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Monitoring With Limited Information

We consider a system with an evolving state that can be stopped at any time by a decision maker (DM), yield-

ing a state-dependent reward. The DM does not observe the state except for a limited number of monitoring

times, which he must choose, in conjunction with a suitable stopping policy, to maximize his reward. Dealing

with this type of stopping problems, which arise in a variety of applications from healthcare to finance, often

requires excessive amounts of data for calibration purposes, and prohibitive computational resources. To

overcome these challenges, we propose a robust optimization approach, whereby adaptive uncertainty sets

capture the information acquired through monitoring. We consider two versions of the problem—static and

dynamic—depending on how the monitoring times are chosen. We show that, under certain conditions, the

same worst-case reward is achievable under either static or dynamic monitoring. This allows recovering the

optimal dynamic monitoring policy by resolving static versions of the problem. We discuss cases when the

static problem becomes tractable, and highlight conditions when monitoring at equi-distant times is optimal.

Lastly, we showcase our framework in the context of a healthcare problem (monitoring heart transplant

patients for Cardiac Allograft Vasculopathy), where we design optimal monitoring policies that substantially

improve over the status quo treatment recommendations.
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1. Introduction

Consider a system with a randomly evolving state that can be stopped at any time by a

decision maker (DM), yielding a state-dependent reward. The DM does not observe the

system’s state except for a specific limited number of times when he chooses to monitor the

system, perhaps at some cost. To maximize his reward, the DM needs to devise dynamic

policies that prescribe when to monitor the system and whether to continue or stop, based

on all acquired information.

Problems of this kind have received a lot of attention in the stochastic optimization

literature: categorized as a form of optimal stopping problems, the commonly suggested

solution approaches involve characterizing the uncertain evolution through probability dis-

tribution functions, and relying on dynamic programming techniques to derive policies

that maximize the expected reward.
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Many practical considerations that arise in application domains ranging from healthcare

to finance, however, often render such approaches unsuitable. First, calibrating joint prob-

ability distribution functions for all possible time points in the planning horizon typically

requires a prohibitively large amount of data that might not be available in practice, or

relies on structural assumptions on state evolution, such as independence or lack of auto-

correlation, that might not conform with the true dynamics of the system. Second, the

system’s complexity is often such that it requires a high-dimensional state representation,

resulting in “curse of dimensionality” issues. Third, modeling the learning process that

emerges from acquiring information through system monitoring usually requires augment-

ing this state beyond computational reach.

To see this in a concrete example, consider patients suffering from Cardiac Allograft

Vasculopathy (CAV), who need to appropriately time their only viable treatment, namely

heart transplant: performing the transplant too early reduces its success chances, while

performing it too late comes with the risk of CAV progression and health deterioration.

Although monitoring the disease status requires invasive and potentially expensive proce-

dures, it is necessary for decision making, in the absence of credible ways to model and

predict CAV progression. Indeed, very little data is available from prior studies of CAV

patients, a problem that is compounded by the disease’s pathology, which is known to be

very complex (see §5). How should CAV patients and their physicians make monitoring

and treatment decisions facing this considerable uncertainty?

Similarly, consider a lending institution that extends commercial loans backed by working

assets, such as inventory. For a given loan, the lender can occasionally monitor the value

of the pledged collateral through costly field visits and inspections, and decide whether

to request early repayment or force collateral liquidation, to avert future possible losses.

Making predictions about future collateral value, however, could be a very challenging

task, as it would involve tracking the value of a considerable number of assets classes that

are present in or correlated with the pledged assets. Furthermore, these assets may be

illiquid and the lender may lack expertise in valuing them, such as with specialized types

of inventory (CH 2014). How should asset-based lenders make monitoring and liquidation

decisions when they need to track a multitude of highly uncertain assets?

To address such questions, we develop a new solution methodology that overcomes the

challenges discussed above, and then apply it in a practical setting using real data. In
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particular, we rely on the robust optimization paradigm to develop a model where the

DM’s information concerning future state evolution is captured through multi-dimensional

uncertainty sets. Rather than being exogenously specified, the uncertainty sets governing

future state values depend on state values observed at past monitoring times. We study

the DM’s problem of finding a policy for choosing the monitoring times and for stopping

the system so as to maximize his worst-case reward. Our framework alleviates some of

the aforementioned practical challenges: uncertainty sets can be more readily calibrated

from limited data, and the robust optimization problems that need to be solved for finding

optimal policies cope more favorably with “curse of dimensionality” issues.

We make the following contributions.

• We consider two versions of the problem—static and dynamic—depending on whether

the monitoring times are committed to upfront, or respectively adjusted depending on

acquired information. We show that when the reward is monotonic and the uncertainty

sets have a lattice structure, the same worst-case reward is achievable under either

static or dynamic monitoring. This allows recovering an optimal dynamic monitoring

policy by re-solving static versions of the monitoring problem, drastically simplifying

the decision problem. In an extension, we generalize these results to settings where

monitoring is costly, or where the DM can adjust the state values by extracting rewards

or incurring a cost.

• We then discuss sufficient conditions under which the static monitoring and stopping

problem can be efficiently solved. We focus on generalizations of box-type (Ben-Tal

et al. 2009) and Central-Limit-Theorem-type (Bandi and Bertsimas 2012) uncertainty

sets, wherein past measurements impose lower and upper bounds on future state val-

ues, giving rise to an “uncertainty envelope.” We show that the curvature of this

uncertainty envelope is critical. When the envelope is generated by bounding func-

tions that are convex in the elapsed time, a single monitoring opportunity suffices for

recovering the worst-case reward, and the optimal time can be found by solving a

one-dimensional optimization problem. When the bounding functions are concave, all

monitoring times are needed for reducing the uncertainty, and it is optimal for the DM

to distribute these times uniformly over the horizon. We discuss conditions relying on

complementarity properties (e.g., supermodularity) of the reward function and uncer-

tainty envelopes that allow solving the problem through combinatorial algorithms.
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• We leverage our approach to devise monitoring and transplantation policies for

patients suffering from Cardiac Allograft Vasculopathy (CAV). We calibrate our model

using data from health studies and published medical papers, and show how opti-

mal monitoring and stopping policies can be found by solving mixed-integer linear

programming problems. Simulation suggests that our policies generate life year gains

that stochastically dominate those provided by existing medical guidelines, with a

substantial increase in lower percentiles and a slight increase in median and higher

percentiles.

1.1. Literature Review

Our assumption that information is captured through uncertainty sets relates this paper

to the extensive literature in robust optimization (RO) and robust control (see, e.g., Ben-

Tal and Nemirovski 2002, Bertsimas et al. 2011 and references therein for the former,

and Dullerud and Paganini 2005, Zhou and Doyle 1998 for the latter). Typical models

in RO consider uncertainty sets that are exogenous to the decision process, and focus on

the computational tractability of the resulting optimization problems. Poss (2013) and

Nohadani and Sharma (2016) consider decision-dependent uncertainty sets, and propose

mixed-integer programming reformulations for the resulting non-convex optimization prob-

lems (also see Jaillet et al. 2016 for similar concepts applied in a model with satisficing

objectives and constraints). Similarly, Zhang et al. (2016) study robust control problems

where the decision maker chooses the uncertainty set from a family of structured sets, and

incurs a penalty for “smaller” choices (in terms of radius, volume, etc.); since the dynamic

decision problems are generally intractable, the paper resorts to policy approximations

through affine decision rules, which are numerically shown to deliver good performance.

Bertsimas and Vayanos (2017) consider a pricing problem where the demand function

coefficients are unknown, and propose an approximation scheme that requires solving

mixed-binary conic optimization problems. Different from these papers, our uncertainty

sets depend on a monitoring policy chosen by the DM, which reduces future uncertainty

under well defined information updating rules. Closest to our paper is Nohadani and Roy

(2017), who also construct conic uncertainty sets where observation times (chosen stati-

cally at the beginning of the planning horizon) influence the feasible uncertainties in each

period, and provide conditions when monitoring once at the midpoint is optimal for a two-

stage linear model. In contrast, we consider both static and dynamic monitoring policies
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under a multi-period setting and nonlinear objectives, and provide conditions when both

formulations yield the same value, and monitoring at equidistant times is optimal.

Our work is also related to a subset of papers in RO that discuss the optimality of

static policies in dynamic decision problems. Ben-Tal et al. (2004) prove this for a linear

program where the uncertain parameters affecting distinct constraints are disjoint, i.e., the

uncertainty is “constraint-wise.” Marandi and den Hertog (2017) extend this condition to

two-stage problems where constraints are convex in decisions and concave in uncertainties,

and Bertsimas et al. (2014) prove static optimality for two-stage linear programs when a

particular transformation of the uncertainty set is convex. We extend this literature by

proving optimality for static monitoring rules in a broad class of multi-period problems,

provided the objectives possess certain monotonicity properties, and the uncertainty sets

have ordering properties (e.g., they are lattices).

Our work is also related to the broad literature on stopping problems. These are typically

formulated under a fully specified probability distribution for the stochastic processes of

interest (see, e.g., Snell (1952), Taylor (1968), Karatzas and Shreve (2012), and references

therein). Some of this literature also incorporates robustness by allowing for a set of possible

distributions chosen by nature, and extending the martingale approach to characterize

stopping in the (continuous-time) game between the DM and nature (see, e.g., Riedel

(2009), Bayraktar and Yao (2014), Bayraktar et al. (2010), and references therein). In

contrast, we consider all measures with a given support (i.e., the uncertainty set, as in

classical RO), and restrict the stopping decision to a finite number of times, chosen by

the decision maker. This provides a more sharp characterization of the optimal stopping

policy, as well as computationally tractable procedures for finding it.

Finally, our applications of interest also relate our paper (albeit more loosely) to an

extensive literature studying monitoring and stopping problems in healthcare or finance.

For the former stream, we direct the interested reader to Shechter et al. (2008) (studying

the optimal time to initiate HIV treatment), Maillart et al. (2008) and Ayer et al. (2012)

(assessing breast cancer screening policies), Denton et al. (2009) (optimizing the start of

statin therapy for diabetes patients), Lavieri et al. (2012) (optimizing the start of radiation

therapy treatment for prostate cancer), and the numerous references therein. This line of

work typically relies on models based on (partially observable) Markov Decision Processes,

and unique probability distributions for transitions and rewards. Instead, we adopt a robust



Author: Article Short Title
6 Article submitted to Management Science; manuscript no.

model where limited information is available; this allows a sharper characterization of

optimal policies, which may not be possible when insisting on Bellman-optimal policies,

as required under uniquely specified stochastic processes and risk-neutral objectives (also

see Delage and Iancu 2015 and Iancu et al. 2013 for a discussion).

For the latter stream, we mention the extensive work on pricing exotic options, of which

Bermudan options—which can only be exercised on a pre-determined set of dates—are per-

haps closest to our framework (see Ibanez and Zapatero (2004) and Kolodko and Schoen-

makers (2006) for Bermudan options, and Wilmott et al. (1994) and Karatzas et al. (1998)

for a broader overview). In contrast to our work, stopping times are typically exogenous,

and exact computations of the liquidation frontier are generally too complex, so that solu-

tion methods typically rely on discretized numerical integration and/or simulation-based

approximations. Also related are papers in finance that deal with debt monitoring and

repayment/amortization schedules (see, e.g., Leland (1994), Leland and Toft (1996), Gor-

ton and Winton (2003), Rajan and Winton (1995), and references therein). Such papers

typically consider stylized settings (e.g., two or three-periods, a single, uniquely defined

stochastic process of interest, etc.), since the focus is characterizing the optimal capital

structure, rather then optimizing monitoring schedules or liquidation policies.

1.2. Notation and Terminology

To distinguish vectors from scalars, we denote the former by bold fonts, e.g., x ∈Rn. For

a set of vectors x0,x1, . . . ,xk in Rd, we use x{k}
def
= [x0,x1, . . . ,xk]∈Rd×(k+1) to denote the

matrix obtained by horizontal concatenation. Similarly, the operator ; is used to denote

vertical concatenation of matrices with the same number of columns. For a set of matrices

U ⊂Rd×k and indices 1≤ i1 ≤ i2 ≤ d and 1≤ j1 ≤ j2 ≤ k, we define

Πi1:i2,:U =
{
Y ∈R(i2−i1+1)×k : ∃X ∈R(i1−1)×k, Z ∈R(d−i2)×k : [X;Y ;Z]∈ U

}
,

Π:,j1:j2U =
{
Y ∈Rd×(j2−j1+1) : ∃X ∈Rd×(j1−1), Z ∈Rd×(k−j2) : [X,Y,Z]∈ U

}
,

as the projections along a subset of rows and a subset of columns, respectively. To simplify

notation, we also use Uj
def
= Π:,j:jU to denote the latter projection along a single column.

We use the terms “increasing” and “decreasing” in a weak sense, and we refer to func-

tions of multiple arguments as being increasing (decreasing) instead of isotone (antitone),

which is the established lattice terminology (Topkis 1998). We compare vectors in Rd



Author: Article Short Title
Article submitted to Management Science; manuscript no. 7

using the typical component-wise order, i.e., x� y for x,y ∈Rd if and only if xi ≥ yi, 1≤
i≤ d. Similarly, we compare matrices by first viewing them as vectors, and applying the

component-wise order above. For sets of matrices or vectors, “increasing” and “decreasing”

are understood in the typical set order (Topkis 1998), unless explicitly stated otherwise.

2. Model

Consider a system whose state is characterized by a finite number of exogenous processes

evolving over a finite time horizon. A decision maker (DM) starts with limited information

on the future process values and can observe (or monitor) the system at a finite number of

times. These times, which we refer to as monitoring times, are chosen by the DM. At every

monitoring time, the DM observes the state of the system, updates his information about

the future process values, and decides whether to stop the system or allow it to continue

evolving until the next monitoring time. If at some monitoring time the DM chooses to

stop the system, he collects a reward that depends on the stopping time and the state. If

he decides to continue until the end, he collects the reward associated with the terminal

state. We focus on a system with high uncertainty, where the DM’s information on the

future state evolution is described by uncertainty sets rather than a complete probability

law. In this setting, the DM’s problem is to find a policy for choosing the monitoring times

and for stopping the system so as to maximize his worst-case reward.

We next introduce notation and provide a formal model description.

2.1. State Evolution and Uncertainty Set

The system evolves over a continuous time frame [0, T ], and is characterized by d real-

valued processes. Let x(t)∈Rd be a vector whose components are the system’s processes,

for all t in [0, T ]. We refer to x(t) as the state of the system at time t.

The DM has knowledge of the initial state, i.e., x(0), and can monitor the system at

most n times throughout the planning horizon, in addition to the default monitoring times

of 0 and T . Let t1, . . . , tn denote these n monitoring times with 0≤ t1 ≤ · · · ≤ tn ≤ T . To

ease notation, we also let t0
def
= 0 and tn+1

def
= T .

At each monitoring time tp, 0 ≤ p ≤ n + 1, the DM observes the state xp
def
= x(tp)

and updates his information on the future possible state values. More precisely, each

observed state xp imposes restrictions on the feasible set of values x(t) at every future

time t > tp. These restrictions are summarized through m constraints, written compactly as

f(tp, t,xp,x(t))≤ 0, where f : R+×R+×Rd×Rd→Rm. For an illustration, see Figure 1(a).
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Timetp t

xp

{x(t) ∈ R : f(tp, t, xp, x(t)) ≤ 0}

(a) Consider the case d = 1. Each observation

xp imposes a restriction on the future process

values x(t) for all t > tp, which is identified by

f(tp, t, xp, x(t)).

Timet0 Tt1 t2

x0

x1

{x2 ∈ R : f(t0, t2, x0, x2) ≤ 0}
{x2 ∈ R : f(tp, t2, xp, x2) ≤ 0, p = 0, 1}

(b) With two observations x{1} = [x0, x1], the set

of feasible state values x2 at time t2, given by the

projection of U(t{2},x{1}) on x2 (dashed), is the

intersection of the projection of U(t{2},x{0}) on x2

(gray) and the restriction imposed by the second

observation x1.
Figure 1 Illustration of how observed state values constrain future values for d= 1.

We assume that the DM reconciles new information (from new measurements) with old

information (from existing measurements) by considering all the restrictions imposed. To

make this precise and introduce some notation, consider the k-th monitoring time tk. At

that time, the DM has made k observations at monitoring times t1, . . . , tk, in addition to the

initial observation at t0, resulting in an observation matrix x{k}
def
= [x0,x1, . . . ,xk]. Suppose

the DM is considering some future monitoring times tk+1, . . . , tr satisfying tk ≤ tk+1 ≤ · · · ≤

tr ≤ tn+1, for r > k. Then, in view of observations x{k}, the process values at tk+1, . . . , tr,

together with the terminal process value at tn+1, lie in the following uncertainty set:

U
(
t{r},x{k}

)
=
{

[xk+1, . . . ,xr,xn+1]∈Rd×(r−k+1) : f(tp, tq,xp,xq)≤ 0,

∀p, q ∈ {0,1, . . . , r,n+ 1}, p < q
}
, (1)

where t{r}
def
= [t0, t1, . . . , tr] denotes the vector of the first r+ 1 monitoring times (including

the initial time t0). As such, information updating in our model corresponds to taking

intersections of the corresponding uncertainty sets.1

To illustrate this, consider the example in Figure 1(b), where a system with a single

process (d= 1) is monitored twice (n= 2), at t1 and t2. At time t0, the DM starts with an

1 Taking intersection also implies that uncertainty sets updated after new observations can only include values that
were already considered plausible at time t0. This allows the DM to behave in a dynamically consistent fashion, and
ensures that having additional information is always preferable (Machina 1989, Hanany and Klibanoff 2009). Note
that considering a large enough set of future plausible state values at time t0 always suffices for this to hold.
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initial information on the future values x1, x2 and x3 = xn+1, represented by U(t{2},x{0}) =

{[x1, x2, x3] ∈ R3 : f(t0, tq, x0, xq) ≤ 0, q = 1,2,3}. Then, with an observation x1 at t1, the

updated set U(t{2},x{1}) becomes the intersection of {[x2, x3]∈R2 : f(t0, tq,x0,xq)≤ 0, q=

2,3} and {[x2, x3]∈R2 : f(t1, tq, x1, xq)≤ 0, q= 2,3}, which are the restrictions imposed by

x0 and x1, respectively. Figure 1(b) depicts the set of feasible values for x2, which is the

projection of U(t{2},x{1}) on the first dimension. In §2.4, we discuss additional assumptions

concerning the structure of the uncertainty sets and the restrictions in f .

2.2. Decision Problem

We consider two models of the problem—static and dynamic—depending on how the mon-

itoring times are chosen. In the static model, the DM selects and commits to all monitoring

times t1, . . . , tn at time t0. The stopping decision remains dynamic, adapted to available

information; more formally, a stopping policy at the k-th monitoring time, ΠS
k , is a map-

ping from the σ-algebra induced by the choice of times t1, . . . , tn+1 and the observation

matrix x{k} to the set {Stop, Continue}. The DM’s static monitoring problem thus entails

choosing the monitoring times t{n} and a set of stopping policies, ΠS def
= {ΠS

0 ,Π
S
1 , . . .Π

S
n}.

In the dynamic model, the DM only needs to select and commit to the nearest future

monitoring time. More precisely, at time tk, the DM simultaneously chooses whether to

stop the process at time tk or not, and in the latter case, selects the time tk+1 when to

next monitor the process. Therefore, in the dynamic monitoring problem, the DM needs

to choose a monitoring and stopping policy, ΠD = {ΠD
0 ,Π

D
1 , . . . ,Π

D
n }, where each ΠD

k is a

mapping from the σ-algebra induced by (t{k},x{k}) to {Stop,Continue}× [tk, T ].

In both models, the DM collects a reward g(t,x) when stopping at time t with state x.2

His objective is to maximize his worst-case stopping reward over the possible monitoring

and stopping policies. To ease the notational burden, we formalize these problems in §3.1.

2.3. Applications

Our framework captures several problems encountered in practice. We next discuss two

such examples.

Healthcare. Consider a patient suffering from a chronic condition for which the preferred

initial treatment is passive, by regularly monitoring disease progression through office

2 That the reward is collected only when stopping is without loss of generality here, since we could always append an
additional process to the state, accumulating all the intermediate (discounted) rewards.
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visits and/or various tests. The act of monitoring is often invasive, requiring exposure to

toxic agents (e.g., radioactive agents in imaging studies) or even micro-surgical procedures

(e.g., collecting tissues for biopsy). In addition, testing can also be expensive, generating

both direct and indirect costs for to the patient. These considerations limit the number of

monitoring chances, and require physicians to make judicious use of them. It thus becomes

critical to understand when to monitor and—depending on observed outcomes—whether to

discontinue the passive treatment and switch to an active one, such as a disease modifying

agent or a surgical procedure.

In this context, the state x(t) can capture the health measurements related to disease

progression, which can be collected during an office visit. For instance, when monitoring

heart-transplanted patients for CAV, x(t) could consist of the degree of angiographic lesion,

the number of acute rejections, the CAV stage, and the age. The stopping reward g(t,x)

depends on the focus, but can generally capture the patient’s total cumulative quality-

adjusted life years (QALY) from switching to an active treatment.

Lending. Consider a lender issuing a loan with collateral consisting of several working

assets, e.g., accounts receivable, inventory, equipment, etc. Since lenders often lack exten-

sive in-house expertise for evaluating collateralized working assets, it is customary to con-

tract with third party liquidation houses to obtain periodic appraisals (see, e.g., Foley et al.

2013 and CH 2014, p.16). Based on these appraisals and on certain advance rates (i.e.,

hair-cuts) applied to each collateral type,3 the lender then calculates a borrowing base,

which essentially corresponds to the liquidity-adjusted collateral value (CH 2014, p.15-20).

This borrowing base is critical in determining whether the borrower is “over-advanced,”

i.e., whether the outstanding loan is not supported by the collateral value.

Relating to our model, the state x(t) can capture the value of the d assets pledged as

collateral, which fluctuates over time. With ai ∈ [0,1] denoting the advance rate assigned to

the i-th collateral type, each monitoring opportunity then allows the lender to observe the

current value of the borrowing base, aTx(t). The reward g(t,x) can be modeled in several

ways, depending on the remedial actions imposed by the lender when the borrower is over-

advanced (e.g., requiring early repayment, renegotiating the contract, or even liquidating

the assets), but it would typically be a function of t and x that increases in x.

3 In practice, advance rates for accounts receivable range from 70% to 90%, and advance rates for inventory are at
most 65% of the book value or 80% of the net orderly liquidation value (see CH 2014, p.17-19).
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2.4. Assumptions

The monitoring and stopping problem we described so far is generally intractable due to the

curse of dimensionality. In view of the motivating applications, we introduce assumptions

that make it amenable to analysis. The first concerns the reward function g.

Assumption 1. g(t,x) is monotonic in each xj, ∀ j ∈ {1, . . . , d}.

Reward monotonicity is consistent with several practical considerations. In chronic dis-

ease monitoring, the patient’s reward is usually monotonic in the health state x. For CAV

patients, for instance, the expected QALY with re-transplantation decrease with age, the

number of acute rejections and CAV stage (Johnson et al. 2007, Johnson 2007). In collat-

eralized lending, g(t,x) increases in x because the lender’s payoff upon a remedial action

typically grows with the values of collateralized assets (CH 2014).

Without loss, we henceforth assume that g(t,x) is increasing in all states (this can always

be achieved through a change of variables, by replacing xj with −xj for any j such that g

is decreasing in xj).

The next assumption relates to the structure of the uncertainty set(s). Its requirements

bear intuitive interpretations, and are compatible with several classical families of uncer-

tainty sets considered in the literature. We first introduce and discuss these requirements,

and then provide illustrative examples.

Assumption 2. For any 0≤ k≤ r≤ n and given t{r} and x{k},

(i) (Lattice) U
(
t{r},x{k}

)
is a lattice;

(ii) (Monotonicity) U
(
t{r},x{k}

)
is increasing in x{k};

(iii) (Dynamic Consistency) Π:,i:jU(t{r},x{k}) = Π:,i:jU(t{r
′},x{k}), ∀ i≤ j ≤ r≤ r′ ≤ n+ 1.

The lattice requirement is primarily of technical nature.4 The monotonicity requirements

are guided by practical considerations. At an intuitive level, these are akin to “better past

performance” being “good news” for the future, and “worst past performance” being “bad

news” for the future. Mathematically, “better past performance” means higher x{k}, which

leads to larger future state values, i.e., good news for the future. Conversely, “worse past

performance” means lower x{k}, which leads to lower future state values, i.e., bad news for

the future. This makes sense in chronic disease monitoring: better (worse) medical history is

4 Strictly speaking, our results only require U to be a meet-semilattice.
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often indicative of good (bad) outcomes in the future. For CAV patients, for instance, higher

CAV stages in the past lead to higher stages in the future (see §5). In collateralized lending,

several empirical studies show that pledged asset values are positively autocorrelated over

a short time horizon (e.g., Cutler et al. 1991). Finally, dynamic consistency corresponds

to the natural requirement that committing to additional monitoring times in the future,

tr+1, . . . , tr′, does not affect the set of feasible state values at monitoring times before tr.

In practice, requirements (i) and (ii) are relatively easy to check, as our examples will

shortly illustrate. To facilitate checking (iii), we introduce the following sufficient condition.

Proposition 1. Suppose that for any tp and xp, and any t, t′ satisfying tp < t< t
′,

{x∈Rd : f(tp, t,xp,x)≤ 0} ⊆ {x∈Rd : f(tp, t
′,xp,x)≤ 0}. (2)

Then, Assumption 2(iii) holds.

Proof It suffices to show that for any x{k} and monitoring times t{r} (k < r≤ n),

Π:,i:jU(t{r},x{k}) = Π:,i:jU(t{k+j},x{k}), ∀1≤ i≤ j ≤ r− k+ 1.

By definition, Π:,i:jU(t{r},x{k})⊆Π:,i:jU(t{k+j},x{k}), because introducing more monitoring

times imposes more constraints, thus shrinking the uncertainty sets and their projections.

To prove the opposite direction, we must show that if B ∈Π:,i:jU(t{k+j},x{k}), then B ∈
Π:,i:jU(t{r},x{k}), i.e., ∃A∈Rd×(i−1), C ∈Rd×(r−j) such that [A,B,C]∈ U(t{r},x{k}).

By definition, since B ∈ Π:,i:jU(t{k+j},x{k}), there exists a matrix of possible future val-

ues A
def
= [xk+1, . . . ,xk+i−1] ∈Rd×(i−1), such that [A,B] ∈ U(t{k+j},x{k}). Now, consider the

matrix [A,B,C], where C = (Π:,(j−i+1):(j−i+1)B)11×(r−j), i.e., obtained by repeating the

last element of B for r − j times. Then, by Proposition, the last entry of B, which is

feasible for tk+j, is feasible for ti+j+1, . . . , tr as well. Therefore, [A,B,C]∈ U(t{r},x{k}). �

The sufficient condition (2) for dynamic consistency requires that the possible process

values at time t are among the possible values at time t′ > t. This is a very mild requirement

if x corresponds to a “zero-mean” (noise) process, since it is natural to expect information

for more distant future times to become “less accurate”/“more noisy” in such settings. But

the assumption remains innocuous even when x exhibits predictable trends or seasonalities:

one can decompose the process into a component satisfying (2) and a predictable time-

varying component, whose effect can be captured through the time-dependency of the

reward function g.
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2.5. Examples of Uncertainty Sets

We next present several examples of uncertainty sets satisfying our requirements.

Example 1 (Lattice with Cross-Constraints). We consider a generalization of

the classical box uncertainty sets to our dynamic setting, where bounds depend on observed

information and monitoring times. More precisely, for β ≥ α≥ 0,M⊆{1, . . . , d}2, ` : R2→

R− decreasing in its second argument, and u :R2→R+ increasing in its second argument,

consider the set:

U
(
t{r},x{k}

)
=

{
[xk+1, . . . ,xr,xn+1]∈Rd×(r−k+1) :

α ·xmp + `(tp, tq− tp)≤ xm
′

q ≤ β · xmp +u(tp, tq− tp),

∀ (m,m′)∈M, ∀p∈ {0,1, . . . , k}, ∀q ∈ {k+ 1, . . . , r}
}
. (3)

Here,M specifies a group of processes that are dependent on each other. When (m,m′)∈

M, an observation with value xmp for the m-th process at time tp would impose restrictions

on the future process value xm
′

q for the m′-th process at time tq, in the form of a lower

bound αxmp + `(tp, tq − tp) and an upper bound βxmp + u(tp, tq − tp). The bounds depends

on the time of the past observation, tp, and on the elapsed time between the observations,

tq − tp. That −` and u increase in the elapsed time (i.e., their second argument) reflects

more variability in process values due to passage of time.

To see that Assumption 2(i) is satisfied, note that the uncertainty set in (3) is given by

a finite collection of bimonotone linear inequalities,5 and is therefore a lattice (Queyranne

and Tardella 2006). Assumption 2(ii) is readily satisfied since both αx+ `(tp, tq − tp) and

β x+u(tp, tq− tp) are increasing in x. Lastly, condition (2)—and thus Assumption 2(iii)—is

also satisfied since −` and u are increasing in their second argument.

Sets such as (3) are a natural extension of the typical box uncertainty model (Ben-

Tal et al. 2009) to our dynamic setting. The example generalizes to bounding functions

that depend on the pair of components (i.e., we have αm,m
′
, βm,m

′
, `m,m

′
and um,m

′
), and

constraints written more generally as ˜̀(xmp , tp, tq − tp)≤ xm
′

q ≤ ũ(xmp , tp, tq − tp), where ˜̀ is

convex and increasing in its first argument, and ũ is concave and increasing in its first

argument. We omit more details for simplicity of exposition.

5 A linear inequality in variables x is bimonotone if it can be written as aixi +ajxj ≤ c, for some i, j, with ai ·aj ≤ 0.
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Example 2 (CLT-Budgeted Uncertainty Sets). Consider the case where the d

processes correspond to random walks with independent increments. In particular, consider

d= 1, and assume that increments corresponding to a time length ∆t have mean µ∆t and

standard deviation σ
√

∆t. As such, by expressing the difference between two observations

xq and xp (for q > p) as a sum of intermediate independent increments, i.e., xq − xp =∑q
i=p+1(xi − xi−1), one can then rely on the ideas introduced by Bandi and Bertsimas

(2012) to formulate the following Central-Limit-Theorem-type uncertainty set:

U(t{r},x{k}) =
{

[xk+1, . . . , xr, xn+1]∈Rr−k+1 : −Γ≤ xq−xp− (tq− tp)µ√
tq− tpσ

≤ Γ,

∀p, q ∈ {0,1, . . . , r,n+ 1}, p < q
}
,

for some Γ > 0. Note that this set can be reformulated as a lattice uncertainty set with

α= β = 1, `(tp, tq− tp) = (tq− tp)µ−Γ
√
tq− tpσ, and u(tp, tq− tp) = (tq− tp)µ+ Γ

√
tq− tpσ.

Assumption 2(ii) is immediate, and by Proposition 1, Assumption 2(iii) is satisfied when

the budget is sufficiently high (Γσ≥ 2µ
√
T ).

3. Analysis

We begin by formulating the two problems—for dynamic and static monitoring—as

dynamic programs.

3.1. Dynamic Programming Formulations

Dynamic Monitoring. Let Jk(t
{k},x{k}) denote the worst-case value-to-go at time tk,

with the first k observations x{k} made at times t{k}. The Bellman recursions become:

Jk(t
{k},x{k}) = max

(
g
(
tk,xk

)
, max
tk+1∈(tk,T ]

min
xk+1∈Uk+1(t{k+1},x{k})

Jk+1(t
{k+1},x{k+1})

)
, (4)

where Jn+1(t
{n+1},x{n+1}) = g

(
tn+1,xn+1

)
. For an intermediate monitoring time tk,

Jk(t
{k},x{k}) is obtained as the maximum of the reward from stopping at tk and the worst-

case continuation value obtained by (optimally) picking the next monitoring time tk+1.

The DM’s problem is then to find a set of monitoring and stopping policies ΠD = {ΠD
k }nk=0,

where ΠD
k consists of a stopping policy at time tk and a policy τDk (t{k},x{k}) for choosing

the next monitoring time tk+1. More precisely,

τDk (t{k},x{k}) = arg max
tk+1∈(tk,T ]

min
xk+1∈Uk+1(t{k+1},x{k})

Jk+1(t
{k+1},x{k+1}).
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Let J = J0(t0,x
{0}).

Static Monitoring. Suppose all monitoring times were chosen as t{n+1}. Let

Vk(t
{n+1},x{k}) denote the worst-case value-to-go function at time tk with the first k obser-

vations x{k} made. The Bellman equations under static monitoring become:

Vk(t
{n+1},x{k}) = max

(
g
(
tk,xk

)
, min
xk+1∈Uk+1(t{n+1},x{k})

Vk+1

(
t{n+1},x{k+1})), (5)

where Vn+1(t
{n+1},x{n+1}) = g

(
tn+1,xn+1

)
. The DM’s problem is to choose a set of stopping

policies ΠS = {ΠS
k}nk=0 and a vector of monitoring times tS ∈ arg maxt{n+1} V0(t

{n+1},x{0}).

Let V = V0(t
S,x{0}).

3.2. Optimal Policy Under Dynamic Monitoring

We will show that the optimal policy under dynamic monitoring can be recovered by

dynamically (re)solving a sequence of static monitoring problems. The first step is to show

that the optimal worst-case reward achieved under dynamic monitoring is the same as

under static monitoring.

Theorem 1. Under Assumption 1 and Assumption 2, we have

J = V, tS1 ∈ τD1 (t0,x0).

Proof of Theorem 1. It is trivial that J ≥ V , since any optimal solution for the static

model is also feasible for the dynamic model. To show the opposite direction, define

Jk(t
{k},x{k}) = max

(
g
(
tk,xk

)
, Ck(t

{k},x{k})
)

Ck(t
{k},x{k})

def
= max

tk+1∈[tk,T ]
Gk+1(t

{k+1},x{k})

Gk+1(t
{k+1},x{k})

def
= min

xk+1∈Uk+1(t{k+1},x{k})
Jk+1(t

{k+1},x{k+1}).

The proof relies on the following auxiliary result, which we prove in Lemma 1: for any

t{k+1} and x{k−1}, with xk
def
= min

{
x : x∈ Uk(t{k},x{k−1})

}
, we have

xk ∈ arg min
xk∈Uk(t{k},x{k−1})

g(tk,xk) ∩ arg min
xk∈Uk(t{k},x{k−1})

Ck(t
{k},x{k})

∩ arg min
xk∈Uk(t{k+1},x{k−1})

Gk+1(t
{k+1},x{k}). (6)
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We then have:

Gk(t
{k},x{k−1}) = min

xk∈Uk(t{k},x{k−1})
Jk(t

{k},x{k})

(6)
= max

(
g
(
tk,xk

)
, Ck(t

{k}, [x{k−1},xk])
)

= max
(
g
(
tk,xk

)
, max
tk+1∈[tk,T ]

Gk+1(t
{k+1}, [x{k−1},xk])

)
(since xk independent of tk+1) = max

tk+1∈[tk,T ]
max

(
g
(
tk,xk

)
, Gk+1(t

{k+1}, [x{k−1},xk])
)

(6)

≤ max
tk+1∈[tk,T ]

min
xk∈Uk(t{k+1},x{k−1})

max
(
g
(
tk,xk

)
, Gk+1(t

{k+1},x{k})
)
.

The argument then follows by induction. �

Lemma 1. Consider any 1≤ k≤ n, any t{k+1} and x{k−1}, and let

xk
def
= min

{
x : x∈ Uk(t{k},x{k−1})

}
.

Then,

xk ∈ arg min
xk∈Uk(t{k},x{k−1})

g(tk,xk)∩ arg min
xk∈Uk(t{k},x{k−1})

Ck(t
{k},x{k})∩ arg min

xk∈Uk(t{k+1},x{k−1})

Gk+1(t
{k+1},x{k}).

Proof Note that xk is well defined since Uk(t{k},x{k−1}) is a lattice, by Assumption 2(i).

Since g(tk,xk) is increasing in xk for any tk, it suffices to prove that Ck(t
{k},x{k}) and

Gk+1(t
{k+1},x{k}) are increasing functions, for any k and any t{k+1}. To the latter point,

we claim that it suffices to show that Jk+1(t
{k+1},x{k+1}) is increasing in x{k+1}; when this

holds, we readily have that:

Gk+1(t
{k+1},x{k})

def
= min

xk+1∈U(t{k+1},x{k})
Jk+1(t

{k+1},x{k+1}) = Jk+1(t
{k+1}, [x{k},xk+1])

is increasing in x{k}, since xk+1 is increasing in x{k}, by Assumption 2(ii). And thus

Ck(t
{k},x{k})

def
= max

tk+1∈[tk,T ]
Gk+1(t

{k+1},x{k})

is also increasing in x{k}, as a maximum of increasing functions.

To complete our proof, it thus suffices to show that Jk(t
{k}, ·) is increasing, for any k and

any t{k+1}. We prove this by induction. For k= n+ 1, we have that Jn+1(t
{n+1},x{n+1})

def
=

g(tn+1,xn+1), so Jn+1(t
{n+1}, ·) is increasing. Assume the property holds for Jk+1. Then,
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Gk+1(t
{k+1},x{k}) and Ck(t

{k},x{k}) are both increasing in x{k}, by the argument above.

And since g(tk,xk) is also increasing in xk by Assumption 1, we have that

Jk(t
{k},x{k}) = max

(
g
(
tk,xk

)
, Ck(t

{k},x{k})
)

is also increasing in x{k}, completing our inductive step. �

Although static monitoring is able to achieve the same worst-case reward as dynamic

monitoring and to generate an optimal initial monitoring time tS1 , the subsequent optimal

static monitoring times tS2 , . . . , t
S
n are not necessarily dynamically consistent. In particular,

if the process values observed at tS1 do not correspond to nature’s worst-case actions, the

DM may prefer to adjust the second monitoring time to a value that differs from tS2 (and

the same rationale applies at subsequent monitoring times). However, this issue can be

addressed by re-solving a static monitoring problem over the remaining horizon, using the

updated information. This intuition is formalized in the following result.

Corollary 1. The following algorithm yields an optimal dynamic monitoring policy:

For all k= 0,1, . . . , n:

1. At the k-th monitoring time tk, having observed xk, find an optimal static monitoring

policy over the remaining time horizon [tk, tn+1], with n−k monitoring chances, initial

state xk, and observation matrix x{k}. Let V (t{k},x{k}) denote the worst-case optimal

reward, and tS1 (t{k},x{k}) denote the first monitoring time under this policy.

2. If g(tk,xk) ≥ V (t{k},x{k}), then stop. Otherwise, continue and τDk (t{k},x{k}) ←
tS1 (t{k},x{k}).

This result underscores the importance of solving the static monitoring problem, which we

analyze next.

3.3. Optimal Policy Under Static Monitoring

Our approach is to first characterize nature’s optimal actions and the DM’s optimal stop-

ping strategy for a given set of monitoring times. This will allow us to then reformulate

(and simplify) the DM’s problem to one of choosing only the monitoring times.

Proposition 2. Consider a fixed set of monitoring times t{n+1}. Nature’s optimal

(worst-case) response when the DM continues in period tk can be recovered recursively as:

xk(t
{n+1})

def
= min

{
ξ ∈Rd : ξ ∈ Uk

(
t{n+1}, [x0,x1(t

{n+1}), . . . ,xk−1(t
{n+1})]

)}
,1≤ k≤ n+ 1.

(7)
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Proof According to Lemma 1, the worst-case process value at time tk, which we denote

by xk(t
{n+1},x{k−1}), can be obtained by choosing the smallest element of the corresponding

uncertainty set, i.e.,

xk(t
{n+1},x{k−1})

def
= min

{
ξ ∈Rd : ξ ∈ Uk

(
t{n+1},x{k−1})},∀k ∈ {1, . . . , n+ 1}.

The result follows by induction. �

A given set of monitoring times thus induces a particular (predictable) worst-case path,

and the DM’s stopping problem reduces to choosing when to stop along that path. The

DM’s problem (5) can thus be re-formulated as:

V = max
t{n+1}

max
k∈{1,...,n+1}

g(tk,xk(t
{n+1})). (8)

Our next result further simplifies this problem, proving that under an optimally chosen

set of monitoring times and along the resulting worst-case path, it is optimal either to stop

at the last monitoring time tn or to continue until the end.

Theorem 2. The optimal value in (8) can be obtained as

V = max
t{n+1}

max
k∈{n,n+1}

g
(
tk,xk(t

{n+1})
)
. (9)

Proof We claim that there always exists an optimal choice of t{n+1} such that the inner

maximum in (8) is reached at tn or tn+1 = T (i.e., for k= n or n+ 1, respectively). To see

this, assume that the maximum occurs at k̄ < n, and introduce a new set of monitoring

times z such that z = [t0, t1, . . . , tk̄−1, tk̄−1, tk̄, tk̄+2, . . . , tn, tn+1]. Then,

V ≥ max
k∈{1,...,n+1}

g(zk,xk(z))
(8)

≥ g(zk̄+1,xk̄+1(z)) = g(tk̄,xk̄(t
{n+1})) = V.

The penultimate equality holds because Uk̄
(
t{n+1},x{k̄−1})= Uk̄+1

(
z,x{k̄}

)
, by the construc-

tion of z and by the definition of U in (1). Thus, under the monitoring times z, the same

optimum is reached at k̄+ 1. Repeating the argument inductively yields the result. �

Theorem 2 implies that the static problem entails solving two optimization problems.

Since tn+1 ≡ T is fixed, this can be done provided we can find a solution for the problem:

max
t{n+1}

g
(
tn,xn(t{n+1})

)
. (10)
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Solution approaches critically depend on the structure of the reward function g and the

uncertainty sets. For our subsequent analysis, we focus on the class of lattice uncertainty

sets with cross constraints introduced in Example 1, which subsumes many interesting sets

considered in the literature (e.g., sets with box constraints and CLT-budgeted sets, per

our discussion in §2.5). For simplicity, we take α= β = 1, so that:

U
(
t{r},x{k}

)
=

{
[xk+1, . . . ,xr,xn+1]∈Rd×(r−k+1) :

xmp + `(tp, tq− tp)≤ xm
′

q ≤ xmp +u(tp, tq− tp),

∀ (m,m′)∈M, ∀p∈ {0,1, . . . , k}, ∀q ∈ {k+ 1, . . . , r}
}
.

(11)

To rule out degenerate cases where the uncertainty sets could be empty, we require that

`(·,0) = u(·,0) = 0. Let xm
′

0
def
= maxm:(m,m′)∈M xm0 ,∀m′ ∈ {1, . . . , d}.

3.3.1. Stationary Bound Functions. We first discuss the case where ` and u only

depend on their second argument, i.e., the elapsed time between monitoring opportunities;

with a slight overload of notation, we write `(tq− tp) and u(tq− tp). This already captures

many uncertainty sets of practical interest, such as the CLT-budgeted sets of Example 2.

Theorem 3. Under Assumption 1 and for the uncertainty set in (11),

(i) if `(·) is convex, then

V = max
t∈[0,T ]

g
(
t,x0 + `(t)1

)
, tS1 ∈ arg max

t∈[0,T ]

g
(
t,x0 + `(t)1

)
, (12)

and tS2 , . . . , t
S
n can be chosen arbitrarily from [tS1 , T ];

(ii) if `(·) is concave, then

V = max
(

max
t∈[0,T ]

g
(
t,φn(t)

)
, g
(
T,φn+1(T )

))
, (13)

where φk(t)
def
= x0 + k`

(
t/k
)
1, ∀k ∈ {n,n+ 1}. Moreover, if g(t,x) is jointly concave,

then (13) reduces to solving a convex optimization problem.

Proof For the convex case in (i), please refer to the proof of Theorem 4 for a more gen-

eral result. For the concave case in (ii), consider problem (10), maxt{n+1} g(tn,xn(t{n+1})).

By Theorem 4, xn(t{n+1}) =x0 +
∑n

i=1 `(ti− ti−1)1 when ` is concave. Thus, for a fixed tn,

maximizing g(tn,xn(t{n+1})) is equivalent to maximizing
∑n

i=1 `(ti − ti−1), since g(t,x) is

increasing in x. Due to the concavity of `(δ), the maximum is achieved when ti − ti−1 =

tn/n, i= 1, . . . , n (by Jensen’s inequality). Therefore, problem (10) becomes equivalent to

maxtn g(tn,φn(tn)). Similarly, maxt{n+1} g(tn+1,xn+1(t
{n+1})) = g(T,φn+1(T )). �
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According to Theorem 3, when the bound functions have well-defined curvatures, solving

the static monitoring problem reduces to optimizing a one-dimensional function.

When ` is convex, it is worst-case optimal for the DM to stop at the first monitoring time,

found by solving (12), which renders the choice of subsequent monitoring times irrelevant.

Intuitively, this occurs because a convex lower bound function corresponds to a decreasing

rate of uncertainty growth over time. This results in the initial estimates from time t0

providing the least conservative lower bound estimate of the future process values, and

makes any additional observations irrelevant for the DM’s problem of “learning” the worst-

case path. An example of such convex bound functions is the CLT-budgeted uncertainty

set in Example 2, where `(δ) = δµ−Γ
√
δσ.

When ` is concave, it is worst-case optimal for the DM to evenly space the monitoring

times, stopping either at the last monitoring time tn (chosen to maximize g(t, φn(t))) or at

the end of the planning horizon, T . Intuitively, a concave lower bound induces an increasing

rate of uncertainty growth over time, so that worst-case estimates of future process values

quickly degrade. Thus, new observations can substantially reduce the uncertainty, and the

optimal policy avails itself of all monitoring chances, distributing them uniformly over time

so as to maximally reduce the uncertainty and improve worst-case outcomes.

3.3.2. Non-stationary Bound Functions. We now treat the more general case, where

the bounds depend on both the monitoring time and the elapsed time, i.e., `(tp, tq − tp)
and u(tp, tq − tp). As expected, additional conditions are required here to characterize the

solutions in the static monitoring problem. Our first result parallels Theorem 3, highlighting

the importance of the bounds’ curvature.

Theorem 4. Under Assumption 1 and for the uncertainty set in (11),

(i) if `(t, δ) is decreasing in t and convex in δ, then

V = max
t∈[0,T ]

g
(
t,x0 + `(t0, t− t0)1

)
, tS1 ∈ arg max

t∈[0,T ]

g
(
t,x0 + `(t0, t− t0)1

)
,

and tS2 , . . . , t
S
n can be chosen arbitrarily from [tS1 , T ];

(ii) if `(t, δ) is increasing in t and concave in δ, then

V = max
(

max
tn∈[0,T ]

g
(
tn,x0 + ξn(tn)1

)
, g
(
T,x0 + ξn+1(T )1

))
, where (14a)

ξk(tk)
def
= max

0≤t1···≤tk−1≤tk

[ k∑
i=1

`(ti−1, ti− ti−1)

]
, ∀k ∈ {n,n+ 1}. (14b)
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Furthermore, if ` is jointly concave, then (14b) is a convex optimization problem; and if

g(t,x) is jointly concave, then (14a) reduces to solving a convex optimization problem.

Proof For case (i), we first show that xk(t
{n+1}) =x0 + `(t0, tk− t0)1. To that end, note

that for any j ∈ {1, . . . , d} and 1≤ p < q≤ n:

xj0 + `(t0, tp− t0) + `(tp, tq− tp)≤ xj0 + `(t0, tp− t0) + `(t0, tq− tp)≤ xj0 + `(t0, tq− t0), (15)

where the first inequality follows since `(t, δ) is decreasing in t, and the second inequality

follows because ` is superadditive in δ (since ` is convex in δ and `(·,0) = 0). Therefore,

xk(t
{n+1})

def
= min

{
ξ : ξ ∈ Uk

(
t{n+1}, [x0,x1, . . . ,xk−1]

)}
=x0 +

[
max

{0=k1≤···≤kr=k}∈{1,...,k}

r∑
i=1

`(tki−1, tki − tki−1)

]
1 =x0 + `(t0, tk− t0)1.

For case (ii), note that when `(t, δ) is increasing in t and concave in δ, the reverse inequal-

ities hold in (15). Thus, nature’s optimal (worst-case) response is given by:

xk(t
{n+1}) =x0 +

[ k∑
i=1

`(ti−1, ti− ti−1)

]
1.

Since g(t,x) is jointly concave and increasing in x, and `(t, δ) is jointly concave, the

composition g
(
tn,xn(t{n+1})

)
is concave in t{n+1}, so that problem (10) requires maximizing

a concave function over the convex set 0≤ t1 ≤ · · · ≤ tn ≤ T . �

Part (i) shows that when the bound `(t, δ) is convex in δ and also decreasing in t, it

would again be worst-case optimal for the DM to stop at the first monitoring time, found

by solving a one-dimensional optimization problem; as before, the choice of subsequent

monitoring times is irrelevant for maximizing the worst-case reward. Intuitively, that bound

functions would decrease in t if the forecasting technology improved over time, or the

processes became “more predictable.”

Part (ii) shows that when `(t, δ) is concave in δ and also increasing in t, it would be

worst-case optimal for the DM to rely on all monitoring chances, which are picked so as

to reduce the uncertainty as much as possible, per (14b). When ` and g satisfy additional

(mild) requirements, the requisite problems have a convex structure, and are tractable.

In the absence of curvature information about `, Problem (10) can also be viewed from a

combinatorial optimization perspective. In particular, if the function g
(
tn,xn(t{n+1})

)
is a
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supermodular function of t{n+1}, Problem (10) would involve maximizing a supermodular

function over a lattice—a problem that can be tackled through tractable combinatorial

algorithms (see, e.g., Fujishige (2005), Schrijver (2003), and references therein). Although

it is difficult to exactly characterize when g
(
tn,xn(t{n+1})

)
becomes supermodular, we

provide a set of sufficient conditions in the following result.

Proposition 3. Under Assumption 1 and for the uncertainty set in (11), if:

(i) g(t,x) is supermodular in x, convex in every component xk, and

(ii) ` is supermodular and decreasing in (tp, tq) on the lattice [0, T ]2,

then g
(
tk,xk(t

{k})
)

is a supermodular function of t{k−1} for any fixed tk, for k ∈ {n,n+1}.

Proof Our proof relies on the following known result from lattice programming.

Proposition 4 (Topkis 1998). If h is a convex, increasing (i.e., isotone) function,

and f is supermodular and either isotone or antitone, then h ◦ f is supermodular.

Note that every component of xn can be written as:

xkn =xk0 + max
s∈S

fs(t
{n})

fs(t
{n})

def
=

p−1∑
i=0

`(ts(i), ts(i+1)− ts(i)),

where S denotes the set of all ordered subsets of {0, . . . , n} that include 0 and n. By

assumption (ii), for every s ∈ S, fs is supermodular in t{n} and decreasing (i.e., antitone)

in t{n}. Since the max function is convex and increasing (i.e., isotone), we can invoke

Proposition 4 to conclude that xkn is supermodular in t{n}. Since xkn is also decreasing

in t{n}, and g(t,x) is increasing and component-wise convex in x, we can again invoke

Proposition 4 to conclude that g
(
tn,xn(t{n})

)
is supermodular in t{n−1} for any fixed tn. �

To solve Problem (10), one should thus follow a two-stage approach.6 In the second

stage, for a fixed tn, one can rely on Proposition 3 to find t1, . . . , tn−1, by maximizing the

supermodular function g
(
tn,xn(t{n})

)
over the lattice 0≤ t1 ≤ t2 ≤ · · · ≤ tn−1 ≤ tn. In the

first stage, one would solve a one-dimensional optimization problem over tn.

In practice, this combinatorial approach could be quite useful, since tn may be required

to be integer or a multiple of some base planning period, such as a month, a week, a

6 In case g(t,x) is also increasing in t and (jointly) convex in (t,x), then this two-step approach is not needed, since
g
(
tn,xn(t{n})

)
is actually supermodular in t{n}, by Proposition 4.
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day, etc. Furthermore, some of the premises of Proposition 3 are reasonable. For instance,

having rewards g that are supermodular—i.e., exhibiting complementarity in the states—is

natural in many healthcare applications, where better performance in one biometric can

relate to better (marginal) performance in the others. In CAV monitoring, for example, the

number of acute rejections and CAV stage are complementary (John 2009). Component-

wise convexity of g suggests increasing returns to scale in each component of x, which

could be expected particularly for low values of biometrics in healthcare applications. The

supermodularity of ` implies that the uncertainty is also complementary.

Finally, when none of the approaches above is applicable, one may still be able to formu-

late the static monitoring problem as a mixed-integer linear program, and rely on modern

MIP solvers to determine the monitoring times. This approach works particularly well

when the primitives (i.e., the functions g and `) are piece-wise linear. Since the resulting

model heavily depends on the problem specifics, we omit a general-purpose formulation

here; for a concrete example, please see our numerical study in §5.

4. Extensions

We explore several extensions of our model that may be relevant in practice.

4.1. Costly Monitoring

Consider our base model, but assume that each monitoring incurs a fixed cost c ≥ 0. In

particular, the reward from stopping at the k-th monitoring time tk with a state of xk

becomes g(tk,xk) − kc, for all k = 1, . . . , n. Then, it can be readily checked that Theo-

rem 1 continues to hold, so that the worst-case optimal rewards under dynamic and static

monitoring are the same. Thus, it suffices again to focus on the static monitoring problem.

Let Ṽ c
k (t{n+1},x{k}) be the worst-case value-to-go function for the static monitoring

problem at time tk, with the first k observations made. The Bellman equations become:

Ṽ c
k (t{n+1},x{k}) = max

(
g(tk,xk)− ck, min

xk+1∈Ũk+1(t{n+1},x{k})
Ṽ c
k+1(t

{n+1},x{k+1})

)
,

Ṽ c
n+1(t

{n+1},x{n+1}) = g(tn+1,xn+1)− c (n+ 1).

It can be readily checked that, under a given set of monitoring times t{n+1}, nature’s

optimal (worst-case) response xk(t
{n+1}) in period tk is still given by Proposition 2. Thus,

the DM’s problem can again be reformulated as:

Ṽ c
0 (t0,x0) = max

t{n+1}
max

k∈{1,...,n+1}

[
g
(
tk,xk(t

{n+1})
)
− ck

]
. (16)
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A key difference from our earlier results lies in the DM’s optimal stopping strategy. Recall

that in our base model, it was worst-case optimal to either stop at the last monitoring

time tn or continue until the end of the horizon (see Theorem 2). This is no longer the case

here, as an optimal policy may require stopping at an earlier time due to the monitoring

cost c. Thus, the optimal k∗ in (16) may be strictly smaller than n.

To solve (16), one can switch the order of the maximization operators. Since finding

the optimal t{n+1} for a fixed k requires solving problems that are structurally identical to

Problem (10), our results in §3.3.1 and §3.3.2 can be directly leveraged. By iterating over

k, one can then recover the optimal number of monitoring times.

Moreover, when the bounds are stationary, the problem of finding the optimal number

of monitoring times is also tractable under mild conditions, as summarized next.

Proposition 5. Under Assumption 1 and for the uncertainty set in (11) with stationary

lower bounds `(tq− tp),

(i) if `(·) is convex, then a single monitoring time is sufficient for achieving the worst-case

optimal reward;

(ii) if `(·) is concave, and g(t,x) is jointly concave, then the optimal number of monitoring

times can be done by solving convex optimization problems.

Proof. Part (i) follows directly from Theorem 3(i). For part (ii), recall from Theo-

rem 3(ii) that finding the optimal stopping time under a fixed number of monitoring times

n requires solving the problem maxt∈[0,T ] g
(
t,x0 +n`

(
t/n
)
1
)
. The function to be maximized

is jointly concave in (t, n), since g(t,x) is jointly concave and increasing in x, and the func-

tions n`(t/n) are jointly concave in (t, n) since ` is concave. Thus, one can find an optimal

t and n by first maximizing a concave function over a convex feasible set (considering n

continuous), and then checking the nearest integers (possibly solving two additional one

dimensional convex optimization problems to determine the corresponding t). �

4.2. More General Decision Process

Some of our results concerning the monitoring policy also extend to a more general decision

problem, where the DM, instead of simply stopping, can modify the processes by increasing

the state values (an action we refer to as “injection”) or decreasing them (“extraction”).

This allows capturing several applications of interest. In chronic disease monitoring, “injec-

tions” could denote interventions that are costly or have immediate side-effects in the
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short run, but carry long-term benefits, while “extractions” could capture relaxing a strict

treatment, leading to immediate relief but carrying potential long-term consequences. In

collateralized lending, “injections” could denote the costly addition of new collateral, which

improves the borrowing base, and “extractions” could denote immediate collateral liqui-

dations, which generate cash but reduce the borrowing base.

To formalize this, consider our setup in §2, but assume that at the k-th monitoring time

tk, upon observing the state value xk
def
= x(tk), the DM decides an action yk ∈A(xk)⊆Rd,

which results in an immediately updated state zk
def
= xk−yk, and a net reward r(tk,xk,yk)

accruing to the DM. When yk ≥ 0 (< 0), the action can be thought of as extracting value

from (injecting value into) the processes, in which case the corresponding net reward

would typically be positive (respectively, negative). Not all actions are possible, and A(xk)

captures the feasible set when the initial state is xk.

Following the DM’s action, the system subsequently evolves from time tk to the next

monitoring time tk+1, where it takes a value of xk+1, chosen by nature from an uncertainty

set. More precisely, for any 0≤ k≤ r≤ n+ 1, and given a fixed choice of monitoring times

t{r}, observations x{k} and post-action states z{k} up to time tk, the set of possible future

values for [xk+1, . . . ,xr,xn+1] is given by:

Ũ(t{r},x{k},z{k})
def
=

{
[xk+1, . . . ,xr]∈Rd×(r−k+1) : f̃(tp, tq,xp,zp,xq),

∀p, q ∈ {0, . . . , r,n+ 1}, p < q
}
.

(17)

As before, we consider two versions of the DM’s problem—static and dynamic—

depending on whether the monitoring times are chosen at inception or throughout the

problem horizon. The DM’s objective is to determine the monitoring times t{n+1} and the

optimal actions y{n+1} that maximize his cumulative reward up to time tn+1.

Assumptions. We assume that rewards and action sets are monotonic in states.

Assumption 3. The net reward r(t,x,y) is increasing in x, and the action set A(x) is

increasing in x with respect to set inclusion, i.e., x1 ≤x2⇒A(x1)⊆A(x2).

Several feasible sets satisfy our requirement; for instance, A(x) = {y : 0 ≤ y ≤ x}. Par-

alleling Assumption 2, we also require the uncertainty sets to be lattices, with suitable

monotonicity and dynamic consistency properties.

Assumption 4. For any 0≤ k≤ r≤ n, and given t{r},x{k} and z{k},
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(i) (Lattice) Ũ(t{r},x{k},z{k}) is a lattice;

(ii) (Monotonicity) Ũ(t{r},x{k},z{k}) is increasing in x{k} and z{k};

(iii) (Dynamic Consistency) Π:,i:j Ũ(t{r},x{k},z{k}) = Π:,i:j Ũ(t{r
′},x{k},z{k}), ∀i ≤ j ≤ r ≤

r′ ≤ n+ 1.

These generalized sets allow future states to depend on historical state values both immedi-

ately before and immediately after the DM’s actions. As before, we can prove that dynamic

consistency is guaranteed when f̃ is monotonic in its second argument (details are omitted.)

Analysis. We first consider the dynamic problem. With J̃k(t
{k},x{k},z{k−1}) denoting7 the

DM’s value-to-go function at time tk, the Bellman recursions become:

J̃k(t
{k},x{k},z{k−1}) = max

yk∈A(xk)

[
r(tk,xk,yk) +

max
tk+1∈[tk,T ]

min
xk+1∈Ũ(t{k+1},x{k},z{k})

J̃k+1(t
{k+1},x{k+1},z{k}))

]
,

J̃n+1(t
{n+1},x{n+1},z{n}) = max

yn+1∈A(xn+1)
r(tn+1,xn+1,yn+1).

Let J̃0
def
= J̃0(t0,x0).

In the static problem, the DM chooses t{n+1} at time t0. With Ṽk(t
{k},x{k},z{k−1}) denot-

ing the value-to-go function at time tk, the Bellman recursions become:

Ṽk(t
{n+1},x{k},z{k−1}) = max

yk∈A(xk)

[
r(tk,xk,yk) + min

xk+1∈Ũ(t{k+1},x{k},z{k})
Ṽk+1

(
t{n+1},x{k+1},z{k})

)]
,

Ṽn+1(t
{n+1},x{n+1},z{n}) = max

yn+1∈A(xn+1)
r(tn+1,xn+1,yn+1),

and the optimal choice of monitoring times yields a value of Ṽ0
def
= maxt{n+1} Ṽ0(t

{n+1},x{0}).

In this context, we can confirm that an analogous result to Theorem 1 holds, and the

dynamic problem yields the same worst-case optimal reward as the static problem.

Theorem 5. Under Assumption 3 and Assumption 4, J̃0 = Ṽ0.

Proof. The Bellman recursion under dynamic monitoring can be written:

J̃k(t
{k},x{k},z{k−1}) = max

yk∈A(xk)
max

tk+1∈[tk,T ]

[
r(tk,xk,yk) + G̃k(t

{k+1},x{k},z{k})
]
, where

G̃k(t
{k+1},x{k},z{k})

def
= min

xk+1∈Ũ(t{k+1},x{k},z{k})
J̃k+1(t

{k+1},x{k+1},z{k}), ∀k ∈ {1, . . . , n}.

7 To simplify notation, we define z{−1} def
= ∅.
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First, using induction, we prove that J̃k and G̃k are increasing in all arguments except

time. By Assumption 3, this is true8 for J̃n+1(t
{n+1},x{n+1},z{n}). Assuming this is true at

k+ 1, and using Assumption 4(i,ii), note that:

argminxk+1∈Ũ(t{k+1},x{k},z{k})J̃k+1(t
{k+1},x{k+1},z{k}) = min

xk+1∈Ũ(t{k+1},x{k},z{k})
xk+1

def
= xk+1(t

{k+1},x{k},z{k}),

and xk+1(t
{k+1},x{k},z{k}) is increasing in x{k} and z{k}. Therefore,

G̃k(t
{k+1},x{k},z{k}) = J̃k+1

(
t{k+1},

[
x{k},xk+1(t

{k+1},x{k},z{k})
]
,z{k}

)
is increasing in (x{k},z{k}). But then, note that the maximand in the problem:

J̃k(t
{k},x{k},z{k−1}) = max

yk∈A(xk)
max

tk+1∈[tk,T ]

[
r(tk,xk,yk) + G̃k

(
t{k+1},x{k}, [z{k−1},xk−yk]

)]
.

is increasing in (x{k},z{k−1}), for any fixed value of yk and tk+1. And since the action set

A(xk) is increasing in xk with respect to set inclusion by Assumption 3, this implies that

J̃k is increasing in (x{k},z{k−1}), which completes our induction.

Using these monotonicity properties, we then obtain:

G̃k−1(t
{k},x{k−1},z{k−1}) (18)

= min
xk∈Ũ(t{k},x{k−1},z{k−1})

max
yk∈A(xk)

max
tk+1∈[tk,T ]

[
r(tk,xk,yk) + G̃k

(
t{k+1}, [x{k−1},xk],z

{k}
)]

= max
tk+1∈[tk,T ]

max
yk∈A(xk)

[
r(tk,xk,yk) + G̃k

(
t{k+1}, [x{k−1},xk],z

{k}
)]

= max
tk+1∈[tk,T ]

min
xk∈Ũ(t{k+1},x{k−1},z{k−1})

max
yk∈A(xk)

[
r(tk,xk,yk) + G̃k

(
t{k+1}, [x{k−1},xk],z

{k}
)]
.

(19)

The second equality follows from the monotonicity of r and G̃k in xk; the last equality

follows from the same monotonicity and the dynamic consistency Assumption 4(iii), which

ensures that Ũ(t{k+1},x{k−1},z{k−1}) = Ũ(t{k},x{k−1},z{k−1}), so that the nature’s worst-

case response xk is independent of the choice tk+1. Therefore, we can interchange the order

of maxtk+1
and minxk∈Ũk . Repeating the argument inductively, we obtain J̃0 = Ṽ0. �

8 To see why this follows, consider f(x)
def
= maxy∈A(x) g(x, y) where g(·, y) is increasing for any y, and let y∗(x) denote

a maximizer in the problem. Then, for x1 ≤ x2, we have f(x1) = g(x1, y
∗(x1))≤ g(x2, y

∗(x1))≤maxy∈A(x2) g(x2, y) =
f(x2), where the inequality in the second step relies on y∗(x1)∈A(x2), which is guaranteed by Assumption 3.
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This result again allows reconstructing the DM’s optimal dynamic monitoring policy by

(resolving) static versions of the monitoring problem. In fact, a further simplification is

also possible here, as summarized in our next result.

Proposition 6. Consider the static monitoring problem. The DM can make all the

injection decisions at time t0 and recover the same worst-case reward, i.e.,

Ṽ0 = max
t{n+1}

max
y{n+1}∈Rd×(n+1)

min
x{n+1} :∀k∈{1,...,n+1},

xk∈Ũ(t{n+1},x{k−1},z{k−1})

N∑
k=0

r(tk,xk,yk).

Proof. Running through the same arguments as in the proof of Theorem 5, let

y∗k(t
{k+1},x{k},z{k}) denote an optimal policy for the DM in (19). It can be checked that the

operators minxk∈Ũ(t{k+1},x{k−1},z{k−1}) maxyk∈A(xk) in (19) can be interchanged under a choice

y∗k(t
{k+1},x{k},z{k−1}), since this action remains feasible for any xk by Assumption 3, and

nature’s worst-case response under knowledge of this action remains x{k}. Repeating the

argument by induction then yields the result. �

In view of Proposition 6, for purposes of recovering the worst-case reward, the DM can

restrict attention to static policies for both monitoring and extraction; this simplifies the

problem, and allows reconstructing a dynamic policy by repeatedly finding static policies.

5. Robust Monitoring of Cardiac Allograft Vasculopathy

We leverage our approach to devise monitoring policies for patients suffering from Cardiac

Allograft Vasculopathy (CAV). As discussed in the Introduction, CAV patients face disease

progression that is highly uncertain and therefore could benefit from policies prescribed by

our method. We use real data to calibrate our model and then evaluate the performance

of our proposed monitoring policies vis-a-vis established guidelines in the medical commu-

nity. Simulation suggests that our policies provide a QALY distribution that stochastically

dominates that provided by existing guidelines, with a substantial increase in lower per-

centiles and a slight increase in median and higher percentiles. The results showcase the

efficacy and robustness of our policies.

Background. Heart transplantation often represents the only viable treatment option for

patients suffering from refractory or end-stage heart failure. Although its post-operative

survival rates have increased over the last decades, with 5-year survival rates currently

around 72.5% (Wilhelm 2015), heart transplantation could still result in serious long-term

complications, such as CAV.
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CAV is caused by a thickening and hardening of coronary arteries, which obstructs

the blood circulation through the heart; this can cause various cardiac problems, from

abnormal heart rhythms (arrhythmias) to heart attacks, heart failure, or even sudden

cardiac death. CAV is the primary limiting factor for the long-term survival in heart

transplantation, accounting for 17% of deaths by the third post-transplant year and 30% by

the fifth year. When early stages are included, CAV affects up to 75% of heart-transplanted

patients during the three years after transplantation (Ramzy et al. 2005).

The pathology of CAV is such that it presents two main challenges in managing the

disease. First, CAV is a form of chronic rejection that lacks prominent symptoms, and it is

particularly difficult to predict its progression. Consequently, to obtain information about

CAV development, patients need to undergo periodic monitoring procedures, which involve

invasive and often expensive examinations, such as coronary angiography and intravascular

ultrasonography. Second, after detection, re-transplantation is the only viable treatment

option, which itself introduces a tradeoff. On the one hand, re-transplantation in early

stages is not advisable, because of the substantial evidence that its success is negatively

correlated with the interval between transplants (Schnetzler et al. 1998, Johnson 2007,

Saito et al. 2013, John et al. 1999, Vistarini et al. 2010). On the other hand, as the disease

progresses, quality of life prognosis before and after re-transplantation worsens.

In order to manage CAV in an effective way, patients and their physicians need to

make joint monitoring and re-transplantation timing decisions, relying on all available

information and capturing all aforementioned tradeoffs. Unfortunately, the International

Society for Heart and Lung Transplantation (ISHLT) provides crude recommendations for

re-transplantation and monitoring, which are not personalized.

5.1. Data Description

There is limited data that can be used to guide CAV disease management decisions. To

calibrate CAV development, we use a dataset from the Papworth Hospital that was com-

piled by monitoring 622 heart-transplanted patients on a yearly basis and recording their

disease progression, starting from the transplant surgery.9 The length of the monitoring

horizon across all patients varies from a few days to 20 years, with an average of 3.85 years

and a standard deviation of 3.34 years. At each monitoring time, the patient’s CAV stage

9 Data is publicly available in an R package called ‘msm.’
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is recorded; CAV progression is classified into three stages—stage 1 (Not Significant), stage

2 (Mild) and stage 3 (Severe)—depending on the observed degree of angiographic lesion

and allograft dysfunction. The dataset comprises 2,846 monitoring observations.

To calibrate survival after re-transplantation, we obtained data from Tjang (2007),

Copeland et al. (2011), Schnetzler et al. (1998), Novitzky et al. (1985); in particular, we

obtained 37 observations of survivability outcomes after the second transplantation, for

different intervals between the two transplants.

5.2. Robust Monitoring

Consider a CAV patient who had a heart transplantation at t = 0; the patient and his

physician need to decide when to monitor disease progression and when to perform a

re-transplantation throughout a horizon T . The patient’s state at time t is given by the

number of years that the patient spent in a CAV stage of i and above, denoted by xi(t),

for i∈ {2,3}, and the patient’s age, denoted by age(t). Re-transplantation corresponds to

“stopping,” which yields a reward that we calculate as the total Quality-Adjusted Life

Years (QALY), i.e.,

reward at t= (QALY until t) + (QALY after re-transplant at t).

If we let Zi(t) be the time spent in each CAV stage i, for i ∈ {1,2,3}, and LY (t) be the

expected life years after re-transplantation at t, the reward can be expressed as

reward at t=
∑
i

QOLi · Zi(t) +QOLre · LY (t),

where the factors QOLi and QOLre adjust for quality of life at stage i and after re-

transplantation, respectively. Table 1 reports the quality of life factors we use, which

we approximated based on the related literature (Long et al. 2014, Feingold et al. 2015,

Grauhan et al. 2010, Montazeri 2009, Johnson 2007).

QOL1 QOL2 QOL3 QOLre

0.8583 0.7138 0.5774 0.6456

Table 1 Quality of Life Factors

The expected life years after re-transplantation could depend in principle on the patient’s

state. However, the substantial literature on the expected outcomes after re-transplantation
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provides consistent evidence that the interval between transplants is the only statistically

significant predictor (Schnetzler et al. 1998, Saito et al. 2013, Vistarini et al. 2010, John

et al. 1999). Therefore, we model expected life years after re-transplantation only as a

function of t. Furthermore, many papers suggest that re-transplantations made within 1

year after the primary transplant result in worse survival rate compared to those performed

after 1 year (Saito et al. 2013, Johnson et al. 2007, Goldraich et al. 2016). Based on this

evidence, we consider the following piecewise linear model

LY (t) = β0 +β1 ∗ t+β2 ∗ (t− b)+ + ε, (20)

so that the survival could increase with t up to some point b, and then decrease. The model

is fitted using regression based on our heart re-transplantation data (Figure 2):

β̂0 = 2.1635, β̂1 = 1.0356, β̂2 =−1.7727, b̂= 5.060. (21)

By combining all these results and by noting that the variables Z(t) relate to our state

variables as Z1(t) = t − x2(t), Z2(t) = x2(t) − x3(t), Z3(t) = x3(t), we can formulate the

reward function as

g(t, x2, x3, age) = 0.8583 t− 0.1445x2(t)− 0.1364x3(t)

+ 0.6456 (2.1635 + 1.0356 t− 1.7727 (t− 5.CANWE060)+), (22)

which is monotonic in x2 and x3 and therefore satisfies Assumption 1.

Figure 2 The fitted life year after re-transplantation as a function of the interval between transplants (n = 37).
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Uncertainty Sets for CAV Progression

To model CAV progression, we start by calibrating a Cox model, which is one of the most

popular models for survival analysis in healthcare. Because of limited data, such a model

is likely to provide noisy estimates of the true progression probabilities. Moreover, the

underlying assumption—typical in a Cox model— that a unit increase in a covariate has a

constant multiplicative effect might not be reasonable for CAV progression, further making

the goodness of fit questionable. Therefore, we only use the estimates of the Cox model to

construct uncertainty sets.

In particular, consistent with a Cox model, we start by assuming that the time until a

patient transitions from one CAV stage to another are exponentially distributed, with a

mean that depends linearly on t and age(t). More precisely, when a patient with age(t) is

observed to be in stage i at post-transplant time t, the time until he progresses to stage j,

denoted Lij(t, age), is exponentially distributed with rate λij(t, age) such that

1/λij(t, age) = βij0 +βij1 ∗ t+βij2 ∗ age(t), ∀ (i, j)∈
{

(1,2), (1,3), (2,3)
}
. (23)

Table 2 reports the coefficients we obtained after fitting this model to our CAV monitoring

data using maximum likelihood estimation.

(i, j) βij0 βij1 βij2

(1,2) 18.0826 (0.8900) -0.6511 (0.0456) -0.1820 (0.0177)

(1,3) 38.8900 (2.8844) -1.1412 (0.1754) -0.3991 (0.0573)

(2,3) 6.5479 (0.9671) -0.1576 (0.0745) -0.0492 (0.0178)

Table 2 Linear Coefficients for 1/λij (standard errors).

Using the model for transition times, we then derive confidence intervals that we use

to construct uncertainty sets for the amount of time spent in each disease state. Specifi-

cally, suppose a patient is monitored post-transplant at time t, resulting in an observation

(x2(t), x3(t), age(t)). When the patient is again monitored after an additional ∆t time

units, the possible values for x2(t+ ∆t) can be described as follows.

1. If x2(t)> 0, the patient is already in stage 2 or above at time t. Therefore, x2(t+∆t) =

x2(t) + ∆t without any uncertainty.
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2. If x2(t) = 0, the patient must have been in stage 1 at time t. Then, the distribution of

x2(t+ ∆t) can be expressed as:

P(x2(t+ ∆t)≤ s|x2(t) = 0) = P(L12(t, age)≥∆t− s) = e−λ12(t,age)(∆t−s), ∀s∈ [0,∆t].

Using the (1− ρ)-percentile of L12, i.e., s12
ρ

def
= inf{s : P(L12(t, age(t))≤ s)≥ 1− ρ}, we can

construct a ρ%-confidence-level upper bound for x2(t+ ∆t) as:

(∆t− s12
ρ )+ =

(
∆t+

log(ρ)

λ12(t, age)

)+

.

Similarly, we obtain ρ%-confidence-level upper bounds for x2(t+ ∆t) and x3(t+ ∆t) given

x2(t), x3(t) denoted by x̄2(t+ ∆t)|x2(t) and x̄3(t+ ∆t)|x2(t), x3(t) respectively, as follows:

x̄2(t+ ∆t)|x2(t) =


(
∆t+ log(ρ)

λ12(t,age)

)+
, if x2(t) = 0

x2(t) + ∆t, otherwise.
(24a)

x̄3(t+ ∆t)|x2(t), x3(t) =


(
∆t+ log(ρ)

λ13(t,age)

)+
, if x2(t) = 0, x3(t) = 0(

∆t+ log(ρ)
λ23(t,age)

)+
, if x2(t)> 0, x3(t) = 0

x3(t) + ∆t, otherwise.

(24b)

This implies that, at ρ% confidence level, an observation (x2(t), x3(t)) at time t imposes

restrictions on the future state values (x2(t+ ∆t), x3(t+ ∆t)) specified by x2(t+ ∆t) ≤

x̄2(t+ ∆t) and x3(t+ ∆t)≤ x̄3(t+ ∆t). To complete our uncertainty sets, we also set the

lower bounds on
(
x2(t+ ∆t), x3(t+ ∆t)

)
to zero, without loss of generality. Since both the

upper and the lower bounds are increasing in x2, x3, and ∆t, and are concave and convex,

respectively, in x2 and x3, the resulting uncertainty sets satisfy Assumption 2.10

10 Several technical remarks may be in order. First, since the reward g is decreasing in x2 and x3 by (22), the
lower bounds are irrelevant for determining the worst-case rewards. Our choice of zero thus only serves to ensure
that the resulting uncertainty sets satisfy Assumption 2. Second, note that according to (24a) and (24b), the upper
bounds x̄2(t+ ∆t)|x2(t) and x̄3(t+ ∆t)|x2(t), x3(t) are discontinuous in (x2(t), x3(t)) as we approach the boundary
{x2(t) = 0}∪ {x3(t) = 0}. However, since logρ < 0, the functions are upper-semicontinuous at the boundary, and are
thus concave in (x2(t), x3(t)). To rigorously prove that our results in Theorem 1 would hold, we could introduce an
intermediate region in (24a) for 0< x2(t)< ε (for ε > 0), where x̄2(t+ ∆t)|x2(t) is defined by linearly interpolating
between the value at x2(t) = 0 and the value at x2(t)+∆t (and similarly for x̄3(t+∆t)). For any ε > 0, one can check
that Assumption 2 is satisfied, and Theorem 1 thus holds. Since the worst-case optimal values under both static and
dynamic monitoring would be continuous functions of ε, and have equal values for any ε > 0, their limiting values as
ε→ 0 must also correspond, so that Theorem 1 also holds for the uncertainty set given by the upper bounds in (24a)
and (24b). Lastly, note that we do not need to check concavity (convexity) of the upper (lower) bounds in age(t),
since the latter can be taken without loss outside the state of the system (its value is simply t plus a constant denoting
the patient’s age at time 0).
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Figure 3 The worst-case values for x2(∆t) given the initial observation.

Naturally, the uncertainty sets we construct here depend on the confidence level ρ and

the patient’s initial age. Higher confidence level produces more conservative upper bounds,

resulting in higher worst-case values for x2(t+ ∆t) and x3(t+ ∆t). Figure 3(a) illustrates

how the upper bounds for x2(∆t) imposed by the initial observation (x2(0), x3(0)) = (0,0)

depend on the confidence level ρ.11 Second, the negative values of βij2 (Table 2) imply that

older patients are more likely to have shorter transition times. Thus, the worst-case values

for x2(t+ ∆t) and x3(t+ ∆t) are increasing in the patient’s initial age (Figure 3(b)).

5.3. Monitoring Policy

To solve the dynamic monitoring problem using the algorithm described in Corollary 1, it

suffices to solve a series of static monitoring problems. Based on our analysis, the static

monitoring problem with n monitoring times t1, . . . , tn chosen at time 0 can be written as

max
t{n+1}

max
(
g
(
tn, x̄

2(tn), x̄3(tn), age(tn)
)
, g
(
tn+1, x̄

2(tn+1), x̄
3(tn+1), age(tn+1)

))
, (25)

where x̄2(tk) and x̄3(tk) satisfy

x̄2(tk+1) =


(
tk+1− tk + log(ρ)(β12

0 +β12
1 tk +β12

2 age(tk))
)+
, if x̄2(tk) = 0,

x̄2(tk) + tk+1− tk, otherwise,
(26a)

11 A CAV patient’s stage is 1 at time 0, that is x2(0) = 0, x3(0) = 0.
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x̄3(tk+1) =


(
tk+1− tk + log(ρ)(β13

0 +β13
1 tk +β13

2 age(tk))
)+
, if x̄2(tk) = 0, x̄3(tk) = 0,(

tk+1− tk + log(ρ)(β23
0 +β23

1 tk +β23
2 age(tk))

)+
, if x̄2(tk)> 0, x̄3(tk) = 0,

x̄3(tk) + tk+1− tk, otherwise,

(26b)

for all k= 0,1, . . . , n. Notice that the worst-case value for x2(tk+1) at time tk+1 is determined

solely by the upper bound imposed by the latest observation at tk. This relies on the fact

that βij1 and βij2 are negative, so that the associated upper bounds decrease with t.

Note that the reward function and the bound functions defining the uncertainty sets

are all piece-wise linear. Therefore, we can formulate Problem (25) as a mixed-integer

optimization problem. We start by defining binary variables y, z as follows:

yk
def
=

1, if x̄2(tk)> 0,

0, otherwise
, zk

def
=

1, if x̄3(tk)> 0,

0, otherwise
, ∀k ∈ {0, . . . ,N}. (27)

Similarly, consider the binary variable un such that un = 1 if and only if tn > b =

5.060. Then, for sufficiently large M > 0 and sufficiently small ε > 0, maximizing

g(tn, x̄
2(tn), x̄3(tn), age(tn)) in Problem (25) can be reformulated as follows:

max
x̄2, x̄3,t,sn,
un,y,z

0.8583 tn− 0.1445 x̄2
n− 0.1364 x̄3

n + 0.6456 (2.1635 + 1.0356 tn− 1.7727sn)

subject to x̄2
0 = 0, x̄3

0 = 0, x̄2
N ≤ T, x̄3

N ≤ T (28a)

tk ≤ tk+1, x̄2
k ≤ x̄2

k+1, x̄3
k ≤ x̄3

k+1, k ∈ {0,1, . . . , n+ 1} (28b)

x̄2
k ≤Myk, x̄2

k ≥ εyk, x̄3
k ≤Mzk, x̄3

k ≥ εzk, k ∈ {0,1, . . . , n+ 1} (28c)

tn ≥ bun, tn ≤ b+Mun (28d)

sn ≥−Mun, sn ≥ tn− b−M(1−un) (28e)

sn ≤Mun, sn ≤ tn− b+M(1−un) (28f)

x̄2
k+1 ≥ tk+1− tk + log(ρ)(β12

0 +β12
1 tk +β12

2 age(tk))−Myk, (28g)

x̄2
k+1 ≥ x̄2

k + tk+1− tk−M +Myk, (28h)

x̄3
k+1 ≥ tk+1− tk + log(ρ)(β13

0 +β13
1 tk +β13

2 age(tk))−Myk−Mzk, (28i)

x̄3
k+1 ≥ tk+1− tk + log(ρ)(β23

0 +β23
1 tk +β23

2 age(tk))−M +Myk−Mzk, (28j)

x̄3
k+1 ≥ x̄3

k + tk+1− tk− 2M +Myk +Mzk, k ∈ {0,1, . . . , n}. (28k)
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Figure 4 Monitoring times (in months) for static monitoring prescribed by our framework.

The inequalities in (28c) define the binary variables y,z, the inequalities in (28d) define un,

and the inequalities in (28e)-(28f) define sn as (tn− b)+. Then, the inequalities (28g)-(28h)

and (28i)-(28k) correspond to (26a) and (26b), respectively.

The problem of maximizing the term g(tn+1, x̄
2(tn+1), x̄

3(tn+1), age(tn+1)) in (25) can

similarly be formulated as an IP.

5.4. Results

We consider CAV management for a patient following heart transplantation. According to

ISHLT, it is recommended that the patient undergoes annual or bi-annual examinations

of coronary arteries through coronary angiography and intravascular ultrasonography to

monitor progression in the first 3-5 years after transplant (Labarrere et al. 2017, Costanzo

et al. 2010), and perform re-transplantation once CAV reaches stage 3 (Johnson 2007). We

compare these recommended policies with the ones prescribed by our framework.

Static Monitoring. Given that ISHLT essentially prescribes a static monitoring policy, we

begin by determining the optimal static monitoring policy in our framework. We consider

a time horizon of 10 years; since ISHLT prescribes yearly examinations, we thus derive

a static monitoring policy that allows for n= 9 intermediate monitoring times. Figure 4

illustrates our policy, depending on the patient’s age and conservativeness (as measured

by the desired confidence level ρ). Notably, our policy departs from equi-sized monitoring

times and rather suggests a frequency that increases as time goes by, at a rate that also

increases with a patient’s age and conservativeness.
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Figure 5 Worst-case optimal QALYs as a function of the number of monitoring times (T = 10 years, age = 50,

ρ= 95%).

Our framework can also be used to explore the value that added monitoring opportu-

nities would bring, therefore enabling patients to navigate this important tradeoff. As an

illustrative example, Figure 5 depicts the worst-case QALYs for a 50 year old patient as a

function of monitoring times. This type of analysis could help patients choose the appro-

priate number of monitoring times, by comparing the marginal QALY improvements of

additional monitoring with the associated costs.

Dynamic Monitoring. Unlike ISHLT guidelines, our method can also be adjusted to

account for information gained during monitoring when recommending the next examina-

tion. Table 3 reports our framework’s recommended next monitoring time for a patient

who just had a heart transplant, depending on age, CAV stage and conservativeness (we

again assume n = 9 for a fair comparison). For example, when a 50-year-old patient is

diagnosed with CAV stage 1, the first monitoring time would be 6 months later, but when

diagnosed with stage 2, he would be monitored 3 months later (for ρ= 95%).

If treatment began with some lag following the transplant, Figure 6 illustrates when to

schedule the next monitoring time, depending on the lag, the age and the CAV stage at

the time of treatment. For example, a 60-year old patient who began treatment one year



Author: Article Short Title
38 Article submitted to Management Science; manuscript no.

after transplant at CAV stage 1, should be monitored 8 months later (for ρ= 90%). The

results suggest that the longer the delay, the sooner the patient should be monitored next.

ρ= 90% ρ= 95%

Age Stage 1 Stage 2 Age Stage 1 Stage 2

40 14 6 40 7 3

50 11 5 50 6 3

60 9 5 60 4 2

Table 3 The worst-case optimal first monitoring time (in months).
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Figure 6 The time until the next monitoring (in months) as a function of the lag between transplant and the

start of treatment (in years).

Simulation. To compare the performance of our policies with that of the ISHLT guide-

lines, we simulate CAV progression using the transition probabilities we estimated in the

model calibration. In particular, transition times are randomly generated according to an

exponential distribution (T = 10 years, initial age = 50, number of iterations = 5× 103).

We simulate both our static and dynamic monitoring policies.

The results are summarized in Table 4 and Figure 7. Both the static and dynamic

robust policies outperform the benchmark policy regardless of the confidence level, by

yielding a QALY distribution that stochastically dominates that of the ISHLT policy. The
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average QALY under the robust policies are slightly better than under the benchmark

policy, and the improvements become more noticeable for lower percentiles. To assess the

robustness of our policies to the distributional assumptions of transition times, we also

considered the cases where the true distributions (used in simulation) were different from

the exponential distribution (used by the model). The results are included in the appendix,

and are consistent with the ones reported here.

Policy Min 25% Quantile Median 75% Quantile Max Mean

Benchmark 4.0449 8.9784 9.9097 10.6657 11.0120 9.5069

Static RO (ρ= 95%) 8.2711 9.2823 10.2498 10.8847 11.0120 10.0727

Dynamic RO (ρ= 95%) 8.5748 9.5362 10.3140 10.8910 11.0120 10.1657

Static RO (ρ= 90%) 8.3389 9.3209 9.9657 10.6961 11.0120 9.9732

Dynamic RO (ρ= 90%) 8.4966 9.3770 10.0130 10.7070 11.0120 10.0132

Table 4 QALY under different monitoring policies

(T = 10 years, initial age = 50, number of monitoring = 9, number of iterations = 5× 103).
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Figure 7 Boxplot for simulated QALYs (ρ= 95% under the benchmark, and the static and dynamic RO policies,

Number of Simulations = 5× 103, Number of Monitoring Times = 10, T = 10 years).
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Appendix A: Unknown Transition Times Distribution

Figure 8 illustrates the performance of our robust optimal policies when the distribution of the transition

times are different from the one assumed by the model. We consider four distributions—Weibull, log-normal,

gamma and log-logistic—that are widely used in parametric models for survival analysis. The distributions

are fitted with the CAV monitoring data (§5.1) and used to simulate CAV progression. The box plots in

Figure 8 imply that the performance of our robust optimal policies is not sensitive to this distributional

misspecification.
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Figure 8 Boxplot for Non-Worst-Case Simulations under Different Distributional Assumptions

(Number of Simulations = 5× 103, Number of Monitoring Times = 10, T = 10 years).
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