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Abstract. We deal with the problem of managing a project or a complex operational pro
cess by controlling the execution pace of the activities it comprises. We consider a setting in 
which these activities are clearly defined, are subject to precedence constraints, and pro
gress randomly. We formulate a discrete-time, infinite-horizon Markov decision process in 
which the manager reviews progress in each period and decides which activities to expe
dite to balance expediting costs with delay costs. We derive structural properties for this 
dynamic project expediting problem. These enable us then to devise exact solution meth
ods that we show to reduce computational burden significantly. We illustrate how our 
method generalizes and can be used to tackle a wide range of so-called stochastic shortest- 
path problems that are characterized by an intuitive property and can capture other appli
cations, including medical decision-making and disease-modeling problems. Moreover, 
we also deal with the state identification issue for our problem, which is a challenging task 
in and of itself, owing to precedence constraints. We complement our analytical results 
with numerical experiments, demonstrating that both our solution and state identification 
methods significantly outperform extant methods for a supply chain example and for vari
ous randomly generated instances.
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1. Introduction
1.1. Motivation
Managing projects, or complex operational processes, 
in general, is a notoriously difficult problem. In their 
“Pulse of the Profession” studies, the Project Manage
ment Institute reported that, in the last decade, only 
about 50% of projects were on time, only 55% were 
within budget, and that firms wasted, on average, more 
than 11% of total investment due to poor project perfor
mance (PMI 2018, 2020). Among the main underlying 
challenges, and therefore also presenting opportuni
ties, are ineffective monitoring, forecasting, and control 
(Pinto and Mantel 1990). Monitoring and forecasting 
entail efficient ways to measure and predict progress. 
Control entails timely and appropriate corrective actions 
based on the monitored progress, such as, for example, 
resource deployment to expedite progress—a procedure 
known as dynamic expediting (Bregman 2009). Recent in
novations and advances in automation, digitization, and 

artificial intelligence (AI) have drastically catalyzed 
effective monitoring and forecasting, as we illustrate 
below via a couple of examples, laying fertile ground for 
control processes, like dynamic expediting, to have an 
impact in practice. Motivated by this opportunity and 
envisioning that future project management will rely 
ever more heavily on rigorous quantitative methods, we 
seek to devise optimal dynamic expediting policies that 
are computationally efficient so that they are implemen
table and can help improve the management of complex 
operational processes in practice.

First, consider supply chain operations, like the ones 
undertaken by specialist firm Li & Fung, for example, to 
produce garments (Magretta 1998). In such a chain, 
yarn, bought from Korea, is woven and dyed in Taiwan, 
while at the same time, zippers are manufactured by 
Japanese contractors in their Chinese plants. As supply 
chain tasks are orchestrated, various sensors dispersed 
from manufacturing machines to transit vehicles could 
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inform Li & Fung managers in real time about the pro
gress of each task, alerting them to potential delays. 
Such delays are of course exceedingly costly due to lost 
demand. Based on this monitoring information, man
agers have the ability to deploy resources in a smart 
way to expedite progress, for example, to contract addi
tional suppliers or capacity to ramp up production or 
to switch to different transport modes to speed up 
transshipments.

Second, consider a complex pharma project, like 
BioNTech’s repurposing of the Marburg biologics 
facility, for example, that it bought from Novartis in 
fall of 2020 so that it can produce BNT162, the com
pany’s mRNA COVID-19 vaccine (BioNTech 2021). 
Although the facility was previously used by Novar
tis’ vaccine division, several conversion tasks needed 
to be undertaken for it to handle the manufacturing 
needs of BNT162, which relied on the novel mRNA 
platform. These included machine conversion tasks, 
such as calibration of bioreactors for mRNA produc
tion and adjustments of purification processes, as well 
as workforce training tasks. As these tasks are under
taken, AI models could help provide managers in real 
time with forecasts about potential delays based on cur
rent progress, notwithstanding that some of these tasks 
are unprecedented. Delays could again result in costly 
lost demand but also loss of life as the pandemic con
tinues to spread. Based on delay forecasts, managers 
have again the ability to deploy resources in a smart 
way to expedite progress, for example, to buy extra 
equipment or to employ additional staff specialists.

The infrastructure for effective forecasting and moni
toring of processes is hardly unique to the previous two 
examples. As in the case of Li & Fung, Industry 4.0 prac
tices are becoming widespread with equipment increas
ingly using sensors and Internet-of-Things technology 
to provide real-time monitoring. As in the case of BioN
Tech, equipped with historical data, deep learning and 
AI can identify patterns of similarity among project 
tasks, hierarchies, and precedent relations, enabling pro
gress forecasting for complex processes. For instance, 
nPlan, a London-based startup, is using AI and data 
from tens of thousands of projects involving millions of 
tasks to generate accurate forecasts for project comple
tion, including information about delay risks (Grushka- 
Cockayne 2020). Indeed, be it a manufacturing task, a 
supply chain process, or a complex project, monitoring 
and forecasting capabilities for operations management 
are becoming increasingly powerful.

To leverage these novel capabilities, implementable 
control policies are called for to “close the loop” and go 
from data to decisions, paving the way for even more 
efficient and dynamic management of operating pro
cesses. In this paper, we study one such important class 
of control policies for project management, namely 
dynamic project expediting, that can be applied to a 

broad range of problems. In particular, we assume that 
there is a project with clearly defined activities, which 
the manager can effectively monitor, as was described 
in the aforementioned practical applications. We strive 
to derive control policies that, based on the monitoring 
information, prescribe corrective actions in terms of 
when and which processes to expedite, balancing costs 
associated with expediting activities and project delays.

The types of control policies we research are not sim
ply interesting and relevant because of the opportuni
ties presented by effective monitoring discussed so far, 
they are also necessary to deal with the increasing com
plexity of projects and operating processes (De Meyer 
et al. 2006). Indeed, with complexity rising, it becomes 
exceedingly harder to predict how changes in the effort 
of some activities will affect other activities and ulti
mately the outcome of the project (Sterman 1992). Con
sequently, in practice, dynamic expediting decisions 
are often dealt with in an unstructured manner (Pro
jectManagementdotcom 2017). In response, rigorous 
control policies are called for.

At the same time, project complexity also increases 
the scale of the underlying control problems, and in 
turn the required computational burden. Therefore, 
control policies have to be computationally efficient to 
be practical, and this is an important consideration in 
our work.

1.2. Our Study
We aim to provide support to decision makers who are 
managing a set of processes and need to dynamically 
decide when and which processes to expedite, balancing 
expediting costs and delay costs. In particular, in our 
problem, a decision maker is in charge of a project with 
clearly defined activities, some sequential and others 
parallel, subject to certain precedence constraints. Moti
vated by the technological advancements discussed 
above, we consider a setting in which the decision maker 
is able to periodically monitor the progress of activities. 
The nominal duration of each activity is known, but pro
gress is uncertain as is usually the case in practice. Moti
vated by data availability as discussed previously, we 
consider a setting in which the decision maker has a 
credible probabilistic description of progress uncertainty 
for each activity.

As illustrated in the aforementioned supply chain 
and pharma project examples, the decision maker has 
some control over the progress of the project activities, 
and, in particular, has the option of expediting them. 
To model this, we consider that there is a level of effort 
exerted for each activity, which the decision maker 
chooses in each period. For example, for each activity 
she could decide whether to exert regular effort or to 
exert high effort, that is, to expedite the activity. Higher 
levels of effort “speed up” an activity’s random pro
gress evolution, but also incur higher effort costs.
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As also illustrated in the supply chain and pharma 
project examples, the longer the project takes to com
plete, the higher the associated delay costs are, for 
example, due to lost demand. To model this, we con
sider a delay cost that grows linearly with the project 
completion time.

In this setting, the problem for the decision maker is to 
dynamically decide in each period the level of effort to 
be exerted in each activity of the project, based on 
observed progress. The decision maker’s objective is to 
minimize the sum of expected future effort and delay 
costs. We refer to this problem as the dynamic project expe
diting (DPE) problem. We formulate the DPE problem as 
a discrete-time Markov decision process (MDP), and we 
seek a nonanticipatory policy that prescribes effort levels 
for each activity, based on observed progress.

1.3. Our Contributions
The DPE problem we study belongs to a class of MDP 
problems known as stochastic shortest-path (SSP) pro
blems. The tools currently available in the extant litera
ture to solve such problems are primarily based on 
generic dynamic programming techniques: value itera
tion, policy iteration, or via linear programming (Bert
sekas 2017). These techniques are exact, but it is well 
known that they quickly become computationally pro
hibitive to use in practice as the state space grows. 
Indeed, for the case of the supply chain managed by Li 
& Fung we discussed previously, for example, we 
found in our computational experiments that these 
techniques fail.

Against this backdrop, among our main contribu
tions is to develop and analyze an exact solution 
method, which we call the topological backward recursion 
(TBR) algorithm. The TBR algorithm yields optimal 
policies for the DPE problem in a significantly less com
putationally burdensome way. We also show that our 
algorithm can be applied not only to our DPE problem 
but also to a large class of stochastic shortest-path pro
blems that are characterized by an intuitive property.

In particular, we first derive insightful structural 
properties that the DPE problem possesses. These struc
tural properties enable a topological ordering of the 
state space, which in turn enables us then to develop 
TBR. Furthermore, the analysis brings forth a broad 
class of SSP problems that share similar ordering prop
erties. We call problems that belong to this class as for
ward-only SSP problems, and as we shall see, besides 
DPE, they arise often in practice, particularly within 
medical decision-making applications. We show that 
the TBR algorithm works not only for the DPE problem 
but for this larger class of forward-only SSP problems.

Then, we show that our TBR algorithm significantly 
dominates the existing value iteration, policy iteration, 
and linear programming algorithms in terms of the 
computational burden. We do this by providing both 

analytical and numerical evidence. For the former, we 
first demonstrate how the TBR leverages the DPE’s 
structural properties we established so that it can calcu
late the optimal cost-to-go in a single iteration for each 
recursion step. Second, we argue that it also requires an 
amount of data storage that is proportional to s=2 on 
average, where s is the cardinality of the state space, 
because in each iteration it accesses exclusively the 
states, the transition probabilities, and the immediate 
costs needed for that iteration. In contrast, extant algo
rithms typically employ expensive iterative procedures 
to calculate costs-to-go and require an amount of data 
storage that is proportional to s2—because they store all 
the states, all the transition probabilities, and all the 
immediate costs. Put together, these two features help 
explain the computational benefits of TBR, while the 
drastic reduction in data storage proves key to solving 
problem instances that are of significantly larger scale 
in practice, and for which extant algorithms fail.

A further contribution we make is also in the direc
tion of alleviating overall computational burden, by 
introducing a faster method to identifying feasible 
states for the DPE problem. Feasible state identification, 
which is a prerequisite step to applying our TBR algo
rithm, or any other extant dynamic programming algo
rithm for that matter, is a rather challenging task for the 
DPE problem in and of itself, owing to the precedence 
constraints that activities have to satisfy. To tackle this 
task, we follow a similar recipe as before: we first iden
tify a key structural property, namely, an equivalence 
relation on the states that partitions the feasible space 
into classes. This property motivates a class identifica
tion (CId) algorithm we introduce. We then leverage the 
output partition of the CId algorithm to identify feasible 
states through a state enumeration (SEn) algorithm. 
Taken together, these algorithms provide a faster way to 
identify feasible states compared with extant methods— 
a claim we back up with extensive numerical evidence.

Finally, we conduct a series of numerical experi
ments to demonstrate the practical value of our algo
rithms. We begin by considering the Li&Fung supply 
chain example. In our tests, we found that our algo
rithms succeed in solving the problem, whereas extant 
methods fail as they run out of memory. We further 
conduct a range of experiments using synthetically 
generated data. We again find that using our algorithm 
enables us to solve much larger problem instances. For 
smaller instances that are also solvable using extant 
methods, we document a significant reduction in com
putational time: in particular, compared with a value 
iteration implementation tailored to stochastic shortest- 
path problems on directed acyclic graphs (Bertsekas 
2012, pp. 209–210), which was the best performing 
among the dynamic programming algorithms in our 
experiments, the TBR algorithm reduces computation 
times on average by 42% and as much as 100.0%. In 
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terms of feasible state identification, compared with 
the fast class identification algorithm proposed by 
Creemers et al. (2010), the average percent reduction 
of CId was 43% and the maximum percent reduction 
was 99%.

To be sure, the algorithms we devise still scale with 
the size of the state space, thus the curse of dimension
ality would still kick in when applied in practice. After 
all, the DPE remains a quite challenging stochastic opti
mization problem. However, the analytical and numer
ical evidence we have provided demonstrates that our 
algorithms can greatly expand the sizes of problems we 
can solve in practice. More importantly, the structural 
properties we uncover provide useful insights that 
could help pave the way to devising further lines of 
attack to dynamic project expediting problems and to 
the broader class of forward-only stochastic shortest- 
path problems.

Next, in Section 2, we position our contributions vis- 
a-vis the existing literature and review relevant previous 
contributions. In Section 3, we provide a formulation of 
the DPE problem as a stochastic shortest-path problem. 
In Section 4, we introduce the TBR algorithm, whereas, 
in Section 5, we tackle the feasible state identification 
problem, introducing our CId and SEn algorithms. Sec
tion 6 includes our numerical studies that compare the 
TBR and CId+ SEn algorithms to existing algorithms. In 
Section 7, we conclude and discuss directions for future 
research.

2. Related Work
In a nutshell, we contribute to the sparse literature on 
dynamic project expediting by describing a new expe
diting problem, proposing an MDP formulation for the 
problem, deriving insightful structural properties, and 
devising algorithms that can solve the problem optimally 
in a significantly less computationally burdensome way 
compared with extant dynamic programming algorithms. 
More broadly, our work contributes to the literature on 
stochastic shortest-path problems (Bertsekas and Tsitsiklis 
1991) by bringing forth, for a class of problems that we 
call forward-only SSP problems, an important ordering 
property, which we then use to devise more efficient solu
tion techniques. Besides the DPE problem, forward-only 
SSP problems subsume other important practical pro
blems, specifically within medical decision-making and 
disease-modeling applications. Moreover, we contribute 
to the literature on dynamic project management by pro
posing algorithms that (1) can identify activities that can 
be performed in parallel and (2) can enumerate the feasi
ble states of a dynamic project management problem in a 
way that appears to be significantly faster compared with 
extant methods.

We next present a more detailed review, by first dis
cussing previous literature that is thematically related 

to our problem, namely on dynamic project expedit
ing, dynamic project management, and project crash
ing. Second, we focus on the methods used in previous 
literature and compare them with the ones used in this 
article.

2.1. Dynamic Project Expediting
Literature on dynamic expediting includes contributions 
in a variety of settings, primarily in inventory manage
ment, but also in manufacturing management. Very few 
studies analyze dynamic expediting in projects.

Bregman (2009) is among the first who study dynamic 
project expediting. In their context, expediting consists 
of the allocation of extra resources to a project activity to 
accelerate its progress. For a project with uncertain activ
ity durations, they investigate the dynamic selection of 
expediting options and aim to reduce the additional 
resource cost under the constraint of completing the pro
ject before the due date. To solve this problem, they pro
pose a heuristic solution procedure that measures the 
probability of completing the project before the due date 
by using a matrix-simulation approach.

For a project with uncertain activity times, Godinho 
and Branco (2012) investigate dynamic scheduling and 
expediting policies. They restrict their attention to thresh
old policies based on activity starting times that they use 
to determine expediting policies. To identify scheduling 
and expediting policies, they propose an electromagnetic 
heuristic procedure.

Like Bregman (2009) and Godinho and Branco (2012), 
we aim to identify dynamic expediting policies for a pro
ject with uncertain activity progress. Different from 
them, we seek to solve the problem using exact algo
rithms, in the context of an MDP formulation.

2.2. Dynamic Project Management
Few more studies investigate the more general problem 
of dynamically managing a project in presence of uncer
tainty. One of the earliest contributions in this area is 
Jørgensen and Wallace (2000), which call for more sto
chastic dynamic models for the allocation of resources, 
at least for budgeting purposes.

For a project with exponentially distributed activity 
times, Sobel et al. (2009) investigate how to dynamically 
choose the optimal start date of each activity. In their 
MDP formulation, they optimize the expected present 
value of the project cash flow. They show that their for
mulation corresponds to an optimization problem on a 
continuous-time Markov decision chain (CTDMC) and 
propose an algorithm to compute an optimal dynamic 
policy.

Klastorin and Mitchell (2013) analyze a project which is 
under the threat of a disruptive event that can stop all 
activities at the same time. They assume that the decision 
maker reviews the status of the project periodically and 
learns for how long the activities stop if a disruptive event 
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happens. In this setting, they study the time-cost tradeoff 
problem, in which the decision maker aims to minimize 
the sum of a tardiness penalty and a resource deploy
ment cost by choosing, for each activity, between a regu
lar time—cost combination and a faster, more expensive, 
crash time—cost combination. They propose an MDP for
mulation for the problem and devise an algorithm to 
solve it. Moreover, they show that, in comparison with a 
base case without a disruptive event, the decision maker 
should consider additional deployment of resources only 
at the beginning of the project or just after the occurrence 
of the disruption.

For a project with uncertain activity durations, Li and 
Womer (2015) investigate the dynamic allocation of 
resources to the activities of the project. In their MDP for
mulation, they aim to minimize the total project dura
tion. To solve this problem, they develop approximate 
dynamic programming (ADP) algorithms based on a 
roll-out policy. Instead, our focus is on deriving exact 
solution methods for a somewhat similar problem. That 
is, our methodological contribution includes the solution 
of our MDP formulation with an exact, computationally 
efficient algorithm.

Like Sobel et al. (2009), Klastorin and Mitchell (2013), 
and Li and Womer (2015), we propose an MDP formu
lation for our dynamic project management problem. 
However, the focus of these studies is on scheduling 
and resource allocation. Instead, we aim to derive 
dynamic expediting policies.

The enumeration of the states for our problem re
quires the identification of the activities that can be pro
cessed in parallel at any given time. Sobel et al. (2009) 
tackle the same problem. They propose a simple algo
rithm that identifies more states than feasible ones. 
Creemers et al. (2010), who build on Sobel et al. (2009), 
define the set of activities that can be processed in par
allel as uniformly directed cutsets (UDC), a term which 
was introduced by Sigal et al. (1980). They propose an 
efficient tree-based algorithm to identify the project 
UDCs. We also propose a very efficient tree-based algo
rithm to identify all the classes of states for a project, 
which are equivalent to UDCs. Our numerical studies 
demonstrate that our algorithm is significantly faster to 
compute.

Finally, Sobel et al. (2009) and Creemers et al. (2010) 
aim to identify the optimal start date for each activity. 
They show that it is optimal to restrict the choice of start 
dates to time epochs when activities are completed. 
With the additional assumption that activity times are 
exponentially distributed, their formulation leads to an 
optimization problem on a CTDMC. Different from 
them, we investigate how much effort should be allo
cated to activities. Moreover, we consider partial com
pletion of activities, because it could be optimal to 
change the effort allocated to an activity while it is in 
progress.

2.3. Project Crashing
The DPE problem is also closely related to the project 
crashing problem, where crashing is an action that 
spends a certain amount of resources and shortens 
the duration of the activity accordingly. This problem 
is rooted in the project management literature includ
ing the seminal works by Kelley (1961) and Fulkerson 
(1961), among others.

The stochastic project crashing problem aims to iden
tify a schedule for a project with uncertain progress 
that minimizes the sum of a cost associated with the 
project duration and a cost that increases in the deploy
ment of the resources. As these costs are in tradeoff 
with each other, these problems are also called stochas
tic time-cost tradeoff problems.

Stochastic project crashing problems are especially 
complicated because the critical path of the network, 
which is used to estimate the total duration of the pro
ject, is not unique and varies with the realizations of the 
random durations of the activities in the project. For this 
reason, studies in this stream of literature approach this 
problem using heuristics rather than exact methods. 
Gutjahr et al. (2000) use a stochastic branch-and-bound 
approach to solve the stochastic discrete crashing prob
lem. Laslo (2003) extends the project crashing problem 
by considering a continuum of time–cost combinations. 
Azaron et al. (2007) solve a goal-programming formula
tion of the discrete-time approximation of the stochastic 
continuous project crashing problem. Mitchell and Klas
torin (2007) devise a tailor-made compression heuristic 
to solve the stochastic continuous project crashing prob
lem. Shen et al. (2010) consider a variant of the project 
crashing problem in which the project manager can 
insure activities instead of allocating extra resources to 
the project; they provide decomposition strategies for 
solving this problem. Goh and Hall (2013) use robust 
optimization to solve the stochastic continuous project 
crashing problem; they derive rules for starting and 
crashing activities that can be used not only to define 
baseline schedules but also to revise schedules during 
execution by applying static optimization iteratively in a 
rolling-horizon setting.

Our project expediting problem is similar to the pro
ject crashing problem, in that it aims to minimize the 
sum of two types of costs in trade-off with each other: 
project duration costs and expediting costs. However, 
our problem differs from the project crashing problem, 
in that its output is not a baseline schedule but rather a 
list of expedited activities at each stage at which the 
project is reviewed.

2.4. Shortest-Path Problems
We also show that our problem is a specific type of 
MDP, called the stochastic shortest-path (SSP) problem. 
One of the first studies that investigate SSP problems is 
Bertsekas and Tsitsiklis (1991). We observe that our SSP 
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problem has some special ordering properties, which 
are shared by other problems. We define the problems 
with such properties as “forward-only SSP problems.” 
Our contribution to the literature on SSP problems is 
to elicit these important ordering properties and use 
them to construct a more efficient, exact algorithm for 
forward-only SSP problems.

Moreover, our study contributes to the literature on 
stochastic shortest problems on directed acyclic graphs 
(DAGs). For deterministic shortest-path problems on 
DAGs, effective algorithms have been devised (Cor
men et al. 2009, pp. 655–658). However, we are not 
aware of any results or any ways these results could 
be modified to obtain similarly effective algorithms 
for stochastic shortest-path problems. One of the most 
efficient implementations has been suggested by Bert
sekas (2012, pp. 209–210), who propose an algorithm 
tailored to stochastic shortest-path problems on DAGs 
combining the traditional value iteration algorithm 
and the Dijkstra algorithm, which was developed for 
deterministic shortest-path problems. In our computa
tional experiments, we show that our TBR algorithm 
is substantially faster than this algorithm, which we 
use as a benchmark.

3. Problem Formulation
In this section, we introduce the model that we study 
for the dynamic project expediting problem. To this 
end, we first provide a high-level description of the 
problem and introduce a network structure to charac
terize the project’s activities. We then formalize the 
problem as a Markov decision process, describing its 
states, controls, probabilities, and costs.

We consider a discrete-time horizon over which a 
decision maker is in charge of a project with clearly 
defined activities of finite time length, some sequential 
and others parallel, all of which are required for the 
completion of the project. Once an activity is started, its 
progress is random. In each time period t ∈ {0, 1, : : : }, 
the decision maker tracks the progress on each activity 
of the project. In practice, the amount of time between 
two consecutive periods (i.e., between the start of one 
period and the start of the next one) could be in the 
order of seconds, hours, or days, depending on the 
tracking frequency and the specific application. Just 
after tracking the progress of all activities, the decision 
maker chooses the level of effort to be invested in each 
activity in the following time period. Higher levels of 
effort yield higher expected progress, but are also asso
ciated with higher effort costs. Besides effort costs, 
there is also a cost that depends on the project comple
tion time. The problem for the decision maker is to 
derive a nonanticipatory dynamic expediting policy 
that minimizes her expected costs, the sum of effort 
costs and project completion costs.

3.1. Network of Activities
To describe the activities of the project, we model 
it as a network using the so-called activity-on-node 
(AoN) diagramming technique. Figure 1 provides an 
example of a sample project. In particular, the AoN net
work of a project is a directed acyclic graph with one 
source, the “Start” node, and one sink, the “End” node. 
A directed acyclic graph (DAG) is a directed graph with 
no cycle. We denote a network or a graph by G(A,E). 
A is the set of nodes 1, 2, : : : , n, which represent the 
activities. E is the set of arcs (oriented edges), 1, 2, : : : , m, 
representing the precedence relations. We denote the 
nodes or activities by a and the arcs by e. For an activity 
a, we define the set of all its predecessors, a subset of A, 
by Πa. Activity a′ belongs to Πa if there exists at least 
one path from a′ to a. Similarly, we define the set of all 
the successors of a, also a subset of A, by Sa. Activity a′′
belongs to Sa if there exists at least one path from a to 
a′′. The length la of activity a is the number of time peri
ods, such as days or weeks, within which the manager 
expects the activity to be completed if a regular effort 
is used.

3.2. States
The progress on activity a, expressed in terms of the 
number of time periods’ worth of work actually done, 
is xa. If activity a could be started but there has been no 
progress on it, we set xa to zero. If activity a cannot be 
started because of precedence constraints, we set xa to 
�1. Therefore, xa can take the values �1, 0, 1, : : : , la. We 
say that an activity a is engaged if xa ≠�1, and that it is 
un� engageable otherwise. We say that an engaged 
activity is inprogress if xa ≠ la and that it is completed oth
erwise. The state of the system is the vector x � (x1, x2, 
: : : , xn) that lists the progress on each activity. Because 
of precedence constraints, not every vector x corre
sponds to a feasible state. We define a feasible state as 
follows.

Definition 1. A feasible state is an n-dimensional vector 
x such that, for each of its components, which corre
sponds to a specific activity a, the following hold: 

1. If a is in progress, then all a′ ∈Πa are completed 
and all a′′ ∈ Sa are unengageable.

2. If a is unengageable, then not all a′ ∈Πa are com
pleted and all a′′ ∈ Sa are unengageable.

Figure 1. AoN Representation of a Sample Project 
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3. If a is completed, then all a′ ∈Πa are completed 
and for all a′′ ∈ Sa: 

If all elements of Πa′′ are completed, a′′ is 
engaged;

otherwise, a′′ is unengageable.
Let X be the feasible state space. Identifying X is a 

challenging problem—For now, let us take X as given, 
and we shall deal with the state identification problem 
in Section 5. We denote the realization of the state in 
period t by Xt. Initially, the state of the project lists 0 
for the activities with the source as starting node and 
�1 for all other activities. We refer to this state as the 
initial state and denote it with i. That is, we have that 
X0 � i. The terminal or final state is f � (l1, l2, : : : , ln).

To exemplify, consider the sample project from 
Figure 1. In Table 1, we show the 21 feasible states for 
our sample project. For example, for this sample project, 
if, in period t, activities C and E are engaged, there is no 
cumulative progress on activity C, and there is one unit 
of cumulative progress on activity E, then Xt � (1, 1, 0, 
�1, 1).

3.3. Controls
A control vector, which we shall denote with k, lists the 
level of effort ka to use for activity a; ka � 0 corresponds 
to no effort and ka � 1, : : : , K denote increasing effort 
levels. For example, for K�2, the effort levels are zero, 
one, and two, which could correspond to no effort, reg
ular effort, and expediting, respectively. For the sample 
project, a control that expedites activity C and uses reg
ular effort for activity E is k � [0, 0, 2, 0, 1].

Associated with each activity a and effort level ka, is 
an effort cost ca, ka . These effort costs are increasing in ka, 
and ca, ka � 0 for ka�0. For example, for costs linear in 
the effort levels, we have ca, ka � qaka, with qa > 0 the cost 
per unit of effort for activity a. The effort cost ck that 
corresponds to control k is ck �

P
aca, ka .

Associated with each state x is a set of feasible control 
vectors, denoted with K(x), which could capture cer
tain constraints that the controls need to satisfy. For 
example, the manager may have to satisfy a budget 
constraint b on the cost ck in each period, effectively 
reducing the control space K(x), that is, ck > b implies 
k ∉K(x) for each state x.

Consider now a function µt that maps each state to a 
single control at time t. That is, at period t, the control 
µt(Xt) is applied. A policy is a collection {µ0,µ1,µ2, : : : }. 
We denote a stationary policy by the collection µ � {µ, 
µ,µ, : : : }.

3.4. Transition Probabilities
We model the progress on activity a at a time period in 
which the activity is in state xa and the manager uses 
effort ka with the discrete random variable Wa

xa, ka 
that 

takes values in [0, la� xa]. The greater the effort level 
used, the greater, in expectation, the progress toward 
activity completion. More formally, if Wa

xa, k′a 
and Wa

xa, k′′a 

are two discrete random variables with k′a < k′′a , we have 
the following relation for their expected values: E(Wa

xa, k′′a )

≥ E(Wa
xa, k′a).

When the state of activity a is xa and the manager 
uses effort ka, the progress of activity a transitions to the 
state ya � xa +Wa

xa, ka
. The probability of transitioning 

from xa to ya using ka is denoted with Pa
xa, ya
(ka). In gen

eral, precedence constraints make the dependence of 
Pa

xa, ya
(ka) on the probabilistic description of Wa

xa, ka 
some

what complex, so in the appendix, we explain how to 
calculate Pa

xa, ya
(ka) in all possible cases.

For analytical tractability, we assume that the pro
gress on each activity is independent of time and of the 
progress on the other activities. In practice, the latter is 
realistic for projects in which teams do not multitask. 
Let x ∈ X and y ∈ X denote two generic states. Assum
ing independence among activities, the transition prob
ability from x to y using k is

Px, y(k) � P1
x1, y1
(k1) ·P2

x2, y2
(k2) · : : : ·Pn

xn, yn
(kn):

If Pa
xa, ya
(ka) � 0 for at least one activity a, no transition 

from x to y is feasible.

3.5. Costs
In period t, the manager observes the state Xt and deci
des the control k ∈K(Xt) to use from t to t+1 bearing 
the effort cost ck. Additionally, for each time period t at 
the end of which the project is still not completed, that is, 
Xt+1 ≠ f, the manager bears a cost, which could repre
sent a penalty for waiting, that is, due to benefits that 
could have been achieved if the project was completed. 
Let u denote this per-period waiting cost. For tractability, 
we implicitly assumed that costs are stationary; that is, 
they do not depend on time. The total cost in a period 
starting at state x and arriving at state y while using con
trol k is then

g(x, k, y) �

ck + u, if x ≠ f and y ≠ f;

ck, if x ≠ f and y � f;

0, if x � f and y � f:

8
>><

>>:

Table 1. States for the Sample Project

States

1 : [0, 0, �1, �1, 0] 8 : [1, 0, �1, �1, 1] 15 : [1, 1, 1, �1, 2]
2 : [0, 0, �1, �1, 1] 9 : [1, 0, �1, �1, 2] 16 : [1, 1, 2, 0, 0]
3 : [0, 0, �1, �1, 2] 10 : [1, 1, 0, �1, 0] 17 : [1, 1, 2, 0, 1]
4 : [0, 1, �1, �1, 0] 11 : [1, 1, 0, �1, 1] 18 : [1, 1, 2, 0, 2]
5 : [0, 1, �1, �1, 1] 12 : [1, 1, 0, �1, 2] 19 : [1, 1, 2, 1, 0]
6 : [0, 1, �1, �1, 2] 13 : [1, 1, 1, �1, 0] 20 : [1, 1, 2, 1, 1]
7 : [1, 0, �1, �1, 0] 14 : [1, 1, 1, �1, 1] 21 : [1, 1, 2, 1, 2]
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The expected total cost in a period starting at state x 
and using control k is then

g(x, k) �
X

y∈X
Px, y(k)g(x, k, y):

When applying policy {µt}, the cost-to-go at some time 
t is then given by

lim
T→∞

E
XT�1

τ�t
g(Xτ,µτ(Xτ))

( )

: (1) 

Let J(i) be the cost-to-go at time 0. The DPE problem that 
we study involves finding a policy that minimizes this cost.

3.6. Discussion
Now that we formally introduced the DPE, it is worth 
discussing the assumptions and generalizability of our 
model. In short, despite the specific application of pro
ject expediting and certain modeling assumptions that 
we made, the problem we are tackling can still capture 
a large subset of an important class of problems, as we 
discuss in the analysis section next.

To be more concrete, we assumed stationary costs and 
no discounting. Although these might appear limiting 
at first glance, note that the important and broad class of 
SSP problems also adopt these modeling choices. Within 
project management, there could be a plethora of different 
cost structures in practice. Indeed, some instances might 
not be compatible with the model, we study, but there 
remains a large swath of problems that fit very well, 
among others, projects that are not years long, for example, 
and feature final completion time costs that scale approxi
mately linear in the time taken to complete the project.

In the analysis that follows, we first present our solution 
technique tailored to the DPE formulation we described. 
We then discuss how it can be applied to a large subset 
of the important class of SSP problems, which we call 
forward-only, characterized by an intuitive property.

4. Analysis
We start this section by positioning the DPE problem as 
an SSP problem and we discuss why extant solution 
approaches could be impractical to use for real-life-sized 
instances. Then, we introduce a key structural property 
of our problem, namely a strict partial order relation on 
the state space. We show that it is possible to obtain a lin
ear order of the state space from this partial order by 
using a topological sorting algorithm. Next, we devise 
an algorithm, using the linearly ordered state space, that 
identifies the optimal solution for our problem. It does 
so in a more efficient way than existing algorithms. 
Finally, we show that our algorithm can be applied not 
only to our DPE problem but also to a large class of sto
chastic shortest-path problems that are characterized by 
an intuitive property.

4.1. SSP Problem
The lack of a discounting factor and the presence of the 
cost-free terminal state f categorize the DPE problem as 
an SSP problem (Definition 2).

Definition 2 (Bertsekas 2017, p. 233). A cost-minimization 
problem of an infinite-horizon MDP formulation is a sto
chastic shortest-path problem if (1) no discount factor is 
present and (2) there is a special cost-free terminal state.

We use the fact that our problem is a stochastic 
shortest-path problem to show that there exists a cost- 
minimizing stationary policy µ∗ for Equation (1).

Lemma 1. For the stochastic shortest-path problem that aims 
to minimize the cost in Equation (1), there exists an optimal 
stationary policy µ∗.

We can reformulate our problem using Lemma 1 as 
follows: The project manager aims to find a stationary 
policy µ that minimizes the cost-to-go:

Jµ(i) � lim
T→∞

E
XT�1

τ�0
g(Xτ,µ(Xτ))

�
�
�
�
�
X0 � i

( )

: (2) 

We denote such an optimal policy with µ∗.

4.2. Existing Algorithms
Extant methods to solve SSP problems, including the 
DPE problem, are applications of value iteration, policy 
iteration, and linear programming algorithms. They are 
based on Bellman’s equation, an optimality principle for 
MDP problems, which for our problem is as follows:

J∗(x)

�
min

k∈K(x)
g(x, k) +

X

y∈X
Px, y(k)J∗(y)

" #

if x ∈ X \ {f}

0 if x � f,

8
><

>:

(3) 

where J∗ maps each feasible state to the anticipated mini
mum cost-to-go starting from that state. We present the 
pseudo-codes of the value iteration, policy iteration, and 
linear programming algorithms for our problem in the 
Appendix; a more detailed description can be found in 
Bertsekas (2017, pp. 245–249). The results of computa
tional experiments presented in Section 6 show that the 
use of these algorithms to identify the optimal policy for 
our problem is impractical. Their computation times rap
idly increase with the size of the network and the number 
of activities in parallel. This motivated our work to iden
tify more computationally efficient solution methods.

4.3. Partial and Linear Orders on the State Space
We now introduce a key structural property of the DPE 
problem. In particular, we shall show how to obtain a 
linear order on the state space in two steps: the first and 
important step establishes how we can represent the 
states using a DAG, whereas the second step simply 
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applies the known result that every DAG has a topolog
ical order of all its vertices.

We provide the definition of a linear order on a 
generic set H as follows.

Definition 3. Let a, b, and c be elements of a set H. A 
binary relation ≤ on H is a linear order if it has the fol
lowing properties: 

1. Antisymmetry: If a ≤ b and b ≤ a, then a�b.
2. Transitivity: If a ≤ b and b ≤ c, then a ≤ c.
3. Connex property: a ≤ b or b ≤ a.
Consider state 17 : [1, 1, 2, 0, 1] and state 19 : [1, 1, 2, 

1, 0] from Table 1, for example. These two states are not 
comparable. Lacking the connex property, a “natural” 
linear order relation on the state space X does not exist. 
Therefore, we look for a partial order relation on the 
state space, and for a strict partial order relation in par
ticular. Despite its name, a strict partial order relation is 
an order relation that is less restrictive than a linear 
order relation. We provide the definition of a strict par
tial order on a generic set H as follows, where the sym
bol ¬ denotes logical negation.

Definition 4 (Lehman et al. 2017, p. 400). Let a, b, and c be 
elements of a set H. A binary relation< on H is a strict 
partial order if it has the following properties, with 
asymmetry implied by irreflexivity and transitivity. 

1. Irreflexivity: ¬(a < a);
2. Transitivity: if a< b, and b< c, then a< c;
3. Asymmetry: if a< b, then ¬(b < a).
Intuitively, state x precedes state y if and only if the 

project progress in state x is less than that in state y. 
We formalize this binary relation in Definition 5.

Definition 5. For x, y ∈ X , we say that x ⋏ y if the fol
lowing hold: 

1. xa ≤ ya for all activities a that are engaged in x, 
and xa′ < ya′ for at least one of these activities.

2. xa ≤ ya for all activities a that are unengageable in 
x, and xa<ya if and only if all predecessors of the start
ing node of a are completed in y.

We highlight an important fact that links the rela
tion ⋏

 to the probability Px, y(k) in Remark 1.

Remark 1. If x, y ∈ X and x ⋏ y, then Py, x(k) � 0 for 
every k ∈K(x).

Remark 1 follows from the definition of Px, y(k) in 
Section 3. Intuitively, it says that it is not possible to 
move from a state y to a state x if the progress in x is 
less than the progress in y.

The relation ⋏
 is the “natural” order relation on the 

state space and provides a strict partial order of the 
states (Lemma 2).

Lemma 2. The binary relation ⋏
 is a strict partial order on X .

We are ready to supply a graphical characterization 
of ⋏ . Consider the directed acyclic graph G ⋏ (V ⋏ ,E ⋏ ), 
constructed as follows: 

1. We include a node v in V ⋏
 

for every state x ∈ X .
2. We include an arc between node v1 corresponding 

to state x and node v2 corresponding to state y if and 
only if x ⋏ y.

The number of arcs in the graph G ⋏ (V ⋏ ,E ⋏ ) is in 
general large, even for small problems. For this reason, 
it is convenient to introduce a graph with the same 
number of nodes as G ⋏ (V ⋏ ,E ⋏ ) but with a smaller set 
of arcs. The relation “a is covered by b” on a generic set 
H, which is defined as follows, is instrumental to the 
introduction of this graph.

Definition 6. Let a, b, and c be elements of a set H with a 
strict partial order relation< . We say that “a is cov
ered by b” if and only if a< b and ¬(a < c < b) for all 
c ∈H.

We can also provide a definition of what it means 
to say that a state x is covered by y based on the strict 
partial order ⋏ . Intuitively, state x is covered by state 
y if and only if the progress in y is the progress in x 
increased by one unit. This guarantees that there are 
no other states between x and y.

Definition 7. For x, y ∈ X , we say that x is covered by y 
if and only if the following hold: 

1. There is one activity a′ in progress in x such that 
xa′ � ya′ � 1 and xa�ya for all activities a ≠ a′ that are in 
progress in x.

2. xa� ya for all activities a that are completed in x.
3. xa ≤ ya for all activities a that are unengageable in 

x, where xa<ya holds if and only if all predecessors of 
the starting node of a are completed in y.

We are ready to supply a graphical characterization 
of the relation x is covered by y. Consider the directed 
acyclic graph G′(V′,E′), constructed as follows: 

1. We include a node v in V′ for every state x ∈ X .
2. We include an arc between node v1 corresponding 

to state x and node v2 corresponding to state y if and 
only if x is covered by y.

We call G′(V′,E′) the Hasse diagram of ⋏ . Formally, 
G′(V′,E′) is the transitive reduction of G ⋏ (V ⋏ ,E ⋏ ), as 
detailed in the proof of Lemma 3. We present in Figure 2
the Hasse diagram for the states in Table 1. State 1 is 
the source of the graph and the initial state i. State 21 
is the sink of the graph and the final state f. Both states 
are depicted in gray in Figure 2.

The binary relation R+ allows us to formalize the 
relationship between ⋏

 and its Hasse diagram. We 
provide the definition of R+ for a generic directed acy
clic graph G as follows:

Definition 8. Let v1 and v2 be nodes of a directed acyclic 
graph G. We say that v1R+v2 if and only if v1 and v2 
are connected by a walk of positive length.

We note that R+ is transitive and irreflexive, and 
therefore asymmetric. Moreover, R+ is equivalent to ⋏ , 
as made clear in Lemma 3.
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Lemma 3. The binary relation ⋏
 is equivalent to the 

positive-walk relation R+ on its Hasse diagram G′(V′,A′).

From the diagram in Figure 2, it is clear that 12 : [1, 1, 
0, �1, 2] > 7 : [1, 0, �1, �1, 0], because there is at least 
one path in the graph from state 7 to state 12 (for example, 
through states 8 and 11). Moreover, it is clear that ¬(6 :

[0, 1, �1, � 1, 2] > 7 : [1, 0, �1, �1, 0]), because there is 
no path in the graph from state 7 to state 6. A topological 
sort is an ordered list of nodes obtained from a finite 
directed acyclic graph (Definition 9).

Definition 9 (Lehman et al. 2017, 393). Let G be a finite 
directed acyclic graph. A topological sort of G is a list 
of all nodes such that each node v appears earlier in 
the list than all the nodes connected from v.

We can now leverage previous results on finite 
directed acyclic graphs to argue that we can obtain a 
linear order of the state space X . Theorem 10.5.4 in 
Lehman et al. (2017, p. 395) or proposition 1.4.3 in Jen
sen and Gutin (2007) show that every finite directed 
acyclic graph has a topological sort. The Hasse dia
gram G′(V′,E′) is finite. Therefore, its topological sort 
is a list of nodes v ∈ V′. Every node v corresponds to a 
state x; hence, we obtain a linear order on the state 
space X .

Remark 2. The Hasse diagram G′(V′,E′) has a topo
logical sort which defines a linear order of the state 
space X .

We denote the cardinality of the state space X by s. 
We also denoted the linearly ordered state space by 
eX � {x1, x2, : : : , xs}. The initial state is always the first 
element of eX , that is, x1 � i. The final state is always the 
last element of eX , that is, xs � f. A topological sort of a 
directed acyclic graph needs not be unique. We can use 
the depth-first search (DFS) algorithm, as described in 
Cormen et al. (2009, pp. 612–614), to obtain a topologi
cal sort of a DAG.

4.4. TBR Algorithm
We now formally introduce our solution approach, which 
we refer to as the TBR algorithm. It uses the linearly 

ordered state space eX to identify the optimal solution for 
our problem. We present the pseudo-code for the TBR 
algorithm as Algorithm 1.

Algorithm 1 (TBR Algorithm)
begin
eX � {x1, x2, : : : , xs};
J∗(xs)¢ J∗(f) � 0;

end
for i � s� 1, s� 2, : : : , 1 do

Compute J∗(xi) �mink∈K(xi)

g(xi,k)+
Ps�1

j�i+1
Pxi,xj (k)J

∗(xj)

1�Pxi,xi (k)
;

end
return J∗(xi) and k∗(xi) for i � s� 1, s� 2, : : : , 1

The TBR algorithm calculates the optimal cost-to-go 
function using a backward recursion that iterates on the 
topologically sorted state space. The algorithm only 
requires a single computation for each state as opposed 
to existing dynamic programming algorithms such as 
value iteration, which requires multiple iterations of the 
algorithm for each state—The interested reader could 
also contrast TBR’s pseudo-code with that of value itera
tion, presented in the appendix as Algorithm A.1. This 
important feature already provides an explanation for 
the computational benefits that can be obtained using 
the TBR algorithm.

To shed more light on how TBR achieves the calcula
tion of the optimal cost-to-go function at each state using 
a single iteration, consider the following technical lemma.

Lemma 4. Consider k ∈K, where K is a finite set. Let ak > 0 
and 0 < δk < 1. Then ŷ � ak∗

1�δk∗
, with k∗ � arg mink

ak
1�δk

, 
solves the equation

y �min
k
[ak + δky]: (4) 

Now, let us apply the previous lemma with the follow
ing choice of parameters y, ak, and δk: 

1. y � J∗(xi);
2. ak � g(xi, k) +

Ps�1
j�i+1 Pxi, xj(k)J∗(xj);

3. δk � Pxi, xi(k):
With this choice, and by leveraging the topological 

sort of the state space that we established, Equation (4) 

Figure 2. Hasse Diagram for the Sample Project 
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corresponds to the Bellman equation for our problem, 
applied for the ith state. Therefore, Lemma 4 then sug
gests that to evaluate the optimal cost-to-go function 
at that state, namely J∗(xi), we require the optimal cost- 
to-go values only at states i+ 1, : : : , s, which, in a back
ward recursion process, would be already calculated. 
The TBR algorithm leverages this structure to obtain 
J∗(xi) with a single calculation. In contrast, to calculate 
J∗(xi), classical applications of the Bellman equation 
require knowledge of J∗(xi) as well, and therefore re
quire iterative procedures to solve.

The above application of Lemma 4 can also be used 
to prove the optimality of the TBR algorithm.

Theorem 1. The TBR algorithm finds an optimal policy for 
our problem.

With the TBR algorithm formally introduced, we are 
now in a position to make two important points. First, 
we argue that the TBR algorithm can be applied not 
merely to the DPE problem, but to a large class of SSP 
problems. Second, we discuss further and shed more 
light on why the TBR algorithm outperforms all extant 
solution methods by significantly reducing the required 
computational burden.

4.5. Forward-Only SSP Problems
The TBR algorithm identifies an optimal policy for a 
more general class of problems, which we term forward- 
only SSP problems. We first provide a formal definition, 
followed by an intuitive interpretation.

Definition 10. The forward-only stochastic shortest-path 
problem is a stochastic shortest-path problem (Defini
tion 2) in which the following hold: 

1. There exists a strict partial order on the state 
space.

2. For any two states a and b of the problem, if a pre
cedes b in the strict partial order, then the probability of 
moving from b to a is zero.

Intuitively, the forward-only property asks that most 
states are transient and that state transitioning is gov
erned by some progression process. The latter means 
that there is some dominant progression pattern that 
states follow, as is, for example, the progression of a 
project toward the completion within the DPE. Other 
examples could include disease management when 
dealing with diseases that worsen over time, such as 
end-stage renal disease, cardiac allograft vasculopathy, 
Alzheimer’s, or osteoarthritis to name a few. Thus, our 
analysis and the TBR algorithm could be useful in a 
wide range of medical decision-making and disease- 
modeling applications.

In particular, for a forward-only stochastic shortest- 
path problem, we can obtain a linearly ordered state 
space by applying the same procedure described in this 
section. Moreover, the proof of Theorem 1 requires only 

the assumptions stated in Definition 10. Therefore, we 
can state a corollary of Theorem 1 without proof.

Corollary 1. The TBR algorithm finds an optimal policy for 
any forward-only stochastic shortest-path problem.

4.6. Comparison with Existing Algorithms
The computational benefits of the TBR algorithm stem 
from two important points. The first point relates to the 
elimination of the need for an iterative procedure in the 
calculation of the optimal cost-to-go. That is, as dis
cussed previously, the topological sort of the state 
space we established enables one to calculate the opti
mal cost-to-go function for each state using a single iter
ation in each step of the backward recursion.

Second, the TBR deals with data that are linear in the 
size of the state space, as opposed to quadratic. In par
ticular, extant implementations of the value iteration 
algorithm, the policy iteration algorithm, and the linear 
programming algorithm need memory access to all the 
transition probabilities and the costs at all times. Thus, 
these algorithms store an amount of data proportional 
to s2 for each control. In contrast, the TBR algorithm 
stores an amount of data proportional to one in the first 
iteration and to the number of states s in the last itera
tion. To see this, note that the TBR can be applied with
out the need to generate all the transition probabilities 
and the costs beforehand; at each iteration, it computes 
only the transition probabilities and the costs needed 
for that iteration. Importantly, this is only possible 
because of the particular structure of the TBR algorithm 
and it is unclear how to leverage this approach in 
implementations of extant algorithms. Consequently, 
the amount of data stored by the TBR is proportional to 
s=2 on average for each control. This drastic reduction 
in memory usage and access not only yields a signifi
cant speed-up in the computational time but also criti
cally reduces memory requirements.

In Section 6, we conduct several numerical experi
ments that verify the anticipated gains in computa
tional performance provided by the TBR algorithm.

5. State Identification
Recall that up to this point we have assumed that the 
set of feasible states is given. As we discuss later, it 
turns out that identifying this set for the DPE problem 
is a rather challenging task in and of itself. Given that 
this set is an input to the TBR algorithm, or to any of the 
classical extant dynamic programming approaches for 
that matter, it is essential to have access to a “smart” 
way of obtaining it.

To this end, we shall devise a process to identify all 
feasible states. We follow the same recipe as before: we 
first identify an important structural property, namely, 
we introduce an equivalence relation on states that par
titions the feasible state space into classes. Next, we 
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introduce two algorithms, termed CId and SEn, that 
we devised, leveraging this partitioning property, to 
enumerate classes and states, respectively. In the next 
section, we pit our algorithms against existing state 
identification approaches to illustrate the important 
computational gains that they offer.

5.1. State-Space Identification Problem
Identifying the feasible state space X is challenging, 
primarily because of precedence constraints, but also 
because we consider partial completion of activities. A 
possible approach to tackling this problem could be the 
complete enumeration of the n-dimensional vectors over 
the n activities, followed by the removal of vectors that 
are not feasible states. This approach is impractical be
cause of the large number of vectors it would generate 
that are unfeasible states. For example, complete enu
meration for the sample project in Figure 1 leads to 3 · 3 ·
4 · 3 · 4 � 432 vectors of which only 21 are feasible states. 
For this reason, we propose two algorithms that identify 
the feasible state space X directly. This approach is in 
general more efficient than the complete enumeration of 
vectors over the activities, followed by the removal of 
vectors that are not feasible states. Our algorithms enu
merate the feasible states from classes of states.

5.2. Classes of States
A class of states is a subset of activities that can be pro
cessed in parallel, also known in the literature as UDCs. 
We induce the class of states by an equivalence relation. 
We provide the relation on the states in Definition 11. 
Lemma 5 shows that this relation is an equivalence rela
tion that partitions the feasible state space into classes.

Definition 11. We say that x ~ y if the following hold: 
1. If xa is engaged, ya is also engaged.
2. If xa is unengageable, ya is also unengageable.

Lemma 5. The relation ~ is an equivalence relation that par
titions the feasible state space X into classes of states.

We use X̂1 , X̂ 2 , : : : to denote the classes of states 
induced on the feasible state space X by the equiva
lence relation of Definition 11. An extended notation 
for class bX i is an n-dimensional vector that, for each a, 
lists the components corresponding to a as follows: 

1. It is �1 if a is unengageable.
2. It is x̂a if there exists a state in bX i with xa< la.
3. It is la if xa� la for all states in bX i.
Every class of states has a subgraph representation. 

From the class bX i, we obtain its subgraph representa
tion Γ(Âi, Ê i) as follows: 

1. Âi ⊂A includes the activities a whose component 
in bX i is x̂a;

2. Ê i ⊂ E includes all the arcs that connect activities 
a ∈ Âi.

As a consequence of Lemma 5, we can identify the 
state space in two distinct phases. In the first phase, the 
class identification (CId) algorithm identifies all classes 
of states for a project network. In the second phase, the 
state enumeration (SEn) algorithm enumerates all states 
from each class.

5.3. CId Algorithm
The CId algorithm is a recursive algorithm that gener
ates the subgraph representations of the classes of 
states from the network G(A,E). The algorithm uses a 
collection H of visited graphs and a collection L that 
will contain all the classes generated. Recall that Πa and 
Sa are the sets of all predecessors and all successors, 
respectively, of activity a. We define Āa as follows: 
Āa � Â \ {Πa ∪ Sa}. We denote by Γ(Āa, Ē a) the graph 
where Ēa is the set of arcs that connect activities a′ ∈ Āa. 
We present the pseudo-code for the CId algorithm as 
Algorithm 2.

Algorithm 2 (CId Algorithm)
Algorithm CId()

L←∅;
H←∅;
build G(A,E);
call CIdvisit(G(A,E), L, H);
return L;

Procedure CIdvisit(Γ(Â, Ê), L, H)
H �H ∪ {Γ(Â, Ê)};
for all a ∈ Â, compute Πa and Sa;
if Πa � ∅ for all a ∈ Â then

compute the class bX corresponding to Γ(Â, Ê);
L � L ∪ {bX };

else
for all a ∈ Â, compute Πa ∪ Sa and Āa � Â \ {Πa 
∪ Sa};
for each a such that Πa ∪ Sa ≠ ∅ do

build Γ(Āa, Ē a), where Ēa corresponds to Āa;
if Γ(Āa, Ē a) ∉H then

call CIdvisit(Γ(Āa, Ē a), L, H);
end

end
end

The CId algorithm is based on the observation that, 
for any activity, its predecessors cannot be processed 
in parallel with its successors. We illustrate the appli
cation of the CId algorithm to the sample project of 
Figure 1.

In the CId algorithm, we initialize the collections L 
and H as empty sets, and we build the graph G(A,E)
with A � {A, B, C, D, E} depicted in Figure 1. Then we 
call the recursive procedure CIdvisit on G(A,E). When 
we call the CIdvisit procedure on G(A,E), we add the 
graph to the list H of visited graphs to avoid examining 
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the graph again in the future. In Table 2, we present the 
details for Πa, Sa, and Āa for each activity a in G(A,E).

We proceed to compute the subgraphs Γ(Āa, Ē a)

because Πa ≠ ∅ for activities C and D. We obtain the 
three subgraphs depicted in Figure 3 for the activities a 
such that Πa ∪ Sa ≠ ∅.

Then we call the CIdvisit procedure on these graphs. 
In all three graphs, Πa � ∅ for all the activities. There
fore, we add the corresponding classes of states to L. 
Using the lengths of the activities from Figure 1, we 
obtain the classes as follows: 

bX 1 � (x̂A, x̂B, � 1, � 1, x̂E);
bX 2 � (1, 1, x̂C, � 1, x̂E);
bX 3 � (1, 1, 2, x̂D, x̂E).

Finally, the CId algorithm returns the list L � {bX 1, 
bX 2, bX 3}; the SEn algorithm will enumerate the feasible 
states from these three classes. Toward the end of this 
section, we provide proof of correctness for the CId algo
rithm, that is, that it succeeds for any problem instance.

Creemers et al. (2010) proposed a fast algorithm to 
identify all subsets of activities that can be processed in 
parallel (UDCs). This algorithm generates a tree in which 
each node is an activity. Also, the CId can be viewed as a 
tree-generation algorithm in which each node is a sub
graph. In Section 6, we compare the computation times 
of our CId algorithm against those of our implementation 
of the one suggested by Creemers et al. (2010) and find 
that our algorithm provides significant reductions.

5.4. SEn Algorithm
The SEn algorithm generates the feasible states for each 
class. The collection of states bX i will include the states 
generated. For each class, the algorithm calls the recur
sive procedure SEnvisit. At each iteration, the proce
dure SEnvisit takes an activity a and a vector u as input. 

The vector u represents a partial state, that is, a state 
whose elements are included up to activity a�1. The 
procedure stores the partial states in a temporary col
lection T. For each value taken by the corresponding 
state xa, the procedure creates a temporary vector v, 
sets v�u, and adds the value of xa to the vector. In other 
words, the vectors are built up coordinate by coordi
nate. If a vector does not meet the precedence con
straints, it is immediately discarded. We present the 
pseudo-code for the SEn algorithm as Algorithm 3.

Algorithm 3 (SEn Algorithm)
Algorithm SEn()

X ←∅;
for all classes bX i ∈ L do

create empty vector u;
call SEnvisit(u, 0, bX i, X );

end
return X ;

Procedure SEnvisit(u, a, bX i, X )
T←∅;
if bX i[a]≠�1 or bX i[a]≠ la then

for each i such that 0 ≤ i ≤ la do
create vector v and set v�u;
add i as the next element of v;

end
if a ≠ n then

T � T ∪ {v};
else

X � X ∪ {v};
end

else
create vector v and set v� u;
add bX i[a] as the next element of v;
if v satisfies the precedence constraints then

if a ≠ n then
T � T ∪ {v};

else
X � X ∪ {v};

end
end

end
for all v ∈ T do

call SEnvisit(u, a+ 1, bX i, X );
end

Figure 3. Subgraphs for the Sample Project 

Table 2. CId Algorithm Calculations for the Sample Project

a Πa Sa Āa � Â \ {Πa ∪ Sa}

A ∅ C,D A,B,E
B ∅ C,D A,B,E
C A,B D C,E
D A,B,C ∅ D,E
E ∅ ∅ A,B,C,D,E
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In Table 3 we present, for each class, the feasible states 
generated by applying the CId algorithm to our example. 
The state space X for our example has 21 states.

5.5. Proof of Correctness
Theorem 2 summarizes the main theoretical results for 
algorithms CId and SEn.

Theorem 2. For any project network G(V,A) with a ∈A of 
length la: 

1. The CId algorithm enumerates all the equivalence clas
ses bX i of feasible states.

2. The SEn algorithm enumerates all the feasible states x 
in each equivalence class.

Lemma 5 shows that X � ∪i bX i. Therefore, the appli
cation of CId and SEn in succession will find all the fea
sible states x ∈ X for the problem.

6. Computational Studies
In this section, we present numerical studies aimed 
at demonstrating the advantages of using our algo
rithms compared with existing approaches. As a short 
summary, our experiments showcase the significant 
computational benefits of our algorithms in terms of 
computational time, with reductions averaging 40% 
and being as much as 99% across numerous problem 
instances. Of particular note is also that the memory 
requirement reduction of our approach makes the 
solution of practical problem sizes often feasible, while 
extant algorithms fail to compute. We also consider a 
heuristic to solve the problem, and, by measuring its 
optimality gap, we shed light on when using the exact 
method is worthwhile.

After introducing some implementation details next, 
in Section 6.1, we consider the TBR algorithm within the 
context of the sample Li & Fung supply chain discussed 
in the Introduction and randomly generated instances. 
In Section 6.2, we consider a heuristic approach and 
compare it with our exact method. In Section 6.3, we 
assess the efficiency of our class identification algorithms 
for various randomly generated networks.

In all our experiments, we used the following para
meters. For activity a, the project manager could choose 

the effort levels ka � 0, 1, 2, with 0 corresponding to no 
effort, 1 to the regular effort, and 2 to expediting. The 
costs for regular effort and expediting are ca, ka�1 � $10 
and ca, ka�2 � $40, respectively. The waiting cost per unit 
of time, which is borne by the clients of the project, is 
u � $60. The budget constraint on the cost ck in each 
period t is b � $120. Unless stated otherwise, the pro
gress of activity a when the manager uses regular effort 
or expediting follows a discrete uniform distribution: 
Wa

ka�1 ~ U{0, 2} and Wa
ka�2 ~ U{1, 3}.

We compare the computation times of the TBR algo
rithm against existing dynamic programming algo
rithms. The implementations of the value iteration (VI), 
policy iteration (PI), and linear programming (LP) algo
rithms were based on pseudo-codes presented in the 
appendix as Algorithms A.1–A.3, respectively. The value 
iteration implementation is based on an algorithm tai
lored to stochastic shortest-path problems on DAGs, 
which combines the traditional value iteration algo
rithm and the Dijkstra algorithm, originally developed 
for deterministic shortest-path problems (Bertsekas 2012, 
pp. 209–210).

6.1. TBR Algorithm Computational Performance
First, we consider a dynamic project expediting prob
lem for the Li & Fung supply chain discussed in the 
Introduction. The AoN network representation of the 
problem is as described in Magretta (1998), with repre
sentative durations, and is depicted in Figure 4.

We succeeded in solving the problem using the TBR 
algorithm. The classes associated with this example are 
23, the states are 122 and 431, and the average number 
of controls for each state is 145.57. In our tests, the exist
ing dynamic programming algorithms failed to solve 
this problem because they ran out of memory when try
ing to generate the transition matrix.

Second, to study in more depth the performance of our 
algorithms we devised a series of computational experi
ments using randomly generated networks. In particular, 
we compared the computation times of TBR against exist
ing dynamic programming algorithms using random 
AoN networks generated with the Rangen2 software, 
described in Vanhoucke et al. (2008).

To generate a random network, Rangen2 requires 
two factors in input: n, the number of activities in a net
work, and I2, with 0 ≤ I2 ≤ 1, the relative length of a net
work. I2 measures how “sequential” the shape of a 
network is (Tavares et al. 1999). I2 � 1 if all activities in 
the network are sequential, and I2 � 0 if all activities in 
the network are parallel. Rangen2 also generates a ran
dom duration value for each activity of a network. Ran
gen2 is primarily used to generate project networks for 
static scheduling problems and its duration generation 
is not very suitable for dynamic problems like ours, in 
which the durations of the activities affect the size of 
the state space substantially. As the software does not 

Table 3. SEn Algorithm Results for the Sample Project

bX 1 �

(x̂A, x̂B, � 1, � 1, x̂E)

bX 2 �

(1, 1, x̂C, � 1, x̂E)

bX 3 �

(1, 1, 2, x̂D, x̂E)

1 : [0, 0, �1, �1, 0] 10 : [1, 1, 0, �1, 0] 16 : [1, 1, 2, 0, 0]
2 : [0, 0, �1, �1, 1] 11 : [1, 1, 0, �1, 1] 17 : [1, 1, 2, 0, 1]
3 : [0, 0, �1, �1, 2] 12 : [1, 1, 0, �1, 2] 18 : [1, 1, 2, 0, 2]
4 : [0, 1, �1, �1, 0] 13 : [1, 1, 1, �1, 0] 19 : [1, 1, 2, 1, 0]
5 : [0, 1, �1, �1, 1] 14 : [1, 1, 1, �1, 1] 20 : [1, 1, 2, 1, 1]
6 : [0, 1, �1, �1, 2] 15 : [1, 1, 1, �1, 2] 21 : [1, 1, 2, 1, 2]
7 : [1, 0, �1, �1, 0]
8 : [1, 0, �1, �1, 1]
9 : [1, 0, �1, �1, 2]
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allow us to explicitly control the duration of the activi
ties, to obtain problems of a size that is more appropri
ate to dynamic problems, we divided each random 
activity generated by three and rounded it up to obtain 
the length of each activity.

In our study, an experiment is defined by the combi
nation of n and I2. We generated 10 random networks 
for each experiment. In our experiments, I2 takes values 
0.9, 0.6, and 0.3 and n takes values 10, 15, 20, 25, and 30.

We implemented all the algorithms in C11 and ran 
them on an HP Z400 Workstation with an Intel(R) 
Xeon(R) 3.33-GHz CPU and 12 GB of RAM. We used 
CPLEX 12.8.0 to solve the linear programming and the 
mixed-integer programming models. We present the 
results of our computational study in Tables 4 and 5.

In Table 4, we present the percentage of instances 
successfully solved by the algorithms. The first three 
columns of the table give the coefficient I2, the average 

number of states over 50 instances, and the average 
number of controls per state over 50 instances. The 
fourth to seventh columns of Table 1 give the percent
age of successfully solved instances for value iteration 
(VI), policy iteration (PI), linear programming (LP), and 
the TBR algorithms, respectively.

The TBR algorithm successfully identified the solution 
for all the instances. VI and PI did not find an optimal 

Figure 4. Li & Fung Supply Chain Example 

Table 4. Percentage of Solved Instances for Each 
Algorithm

I2

No. of 
states

No. of 
controls % VI % PI % LP % TBR

0.9 2,144.9 28.0 94% 94% 86% 100%
0.6 2,801.8 59.4 88% 88% 84% 100%
0.3 6,859.5 152.8 42% 42% 26% 100%

Table 5. Improvement in Computational Times Compared 
with the Slowest Algorithm on Average (LP) for Instances 
in Which All Algorithms Solve the Problem

I2 n
No. of 
states

No. of 
controls ∆tVI ∆tPI ∆tTBR

0.9 10 190.9 11.6 �4.8% +5.9% �63.4%
0.9 15 622.0 20.8 �3.7% +10.8% �66.5%
0.9 20 1,239.7 22.9 �56.0% �32.1% �70.5%
0.9 25 1,828.9 25.9 �67.2% �42.8% �75.5%
0.9 30 2,633.2 27.6 �65.2% �33.5% �78.0%
0.6 10 291.5 26.6 �3.6% �0.4% �65.8%
0.6 15 1,108.7 36.6 �42.4% �30.4% �78.9%
0.6 20 1,946.1 71.3 �42.9% �34.0% �56.9%
0.6 25 2,994.2 50.0 �64.8% �46.2% �76.0%
0.6 30 2,135.9 37.8 �37.5% �15.0% �58.1%
0.3 10 1,675.2 154.6 �63.5% �61.9% �73.5%
0.3 15 3,003.5 111.3 �49.1% �39.0% �80.1%
0.3 20 3,283.2 62.3 �42.7% �19.5% �75.1%
0.3 25 3,541.0 68.9 �56.9% �46.3% �78.2%
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policy only when the memory of our workstation was 
not sufficient to store all the transition probabilities and 
the costs for our problem. LP did not find an optimal 
policy also for other instances.

In Table 5, we compare the computation times of the 
TBR algorithm against those of existing dynamic pro
gramming algorithms only for instances in which all 
algorithms solve the problem. The first four columns of 
the table give the coefficient I2, the number of activities 
n, the average number of states over the instances 
solved by all algorithms, and the average number of 
controls per state over the instances solved by all algo
rithms. The fifth through seventh columns of Table 5
give the improvement in the average computation 
times over the instances solved by all algorithms com
pared with the slowest algorithm on average (LP), for 
the value iteration (VI), policy iteration (PI), and the 
TBR algorithms, respectively.

The average computation times for TBR were al
ways shorter compared with the other algorithms. 
TBR reduced the computation times of VI, the second- 
best algorithm, on average by 41.9% and as much as 
100.0%. Notice that it is not possible to obtain statistics 
when I2 � 0:3 and n�30 because the TBR algorithm is 
the only algorithm that can solve the instances associ
ated with this experiment.

The computation times of all algorithms increased 
when the number of activities increased. Moreover, the 
computation times of all algorithms increased when the 
relative length I2 decreased, that is, when the number of 
activities in parallel increased. The effect of a reduction 
in I2 had a larger effect on the increment in the computa
tion times of all algorithms than the increment in n. The 
computation times were strongly affected by increases 
in the number of states and controls, which in turn were 
affected by the number of activities, their lengths, and 
the number of parallel activities.

6.2. Heuristic Approach
In this section, we consider a heuristic approach to 
obtain approximate solutions to the DPE problem. By 
measuring the optimality gaps across different experi
mental setups, we shed some light on conditions under 
which obtaining exact solutions could yield significant 
benefits. In particular, we consider a heuristic approach 
based on popular “certainty equivalent model predic
tive control” methods. Across our experiments, we find 
optimality gaps to range between 3.93% and 35.64%. 
Higher optimality gap values corresponded to problem 
instances in which the underlying “randomness” was 
higher, as measured by the standard deviation of ran
dom activities’ progress.

In certainty equivalent model predictive control 
(CEMPC) methods, at any point in time, unknown 
values of future parameters are replaced with point 
estimates over a planning horizon extending from the 

current time to some time in the future. For the DPE 
problem, at the end of time t, we consider a planning 
horizon {t+ 1, : : : , T}, where T is selected large enough 
so that the project is guaranteed to have been completed 
by then. We also substitute the random variables mea
suring activities’ progress with their conditional expecta
tions based on the current state. This process gives rise 
to a deterministic optimal control problem, the solution 
of which yields a plan of action, that is, control vectors, 
over the remaining horizon. The CEMPC heuristic then 
simply implements at time t+1 the first control vector in 
the plan. After uncertainty realizes and we transition to 
the next state at t+2, this process is repeated using 
updated point estimates. Although CEMPC heuristics 
are usually suboptimal in general, they often perform 
remarkably well in practice and are therefore widely 
used to deal with stochastic control problems in several 
application areas, including, for example, revenue man
agement, inventory control, scheduling, and others.

For the DPE problem, using CEMPC is appealing as 
the resulting deterministic optimal control problem that 
one obtains at each time step can be readily solved using 
mixed-integer optimization techniques. Although vari
ous formulations can be used to this end, we present the 
one that we used in our computational studies in the 
appendix.

We compared the average total costs obtained with 
the CEMPC heuristic over 50 simulation runs against 
the total expected optimal costs calculated using the 
TBR algorithm.

Table 6 shows the comparison when the progress of 
activity a follows a discrete uniform distribution: Wa

ka�1 ~ 
U{0, 2} and Wa

ka�2 ~ U{1, 3}, as in our previous experi
ments. The average optimality gap ∆J∗(0) is 5.76%.

Table 7 shows the cost comparison between CEMPC 
and TBR in presence of different discrete distributions 

Table 6. Comparison Between CEMPC and TBR with 
Wa

ka�1 ~ U{0, 2} and Wa
ka�2 ~ U{1, 3}

I2 n
No. of 
states

No. of 
controls J∗(0) ∆J∗(0)

0.9 10 190.9 11.6 919.6 8.13%
0.9 15 622.0 20.8 1,358.0 5.65%
0.9 20 1,239.7 22.9 1,887.4 4.46%
0.9 25 2,987.6 36.7 2,381.3 5.23%
0.9 30 5,684.3 48.0 2,801.6 4.07%
0.6 10 291.5 26.6 846.2 9.28%
0.6 15 1,108.7 36.6 1,283.7 5.30%
0.6 20 2,699.2 76.8 1,692.0 5.31%
0.6 25 7,773.9 119.2 2,016.4 5.48%
0.6 30 2,135.9 37.8 2,636.8 4.57%
0.3 10 4,265.2 251.8 638.5 10.96%
0.3 15 5,300.6 135.2 1,098.3 4.15%
0.3 20 4,257.6 69.1 1,513.4 5.46%
0.3 25 9,610.9 187.9 1,832.6 4.40%
0.3 30 10,863.2 120.1 2,080.3 3.93%
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used to model the progress of activity a. These distribu
tions have the same mean of the discrete uniform distri
butions used elsewhere in the paper, but a higher 
standard deviation: when k� 1, the progress is 0 with 
probability 0.5 and 2 with probability 0.5, and when 
k� 2 the progress is 1 with probability 0.5 and 3 with 
probability 0.5. The average optimality gap ∆J∗(0) is 
24.37%.

In summary, the CEMPC heuristic shows limited opti
mality gaps when the standard deviations of the random 
activity progress is small. In this case, project managers 
could consider using the heuristic for very large projects, 
for which even our TBR algorithm cannot identify the 
solution. However, the optimality gaps increase when the 
standard deviations of the random activity progress in
crease. For projects with high underlying “randomness,” 
it is crucial to use modeling frameworks that explicitly con
sider the variability of activities.

6.3. Class Identification Algorithms
We compared the computational performance of CId 
against our implementation of the fast class identification 

algorithm proposed by Creemers et al. (2010). As before, 
we compared the computation times of the two algo
rithms using networks randomly generated by the Ran
gen2 software.

In our experiments, the number of activities n takes 
values ranging from 30 to 300, and I2, which measures 
how sequential a network is, takes values 0.9, 0.6, and 
0.3. For each experiment, we calculate the average com
putation times by averaging the times required to iden
tify the classes of 10 random networks.

The third through fifth columns of Tables 8–10 give 
the average number of classes for each experiment, and 
the average computation times over 10 instances (in 
seconds) for the CId algorithm and for our implementa
tion of the algorithm developed by Creemers et al. 
(2010) (Creemers).

The average computation times of CId are signifi
cantly smaller than those of our implementation of the 
algorithm developed by Creemers et al. (2010). The 
average percent reduction of CId with respect to Cree
mers’ algorithm was 43% and the maximum percent 
reduction was 99%.

The CId algorithm has a clear performance advantage 
over Creemers’ algorithm for networks with a large 
number of activities. The computation times of the two 
algorithms increased when the number of activities 
increased.

For I2 � 0:9, the CId has a performance advantage 
against the Creemers’ algorithm when the number of 
activities is very large.

For I2 � 0:6 and I2 � 0:3 and a large number of activi
ties, Creemers’ algorithm runs out of memory in some 
instances. This is because the algorithm needs to store 

Table 7. Comparison Between CEMPC and TBR with 
P(Wa

ka�1 � 0) � P(Wa
ka�1 � 2) � 0:5 and P(Wa

ka�2 � 1) � P(Wa
ka�2 

� 3) � 0:5

I2 n
No. of 
states

No. of 
controls J∗(0) ∆J∗(0)

0.9 5 48.9 9.3 390.3 35.01%
0.9 10 190.9 11.6 431.8 35.64%
0.9 15 622.0 20.8 457.8 32.99%
0.9 20 1,239.7 22.9 667.0 30.03%
0.9 25 2,987.6 36.7 854.9 30.82%
0.9 30 5,684.3 48.0 918.9 32.23%
0.6 5 62.8 11.4 1,125.8 21.38%
0.6 10 291.5 26.6 1,302.1 23.31%
0.6 15 1,108.7 36.6 1,365.0 22.45%
0.6 20 2,699.2 76.8 1,562.1 18.50%
0.6 25 7,773.9 119.2 1,714.8 21.31%
0.6 30 2,135.9 37.8 1,889.6 20.59%
0.3 5 174.1 27.1 1,879.0 18.35%
0.3 10 4,265.2 251.8 2,057.3 19.89%
0.3 15 5,300.6 135.2 2,396.8 19.54%
0.3 20 4,257.6 69.1 2,161.9 17.32%
0.3 25 9,610.9 187.9 2,674.2 21.61%
0.3 30 10,863.2 120.1 2,795.7 19.24%

Table 8. Comparison Between Creemers et al. (2010) and 
CId for I2 � 0.9

I2 n No. of classes tCreemers (s) tCId (s)

0.9 30 165.7 <0.01 <0.01
0.9 60 453.1 0.02 0.04
0.9 90 577.7 0.05 0.03
0.9 120 824.3 0.05 0.05
0.9 180 1,269.9 0.36 0.14
0.9 240 1,863.6 0.40 0.31
0.9 300 3,044.1 11.42 0.97

Table 9. Comparison Between Creemers et al. (2010) and 
CId for I2 � 0.6

I2 n No. of classes tCreemers (s) tCId (s)

0.6 30 55.9 <0.01 <0.01
0.6 60 133.4 0.01 0.01
0.6 90 232.9 0.03 0.02
0.6 120 211.1 0.25 0.03
0.6 180 347.6 0.11 0.08
0.6 240 697.9 1.19 0.23
0.6 300 787.2 Out of Memory 0.39

Table 10. Comparison Between Creemers et al. (2010) and 
CId for I2 � 0.3

I2 n No. of classes tCreemers (s) tCId (s)

0.3 30 66.7 <0.01 0.01
0.3 60 101.5 0.03 0.02
0.3 90 207.5 0.22 0.04
0.3 120 169.1 3.80 0.04
0.3 180 963.7 2.05 0.88
0.3 240 210.8 NA 0.17
0.3 300 853.8 NA 0.66
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upfront all the data that it needs to identify the classes 
of a network. Instead, the use of recursion in the CId 
algorithm limits its data storage requirements.

7. Conclusions
In this paper, we formulated and solved a dynamic 
model to identify optimal expediting policies for a pro
ject with random progress. Our results contribute to 
the effectiveness of monitoring and control, which is 
critical to project success (Pinto and Mantel 1990). It 
provides practical control policies that build on recent 
technological advances, which have enabled effective 
monitoring of complex operational processes.

In particular, we dealt with an MDP formulation of 
the dynamic project expediting problem and derived 
useful structural properties. In turn, these enabled us 
to devise TBR, an exact solution method that is sig
nificantly less computationally burdensome compared 
with extant available solution methods. We showed 
how our method can be used to attack a larger class 
of so-called stochastic shortest-path problems. The latter, 
termed forward-only stochastic shortest-path problems, 
are characterized by intuitive ordering properties and 
could capture other important applications, including 
medical decision-making and disease modeling. We also 
dealt with the state identification problem and devised 
the SEn and CId algorithms. Numerical experiments 
demonstrated that both our solution and state identifica
tion methods significantly outperform extant methods 
for a supply chain example and for various randomly 
generated instances.

We briefly discuss some possibilities for future research. 
The formulation of the problem and its state-space iden
tification are quite general and could be used in future 
contributions on dynamic project management under 
uncertainty, such as those that study dynamic stochastic 
models for leveling and resource-constrained schedul
ing. The scope of application of the TBR algorithm is 
also quite general. We showed that the algorithm finds 
the optimal solution to forward-only stochastic shortest- 
path problems, a broad class of MDP problems we char
acterized. Future studies could apply the TBR algorithm 
to solve other problems belonging to this class.
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Appendix
How to calculate Pa

xa , ya
(ka) in all possible cases. 

1. If a is in progress in x: 
If ya ≥ xa: 
If a is in progress in y, Pa

xa , ya
(ka) � P(Wa, ka � ya � xa).

If a is completed in y, Pa
xa, ya
(ka) � 1�

Pya�xa�1
i�0 P(Wa, ka � i).

If ya< xa, Pa
xa , ya
(ka) � 0.

2. If a is un-engageable in x: 
If a is un-engageable in y, Pa

xa , ya
(ka) � 1.

If ya� 0: 
If all a′ ∈Πa are completed in y, Pa

xa , ya
(ka) � 1;

otherwise, Pa
xa , ya
(ka) � 0.

If ya > 0, Pa
xa , ya
(ka) � 0.

3. If a is completed in x: 
If ya< la, Pa

xa , ya
(ka) � 0.

If a is completed in y (ya� la), Pa
xa , ya
(ka) � 1.

Proof of Lemma 1. Bertsekas (2017, pp. 237–240) shows that for a 
stochastic shortest-path problem, there exists an optimal station
ary policy µ if there exists an integer M such that, regardless of 
the policy used and the initial state (which in our case is always 
equal to i), there is a positive probability that the terminal state 
will be reached after no more than M periods. Equivalently, 
there exists an optimal stationary policy for a stochastic shortest- 
path problem if, for each control, every state is connected to the 
terminal state by a path of positive-probability transitions. To 
prove this for our problem, it is sufficient to show that for each 
state x ∈ S and each control k ∈K(x) there is a positive probabil
ity to move to at least one state y that is “closer” than x to the ter
minal state f in a sense that will now be made clear.

If x � f, there is nothing to prove. Therefore, let x ≠ f. This 
implies that P, the set of all activities in progress in x, is none
mpty. The assumption 0 ∉K(x) implies that there exists at least 
one a′ ∈ P such that ka′ ≠ 0. Take a state y ∈ X such that the fol
lowing hold: 

1. ya′ > xa′ , and ya ≥ xa for all other activities a that are in 
progress, where ya>xa holds only if ka ≠ 0.

2. ya� xa for all completed activities a.
3. ya ≥ xa for all un-engageable activities a, where ya>xa 

holds only if all predecessors of a are completed in a possible 
transition from x to y.

The probability of moving from x to y is Px, y(k) �
Q

a∈A 

Pa
xa , ya
(ka). For a � a′, and for all other activities a in progress 

such that ya>xa, 0 < Pa
xa , ya
(ka) < 1. For all other activities a, 

Pa
xa , ya
(ka) � 1. Therefore, Px, y(k) > 0. w

Proof of Lemma 2. To prove this lemma, we have to show that 
the relation ⋏

 is irreflexive and transitive. It is irreflexive, that 
is, ¬(x < x), because xa�xa for all activities a. It is obviously 
transitive, that is, x < y and y < z imply that x < z. Therefore, 
it is a strict partial order on the nonempty state space X . w

Proof of Lemma 3. Theorem 10.6.8 in Lehman et al. (2017, 
p. 400) shows that a relation is a strict partial order if and only 
if it is the positive-walk relation on a directed acyclic graph. 
The theorem establishes the equivalence between ⋏

 and the 
positive-walk relation on G ⋏ (V ⋏ ,A ⋏ ). A transitive reduction 
of a directed graph G is a directed graph G′ with the same set 
of nodes and as few arcs as possible, such that if there is a 
path from node v1 to node v2 in G, there exists such a path in 
G′ as well. G′(V′,E′) is the transitive reduction of G ⋏ (V ⋏ ,E ⋏ ). 
This is because every arc e in E′ corresponds to just one unit of 
progress, which is the smallest progress possible. It is obvious 
from the definition of transitive reduction that the positive- 
walk relation on a graph is equivalent to the positive-walk 
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relation on its transitive reduction. This applies to G ⋏ (V ⋏ , 
E ⋏ ) and its transitive reduction G′(V′,E′). w

Proof of Lemma 4. Substituting ŷ for y in Equation (4), we 
obtain

ak∗

1� δk∗
�min

k
ak + δk

ak∗

1� δk∗

� �

;

ak∗

1� δk∗
�min ak∗ + δk∗

ak∗

1� δk∗
, min

k≠k∗
ak + δk

ak∗

1� δk∗

� �� �

;

ak∗

1� δk∗
�min ak∗

1� δk∗
, min

k≠k∗
(1� δk∗ )ak + δkak∗

1� δk∗

� �

:

From ak∗
1�δk∗
�mink

ak
1�δk

, it follows that

ak ≥
ak∗

1� δk∗
(1� δk), k ≠ k∗;

(1� δk∗ )ak + δkak∗ ≥ (1� δk∗ )
ak∗

1� δk∗
(1� δk) + δkak∗ � ak∗ , k ≠ k∗;

min ak∗

1� δk∗
, min

k≠k∗
(1� δk∗ )ak + δkak∗

1� δk∗

� �

�
ak∗

1� δk∗
:

Therefore, ŷ � ak∗
1�δk∗

solves Equation (4). w

Proof of Theorem 1. The linearly ordered state space eX �
{x1, x2, : : : , xs} is a list of states. Because we obtained eX 

through topological sort (Definition 9), we have that for any 
state xi ∈ eX , all states xj with xi ⋏ xj will appear later in eX . 
Thus if xl precedes xi in the list eX , there are two possibilities: 

1. Case 1 xl and xi are incomparable. Then Pxi , xl (k) � 0 and 
Pxl , xi (k) � 0 for every control k.

2. Case 2 xl ⋏ xi. Then Remark 1 implies that Pxi , xl (k) � 0 
for every k ∈K(xi).

Thus for any state xi, it suffices to consider in its Bellman’s 
equation only xi and those states that appear later than xi in 
eX , that is, xj such that j ≥ i. Therefore, we can write Bellman’s 
equation for state xi as follows:

J∗(xi) � min
k∈K(xi)

g(xi, k) +
Xs�1

j�i
Pxi , xj (k)J∗(xj)

" #

i � 1, 2, : : : , s� 1:

For a generic state xi, we already obtained the costs-to-go 
J∗(xi+1), : : : , J∗(xs�1) by applying the TBR algorithm. Next, we 
apply Lemma 4 with the following: 

y � J∗(xi);
ak � g(xi, k) +

Ps�1
j�i+1 Pxi, xj (k)J∗(xj);

δk � Pxi, xi (k):
This is possible because 

g(xi, k) +
Ps�1

j�i Pxi , xj (k)J∗(xj) > 0; and
0 < Pxi , xi (k) < 1:

Then the following cost satisfies Bellman’s equation:

J∗(xi) �
g(xi, k∗) +

Ps�1
j�i+1 Pxi , xj (k

∗)J∗(xj)

1� Pxi , xi (k
∗)

� min
k∈K(xi)

g(xi, k) +
Ps�1

j�i+1 Pxi, xj (k)J∗(xj)

1� Pxi , xi (k)
:

Therefore, it is optimal. w

Proof of Lemma 5. The relation in Definition 11 is reflexive, 
symmetric, and transitive because each component of a state is 
either engaged or unengageable. Therefore, it is an equivalence 

relation on the state space X . As X is nonempty, the equiva
lence classes Ŝ1 , Ŝ2 , : : : partition the state space X . w

Proof of Theorem 2. First, we prove that the CId algorithm 
enumerates all classes of feasible states. Consider any sub
graph Γ(Â, Ê) ∈H.

If the set of predecessors Πa is empty for all activities a ∈ Â, 
then all a ∈ Â are parallel, because, for each a, their predecessors 
are completed. Therefore, Γ(Â, Ê) provides a class of states.

If the set of predecessors Πa is nonempty for at least one 
a ∈ Â, then some activities are sequential in Γ(Â, Ê). Consider 
one such a. For this activity, build the subgraph Γ(Āa, Ē a), 
where Āa � Â \Πa ∪ Sa. Notice that a ∈ Āa because it cannot 
be a predecessor or a successor of itself. Then, in Γ(Āa, Ē a), a is 
no longer in a sequence because its predecessors and succes
sors are not in Āa by definition. Consider the activities 
a′ ∈ Āa. If Πa′ is empty for all activities a′ ∈ Āa, then Γ(Āa, Ê a)

provides a class of states. Otherwise, there exists an activity 
a′ ≠ a that is in a sequence in Āa. If that is the case, build a 
subgraph Γ(Āa′ , Ē a′ ) where a′ is no longer in a sequence. In 
this way, it is possible to recursively build the subgraphs until 
we obtain a collection of sub-graphs in which all their activi
ties are in parallel. These are the classes of states.

The CId algorithm starts with Γ(Â, Ê) � G(A,E) and termi
nates only when H � ∅, that is, when all the subgraphs have 
been visited. Therefore, it generates all the classes of states.

Second, we prove that the SEn algorithm enumerates all 
feasible states.

In a project without precedence constraints, for each class, 
the recursive procedure SEnvisit generates a complete tree in 
which each level corresponds to an activity a and each leaf 
corresponds to a state. In a project with precedence con
straints, for each class, the only leaves that are not generated 
by the procedure are those that correspond to infeasible states 
because of precedence constraints. Therefore, the SEn algo
rithm enumerates all the feasible states for all classes. w

Algorithm A.1 (Dijkstra-Based Value Iteration Algorithm)
begin

e� 0;
eg(x, k) � g(x,k)

1�Px,x(k) ∀x ∈ X ;
ePx, x(k) � 0;
ePx, y(k) �

Px,y(k)
1�Px,x(k) ∀x, y ∈ X |x ≠ y;

L← f;
B←∅;
Set J(x) to +∞ ∀x ∈ X \ {f} and J(f) � 0;

end
repeat

y∗ � arg miny∈LJ(y);
L � L \ {y∗};
B � B ∪ {y∗};
for each x ∉ B do

K̂(y) � {k ∈K(x) |ePx, y∗ (k) > 0 and ePx, y(k) � 0 ∀y ∉ B};
J(x) �min J(x), mink∈K̂(x)[eg(x, k) +

P
y∈B
ePx, y(k)J(y)]

h i
;

L � L ∪ {x};
end
e � e+ 1;

until 
L � X ;
return k∗(x), the control corresponding to J(x), ∀x ∈ X .
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Algorithm A.2 (Policy Iteration Algorithm)
begin

e� 0;
Set ke(x) to a random value ∀x ∈ X \ {f} and ke(f) � 0;

end
repeat

Solve the linear system of equations:
Jke (x) � g(x, ke(x)) +

P
y∈X Px, y(ke(x))Jke (y) ∀x ∈ X \ {f};

Compute:
ke+1(x) � arg mink∈K(x)[g(x, k) +

P
y∈X Px, y(k)Jke (y)] ∀x 

∈ X\ {f};
e� e+1;

until Jke+1 (x) � Jke (x) ∀x ∈ X \ {f};
return k∗(x) � ke+1(x) ∀x ∈ X .

Algorithm A.3 (Linear Programming Algorithm)
begin

Let ω(x) be non–negative continuous variables ∀x ∈
X \ {f};

end
Obtain optimal ω∗(x) by solving the linear programming 
model:
max

P
x∈X\{f}ω(x)

ω(x) ≤ g(x, k) +
P

X Px, y(k)ω(y) ∀x ∈ X \ {f} and ∀k ∈K(x)
ω(x) ≥ 0 ∀x ∈ X \ {f}; 
Compute:
k∗(x) � arg mink∈K(x) g(x, k) +

P
y∈X Px, y(k)ω∗(y)

h i
∀x ∈

X \ {f};
return k∗(x) ∀x ∈ X \ {f}

Algorithm A.4 (Tree Constructor (Based on Creemers et al. 
2010))

Algorithm TreeConstructor()
build empty tree T(V,E);
build root node r;
associate to r fictitious activity a��1;
call AddNodes(T(V,E), r);
return T(V,E);

Procedure AddNodes(T(V,E), v)
if a ≠�1 then

add Sa to forbidden branches T:frb[v];
end
for a′ � a+ 1, a+ 2, : : : , n do

if a �� 1 then
add u (node associated to a′) to V;
add u to adjacency list T:adj[v];

else
if a′ ∉ T:frb[v] then

add u (node associated to a′) to V;
add u to T:adj[v];
T:frb[u] � T:frb[u] ∪ T:frb[v];

end
end
if a� n then

clear T:frb[v];
end

end
for each u ∈ T:Adj[v] do

call AddNodes(T(V,E), u);
end

Algorithm A.5 (Tree Exploration (Based on Depth First Search 
and Creemers et al. 2010))

Algorithm TreeExplorationDFS(T(V,E))
for each node v ∈ V do

v:visited � FALSE;
end
L←∅;
call DFSVisit(root r, T(V,E), L);
return L;

Procedure DFSVisit(v,T(V,E), L)
v:visited � TRUE;
if a(v)≠�1 then

add a(v) to T:Sbs[v] (subset of activities associated to 
v);

end
if v is a leaf then

if T:Sbs[v] is not included in any of the elements of L then
L � L ∪ T:Sbs[v];

end
else

for each u ∈ T:Adj[v] do
if u:visited � FALSE then

T:Sbs[u] � T:Sbs[v];
if a(v)≠�1 then

T:Sbs[u] � T:Sbs[u] ∪ {a(v)};
end
call DFSVisit(u,T(V,E), L);

end
end

end

A.1. CEMPC Heuristic
We present the optimization problem formulation that we 
use to solve the certainty equivalent deterministic optimal 
control problem at the end of each time t, as discussed in Sec
tion 6.2.

For each activity a, state xa, and control ka, we consider the 
expected progress to be made and denote it by wa

xa, ka
�

⌊E[Wa
xa , ka
]⌋. The main decision variables are then the effort 

levels to be exerted in the planning horizon. Let ya,τ,κ indicate 
whether the planned effort level for activity a at some time 
τ ∈ {t+ 1, : : : , T} is at least κ ∈ {1, : : : , K}. A formulation for the 
deterministic optimal control problem at time t that yields an 
optimal solution for the main decision variables is as follows:

minimize
XT

τ�t+1
u · zτ +

XT

τ�t+1

X

a

XK

κ�1
(ca,κ � ca,κ�1)ya,τ,κ (A.1) 

subject to xa,τ � xa,τ�1 +
XK

κ�1
(wa

xa,τ�1,κ �wa
xa,τ�1,κ�1)ya,τ,κ,

τ � t+ 1, : : : , T, ∀a,
(A.2) 

ya,τ,κ+1 ≤ ya,τ,κ, τ � t+ 1, : : : , T, κ � 1, : : : , K� 1,
∀a,

(A.3) 

ya,τ, 1 ≤
xa′,τ�1

la′
, τ � t+ 1, : : : , T,

∀a, ∀a′ immediate predecessor to a,
(A.4) 
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zτ ≥ 1� xa,τ�1

la
, τ � t+ 1, : : : , T, ∀a, (A.5) 

X

a

XK

κ�1
(ca,κ � ca,κ�1)ya,τ,κ ≤ b, τ � t+ 1, : : : , T,

(A.6) 
xa,τ ∈ {0, 1, : : : , la}, τ � t+ 1, : : : , T, ∀a, (A.7) 
ya,τ,κ ∈ {0, 1}, τ � t+ 1, : : : , T, κ � 1, : : : , K, ∀a,

(A.8) 
zτ ∈ {0, 1}, τ � t+ 1, : : : , T, (A.9) 

with variables xa,τ, ya,τ,κ, and zτ, for τ � t+ 1, : : : , T, κ � 1, 
: : : , K, and ∀a. The variables xa,τ correspond to the state that 
activity a is planned to be at time τ—xa, t is not a variable, but 
rather input data, as the state at time t is known. The variables 
zτ indicate whether the project is still in progress at time τ.

The first constraint reflects state transitioning. The second 
constraint enforces that if the effort level is at least κ+ 1, it is 
also at least κ and that if it is not at least κ, then it is not at least 
κ+ 1 either. The third constraint ensures that effort can be 
exerted for some activity at some time only if all immediate 
predecessor activities are complete. The fourth constraint 
ensures that the project remains in progress if any of the activ
ities is still in progress. The fifth constraint reflects the budget 
constraint.
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