates pij for each policy i. During
the first wave, each policy category was in effect for
hundreds to thousands of area days worldwide, with

Figure 5. Sensitivity Analysis of Various Fixed Parameters, Comparing PerturbedMAPE on Cases and Deaths to their Nominal
Counterparts Without Perturbations

(a)

(b)

Note: (a) Sensitivity of predictions on cases based on perturbation of key fixed parameters; (b) sensitivity of predictions on deaths based on per-
turbation of key fixed parameters.
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the stringent stay-at-home policy category being imple-
mented most extensively. Table 4 lists policies in
increasing estimated effectiveness. Compared with less
restrictive policies, more-stringent policies tend to be
implemented later and associatedwith larger decreases
in the residual infection rate. This is expected, because
during the first wave the γ(t) function is monotonically
decreasing (̃c � 0), and later-implemented policies will
have larger estimated effects. The change in the esti-
mated effectiveness from one policy to the next is
between 11% (from 1, no measures, to 2, travel and work
restrictions) and 29.9% (from 2 to 3, mass gathering,
school, travel, and work restrictions). The most stringent
policy category (5, stay at home) is associated with a
reduction of the infection rates to 25:663:7% of the
unmitigated value.

The basic reproduction rate, R0, for the SARS-CoV-2
variant responsible for the first wave of COVID-19
was estimated to be between 2.5 and 3.0 (Liu et al.
2020a, Zhang et al. 2020). R0 measures on average
how many new infections one infected patient will
generate over the course of their disease in a fully sus-
ceptible population (i.e., in the beginning of the epi-
demic and, approximately, during the first wave). The
basic reproduction rate R0 is proportional to γ(0), and
the effective reproduction rate Rt, its counterpart for
t > 0, is proportional to γ(t). To control the epidemic
Rt should become smaller than 1, or γ(0)

γ(t) � 1
2:5 to 1

3:0 , if
at t � 0 the epidemic was unmitigated. This suggests
that, to the extent that γ(0)

γ(t) ≈ γ̄ i
γ̄1
� pi, on average, only

policy i � 5, stay-at-home-order, appears to be strong
enough to fully mitigate the epidemic, albeit at a steep
economic and social cost. As we will discuss below,
the timing when policies go into effect is critical for
minimizing the total number of cases and deaths.

4.1.2. ModelingAlternative Initial Responses. Tomodel
what would happen if mitigation were to start m days
earlier, we translate the time axis in (1) by m days to
the left:

γ′(t) � 2
π
arctan −

t − t̃0 −m
( )
k̃

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 1:

To illustrate, Figure 6 shows the percentage of cases
and deaths avoided around the world by May 17 if
the government interventions were to be initiated
one week earlier for the 50 countries with the highest
reduction, which ranges between approximately 30%
and 80%.Western European countries such as Switzer-
land, Spain, and Italy, which had some of the first and
steepest outbreaks outside Asia, would have benefited
themost. Cumulatively across the world, DELPHI pre-
dicts that more than 280,000 deaths or 68% of total
deaths could have been avoided by May 17 with just a
week’s earlier start of mitigation efforts.

Another insightful scenario to consider is what would
have happened if the epidemic were left unmitigated.
This can bemodeled as

γ′(t) � γ(0) � 2
π
arctan

t̃0
k̃

( )
+ 1,

and would result in more than 14.8 million deaths by
May 17, 2020.

4.2. Application 2: Analysis of What If Scenarios
for Long-Term Planning

DELPHI was utilized by Janssen Pharmaceuticals in
late May 2020 to examine the impact of “what if” sce-
narios of relaxing measures in different countries to
inform the design of the multicenter Phase III trial of
their vaccine candidate Ad26.Cov-2.S. DELPHI’s pre-
dictions helped identify the best candidate sites (coun-
tries with high anticipated incidence and prevalence)
to maximize the trial’s statistical power.

Specifically, suppose that we are considering shift-
ing from policy i to j < i at time tc in some area that
has not yet experienced a resurgence (̃c � 0). Then, for
all times t ≥ tc, we modify (1) to

γ′(t) � 2
π
arctan − t− t̃0

k̃

( )
+ 1

+ (pj − pi) ·min
2− γ(tc)
1− pi

,
γ(tc)
pi

[ ]
︸����������������︷︷����������������︸

Differential in policy effect between policy iand j

, ∀t ≥ tc:

The last term is a correction proportional to the differ-
ence pi − pj > 0 in the fractional reductions in the

Table 4. Implementation Length and Effect of Each Policy Category as
Implemented Across the World

Restrictions Area-Days Residual Infection Rate

None 2142 100%
Travel and Work 2049 88:964:5%
Mass Gathering, Travel, and Work 340 59:065:2%
Mass Gathering, School, Travel, and Work 1460 41:764:3%
Stay-at-Home Order 6585 25:663:7%
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Figure 6. Scenario analysis if restrictions implemented one week earlier

(a)

(b)

Note: (a) Percentage of cases avoided around the world if policy enacted one week early; (b) percentage of deaths avoided around the world if
policy enacted one week early.
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infection rate with policy categories i and j. Themultipli-

cative factor min 2−γ(tc)
1−pi , γ(tc)pi

[ ]
scales the fractional differ-

ence so that the resulting γ′(tc) is constrained within the
initial range [0, 2]. Replacing γ(t)with γ′(t) forecasts the
epidemic under the updated policy.

The impact of a reopening strategy varies greatly across
areas, as shown in a comparison of Brazil versus France
in Figure 7. In Brazil, relaxing measures from a stay-at-
home order (policy category 5) to restricting mass gather-
ing, travel, andwork (category 3) on June 16would result
in a second wave of infections, with up to 6.8 million
additional cases one month later (Figure 7(c)), because
the epidemic was not yet adequately mitigated and the
incident cases were still on a steep rise (Figure 7(d)). By
contrast, in France, the epidemic had already peaked and
was adequately mitigated, incident detected cases were
declining (Figure 7(b)), and the relaxation of policies
would have a much smaller effect (Figure 7(a)). Results
for other countries are shown in the e-companion.

Figure 8 summarizes analogous scenario analyses
across the globe. It shows outcomes one month after a
hypothetical relaxing of policy category 5 (stay at home)
to 3 (mass gathering, travel, and work restrictions) on
June 16, 2020.We observe three clusters of countries:

• Countries with relatively few total cases, with
good mitigation of the epidemic (with relatively few

incident cases), such as Greece, Japan, Morocco, and
Venezuela,

• Countries with comparatively higher total cases,
also with an adequatemitigation of the epidemic, main-
ly in Western and Northern Europe (e.g., the United
Kingdom, Italy, France, and Finland), and

• Countries with a large and relatively fast-growing
number of cumulative cases, including the United
States, India, and Brazil, in which the epidemic is not
adequately mitigated. A close-up of these countries is
presented in Figure 8(b). For example, DELPHI pre-
dicted that up to 8% of Brazil’s population would be
confirmed with COVID-19 one month after a relaxa-
tion to policy category 3.

JanssenPharmaceuticals applied this analysis around
the world in May−June 2020 to identify candidate sites
for their Ad26.Cov2.S vaccine trial, which was planned
for September 2020. For all candidate countries, they
performed analyses for all policy relaxations and pri-
oritized for further consideration and feasibility analy-
ses those with predictedweekly incidence of confirmed
cases >25 per 100,00 people by the anticipated trial
start date. For example, from Figure 7, Brazil would
be a candidate country, but France would not be.
Such analyses informed their final selection of eight
countries, namely, Argentina, Brazil, Chile, Columbia,
Mexico, Peru, South Africa, and the United States.

Figure 7. Forecasts of Total Detected Cases andWeekly Incidence Per 100K for France and Brazil Under Various Policies

(a) (b)

(c) (d)

Notes: In (a) and (b), the green line completely overlaps with other lines in the asymptotic regime. (a) France, total Detected Cases; (b) France,
weekly incidence per 100K; (c) Brazil, total detected cases (log scale); (d) Brazil, weekly incidence per 100K (log scale).
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Notably, prior to using DELPHI, Janssen did not con-
sider Brazil and South Africa. In retrospect, adding
these two high-incidence countries provided valuable

information on the effectiveness of the vaccine against
emerging SARS-CoV-2 variants (gamma in Brazil, beta
in South Africa).

Figure 8. World Predictions for Early July UnderMass Gathering, Travel, andWork Restrictions

(a)

(b)

Note: (a)Weekly incidence of cases (per 100K) in the first half of July against fraction of population infected formultiple countries; (b) predictions
for total cumulative cases (normalized by the population) vs. new cases (per 100K) for countries which are predicted to be highly impacted and
still worsening at an alarming rate by July 15th.
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5. Limitations
We briefly discuss several limitations of our approach.

First, DELPHI is a deterministic model, with sev-
eral input parameters fixed to literature-derived point
estimates and other parameters fit to data. As pre-
sented here, it is not used for uncertainty propagation
and quantification tasks (Council et al. 2012), which
are important for contextualizing forecasts and pre-
dictions of “what if” scenarios for policymaking.
However, insights from deterministic models are still
useful in understanding the dynamics of the disease
and for practical uses, as demonstrated in the applica-
tions. Changing the input parameters from fixed val-
ues (point mass distributions) to parametric or empir-
ical probability models is straightforward but would
be computationally intensive, complicating logistics.

Second, all input parameters that were not fit to
data were fixed to global values obtained from the early
literature. These include the probability that a case is
detected (pd) and parameters that describe the biology of
the disease, such as the mean duration of the incubation
period (β−1), the mean time to detection (r−1d ), and the
probability that an infection will result in hospitalization
(ph). Some of these parameters, such as the mean time to
detection, are fairly consistent in the literature (see, e.g.,
Grein et al. 2020, Hu et al. 2020, Kluytmans et al. 2020,
Lauer et al. 2020, Liu et al. 2020b) For others, information
is sparse. For example, the true (unobserved, latent)
detection probability varies by country and over time.
However, it is not identifiable in each modeled area on
the basis of the available data, namely, detected cases
and deaths. Fixing it to 20% (which represents an aver-
age of early estimates in different countries from the
early studies) is, in practice, no different from assuming
other reasonable estimates that vary by area. The model
has enough degrees of freedom to adjust the values of
other area-specific, partially identified parameters (e.g.,
the area-specific reproduction rate). With DELPHI, the
goal is to predict future detected cases and deaths. If one
wished to also calibrate the model so that it could infer
(fit) the actual detection probability, more and different
input data would be required, for example, random
serology testing data. However, such datawere (and still
are) only very sparsely available among the 200+ areas
inwhichwemake predictions.

Third, DELPHI does not explicitly account for popu-
lation stratification by sex, age, or occupation. There
can be substantial variation in transmissionswithin and
across population strata, especially age groups, which
in turn can give rise to complicated dynamics (Larson
2007, Britton et al. 2020, Gomes et al. 2022). However,
marginal modeling of the population allowing some
quantities to vary over time (e.g., here γ(t),µ(t)) suffices
to approximate any dynamics induced by population
heterogeneity. This is demonstrated empirically by the

fact that DELPHI (and other marginal models) capture
the realized dynamics across U.S. states (Dean et al.
2020) and inmany countries.

Fourth, DELPHI uses a marginal probability of
death (µ(t)) (infection fatality rate) and a marginal
mean time to death τ̃−1 for all compartments, irrespec-
tive of hospitalization or detection status. However, it
has enough degrees of freedom to satisfactorily pre-
dict the total detected cases and deaths in diverse set-
tings and under varying mitigation policies.

Fifth, DELPHI assumes that patients participate in
the infection process only for an average duration of
r−1d ≈ 2:9 days, after the disease has incubated and before
patients are self-quarantined (for undetected cases) or
quarantined or hospitalized (for detected cases). How-
ever, because R0 � α̃ · γ(0) · r−1d , only the ratio α̃=rd is
identified, and the fitting algorithm simply finds a suit-
able area-specific infection rate α̃. Furthermore, DELPHI
assumes that all patientswill eventually develop enough
symptoms to prompt their self-isolation or to seek care
and get test-detected. Although currently it is under-
stood that not all patients develop symptoms, that
asymptomatic transmission is possible but perhaps less
common than during symptoms (Byambasuren et al.
2020, Ing et al. 2020, Sayampanathan et al. 2021), and
that some patients with symptomswill not self-isolate or
seek detection or care (e.g., to not lose working days and
income), this was not as clear early on. However, as dis-
cussed above, DELPHI has enough degrees of freedom
to yield empirically good predictions.

Finally, there are shortcomings in our estimation of
the effects of policy interventions in the first applica-
tion. As discussed in the first application, the estimated
“effects” are associations rather than causally interpret-
able quantities, and they can be confounded by other,
unmeasured or unobservable, factors. To facilitate fit-
ting, we assumed that the relative reduction in the
infection rate pi associated with the i-th policy category
is homogeneous across areas. These simplifications
were motivated by lack of data and pertinent informa-
tion. We believe that the key qualitative insights on
the differential impact of relaxation of policies across
areas and the impact of earlier versus later implementa-
tion of measures are fundamental and robust to these
simplifications.

6. Conclusions
DELPHI is a detailed epidemiological model that
accurately predicted the spread of COVID-19 in many
countries and aided planning for many organizations
worldwide, including governmental entities, hospi-
tals, and pharmaceutical companies. By modeling the
impact of government interventions, DELPHI pro-
vided key insights on the effects of differential timing
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in the implementation and relaxations of government
policies on total detected cases and deaths.
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