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Abstract.

Surface coating is generally achieved by an active operation: painting with a brush, withdrawing from
a bath. Porous imbibition constitutes a more passive way: a porous material just put in contact with a
reservoir containing a wetting fluid is spontaneously invaded. In this case, the material can eventually
be filled by the fluid. If the aim is to coat only the surface of the pores, the liquid excess must be
actively removed. We present an experiment in which a liquid train spontaneously moves in a
capillary tube because of the trail it leaves behind. From a practical point of view, this system realizes
a coating of the tube. The condition required for this motion and a model for its dynamics are
presented. We also show how these trains can drive extremely viscous liquid slugs (or even solid
bodies) in narrow tubes. We discuss the thickness of the deposited films. Extensions and limits of this
system in more complex geometries are finally described, together with special cases such as the

deposition of solid films.



1. Introduction

The motion of a fluid in a tube is generally forced by an external field, such as gravity or a pressure
force. Here, we are interested in cases where the liquid moves in the absence of such a field, because
of surface forces. The most classical example of such a motion, of great historical importance, is the
capillary rise, or capillary flow (Figure la): a tube connected with a reservoir of wetting liquid is
invaded by this liquid, up to the point where gravity balances the capillary force. The driving force can
be related to the existence of a meniscus at the front of the column which develops in the tube, and the
motion can be represented as resulting from an asymmetry between the front and the rear of the
column. It is tempting to generalize this proposition, and indeed different situations were reported in

the literature where the motion of an index in a tube was found to be the result of an asymmetry.
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Figure 1. Asymmetric spontaneous moving slugs in a tube: capillary imbibition (a), conical tube
(b), chemically asymmetric tube (c), liquid containing a reactive surfactant (d), photosensible

surface (e), thermocapillary motion (f).



A slug placed in an open conical tube moves up to the tip of the cone (Bouasse 1924), because of the
difference in Laplace pressure between both meniscii (Figure 1b). Weislogel (1997) considered a tube,
treated to be successively hydrophilic and hydrophobic (Figure 1c). As the liquid preferentially wets
the hydrophilic part, a slug placed across the frontier runs away from the hydrophobic side. The
motion stops when the whole slug is in the hydrophilic side. A dynamic version of this idea is the
chemically reactive drop developed by Bain et al. (1994) and Domingues dos Santos & Ondarguhu
(1995). The liquid contains surface reactive molecules such as chlorosilanes, which modify the
wettability of the solid when they are grafted on it. Thus, if the reaction starts on one side of the drop,
the tube becomes asymmetric, which implies a motion (de Gennes, 1998), whose effect is to maintain

this asymmetry (Figure 1d).

Situations implying an external action were also described recently. For example, photosensitive
systems have been produced (Ichimura ef al., 2000): the tube wall is coated with a compound, whose
surface energy changes when exposed to the light. A gradual lighting then induces the motion of a
liquid index (figure le). Thermocapillary motion can also drive a liquid a surface (Mazouchi &
Homsy, 2000): since the surface tension of liquid usually decreases with a rise of its temperature, a

liquid index can run away from the heated end of a capillary tube (figure 1f).

In the system we study here, the asymmetry is forced by juxtaposing two drops inside a tube (Figure
2): we call this device a bislug. If both liquids wet the tube, the forces at the meniscus do not
compensate, which induces a motion of this train (Bico and Quéré, 2000). This device was
qualitatively described for a system water — carbon disulfide by Marangoni (1871), who reported a

spontaneous motion.
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Figure 2. A bislug composed of two wetting liquids spontaneously moves in a tube. Here, the liquids are ethylene

glycol and silicone oil, and they are juxtaposed in a glass capillary tube of millimetric diameter.

The moving bislug in Figure 2 leaves behind two superposed films, and thus is slowly consumed
during its displacement. If it reaches the end of the tube before being exhausted, the experiment is

reproducible by inclining the tube in order to drive the bislug back. We first identify the driving force



of the system. Then, we focus on the dynamics: we discuss the regimes where the friction is uniform
in the whole train, and those where it is dominated by the film left by the first drop. The latter case
emphasizes the possibility for these devices to transport highly viscous materials. We precise the laws
of deposition, both for the first film (left by the first liquid) and for the second one (deposited on the
first film). Finally, we describe special cases, in particular situations where the liquids are miscible, or

even reactive towards each other, and possible extensions to other geometries.

2. Driving force
2.1. Prewetted tubes

In the example of Figure 2 (ethylene glycol/silicone oil in a glass tube), the motion is observed to be in
direction of the arrow. The bislug has three meniscii, all in a wetting situation, and the middle one
faces the rear of the bislug. In addition, we consider that the tube was first prewetted by liquid 1. Then,
the driving force can be deduced from simple energy arguments: when the bislug moves, an interface

liquid 1/air is changed into two interfaces liquid 2/air and liquid 1/liquid 2 (Figure 3).
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Figure 3. Infinitesimal displacement of a bislug: two interfaces liquid 2 / air and liquid 1 / liquid 2

replace a liquid 1 / air interface.

An infinitesimal displacement of the bislug implies the energy differential:

dE = 2R (y2 + v — 1) dx, (1)

where R is the tube radius, v, and v, the surface tension of liquids 1 and 2 and y, the interfacial tension

between liquid 1 and liquid 2. The force is then given by:

= 2nR Ay, with Ay = y; — V12 — V2. (2)

&[&

Hence, the driving force is found to be primarly related to the contrast in surface tensions between

both liquids (corrected by the small intermediate surface tension). This will justify that we use



sometimes the metaphors of the Jocomotive (which drives the train) for the first liquid, and the waggon

(which opposes the motion) for the second one.

Note finally that the same arguments can easily be generalized to multislugs systems. A bislug can also
move in an immersed environment, in water for example. The main difficulty is to find two
immiscible liquids which do not mix in water. A bislug composed of perfluorodecalin and ethyl

acetate in a Teflon tube filled with water is an example of such a system.

The driving force may also be deduced from the Laplace law, the pressure difference between the front

and the rear meniscus being the sum of three Laplace pressure jumps:

AP — 2(v1-v12-72) _ 24y 3)
R R

If we multiply this pressure by the tube section, we again obtain the expression (2).

Interfacial tensions were experimentally measured with the classical ring method, giving for the
system ethylene glycol / silicone oil: y; =47.7 £ 0.1 mN/m, y, =20.3 £ 0.1 mN/m, and y,,=18.0+£0.2
mN/m. Hence, the driving interfacial tension is: Ay =9.3 £0.4 mN/m. The driving force can also be
directly measured by inclining the tube until the bislug stops. Then, gravity balances the capillary

force (Figure 4), from which the driving force can be deduced:

F = nR*(pi/1+p2)y) gsina, 4)

where a is the tilting angle for which the motion stops, p; and p, the liquid densities, and /; and /, the

lengths of the successive indices composing the train.

Figure 4. Direct measurement of the driving force: when gravity balances the capillary force, the

bislug stops.



We present in Figure 5 typical measurements of o, for an ethylene glycol/silicone oil system in a glass
capillary tube of radius R = 511um. The densities are respectively 1.11 and 0.95 and the total length of

the slug can be varied, typically in the centimeter range.
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Figure 5. Sinus of the measured equilibrium tilting angle versus the inverse of the quantity p;l; + psls,

The system is an ethylene glycol/silicone oil bislug in a glass tube of radius 511um.

This plot is linear, as expected from Eq. 4, and the slope of this line gives the force per unit length. For
this particular example, we find: F/2nR = 10.0 £ 0.3 mN/m, in close agreement with the value

determined by tensiometry (Ay = 9.3 + 0.4 mN/m).

2.2. Dry tubes

In the previous experiments, the capillary tube was first prewetted by liquid 1. In a dry tube, a small

displacement dx of the train implies a change of surface energies:

dE = (y2+yi2+ysL — Ysv) dx Q)

where ysp, and ysy are the solid/liquid 1 and solid/air interfacial tensions. But the expression of the
driving force should not change and remain given by Eq. (2), as if the tube were prewetted. This is
reminiscent of what happens in capillary rise: there, the driving force is given by the difference in
surface tension between the dry tube and the wet tube, namely (ysy — ysL). The latter quantity is not
bounded a priori, while the height of capillary rise is, at a value which is proportionnal to vy, the
liquid/vapour surface tension. In a wetting situation, (ysy — Yysp) can be larger than y so that it is

energetically favourable for a film to develop ahead of the meniscus. Thus, the advancing meniscus



progresses on a microscopic precursor film. De Gennes (1985) has shown that the energy excess per

unit surface (ysy — ys. — 7) is exactly consumed in the progression of this precursor film.

These arguments are valid for a bislug moving on a dry surface. In a complete wetting situation, a
microscopic film develops ahead the front meniscus, which progresses on this film. Thus, the driving
force Ay is the same as in the prewetted case, and still is given by equation (2) (we checked
experimentally this point, using the tilting method for measuring Ay for a dry system, and for a
prewetted one). As a consequence, these forces are always measurable, since they only involve

tensions between a liquid and a vapour and between two liquids.

2.3. Partial wetting

In the case of partial wetting for the three meniscii, the Laplace force can be written:

F = 27R (y,c080; — y12c080; — y,c0s0,) (6)

where 0, 01, and 6, are the contact angle at each meniscus (Figure 6).
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Figure 6. Partial wetting case: no motion occurs.

The Young relation relates the contact angle and the interfacial tensions:

Yij COSeij = Ysi — Vsj (7)

Then, the force F' can be calculated. All the surface tensions cancel, and we just find: 7 = 0. This result
can be simply understood in terms of surface energies: in partial wetting, the displacement of the train
does not induce any coating, and thus surface energies remain unchanged. Thus, there is no reason for
the train to move. More generally, a necessary condition for observing a spontaneous motion is that

one meniscus (at least) must be in a total wetting situation.



2.4. Middle meniscus

In the system considered in Figure 2, the middle meniscus was curved towards liquid 2, and thus
opposed the motion. If the couple of liquid is hydrophilic/hydrophobic (the most common case), this
implies a hydrophilic solid (which was the case in Figure 2, where the tube was made of glass). Taking
a hydrophobic tube (made of polymer, for example) leads to the opposite case, but the liquids must
still wet the material: the latter condition can be rather restricting with a low energy surface, which
practically makes this situation rarer. A bislug prepared with ethanol and silicone oil in a polyethylene

tube is an example of this kind of systems (Figure 7).

Figure 7. Inverted middle meniscus: ethanol /silicone oil bislug in a polyethylene tube.

In this case, the middle meniscus also drives the liquid and the force per unit length can be written:

Ay = vi+y2—T2 (8)

For the system displayed in Figure 7, measurements of the interfacial tensions give: y; =23.0 £ 0.1
mN/m, y,=20.6 £0.1 mN/m and y;; = 1.6 £ 0.3 mN/m, which gives as a driving tension: Ay=4.0+0.5
mN/m. The latter value is in good agreement with a direct measurement of the force (by the tilting
method), which yields: F/2nR =4.1 £ 0.4 mN/m. This value is rather low (in spite of the action of the
intermediate meniscus, which now favours the motion), because the condition of complete wetting

imposes the use of liquids of small surface tensions, which lowers the contrast between y; and v,.

2.5. Miscible liquids

Bislug experiments might also be realised with miscible wetting liquids. The motion should exist
provided the liquids have different surface tensions. Then, the force per unit length can simply be

written:

Ay = v1—72 9)



The experiment can be achieved, for example, by juxtaposing toluene (y; =28.5 mN/m) and silicone oil

(y2 = 20.6 mN/m) in a tube. As long as the two liquids are not completely mixed, the slug is

asymmetric and moves (Figure 8).
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Figure 8: Bislug prepared with two miscible liquids (with y; > y3). As long as the liquids are not totally mixed,

the slug moves.

The slug typically moves on its own length and stops when the mixture becomes uniform. Thus, this

system should be principally relevant for applications where the movement is limited.

The mixing can be limited by introducing an air bubble as a spacer between the liquids. Then, the

system remains asymmetric much longer, which keeps the motion alive (Figure 9).
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Figure 9: An air bubble as a spacer between the two miscible liquids slows down the mixing.

2.6. Reversing the motion

As it moves, the bislug can finally reach the end of the tube. The front meniscus gets pinned at the
tube end and the contact angle at that place is allowed to take any value between 0 and 90°. It indeed
increases, up to the point where Laplace pressures are balanced (Figure 10). The equilibrium contact

angle 0, is then given by: y;cos0; =17y, + 7.

. C

Figure 10: Bislug at the end of the tube. The value of the contact angle fits a Laplace pressure balance.




If an index of a liquid O of low surface tension (for example hexadimethylsiloxane, the lighest silicone
oil, if considering the system ethylene glycol/viscous silicone oil) is juxtaposed to the train, a trislug

forms and starts flowing towards the opposite direction (Figure 11).
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Figure 11: Reverse motion: juxtaposing a liquid of low surface tension can invert the motion.

The driving interfacial tension now is:

Ay =y2+Y12=Y10— Yo (10)

where 7y, is the surface tension of the third liquid and yo its interfacial tension with liquid 1. In the
system we described, the values of the different tensions are respectively 20.3, 18, 16 and 4.3 mN/m,

which leads to a driving tension of 18 mN/m.

3. Dynamics
3.1. Observations

The experiment consists in introducing a bislug in a horizontal capillary tube and recording the
position x of the front as a function of time. The results displayed in Figure 12 correspond to a ethyene
glycol/silicone oil drop in a millimetric tube first prewetted with a film of ethylene glycol of thickness
4 um. The velocity is a constant (of the order of 1.5 mm/s in this example), although the length of the
bislug slightly decreases (less than 10%), because of the coating.

10



O T T

0 50 100 150
t(s)

Figure 12. Position of an ethylene glycol/silicone oil bislug as a function of time. The glass tube
radius is 341um and the successive lengths are 16mm and 11mm. The two liquids have the same

viscosity of 17 mPa.s. The velocity is observed to be a constant, equal to 1.55 mm/s.

We first focus on the case where the two liquids have comparable viscosities and study how the bislug

speed varies as a function of its length, its viscosity and the tube radius.

3.2. Long trains

We first neglect dissipations close to the contact lines (case of long trains) and consider liquids of
comparable viscosities. Then, balancing the driving force £ with the Poiseuille friction inside the train

can be written:

F = 87'C(T]1[1+T]2[2)V (11)

where V is the bislug speed, n; and /; the viscosities and the lengths of both parts (as soon as /; is

centimetric, the meniscus size can be neglected). We thus find a constant velocity for the train:

RA
- ™A (12)
40l +m2ly)
If both liquids have the same viscosity 1, the velocity simply reduces to:
V = Ray (13)
4nL

where L is the total length of the bislug.

11



Figure 13 shows the train velocity as a function of its length for the system ethylene glycol/silicone oil
in a prewetted glass tube of radius R = 341um. The viscosity of both liquids is 17.3 + 0.5 mPa.s and
the driving tension was shown in the previous section to be 10 mN/m. The results are well described
by Eq. 13 if the bislug is long (L > S5cm). For shorter trains, the dissipation in the meniscii cannot be
neglected, which implies smaller velocities, as observed. We describe in the next section this

additional friction.
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Figure 13. Experimental variation of the speed of an ethylene glycol / silicone oil bislug as a
function of its length. The data are compared with Eq. 13 (in dotted line) and with Eq. 21 (in full
line).

A second series of experiments was carried out with an ethanol/silicone oil train in a dry tube of
polyethylene (the middle meniscus is inverted, system displayed in Figure 7). The driving interfacial
tension is 4.1 mN/m and the tube radius is 425 pm. Since the viscosities of the two liquids are not the
same (respectively 1.45 mPa.s and 17 mPa.s), the length of the ethanol index is kept constant (/; = 13
mm) and the bislug speed measured as a function of /,, the length of the oil index. The measured
velocities are plotted in Figure 14 and compared with the Poiseuille model (Eq. 13). The data are
found to deviate dramatically from this prediction, which confirms the hypothesis of an additional

dissipation, which is enhanced here by the fact that two meniscii are moving on a dry solid.

12
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Figure 14. Velocity of an ethanol / silicone oil bislug in a dry polyethylene tube of radius 425 um
with an ethanol index of constant length (13 mm). The data are compared with eq. 12 (dotted line)

and with a model taking into account additional dissipation in the meniscii (eq. 21, in full line).

3.3. Local dissipations

The motion of a meniscus on a solid surface has been a subject of large interest and controversy for the
past three decades. The tricky point relies on the application of the non-slip condition close to the
contact line. However, the relevant physical ingredients of this problem are commonly admitted:
viscous friction tends to retain the liquid at the vicinity of the tube wall while capillarity tries to restore
the static shape of the meniscus. This dynamic effect flattens an advancing meniscus and increases the
curvature of a receding one (Fig. 15). Neglecting inertia, the dynamic advancing contact angle is a
function of the capillary number Ca, the quantity which compares viscous and capillary forces:

Ca = WV (14)

Y
Measurements of dynamic contact angles 6 in capillary tubes have been conducted by Hoffman
(1975), who showed that 0 scales as Ca", for 0 in the interval [0, 120°]. A straightforward argument
due to de Gennes (1985) explains this law for small 6: balancing the non compensated capillary force

with the viscous force close to the contact line leads to:

1/3
0= (61‘ ﬂj (15)
Y

13



where the prefactor I' is related to physical cut-offs, typically the tube radius R and a molecular length

a, in the expression of the viscous dissipation:

I' = In(R/a) (16)

If the tube radius is in the millimeter range and a of the order of some angstroms, I' is about 15. Such a

value in Eq. 15 provides an excellent agreement with Hoffman’s data.

The thickness /4 of the film deposited behind a wetting meniscus is also a function of the capillary
number Ca (Taylor 1961, Bretherton 1961), since the viscosity and capillarity play antagonist roles in
this process (viscosity causes the deposition while capillary forces oppose the formation of a film).

Here again, the resolution of this problem leads to a simple scaling law (Bretherton 1961):

hq = 1.34R Ca*® (17)

where /¢ is the final thickness of the coating film. This relation is valid in the range 107 < Ca < 107~
Van der Waals forces become important for very thin films (low value of Ca), as shown by Teletzke
(1983) and Joanny (1985). Conversely, the limit for the film thickness at high capillary numbers was
described by Taylor (1961).

If we consider a bislug with an inverted middle meniscus, the curvature of the three meniscii is
affected by the liquid flow (Figure 15): the two first driving meniscii get flattened, while the curvature

of the third one becomes higher because of the deposition of a coating film.

™M M,

Figure 15. Dynamic contact angles and film coating in a moving bislug (the middle meniscus here is inverted,
i.e. it faces the front).

These three dynamic effects tend to slow down the bislug, whose driving pressure becomes:

_ 2y cos 0; N 2y;pc080; 2y,

AP ,
m R R R-h

(18)
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where 0, and 0, are the dynamic contact angles at the first and second meniscus and / is the difference
between the actual radius of the third meniscus and the tube radius. Bretherton showed that it is simply
proportional to /q, the thickness of the deposited film (& = 2.90 Aq). Using Egs. 17 and 15, and

developping for small Ca, we obtain:

2/3
AP, ﬁ[l(LJ J 19)
R V *

Ay is the driving interfacial tension Ay =y, + y1» — v», and the characteristic speed V* is defined as:
3/2
Ay

AE
1.65F2/3 (y11/3n$/3 +yii3n§/3)+3.88y12/3n3/3

(20)

The speed of the train is finally deduced from a balance between the Poiseuille pressure drop (11) with

the dynamic driving pressure (19), which gives:

2/3
v=_ Rar 1—(lj 1)
4(mh +n2l2) A

Equation (21) shows that V* is the maximum possible velocity of the bislug. Since it is fixed by local
dissipations, it is logically found to be independent of the tube radius (neglecting the only logarithmic
dependence contained in I'). For the system ethanol/silicone oil (y; = 23 mN/m, y;, = 1.6 mN/m, y, =
20.6 mN/m, n; = 1.45 mPa.s and n; = 17 mPa.s), we find V* = 5 mm/s (taking ' = 15). In the limit of
long trains (V — 0), Eq. (21) reduces to the Poiseuille expression (Eq. 12), the local dissipative effects
being in this limit dominated by the bulk dissipation. Eq. 21 can finally be drawn and compared with
the data, which is done satisfactorily in Fig. 14.

Eq. 21 can also be adapted to the first case described here, where the middle meniscus was opposing
the motion and where the tube was first prewetted by a film of liquid 1. Equation 21 is indeed found to
fit quite well the data in Fig. 13, taking for the characteristic velocity V* = 23 mm/s. This value is
larger than in the previous example, in particular because of the existence of a prewetting film. Then,
the friction is attenuated, which can be treated by taking as a small cut off in the factor I' the thickness

of this film (Joanny 1985):
I ~ In(R/hy) (22)

where £, is the thickness of the prewetting film. This thickness was measured (by considering the

decrease of the index of liquid 1 first moved to prewet the tube) and found to be Sum. As the tube

15



radius is 341pm, I' should of order 4. Using Bretherton’s law (17) to estimate the two rear meniscii,

. £
the expression for V' becomes:

3/2
1 Ay
n| 1.6502/3 y11/3 +3.88(y11;3 +y12/3)

V= (23)

The measured values of the interfacial tensions and the viscosities give V' = 16 mm/s, in fair

agreement with the value deduced from the fit.

The modest values of the maximum speed V' might be frustrating for practical applications such as
driving liquid fuels in a low gravity environment. However, much higher speeds can be reached with
liquids of lower viscosity presenting a large contrast in surface tensions. Velocities as large as 1 m/s
have for instance been measured for a centimetric bislug composed of water and ether (y; = 72 mN/m,

Y2 =16 mN/m and y;; = 11 mN/m).

4. Self lubrication
4.1. Principle

We now focus on the possibility of tuning the contrast between the two liquids viscosities. Systems
composed of ethylene glycol and silicone oil have been selected for this purpose. The polymeric oils
are available in a quite large range of viscosities (from 17 mPa.s to 6.10° mPa.s) and provide constant
interfacial tensions whatever the viscosity. We confirmed this fact by measuring the driving interfacial

tension, and found constantly Ay = 10 mN/m.

The series of experiments consisted of measuring the velocity with a fixed locomotive, and varying the
viscosity of the waggon. After a transient regime during which the bislug typically moves on the oil
length, a steady speed is observed. Surprisingly, this velocity remains relatively high (of order of a
fraction of mm/s), even with the most viscous oils. These results are displayed in Fig. 16, where the
bislug velocity is plotted versus the oil viscosity, for three different lengths of oil index and a given
length of ethylene glycol length (15 £ 1 mm). The tube has a radius of 0.511 mm and is prewetted with
ethylene glycol before each experiment. For small oil viscosities 1, the bislug speed decreases as
increasing 1), in qualitative agreement with the Poiseuille model (12). But for highly viscous oils, the
velocity deviates from the expected behavior and reaches a plateau independent of the oil viscosity.
The bislug can move much faster than predicted from the Poiseuille model (12): for an oil viscosity of

10° mPa.s, the speed is one thousand times higher than expected!

16
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Figure 16. Train velocity as a function of the viscosity of the oil composing the waggon, for three
different waggon lengths. The data are compared with a Poiseuille model (Eq. 12, dotted line), a
plateau velocity calculated from a first order self lubricating model (Eq. 29, horizontal dashed

line) and a model taking into account additional dissipations developed in appendix (full line).

4.2. Slipping waggons
The mobility of these trains is due to the self lubrication of the system: the trail left by the locomotive

acts as a lubricant for the second (viscous) index, as sketched in figure 17.
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Figure 17. Self lubrication: the second index can slip over the trail of the head index.

If the second liquid is very viscous compared with the first one, most of the viscous dissipation occurs
in the lubricating film. A simple Couette flow is then expected, if the viscous stress is lower in the

lubricant than it would be in the viscous oil without any lubrication. This condition writes:

n v < oV (24)
h R

Then, the viscous force is given by (instead of Eq. 11):

17



F = 2R Y

(25)

where /, is the length of the waggon and % the thickness of the film deposited by the locomotive.

Balancing this viscous force with the driving force (2) yields:

hAy
oup

V = (26)
As the film thickness depends also on the bislug speed, Equation (26) is an implicit expression of the
velocity. The value of 4 remains to be discussed. This problem is close to the Bretherton problem
evoked earlier (Eq. 17), but the film here is deposited in a highly viscous environment. Schwartz et al.
(1986) derived the fluid flow equations with this particular condition (1, >> m;) and established that
the thickness of the deposited film still obeys the Bretherton scaling, with a modified prefactor. The
film is found to be thicker, by a factor 2*”* (about 1.6). The thickening physically comes from the fact
that the capillary backflow, which limits the film thickness, is less efficient than in the Bretherton
problem, because of the presence of a very viscous liquid “above”. The Schwartz-Bretherton

expression for the film thickness is finally written:
h = 2.13R Ca**, with Ca =1,V/y1 (27)

It is worth checking the validity of this expression. We measured the film thickness of by observing
the shortening of the first index during the motion of the bislug (which could be either the spontaneous
or forced by a slope, to vary more conveniently the speed). The flow conservation leads to the

following relation between these two quantities:

Al
L

h = (28)

where A/, is the shortening of the first index for a displacement L of the bislug. This relation is only
valid if we have : n,/n; >> R/h. A more accurate derivation presented in the appendix was used for our

measurements.
The results are plotted in Figure 18 as a function of the capillary number. The film is found to be

significantly thicker than a Bretherton film, and the data are well described by the Schwartz-
Bretherton equation (27).
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Figure 18. Lubricant film thickness measured for different oil viscosities and compared with the

Schwartz-Bretherton law (Eq. 27, full line) and with the Bretherton law (Eq. 17, dotted line).

We can now express explicitly the velocity in Eq. 26, using Eq. 27. We find:
Ay A 2 R .
V = 9.62 —y[—y] [—] (29)
m\r2) (A
The lubrication condition (24) finally writes:

2
Y12 12
>> (.1 LEL A S 30
e L (AyR] (39)

Expression (29) is independent of m,, the viscosity of the second index, in agreement with the
observations in Fig. 16, where it is drawn in dotted line. A quantitative agreement is found for the
longest bislug ([, = 16 mm). For shorter waggons, the experimental speeds are significantly lower than
predicted. Viscous dissipation in the first index and the dynamic curvatures of the menisci have been
neglected in this first approach. These additional dissipations are relatively important for shorter

indices and must be taken into account for a better description of the flow.

4.3. Additional dissipations

The flow in the head index induces a Poiseuille force which writes:

F = 87'CZ1T]1V (31)
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But, as stressed above, most of the additional dissipation occurs in the contact lines, which reduces the
driving interfacial tension Ay of a factor [1-(V/V")**], as described in Eq. (19). The characteristic
speed V* is given by the expression (23), slightly adapted to this particular situation:

1) The expression for the advancing meniscus curvature remains the same; with a T'—value
corresponding to a prewetted tube (I" = 4-5).

2) The lubricant thickness is given by the Schwartz-Bretherthon law (27), so that the prefactor 3.88
must be multiplied by 2%°.

3) The very slight diminution of the second index length during its displacement shows that the second
coating film is very thin (this problem of double coating is developed in Section 5). Thus, we assume

the same curvature for both the rear and the middle meniscii.

If we take into account these modifications, the expression of the speed V" becomes:

3/2

yr= L el

N | 1.65T2/3 413 +12y1;3
1 1

(32)

For an ethylene glycol / silicone oil system, this gives V' = 5mm/s. The introduction of both

additional dissipations finally lead to the expression of the speed:

v 23
*
v-MR v (33)
Nyl 213
( Y12 J L
311"[1\/ 12

The solutions of this equation for the oil lengths 4, 7.5 and 16 mm are respectively: 0.69, 0.27 and
0.045 mm/s, which are much closer to the experimental data (respectively 0.6, 0.2 and 0.05 mm/s). A
complete description of the transition from the Poiseuille regime to the self-lubricating plateau is
developed in the appendix. The dissipation in the second liquid (which depends on 1),) is taken into
account in this model which fits rather well the experimental results in Figure 16, whatever the oil

viscosity or the index length.

5. Double coating

In this section, we focus on the double trail left behind a “classical” bislug (when the middle meniscus
is inverted as in Fig. 7, a single film is deposited and its thickness is given by the Bretherton law 17).
We discussed the law for the deposition of the first film, and how it is modified by the presence of a

surrounding viscous fluid (Eq. 27). The problem is much more complex for the second film, which is
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deposited on a liquid, which lubricates the deposition. Our aim here is mainly to show experimentally
how the presence of a liquid below the deposited film affects the film thickness. Then, we discuss the

possible formation of lobes at the rear of the drop, which can stop the motion.

5.1 Measurements

The thickness 4, of the second film is deduced from the shortening of the second index. To vary
conveniently the speed of deposition, the tube was tilted, which adds gravity as a driving force for the
bislug and allowed us to achieve speeds between 0.1 and 10 mm/s. Long capillary tubes of 50 cm were
used to improve the sensitivity of the experiment. The index length was measured with a camera fitted
with a macro lens, which gives an accuracy on the index length of 0.1 mm. This yields a precision for
the film thickness of the order of 10™*R (less than 0.1 pm). The systems studied are the same as in the
previous section: ethylene glycol index followed by silicone oil, whose viscosity can be tuned between
17 mPa.s and 500000 mPa.s. The ratio 4,/R obtained from several series of experiments is plotted in

Figure 19 as a function of the capillary number Ca, = 1, V/y,.

0.1
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O o O
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2 2 09 8O O
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B @£D§ :
1E'4 T T T T T
1E-4 1E-3 0.01 0.1 1 10 100
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Figure 19. Ratio hy/R as a function of the capillary number Ca, = M, V/y, for different oil viscosities: 17
mPa.s (W), 100 mPa.s (&), 1000 mPa.s (0), 12500 mPa.s (®) and 100000 mPa.s (). The Bretherton law
(17) is drawn in full line.

The thickness of the Bretherton film is also indicated in Fig. 19, and the second film is found to be
much thinner. In addition, it is observed that %, decreases with Ca, for high capillary numbers. Both
these features are related to the lubricant layer of the first liquid which reduces the friction, and thus
the film thickness. The lubricant thickness increases with the velocity (see Fig. 18), which induces a

reduction of the second coating.
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5.2. Slipping length

The thickness of the lubricant film was found to obey the Schwartz-Bretherton law (27). We can
define for the second liquid moving on this film a slipping length b, defined as the virtual distance for

which the extrapolated velocity profile vanishes (Figure 20).

h

Figure 20. Definition of the slipping length b for the second liquid.

The stress continuity condition gives:

S S
M2 =M A (34)

where V is the fluid velocity at the liquid-liquid interface and 4, the lubricant thickness. This
expression should only be relevant when the viscosity is much higher for the second liquid than for the
first one (which then can play the role of a lubricant). The introduction of the Schwartz-Bretherton law

(27) leads to:

v 2/3
b= 2.13R”—2(”1—J 35)
M\ Y12

We propose to look for deviations towards Bretherton law by expressing the results in the following

way:
h, = 1.34R P(b/R) Ca,*? (36)

where the prefactor P(b/R) is expected to tend towards unity when the slipping length vanishes. This
quantity can be deduced from experiments such as the ones reported in Fig. 19, and for each
experiment b can be estimated from Eq. 35. Fig. 21 shows the way they depend on each other. The

data are taken from Fig. 19, and additional experiments are superimposed : as another kind of bislug
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(to test the influence of y;,), we chose a surfactant solution (n-decyltrimethyl amonium bromide) of
very high concentration (660 mMol/l, i.e. 10 times the c.m.c.), which allow to limit Marangoni effects

(Quéré & de Ryck, 1998).

It turns out that this representation makes all the experimental data collapse on the same master curve.

This curve is correctly fitted by the expression:

1
1+15(b/R)* +17(b/R)1H

P(b/R) ~ (37)

also represented in Figure 21.
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Figure 21. Experimental measurement of the factor P(b/R) (ratio of the thickness over the Bretherton one, as
defined in Eq. 36) as a function of the adimentional slipping length b/R for different oil viscosities and tube
radii: 5 mPa.s (+), 16 mPa.s (L), 100 mPa.s (&), 1000 mPa.s (0), 12500 mPa.s (0), 100000 mPa.s (I]) and
500000 mPa.s @ ) in a tube of radius 341 um; 1000 mPa.s in a tube of radius 250 um or (o) 984um (e );
surfactant solution (dTAB at 10 cmc) and silicone oil of 1000 mPa.s in a tube of 341um (&). Straight line:
empirical fit given by the relation (37).

Eqgs. 36 and 37 allow us to propose an empirical relation for the thickness of the second film :

1.34R (Ca*)*"3
1+18(Ca*)*? +32(Ca*)*®

2/3 3/2 v
with h*:[y—z ”—2j h, and Ca*z[”_zj [”1_]
Y1 M M T12

h* =

(3%)
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The latter expression allows us to describe quite well the experimental data, as shown in Figure 22.
Nevertheless, this study remains empirical and should be further implemented by theoretical

arguments or numerical simulations.
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Figure 22. Normalized thickness h* as a function of the capillary number Ca* defined by (38); same
symbols as in Figure 21. The full line corresponds to equation (38).

5.3. Formation of lobes

We saw that a bislug in a wetting situation moves under the action a well-defined force, which can be
determined a priori. It leaves (in the most usual situation) two films, of thickness respectively given
by Equations 27 (or possibly 17) and 38. But a special case can complicate these views. Let us
consider a bislug composed of ethylene glycol (liquid 1) and toluene (liquid 2) juxtaposed in a glass
tube. Interfacial tensions y;, y1» and v, are respectively 47.7, 8.9 and 28.3 mN/m, which leads to a
positive driving tension Ay of 10.5 mN/m. The bislug moves spontaneously, as expected, but a lobe
appears and grows up near the rear meniscus (Figure 23). The lobe finally pinches across the tube, and
forms a lens, adding a second and a third waggons for the train, respectively made of liquid 1 and
liquid 2 (the latter coming from the film deposited on liquid 1, which coats the lens as it is formed). At
this point, the system is still asymmetric and the motion goes on. But the fourth index is rather short
(of the order of the tube radius), and because it is not supplied, it vanishes because of the coating.
Then, the system becomes symmetric and the motion stops. Note that in the example presented in
Figure 23, the train is even observed to reverse its motion: the liquid lengths have been carefully

chosen to induce a simultaneous vanishing of the ethylene glycol and the fourth toluene indices.
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Figure 23. Ethylene glycol / toluene bislug in a glass tube (for a better visualization, the
ethylene glycol index has been dyed).

The steps of the formation of the lobes (and the resulting stop of the train) are sketched in Figure 24.

stop

Figure 24. Formation of a lobe of liquid 1 at the rear meniscus which leads to the end of

the motion.

The lobe formation may remind the classical Rayleigh instability (Rayleigh, 1879): a liquid cylinder or
an annular film are not stable and adopt a regular undulating shape which reduces the surface energy

of the system. The characteristic wavelength of the fastest growing mode is given by the relation: A =
242 7R ~ 9R, where R is the radius of the liquid cylinder. Long toluene indices would then lead to a

string of lobes, which is not observed during the bislug motion. The incompatibility between lobes and
Rayleigh instability could be checked by the following experiment. An ethylene glycol / silicone oil
bislug spontaneously moving is stopped before the end of its trip by closing one end of the tube. The

lubricant film then classically undergoes an a Rayleigh instability, as expected. If the tube is reopened,
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the bislug starts again and the undulations are collected in a lobe at the rear meniscus. Contrary to the

previous example, this Rayleigh-type lobe progressively disappears as the bislug moves.

The lubricant film is obviously responsible for the lobe instability. Its thickness is characterized by
two limiting values (Figure 25): a first value /4, between the tube wall and the waggon, and a second

one /'y in the trail of the bislug, where it is coated by a film of liquid 2.

h'y

Figure 25. The two different thicknesses h; and h'; of the lubricant film.

As detailed previously, 4, can be estimated from the Bretherton law possibly corrected by a numerical

factor (Eqgs. 17 and 27):

v 2/3
hy ~ R(_"l j (39)
Y12

The value of the numerical prefactor is a function of the viscosity ratio and ranges between 1.34 and
2.13. If the second liquid is not too viscous compared with the first one, the value /', results from the
same viscous dissipation than for /4, but the capillary component should be related to the surface

tension v, (instead of y;,). In a first approximation, the following scaling may be expected:

2/3
h'y ~ R(MJ (40)
Y2

Because of flow conservation, a disproportionate thickness /; should lead to an accumulation of liquid

near the rear meniscus. A condition for observing a lobe should thus be: 4'y << &, which yields:

Yi2 << 72 (41)

In the opposite case, the first flow is not enough important to supply the second flow and the thickness
h'; should be fixed by 4;. A more quantitative condition for the onset of the lobes formation has been
experimentally evaluated with a series of bislugs, where the first index consisted of a solution of

ethanol in water and the second one of silicone oil. Varying the ethanol concentration allowed us to
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tune the interfacial surface tension Yy, keeping 7y, constant. Lobes do appear or not, and the

corresponding results are plotted in Figure 26, together with the measured variation of y;, with the

ethanol concentration.

no lobes

Y12 (MN/m)

0 20 40 60 80 100
ethanol (%)

Figure 26. Interfacial tension y;; between silicone oil and a solution of ethanol in water as a function

of the ethanol concentration. When y;, is below a critical value, a lobe grows up as the bislug moves.

A precise measurement of the critical value of the interfacial tension y;, provides an empirical

quantitative condition for the lobes formation:

'le/'YZ < 0.6+0.1 (42)

Other series of experiments have been carried out with squalane (y, = 28.5 mN/m) or perfluorodecalin
(y2=16 mN/m) and confirm this result. The system ethylene glycol / toluene has a ratio y;,/y, of order
0.3, and thus logically leads to formation of lobes (Fig. 23). On the other hand, systems presented
before this section do not satisfy criterion 42. For an ethylene glycol / silicone oil bislug, the ratio

Y12/ 7218 0.9 and lobes were not observed (Fig. 2).

Condition (42) remains empirical and theoretical improvements or flow simulations are necessary for a
better description of the phenomenon, which is related to the complex double coating problem. This
experiment shows anyway the ubiquitous role of the lubricant: it allows highly viscous species to
move in narrow environments, but it can also provoke this lobe instability, which opposes the motion

of the train.
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6. Variations

We describe in this section some special bislugs, which allows us to stress why they could be in some
cases interesting for microfluidics applications. We first present some experiments involving reactive
liquids, which induce the manufacturing of polymer structures (tube coating or adjusted pistons) in a
confined environment. Then, extensions to other geometries, from Hele-Shaw cells to simplified

porous media, are discussed.

6.1. Reactive systems

All the systems presented until now were chemically inert and the motion was only due to the contrast
between the interfaces. It would be nevertheless interesting to consider reactive systems which would

eventually lead to the fabrication of small structures.

We start with a high school teaching experiment: the Nylon® synthesis. This polycondensation
involves hexanediamine and adipoyl chloride (respectively dissolved in water and in an organic
solvent, such as chloroform). The reaction takes place at the interface between the two liquid phases.
A polymeric film condenses at this interface, and a Nylon thread can be spinned if the operator pulls
out the product with a tip. In order to adapt this experiment to the liquid train system, an hexadiamine
solution (5 mMol/l) in soapy water (Sodium Dodecyl Sulfate at 8 mMol/l) and a solution of adipoyl
chloride in chloroform were juxtaposed in a capillary tube. A soapy water/chloroform train moves, but
when the reactants are present, it does not because a polymer aggregate forms at the interface between
both compounds and clogs the tube. To overcome this difficulty, we introduced an air bubble between
both indices. Then, the water/air/solvant moves and the chemicals gently react in the films, so that a
polymer film is deposited on the tube wall (Figure 27). The thickness and the continuity of this film
depend on the reactants concentrations and on the bislug speed and more experiments remain to be

done to provide quantitative results.

water chloroforme
-+ + + Nylon
diamine adipoyl cholure /

Figure 27. Spinning bislug experiment.
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6.2. Special waggons

6.2.1. Running gels

A variation on these spinning systems consists in inducing a reaction in the waggon. Light sensitive
compounds ("poly 200" from Rhodia, a cross-linking polydimethylsiloxane compatible with silicone
oils) have for instance been used for this purpose. A bislug composed of ethylene glycol and poly 200
spontaneously moves leaving its trail behind. When a strong UV light is applied, the liquid in the trail
cures and a solid coating of the tube is achieved (Figure 28). If exposed to the light, the index of poly
200 can also solidify and the piston hence obtained perfectly fits the tube (the tolerance being
controlled by the thin lubricant layer).

thyl
SR (poly 200 <
glycol solid film

Figure 28. UV-cure on light sensitive film and index.

The same experiment can be reproduced with a mixture of silicone oil and poly 200 (in proportion }%)
for the second index. The exposure of this index to UV light leads to the formation of a (solid) gel plug
adjusted to the tube diameter. When such a piston is juxtaposed to an ethylene glycol index in a tube
of the same size, this object spontaneously moves! The solid gel actually behaves as a spongy
reservoir: some silicone oil is released and coats the lubricant layer of the first liquid, which allows a
motion (Figure 29). This mechanism can be checked by measuring the driving force of this system,
which is found to be the same as for a regular ethylene glycol / liquid silicone oil bislug. This proves
the deposition of a silicone oil film, which can only be provided by the gel. Since the second liquid is
very thin, such a bislug can move on long distances. The actual thickness of this film and the

autonomy of this running sponge (de Gennes, 1996) remain to be explored more quantitatively.
>

Figure 29. Running gel: a gel composed of a mixture of cross linking silicone and inert silicone o0il

is juxtaposed to a first index of ethylene glycol. The observed spontaneous motion relies on the

extraction of a film of silicone oil from the gel.
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6.2.2. Encapsulation of liquids

An encapsulated liquid (let us say a toxic one) can be transported using a liquid train, as sketched in
Fig. 30. But because of the flow conservation, the driven index moves faster than its carrying liquid

and a suitable length has to be evaluated to allow the train to reach a predefined target.

— BRI

Figure 30. Motion of an encapsulated index.

6.3. Other geometries

The extension of the bislug systems to different geometries could be relevant for practical applications,
but it is not obvious. For example, we did not succeed in achieving bislugs on flat substrates — one
liquid immediately surrounds the other one, and no translational motion is observed. On the other
hand, bislugs can move in rectangular or square capillary tubes, or even in channels, which is of
interest in microfluidics. We develop in this section two other cases, namely double rings in a Hele-

Shaw cell, and trains in an irregular tube.

6.3.1. Spontaneous burst of a double ring
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Figure 31. Hele-Shaw cell geometry: (a) experimental setup and double ring (upper and side views), (b)

spontaneous opening and burst of a double ring of ethylene glycol and silicone oil. The bar is 2 cm long.
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We describe in this section an experiment realized in a Hele-Shaw cell. The experimental setup is
composed of two horizontal square glass planes (size 10 cm), separated by microscope slides
(thickness 1 mm). A hole (3 mm diameter) has been drilled at the center of the upper plane. There, two
concentric drops of ethylene glycol and silicone oil are introduced with a syringe (Figure 31a). When
some air is blown through the hole (bubble of radius r,), the double ring formed spontaneously closes

back if 7, is small, but grows up and finally bursts if 7, is large enough (Figure 31b).

The description of the dynamics of the double ring is rather technical and just relies of an adaptation to
a cylindrical geometry of the relations derived in Section 3 (Bico, 2000). The expression of the driving
pressure is nevertheless interesting since the critical hole size observed may remind the study by
Taylor and Michael (1973) on the stability of a hole in a liquid sheet. Two types of curvatures are
present in this problem: the successive rings radii ;, 71, and , and the gap 6 between the two plates.
The Laplace pressure difference between the inner and the outer radii writes:

2A :
AP = _Y_Y_l_m_y—z,wnhAy:%—le—Yz (43)

5 nony n
The effect of the rings curvatures is to close back the system. Since their amplitudes are reduced when
the hole gets larger, the driving pressure Ay/d finally dominates, which leads to the extension of the

double ring. The condition for opening thus writes:

> 2 (44)
2Av /8=y, /n =vY12/1p

In the example of Fig. 31, »; and r, are initially 17 mm and 8 mm, which gives for the minimum air
disc radius , = 1.3 mm. A larger disc, as the one visible in Fig. 31b, opens. Note finally the double
ring growth does not lead to viscous fingering, as it could happen in such a geometry (Saffman &

Taylor, 1958).

6.3.2 Necks in tubes

Porous materials are present in our day life (paper, concrete materials, granular media), and the
application of the bislug system to this complex geometry would be very interesting. One may for
example imagine to coat the pores surface in a concrete (without clogging them) with a hydrophobic
substance in order to achieve a water repellent breathing material. Capillary tubes or Hele-Shaw cells
are commonly used to model porous media, the tube diameter or the gap of the cell being related to a
characteristic pore size. However, this pore size is not uniform in a real porous medium. Even if we

restrict to the simple case of a tube with a neck (Figure 32), one of the numerous features of a real
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porous medium, we understand that the motion of a bislug is not obvious. The rear meniscus may be

blocked in the narrowest part of the tube, because of the large Laplace depression there (Figure 32).

Rmin
$Rmax
— e~

Figure 32. Rear meniscus blocked in a neck.

A necessary condition for overtaking this neck can be written:

Y1+ Y12 s Y2 (45)
Rmax Rmin

where R« and R, are the extreme radii of the tube. This condition can be rewritten :

R hax < Y1+ Y12 (45)
R

min Y2

which is rather restrictive, since it only allows a maximum ratio R./Ruin of the order of 2. The
application of the bislugs to real porous networks thus appears problematic. On the other hand, local
displacements (i.e. for which the ratio Ry,.x/Rmin does not vary too much) could be described by dislug

considerations, for triphasic systems confined in a porous medium.

7. Conclusion

When two liquid indices are juxtaposed in a capillary tube, the resulting bislug can spontaneously
move, providing some conditions which have been described. The driving force results from the
surface tension contrast between the interfaces at the three menisci. A situation of total wetting for at
least one meniscus is also required for the free motion, which provides a coating of the tube wall. The
dynamics of such a device was then described. If the liquids have about the same viscosity, the driving
force is balanced by a simple viscous dissipation (Poiseuille flow), which may be corrected by
dynamic contact angle effects for short trains. Experiments carried out with a very viscous liquid for
the second index exhibit self-lubricating properties: a film of the first liquid is deposited between the

second liquid and the tube wall, which lubricates a track for the viscous waggon. The bislug then
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moves at a reasonable speed in spite of the high viscosity of the second liquid. This liquid trail obeys
the classical Bretherton law corrected by a small factor which takes into account the particular
boundary conditions of this problem. A double coating is generally achieved at the rear meniscus. Its
description involves the lubrication properties of the first coating and some original behaviors are
observed. The second film is much thinner than the first one and does not thicken when increasing the
speed of the bislug. A theoretical or numerical approach describing quantitatively these results remains
to be done. The lubricant layer plays an ambiguous role since it can also induce a lobe instability, in
the vicinity of the rear meniscus, which can lead to the encapsulation of the second index. Potential
applications of these liquid trains were finally described, as systems involving reactive liquids, which
can provide the formation of solid micro-structures inside the tube. Extensions to other geometries
were finally considered: in a Hele-Shaw cell, for instance, double rings can spontaneously grow and
burst. Application to porous media would also present a great interest, but still remains a challenge

(the liquid usually gets blocked in the narrowest pores).
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Appendix: Viscous dissipation in a lubricated index

Self-lubricating systems which involve a couple of liquid with a very large contrast in viscosities have
been described in Section 3. The viscous liquid, which can slip on the film deposited by the first index,
was somehow assumed to behave like a solid. This assumption greatly simplifies the description of the
flow: the viscous stress relies on Couette flow in the lubricant film. But since a very small strain in a
highly viscous liquid can induce a huge viscous dissipation, the validity of this hypothesis must be

carefully discussed.

Pressure gradient

In the following description the viscous index has been chosen as a referential in which the tube is

moving at the speed —V (Figure 33).

1 Ml[//lu y/”Tr 2/
RKQN VAN

— 1
v

Figure 33. Coupled flow of the liquids in a lubricated index (the radial scale is largely amplified).

The pressure gradients only have an axial component VP, (radial or angular flows from the ends of the
index are neglected). The resolution of the Navier-Stokes equation in this cylindrical geometry gives

as a general solution:
VP
w(r) = ——2p% 4+ 4 1n[ij+3i (A1)
4n); R

where v; is the local velocity of the liquid i and n; its viscosity. The constants 4; and B; are fixed by the
boundary conditions at the interfaces. The derivation of these constants does not require any difficulty

and leads to:

VP VP VP
A1 =4,=0,B= ——2R*-V, B, = ——2(2Rh—h2) +—2(R-h) -V (A2)
4y 4 m

The pressure gradient VP, is finally deduced from the absence of global flow in the index:
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P, =
© (R—h) /80, +[RA—h2)4,

(A3)

This relation is compatible with the condition 24 for the self lubrication effect: the second liquid

viscosity does not interfere if R/A << 1,/ n;.

Lubricant thickness

The flow rate g, of the lubricant liquid can be deduced from the previous relations:

g1 = 2VR? (1(1‘_(;2’2122;2(1;3(2‘;_)432/ )2 ~fi-@-x2)2 (A4)

noting x = A/R. The flow rate can also be experimentally evaluated from the diminution A/ of the first

index length corresponding to a displacement L:

= —nRZVA—Z A5
1 L

Expanding Eq. A4 for small x yields a simple relation for the lubricant thickness:
rY (Al h Al
)AL M _)_ A (A6)
R L 2n, AR n, L

Transition from Poiseuille to lubrication regimes

Equation A3 has finally be used for the model curves drawn in full line in Figure 16, for describing the
bislug velocity as a function of the viscosity of the second index. These curves were calculated from
the balance of Laplace pressure (involving dynamic meniscii) and the viscous dissipation in both

indices:

2A

where /; and /, are the lengths of the successive indexes and the pressure gradient VP, is simply given
by a Poiseuille law. Unfortunately, an implicit expression for the speed cannot be deduced and such an

equation has to be numerically solved, which gives the full line in Fig. 16.
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