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The spinning process developed by spiders over millions of years provides a

great example of a natural microfluidic system and remains a considerable source of

questions1-3. In order to probe the rheological properties of minute amounts of the

spinning material extracted ex vivo from the major ampullate gland of a Nephila

clavipes spiderwe have developed two new micro-rheometric devices4-6. The present

study shows that the spinning liquid is a complex viscoelastic fluid. Its shear viscosity

(resistance to flow) decreases ten-fold as it is pushed through the narrow spinning

canals of the spider, whereas its extensional viscosity (resistance to stretching)

increases more than one hundred-fold during the spinning process. Quantifying the

properties of native spinning solutions provides new guidance for adjusting the

spinning processes of synthetic or genetically-engineered silks to match those of the

spider.

During the past decade spider dragline silk has been revered for having unmatched

mechanical properties7-9, yet how exactly the spider makes its fibre remains unclear. Recent

experiments with recombinant spider silk3 and other studies performed with silkworms7

show that careful control of the processing conditions for fibre spinning is key to obtaining

superior mechanical properties in spun silks. To understand this complex flow process it is

essential to elucidate the rheological properties of the initial spinning material (commonly
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referred to as “spinning dope”1) that is stored in the spinning glands of the spider. Although

the spinning dope is a concentrated aqueous solution containing 25-30 wt.% protein

(mainly Spidroin), all rheological experiments to date have been performed with diluted

solutions (<5 wt.%)10. These experiments suggest non-Newtonian fluid properties, however

more insight would be gained through direct rheological characterisation of the native,

concentrated dope. The majority of micro-rheometric techniques available for the

characterization of complex biofluids rely on Brownian forcing of microscopic tracer beads

and the rheological properties of the surrounding fluid matrix are then deconvolved from

the time-correlated displacement of the bead11. Such techniques are inherently limited to

studies of linear viscoelastic properties of the test fluid at small shearing strains. By

contrast, the silk spinning process involves large strains and both shearing and extensional

kinematic components. To address these concerns, two new micro-rheometric instruments

have been constructed: a flexure-based micro-rheometer for steady and oscillatory shearing

measurements and a capillary breakup micro-rheometer for extensional rheometry4-6. Both

of the experimental devices were specifically designed to accommodate the small quantities

(~1–5mL) of fluid available from each of the major ampullate glands of a single Nephila

clavipes ‘golden orb weaving’ spider (Fig. 1). Thus, these micro-rheometric devices enable

ex vivo testing of the spinning dope from which the spider spins dragline and web frame

fibres8.

The micro-rheometer4 generates a plane Couette shearing flow between two optical

flat plates aligned using white light interferometry and separated by a precisely-controlled

gap of 1–200 µm (Fig. 2a). The shear stress exerted on the sample (ranging from 2 to

104 Pa) is calculated from the deflection of the upper flexure as the lower one is actuated.

The imposed shear rate, defined as the ratio of the actuated plate velocity and the inter-plate

gap, ġ =V / h , can be varied over the range 2¥10-4 < ġ < 4¥102 s-1. The micro-rheometer was
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used to measure the shear-rate-dependence of the steady shear viscosity h(ġ ) for a 1 mL

blob of spinning dope extracted from the major ampullate gland. The dope was sheared

between two 25 mm2 optical plates with the gap set to 25 µm (Fig. 2a). In the limit of zero

shear rate, the data in Figure 2(b) shows that the viscosity of the spinning dope is

h0 = 3500 Pa.s (or 3.5¥1 06 times the viscosity of water). However, under stronger

deformation rates the dope viscosity drops significantly with increasing shear rate, i.e. the

dope shear thins (Fig. 2b). This effect is characteristic of concentrated polymer solutions

due to the loss of molecular entanglements and can be described by molecular theories or

by phenomenological constitutive models such as the Carreau-Yasuda equation12,13:

h = h0[1 + ( ġ l)a](n-1)/a, (1)

where l is a measure of the relaxation time of the viscoelastic fluid (its inverse is the

critical shear rate that marks the onset of shear thinning), n is the power-law exponent

characterizing the shear-thinning regime observed at high shear rates, and the coefficient a

describes the transition between the zero-shear-rate region and the power-law region.

Nonlinear regression of these parameters to our data yields values of l = 0.40 s, a = 0.68

and n = 0.18, which are characteristic for a shear-thinning fluid12.

During a typical spinning process1,7, the Nephila spider draws out a 4 µm diameter

thread at a speed of 20 mm/s corresponding to a flow rate of Q = 0.25 nL/s. We

approximate the geometry of the long converging spinning canal (or S-duct) shown in

Figure 1(b) as a truncated cone of length L = 20 mm, and with maximum/minimum

diameters of D = 200 µm and d = 4 µm respectively. For the given geometry and flow rate,

the pressure drop required to push the viscous dope through the canal can be estimated
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from hydrodynamic lubrication theory, which gives the following relation for the flow of a

power-law liquid through a tapered tube13:
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Here h0, l and n are obtained from the Carreau-Yasuda model (1). This relation is only

valid in the shear-thinning regime when the shear rate is larger than the critical shear rate

(1/l). For our truncated cone geometry, the minimum value of the wall shear rate is

ġ = 32Q /pD 3 = 0.3s-1, which justifies the use of the power law fluid and equation 2 as an

approximation. The pressure drop thus computed is DP = 3.8¥107 Pa which is a factor of

500 lower than the value (1.9¥1010 Pa) expected from the corresponding Newtonian

calculation (corresponding to setting n = 1 in equation 2). However the computed value of

ca. 380 atm. still exceeds reasonable physiological limits for a spider. Although shear

thinning alone does not appear to decrease the total pressure drop sufficiently, it can act

synergistically with other proposed mechanisms such as a shear-induced transition to a

liquid crystalline phase1, localised slip of the polymer solution on the tube wall14, or a

subtle form of lubrication, such as a watery surfactant layer1 or an analogue to the sericin

coat surrounding fibroin fibres spun by the silkworm Bombyx mori2.

In addition to being sheared, the viscoelastic spinning solution is also stretched due to the

elongational flow experienced in the converging duct and the subsequent spinline. An

extensional flow of this type is characterized by two parameters13; the deformation rate and

the total Hencky strain accumulated, which can be defined in the present problem as

e = 2ln(D/d) ≈ 8. This large value of the extensional strain suggests that the Spidroin chains

are being considerably extended15. This extension thus plays a key role in the molecular

alignment necessary for the exceptional mechanical properties of the spun fibre. The
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characteristic strain rate for this elongational flow is given by ė =
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rate of stretching can be compared with the liquid relaxation time via the Deborah number13

(defined as De = lė ) which provides a dimensionless measure of the importance of

viscoelastic properties. The computed value of De ≈ 0.5 indicates that viscoelastic effects

should result in strain hardening of the dope (i.e. an increase in the resistance to stretching

with increasing strain)13. This strain-hardening effect is due to chain-stretching of the

entangled Spidroin macromolecules and the presence of this additional elastic stress can be

evaluated from the ‘extensional viscosity’ of the liquid. If macroscopic volumes of the

entangled polymer solution are available then this extensional viscosity can be measured

using a filament stretching rheometer16. However, given the limited amount of raw dope

available this method becomes impractical, and thus we have developed a microscale

capillary break-up extensional rheometer to measure the transient extensional viscosity

he
5,6. The experimental procedure involves placing 1 mL of the spinning dope in between

two cylindrical endplates separated by an initial gap of 1 mm to form a liquid bridge. The

plates are then pulled apart to a distance of 5 mm in order to impose a step axial strain on

the sample and form a liquid thread (Fig. 3). The viscoelastic column thins under the action

of capillarity, while viscous and elastic forces tend to impede the necking process. Thus,

the extensional viscosity can be deduced from the self-similar thinning and pinch-off

dynamics of the viscous fluid thread6:

he =
0.426(s / R)

-
2
R

dR
dt

= -
0.213s
dR / dt

, (3)

where s is the surface tension of the liquid (estimated to be approximately 70 mN/m, as for

water), R(t) is the midpoint radius of the thread (measured with a laser micrometer), and the

prefactor is derived from a slender-body theory in order to account for deviations from a
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purely cylindrical geometry in the vicinity of the endplates6. The data in Figure 3 shows

that at small strains he is three times larger than the zero-shear-rate viscosity measured with

the shearing micro-rheometer (this observation is consistent with the classical results of

Trouton for a Newtonian liquid17). However, at large strains the necking dynamics are

greatly retarded as the filament simultaneously strain hardens and undergoes mass transfer

to the surroundings (i.e. drying). This strain-hardening stabilizes the spinline and leads to

the formation of axially-uniform filaments18.

Orb-weaving spiders have evolved a specialized fibre-spinning process that exploits

the nonlinear rheology of a complex fluid. In the spinning canal of Nephila clavipes, the

shear viscosity of the spinning dope decreases by an order of magnitude in order to reduce

the required driving pressure, whereas the extensional viscosity increases by a factor of 100

to stabilise the fluid thread and inhibit capillary break-up of the spun thread. Tailoring the

rheological properties of artificial dopes containing genetically modified or reconstituted

silks to match the ex vivo properties of the natural dope may prove essential in enabling us

to successfully process novel synthetic materials with mechanical properties comparable to,

or better than, those of natural spider silk.
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Figure 1: a, Adult female Nephila clavipes (golden-orb) spider provided by the Miami

Metrozoo, Florida. Scale bar is 2cm. b, (A) Major Ampullate (MA) gland of the spider

(scale bar 1 mm). The 1 mL blob (B) protruding through a rupture of the gland wall near the

spinning canal (C) was used for the rheology experiments.
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(A)

(B)

(B)

(C)

(D)

a b

Figure 2: a, Schematic diagram of the flexure-based micro-rheometer. The fluid sample is

sheared between two interferometrically-aligned flat plates (A). The compound flexure

system (B) is actuated by an “inchworm” motor (C) and provides a planar (Couette) shear

flow. The shear stress is deduced from the corresponding deflection of the top fixture as

detected by an inductive sensor (D). b, Shear viscosity of the native silk dope. The solid

line represents the Carreau-Yasuda fit from equation (1) to experimental data (markers).

Reproducibility was confirmed by testing specimens from two other spiders whose

abdomens were similar in size. The variation in the data is represented by the shaded

band and corresponds to the standard error bars shown.
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Figure 3: The transient extensional rheology of ex vivo silk dope. The extensional

viscosity is shown as a function of the total strain in the material. Here, R0 is the initial

diameter of the thread measured at the midpoint between the plates with a laser

micrometer. The decrease of the midpoint diameter was monitored over time. The

extensional viscosity was then deduced from equation (2) and is represented by the

markers. The solid line is an analytical fit of these values. For low strains, we obtain the

limit he ≈ 3h0 = 11400 Pa.s as expected for a Newtonian liquid17 (dashed line). Inset, a silk

thread of diameter 60 µm formed by separating the plates to a distance of 5 mm and

allowing the thread to neck under the action of capillarity and viscoelastic stresses (scale

bar is 1 mm).


