
Instability of a cylinder of viscous liquid

Trush Majmudar
Summer Reading Group
Paper by Lord Rayleigh

Phil. Mag. XXXIV. pp 145-154, 1892



Lord Rayleigh
1842-1919

Theory of SoundElectromagnetism

Shape of Pebbles Promoting Science

Fluid Dynamics
Discovery of 

Argon



Books on Google
Free Free

There’s more! Scientific Papers by Stokes, 
Basset’s Hydrodynamics…. 



Viscous Fluid Jet 

(Donnelly and Glaberson,1966)

• Long cylinder of viscous liquid
• Equilibrium surface deformed by perturbations:

z Inviscid Result: 
• Stability of deformation depends on the 

value of ka
ka > 1 : Jet stable           

ka < 1 : Jet unstable
=>
Wavelength of instability (λ = 2 π/k) has to be 
greater than the circumference of the 
cylinder.  

λ > 2 π a  
The unstable mode of wavelength λ, grows 
exponentially in time at a growth rate q.



Rayleigh’s intuition regarding viscous jets

Inviscid result for a cylinder of radius a: 

The most unstable mode corresponds to  λ = 4.51 x 2 a

Rayleigh’s notation Eggers’ review notation

Frequency scaled with:



Plot of dispersion relation (k a vs. ω/ω0) for inviscid jet

(x = k a)

According to Rayleigh, the 
dispersion curve for the viscous 
case should be similar to the 
inviscid case. 

Xc = 0.697
ω/ω0 = 0.343

In the inviscid case, the dispersion curve is asymmetric.



Rayleigh’s Formulation for viscous jets
• Long, cylindrical thread of an incompressible, viscous liquid
viscosity µ, density ρ, kinematic viscosity 
Sinusoidal perturbations along the length of the jet 

• Axisymmetric jet – described by Stokes equation
• Equations of motion: (cylindrical coordinates)

z

r

Velocity components satisfying continuity equation

Continuity equation:

u, w: velocity components, p: pressure

where, ψ is the stokes current function
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Eliminate p from Eq. 1, and use ψ:

where,

(4)

For small motions, ignoring squares and products of velocity components,

(5)

ψ can be written in two parts ψ1, and ψ2 such that:

(6)

ψis assumed to be a function of z, and t of the form
ψ ∝ exp[ i (n t+k z) ], 



Boundary conditions:

No tangential forces at r=a:  
(by symmetry)  

Normal Stresses balanced by variable part of surface tension at r = a:

Normal stress: 

Variable pressure due to surface tension: 
where T is the surface tension, 
a is the unperturbed radius, and

is the radial displacement of the column

The forms of ψ1, and ψ2 satisfying boundary conditions are in terms of 
Bessel functions. 

These functions can be plugged back in boundary conditions and constants 
A & B can be eliminated to give a transcendental equation relating growth rate 
and wave numbers. 



Dispersion relation relating growth rate (i n ) and wave mode (k a) 

Fortunately this equation can be simplified for the viscosity-dominated case.



Using x = k a, i n = ω and using:

we get: 2
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Stability:  k a < 1        Unstable: k a > 1

Rayleigh mentions that the function in the denominator does not 
deviate much from a value -3 for 0 < k a < 1.

F(x) =

As an approximation to above form, 
in viscosity dominated jet:
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Red: eq. B
Blue: eq: A
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Frequency associated 
with viscous time scale

Viscous Jet

Result:
• The most unstable wave number 
is k a = 0

⇒ Infinite wavelength mode
⇒ In practice the jet breaks at a few 

distant locations 



Comparison with equations from Eggers’ review:

Weber’s simplified equation: ( small x limit)

Re=100

Re=10

Re=1

Re=0.1

Fastest growing mode:

1) Re=100
xR = 0.699

2) Re = 10
xR = 0.642

3) Re = 1
xR = 0.400

4) Re = 0.1
xR = 0.150

( )



Tomotika’s work on a viscous jet surrounded by a viscous fluid 
(Proc. Royal Soc., 1935) 
• Tomotika not only gets Raleigh’s inviscid and viscous jets as special 

cases, he can calculate the change of maximally unstable mode with 
change in viscosity ratio. 

µ’ = jet viscosity

µ=  surrounding
fluid viscosity

viscous jet/low viscosity surroundinglow viscosity jet/viscous surrounding



Other types of instabilities:

Highly viscous Newtonian, or viscoelastic fluids, at low Reynolds numbers, 
impinging on a plate can give rise to bending instabilities, 
resulting in coiling of the jet. 

More about that from Matthieu, next week!


