Creeping flow past a liquid sphere

Hadamard (1911)
Comptes rendus de l' académie des sciences V152, p1735
Rybczynski (1911)
Bull. Int. Acad. Pol. Sci. Lett., CI. Sci. Math. Nat., Ser. A.

Jacques Salomon Hadamard (1865-1963)

French mathematician, École Normale Supérieure, Paris
Best known for proof of prime number theorem Member of French Academy of Sciences

Other achievements:

- Hadamard transform (aka Walsh transform), Hadamard matrix (aka Hadamard gate, used in quantum computers) - Introduced idea of well-posed problems in the theory of PDE
- Book on Creativity: "The Mathematician's Mind: The Psychology of Invention in the Mathematical Field" (Dover, 1954)
- Calculus of variations

J'Accuse...!
-Brother-in-law of A. Dreyfus (Dreyfus-Affair, a highly divisive political and legal scandal of the French 3rd republic)

Witolt Rybczynski

-Rybczynski's paper on drops in creeping motion appeared in 1911 in the international bulletin of the Polish Academy of Sciences.
-The article was communicated to the academy by Smoluchowski

O ruchu postẹpowym kuli cieklej w ośrodku lepkim.
Über die fortschreitende Bewegung einer flüssigen Kuge in einem zähen Medium.

Note

de M. WITOLD RYBCZYŃSKI,

présentée par M, M. Smoluchowski m. C. dans la séance do 9 Janvier 1911.
Das Problem, das wir im folgenden bebandeln werden ${ }^{1}$, kanı man als eine Verallgemeinerung der bekannten, von Stokes gelöster Aufgabe ansehen, indem wir die Stokes'sche Annahme beibehal ten, daß die Bewegung der Kugel so langsam sei, daß man deı Einfluß der Tragheit im Vergleich zu dem Einfluß der Reibung vernachlassigen kann, aber voraussetzen, daß die Kugel kein star rer Körper ist, sondern aus einer reibenden Flussigkeit besteht. Da die Lage des Angriffspunktes der wirkenden Krafte bei de

BULLETIN INTERNATIONAL
DE L'ACADÉMIE DES SCIENCES de cracovie

ANZEIGER

AKADEMIE DER WISSENSCHAFTEN in krakau
MATHEMATISCH-NATURWISSENSCHAFTLLCHE KLASSE REHE A: MATHEMATISCHE WISSENSCHARTEM

ANNÉE 1911

Problem statement

Drop translating in a second immiscible liquid (under the action of gravity / body force)

Spherical coordinate system (r, θ, ϕ) with origin in the center of the drop

Axisymmetry: problem in 2D (r, θ) plane
Steady creeping flow: $\operatorname{Re} \ll 1$

Image: DPL

Sphere fixed
at origin problem for a solid sphere to liquid spheres

Stokes (1851):
Drag \& settling velocity of a solid sphere

$$
\vec{F}=-6 \pi r \eta \vec{v} \quad V_{s}=\frac{2}{9} \frac{r^{2} g\left(\rho_{p}-\rho_{f}\right)}{\eta}
$$

Hadamard/Rybczynski approach

2D Creeping flow: use two stream functions, one for each phase: $\psi, \hat{\psi}$
$E^{4} \psi=0$
Biharmonic eq.
$E^{4} \hat{\psi}=0$
With operator $E^{2} \equiv \frac{\partial^{2}}{\partial r^{2}}+\frac{\sin \theta}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\right)$
(" ∇^{2} in spherical coordinates")

Velocities in terms of ψ :

$$
\begin{array}{ll}
v_{r}=\frac{1}{r^{2} \sin \theta} \frac{\partial \psi}{\partial \theta} & \hat{v}_{r}=\frac{1}{r^{2} \sin \theta} \frac{\partial \hat{\psi}}{\partial \theta} \\
v_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial r} & \hat{v}_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial \hat{\psi}}{\partial r}
\end{array}
$$

(see tables in Dynamics of Polymeric Liquids, p25)

Hadamard/Rybczynski approach

Velocities far from the sphere: $\begin{gathered}v_{r}=-V \cos \theta \\ v_{\theta}=V \sin \theta\end{gathered} \quad r \rightarrow \infty$

$$
v_{\theta}=V \sin \theta
$$

Use stream functions of the form $\psi=f(r) \sin ^{2} \theta$
With $f(r)=\left(\frac{A}{r}+B r+C r^{2}+D r^{4}\right)$
B.C. at $r=a$

$$
\begin{array}{cc}
v_{r}=\hat{v}_{r} v_{\theta}=\hat{v}_{\theta} & \text { "adhesion" } \\
-p+2 \mu \frac{\partial v_{r}}{\partial r}=-\hat{p}+2 \hat{\mu} \frac{\partial \hat{v}_{r}}{\partial r} & \text { normal stress balance } \\
\mu\left(r \frac{\partial v_{\theta}}{\partial r}-v_{\theta}+\frac{\partial v_{r}}{\partial \theta}\right)=\hat{\mu}\left(r \frac{\partial \hat{v}_{\theta}}{\partial r}-\hat{v}_{\theta}+\frac{\partial \hat{v}_{r}}{\partial \theta}\right) & \text { tangential stress balance }
\end{array}
$$

Boundary conditions

Use B.C. far away and on drop to eliminate 4 of the 8 constants: Stream functions inside and outside become

$$
\psi=\sin ^{2} \theta\left(\frac{A}{r}+B r\right) \quad \hat{\psi}=\sin ^{2} \theta\left(\hat{C} r^{2}+\hat{D} r^{4}\right)
$$

Plug these into the B.C. at the interface:

$$
\begin{array}{lr}
v_{r}=\hat{v}_{r} \quad v_{\theta}=\hat{v}_{\theta} & \mu\left(r \frac{\partial v_{\theta}}{\partial r}-v_{\theta}+\frac{\partial v_{r}}{\partial \theta}\right)=\hat{\mu}\left(r \frac{\partial \hat{v}_{\theta}}{\partial r}-\hat{v}_{\theta}+\frac{\partial \hat{v}_{r}}{\partial \theta}\right) \\
\text { (I, II: continuous velocities at } r=a) & \begin{array}{l}
\text { (III: tangential stresses at } r=a)
\end{array} \\
\frac{A}{a}+B a=\hat{C} a^{2}+\hat{D} a^{4} & \frac{A}{a^{2}}-B=-2\left(\hat{C} a+2 \hat{D} a^{3}\right)
\end{array}
$$

Boundary conditions

$$
-p+2 \mu \frac{\partial v_{r}}{\partial r}=-\hat{p}+2 \hat{\mu} \frac{\partial \hat{v}_{r}}{\partial r} \text { IV: Normal stress balance at the interface }(r=a)
$$

Pressure from eqs. $\frac{\mu}{\rho} r \operatorname{l} \frac{1}{r \sin \theta}\left[r \frac{\partial\left(E^{2} \psi\right)}{\partial r} d \theta-\frac{1}{r} \frac{\partial\left(E^{2} \psi\right)}{\partial \theta} d r\right]=d\left(g z-\frac{p}{\rho}\right)$ of motion
" $\nabla^{2} u=\nabla p p^{\prime \prime}$

$$
\frac{\hat{\mu}}{\hat{\rho}} r \frac{1}{r \sin \theta}\left[r \frac{\partial\left(E^{2} \hat{\psi}\right)}{\partial r} d \theta-\frac{1}{r} \frac{\partial\left(E^{2} \hat{\psi}\right)}{\partial \theta} d r\right]=d\left(g z-\frac{\hat{p}}{\hat{\rho}}\right)
$$

$$
\left.\begin{array}{ll}
\text { with } z=r \cos \theta: & p=\left(\rho g a+\frac{2 \mu B}{a^{2}}\right) \cos \theta+\text { const. } \\
& \hat{p}=\left(\hat{\rho} g a+\frac{2 \hat{\mu} B}{a^{2}}\right) \cos \theta+\text { const. }
\end{array}\right\}(\hat{\rho}-\rho) g a=-12 \hat{D} \hat{\mu} a+\mu\left(\frac{12 A}{a^{4}}+\frac{6 B}{a^{2}}\right)
$$

Translational motion (velocity V) + additional motion M , where M is tangential on the surface $r=a$

$$
V=2\left(\hat{C}+\hat{D} a^{2}\right) \quad \text { from: } \begin{gathered}
\hat{\psi}=\sin ^{2} \theta\left(\hat{C} r^{2}+\hat{D} r^{4}\right) \\
\hat{v}_{r}=\frac{1}{r^{2} \sin \theta} \frac{\partial \hat{\psi}}{\partial \theta} \hat{v}_{\theta}=-\frac{1}{r \sin \theta} \frac{\partial \hat{\psi}}{\partial r}
\end{gathered}
$$

Translation velocity \& streamlines

After some algebra: $\quad(\hat{\rho}-\rho) g=\frac{9}{2} \mu \frac{V}{a^{2}}\left(\frac{\mu_{1}+\frac{2}{3} \mu}{\mu_{1}+\mu}\right)$

$$
V=\frac{2}{9} \frac{\Delta \rho g a^{2}}{\mu}\left(\frac{\mu_{1}+\mu}{\mu_{1}+\frac{2}{3} \mu}\right)
$$

(Stokes: $V=\frac{2}{9} \frac{\Delta \rho g a^{2}}{\mu}$)

Streamlines:
$r^{2}\left(a^{2}-r^{2}\right) \sin ^{2} \theta=$ const
(revolve around a circle in the equator plane with radilīs

Axisymmetric creeping flows in spherical coordinates

For any problem with the stream function ψ in the general form

$$
\psi=\sum_{n=1}^{\infty}\left[A_{n} r^{n+3}+B_{n} r^{n+1}+C_{n} r^{2-n}+D_{n} r^{-n}\right] Q_{n}
$$

the force exerted by the fluid on an arbitrary, axisymmetric body with its center of mass at $|\mathbf{x}|=0$ is generally given by

$$
F_{z}=4 \pi \mu V_{c} l_{c} C_{1}
$$

where V_{c} and I_{c} are the characteristic velocity length scales and z is the direction of the symmetry axis.
Here: $\quad C_{1}=\frac{3 \lambda+2}{2(\lambda+1)} \quad D r a g=F_{z}=4 \pi \mu V a \frac{3 \lambda+2}{2(\lambda+1)}$
$\lambda=$ viscosity ratio innter/outer liquid
LG Leal, 'Laminar Flow and Convective Transport Processes', p164 \& 209 Deen, Analysis of Transport Phenomena

Drag on a drop / Viscosity of Dilute Emulsions

$$
\begin{aligned}
\text { Drag }=D & =4 \pi \mu V a \frac{3 \lambda+2}{2(\lambda+1)} \\
\lambda \rightarrow \infty & \Rightarrow D=6 \pi \mu a V \\
\lambda \rightarrow 0 & \Rightarrow D=4 \pi \mu a V
\end{aligned}
$$

! Drag on a solid sphere exceeds drag on a spherical bubble by only a factor of $3 / 2$!

Viscosity of a dilute emulsion

$$
\eta_{r}=\frac{\eta}{\eta_{s}}=1+\frac{1+\frac{5}{2} \lambda}{1+\lambda} \phi
$$

η_{r} : relative viscosity
η_{s} : solvent viscosity
$\lambda=$ viscosity ratio inner/outer
$\phi=$ volume fraction

Taylor GI (1932), Proc R Soc Lond A 138:41

Some examples for later modification: deformation of drop...

Taylor \& Acrivos, JFM 1963 - free surface (not spherical)
 - must specify kinematic condition for interface

On the deformation and drag of a falling viscous drop at low Reynolds number

By T. D. TAYLOR
Picatinny Arsenal, Dover, New Jersey
AND ANDREAS ACRIVOS
Stanford University, Stanford, California
(Received 18 May 1963 and in revised form 23 September 1963)

Abstract

The motion at low Reynolds number of a drop in a quiescent unbounded fluid is investigated theoretically by means of a singular-perturbation solution of the axisymmetric equations of motion. Special attention is paid to the deformation of the drop. It is shown that for small values of the Weber number We the drop will first deform exactly into an oblate spheroid and then, with a further increase in $W e$, into a geometry approaching that of a spherical cap. These results are quite insensitive to the ratio of the viscosities of the two fluid phases. The first-order effect of the deformation on the drag of the drop is also included in the analysis.

Steady flows inside and around a fluid sphere at low Reynolds numbers

By D. L. R. OLIVER and J. N. CHUNG

Department of Mechanical Engineering, Washington State University, Pullman, Washington 99164-2920

(c)

The effects of internal circulation in bubbles and droplets have been analysed by means of a semi-analytical series-truncation method. The equations of motion are transformed into a series of coupled, ordinary, nonlinear differential equations by use of orthogonal sets. These infinite-series equations are then truncated adequately and solved numerically. Using this series-truncation method, we have evaluated the effects of different ratios (between the continuous and dispersed phases) of both density and viscosity for the flows of low Reynolds numbers. For all the density ratios investigated, the density difference has almost no effect on the drag coefficient at low Reynolds numbers. The shear stress and the drag coefficient increase with increasing viscosity ratio of droplet to ambience and decrease with increasing Reynolds number.

Drag coefficient at low but non-zero Re $C_{\mathrm{D}}=C_{\mathrm{Do}}+0.0126\left(C_{\mathrm{Do}} R e_{\mathrm{o}}\right)^{2}$.

2. Basic Assumptions

(a) The droplet remains spherical (Rivkin et al. (1976) cite experimental evidence that droplets stay reasonably spherical if the Weber number is below 0.1).
(b) Both fluids are Newtonian and mutually immiscible, and there is no chemical reaction.
(c) The system involves only purified fluids (there are no surface-active materials).
(d) There is no interfacial mass transfer (the radial velocity is zero at the interface).
(e) Fluid properties are constant and the flow is steady.

...Drops with surfactants

Adsorption-controlled Marangoni flow

$$
\begin{aligned}
& \mathrm{Re}=\frac{2 a \rho V}{\mu} \ll 1 \\
& P e_{S}=\frac{2 a V}{D^{S}} \gg 1
\end{aligned}
$$

Surface tension gradients appear In the B.C.
\rightarrow need surface equation of state \rightarrow e.g. Frumkin, Szyckowski

$$
\gamma_{0}-\gamma_{\mathrm{eq}}=-R T \Gamma_{\infty} \ln \left(1-\frac{\Gamma_{\mathrm{eq}}}{\Gamma_{\infty}}\right)
$$

Choice of stream function

Why $f(r)=\left(\frac{1}{r}+B_{r}+C_{r}^{2}+D_{r}^{r}\right)$?

$$
\begin{gathered}
\psi=f(r) \sin ^{2} \theta \quad E^{4} \psi=0 \\
- \\
{\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{\sin \theta}{r^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\right)\right]\left[\sin ^{2} \theta\left(\frac{d^{2} f}{d r^{2}}-\frac{2 f}{r^{2}}\right)\right]=0 \square\left(\frac{d^{2}}{d r^{2}}-\frac{2}{r^{2}}\right)\left(\frac{d^{2}}{d r^{2}}-\frac{2}{r^{2}}\right) f=0}
\end{gathered}
$$

'equidimensional eq.', has solutions of form $f=r^{\prime \prime}$ with $[n(n-1)-2][(n-2)(n-3)-2]=0$, therefore $n=-1,2,3,4$

