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(Donnelly and Glaberson,1966)

Viscous Fluid Jet

 Long cylinder of viscous liquid
 Equilibrium surface deformed by perturbations:

r=a+acoskz

Inviscid Result:
« Stability of deformation depends on the
value of ka

ka > 1 Jet stable

ka < 1 : Jet unstable
=>
Wavelength of instability (A = 2 n/k) has to be
greater than the circumference of the
cylinder.

A>2ma

The unstable mode of wavelength A, grows
exponentially in time at a growth rate q.



Rayleigh’s intuition regarding viscous jets

which viscosity would predominate over inertia. Having in my mind some old
experiments upon the behaviour of fine threads of treacle deposited upon
paper, which slowly resolve themselves into drops having a very similar
appearance to those obtained from a jet of water, I rather expected to find
that under the influence of viscosity alone the mode of resolution would be
nearly the same as under the influence of inertia alone. This anticipation
proved to be wide of the mark, the result showing that under viscosity alone
the value of A for maximum instability would be very great. And a little

Inviscid result for a cylinder of radius a:

The most unstable mode correspondsto L =4.51x2a

Rayleigh’s notation Eggers’ review notation
Tea J' (4 _ . xIi(x) .
pa®  Jy(tha) Iy(x)

Frequency scaled with:

wo=(y/( PJ"E; ) 2



Plot of dispersion relation (k a vs. w/w,) for inviscid jet

According to Rayleigh, the
dispersion curve for the viscous
case should be similar to the
inviscid case.
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In the inviscid case, the dispersion curve is asymmetric.



Rayleigh’s Formulation for viscous jets

* Long, cylindrical thread of an incompressible, viscous liquid
viscosity u, density p, kinematic viscosity
Sinusoidal perturbations along the length of the jet

» Axisymmetric jet — described by Stokes equation

» Equations of motion: (cylindrical coordinates)
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Velocity components satisfying continuity equation
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where, vy is the stokes current function



Eliminate p from EqQ. 1, and use v:

9 10923 _1ayo 23 | 4
(8_I+;a_zﬁ; r or oz J\r*ﬂaz,e}rjqJ DD, @
where, =E—--I--§-+ i

= ror 0z
For small motions, ignoring squares and products of velocity components,
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yis assumed to be a function of z, and t of the form
y oc exp[i(nt+k z) ],

d*r, ld-.h _ 1d1h _
Tt T rdr W rdr(rdr)_k"h_o’

K*=k +nfv.
PN _1d¥s_puy . @ (1 d\h)_ Eragy = 0 infv




Boundary conditions:

No tangential forces at r=a:  2k3+ls + (k" + &) Yy = 0,
(by symmetry)

Normal Stresses balanced by variable part of surface tension at r = a:

Normal stress: P = — p + 24 g?_"
T

Variable pressure due to surface tension: TE '(kﬂa2 — 1)
where T is the surface tension, > :
a is the unperturbed radius, and

E = fudt =Ky /na. is the radial displacement of the column

The forms of y,, and v, satisfying boundary conditions are in terms of
Bessel functions.

Y= ArJ)/(tkr) = BrJ)(k'r).

These functions can be plugged back in boundary conditions and constants
A & B can be eliminated to give a transcendental equation relating growth rate

and wave numbers.



Dispersion relation relating growth rate (i n ) and wave mode (k a)
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Fortunately this equation can be simplified for the viscosity-dominated case.
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Using x =k a, i n = w and using:
Fx) = a2 (Ja(z)/ J2(z) + 1 + 1/a%) =22 + 1 — L2 (7)) I ¥(=),

we get: e T (1_x2) A)
pa )\ 2(x° +1-x>(1; /1))

Unstable: ka > 1

Stability: ka<1
Rayleigh mentions that the function in the denominator does not

deviate much from a value -3forO0 < ka < 1.
3

As an approximation to above form,

in viscosity dominated jet: 305)
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o _( T ] Frequency associated

ua with viscous time scale

Result:
* The most unstable wave number
iska=0
= Infinite wavelength mode
= In practice the jet breaks at a few
distant locations
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Comparison with equations from Eggers’ review: (Rev

Weber’s simplified equation: ( small x limit)
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Mod. Phys., Vol. 69, No. 3, July 1997)

Fastest growing mode:

, |

Xp=

2+ 18/Re
1) Re=100

Xz = 0.699
2) Re =10

Xz = 0.642
3)Re =1

Xz = 0.400
4)Re = 0.1

Xg = 0.150




Tomotika’s work on a viscous jet surrounded by a viscous fluid
(Proc. Royal Soc., 1935)

* Tomotika not only gets Raleigh’s inviscid and viscous jets as special
cases, he can calculate the change of maximally unstable mode with
change in viscosity ratio.

0-6 u = jet viscosity
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Other types of instabilities:

Highly viscous Newtonian, or viscoelastic fluids, at low Reynolds numbers,
impinging on a plate can give rise to bending instabilities,

resulting in coiling of the jet.

More about that from Matthieu, next week!




