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Abstract

We explore the interplay of fluid inertia and fluid elasticity in planar entry flows by studying the flow of weakly elastic solutions through
microfabricated planar contraction geometries. The small characteristic lengthscales make it possible to achieve a wide range of Weissenberg
numbers (0.4 < Wi<42) and Reynolds numbers (0.03 < Re < 12), allowing access to a large region of Wi—Re space that is typically unattainable
in conventional macroscale entry flow experiments. Experiments are carried out using a series of dilute solutions (0.78 <c/c" < 1.09) of a high
molecular weight polyethylene oxide, in which the solvent viscosity is varied in order to achieve a range of elasticity numbers, 2.8 < El = Wi/Re < 68.
Fluorescent streak imaging and micro-particle image velocimetry (-PIV) are used to characterize the kinematics, which are classified into a number
of flow regimes including Newtonian-like flow at low Wi, steady viscoelastic flow, unsteady diverging flow and vortex growth regimes. Progressive
changes in the centreline velocity profile are used to identify each of the flow regimes and to map the resulting stability boundaries in Wi—Re
space. The same flow transitions can also be detected through measurements of the enhanced pressure drop across the contraction/expansion which
arise from fluid viscoelasticity. The results of this work have significant design implications for lab-on-a-chip devices, which commonly contain
complex geometric features and transport complex fluids, such as those containing DNA or proteins. The results also illustrate the potential for

using microfab-ricated devices as rheometric tools for measuring the extensional properties of weakly elastic fluids.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Non-newtonian; Microfluidics; Particle image velocimetry; Contraction flow; Polyethylene oxide

1. Introduction

In macroscale devices (i.e. geometries in which the character-
istic lengthscale is on the order of millimeters), it is essentially
impossible to generate large deformation rates and correspond-
ingly high Weissenberg numbers (Wi) in low viscosity elastic
fluids, whilst also maintaining small Reynolds numbers (Re).
As aresult, it is difficult to induce an elastic response in which
the effects of viscoelasticity are not dampened (or completely
quashed) by the competing effects of fluid inertia. Microfluidic
devices offer a solution by allowing high deformation rates and
concomitantly low Reynolds numbers; a result that is directly
attributable to the small lengthscale of the device.

Several recent studies have shown that the reduced length-
scales associated with microfluidic devices (on the order of

* Corresponding author. Tel. +61 7 33653661; fax: +61 7 33654199.
E-mail address: j.cooperwhite @uq.edu.au (J.J. Cooper-White).

0377-0257/$ — see front matter © 2007 Elsevier B.V. All rights reserved.
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tens to hundreds of microns) can enhance the magnitude of
viscoelastic effects in dilute polymer solutions. This has been
demonstrated in micro-fabricated converging or planar contrac-
tion geometries by Groisman and Quake [1] and in the recent
work of Rodd et al. [2]. The same phenomena were also observed
in the much earlier work of James and Saringer [3] at simi-
lar lengthscales and using similar aqueous solutions of flexible
polymers. The importance of the device lengthscale and its effect
on fluid elasticity is reflected in the definition of the elasticity
number, EI = An/(pl?), which is dependent only on fluid proper-
ties (relaxation time, solution viscosity, and fluid density) and
the characteristic lengthscale of the device, /.

In addition to the unique flow conditions attainable by scaling
down the geometry, microfluidic devices also offer the advantage
of allowing access to a greater range of Wi and Re. This has been
shown in our previous work [2], in which elasticity numbers
spanning almost two orders of magnitude could be achieved.
Accessibility to wide regions of Wi—Re space provides an avenue
for generating suitable experimental data to test the performance
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of constitutive models over a wide range of flow conditions (with
and without inertia). Furthermore, the ability of achieving high
Wi at low Re offers the possibility of devloping microfluidic
rheometers suitable for probing the rheological properties of
weakly elastic fluids such as inks or dilute polymer solutions
that appear Newtonian under the conditions that can be attained
in conventional rheometers [2,4].

Very few experiments have been conducted specifically to test
the effect of the elasticity number on complex viscoelastic flows,
which is primarily attributed to the limited range of parameter
space accessible through macro-scale experiments. With regards
to planar contraction flows, the most thorough investigations of
the effect of the elasticity number have been achieved through
numerical simulations (see Table 1 ). We have previously pro-
vided a broader survey of experimental works in [2]; however in
Table 1 we focus on planar flows which specifically investigate at
least one of the following: (i) planar versus axisymmetric geome-
tries, (ii) the effect of the elasticity number and (iii) the role of the
viscoelastic Mach number, Ma = +/ Re Wi. In addition, many of
the references in Table 1 also provide numerical predictions of
the centreline velocity and/or extensional viscosity predictions.

To our knowledge, Rodd et al. [2] is the only experimental
study which provides at least preliminary insight into the effect
of El on the non-linear dynamics of planar entry flows. However,
the range of values of the elasticity number in [2] was achieved
by varying the polymer concentration, which is expected to
lead to additional non-linear rheological effects associated with
variable chain—chain interactions.

In the present work, we investigate the flow of four dilute
polyethylene oxide solutions (0.78 <c/c” <1.09) through a
microfabricated abrupt contraction—expansion geometry (con-
traction ratio, CR = 16), in which the smallest lengthscale of the
device is 26 wm in the throat of the contraction. A range of elas-
ticity numbers (2.8 < El < 68) are achieved by varying the solvent
viscosity whilst maintaining a constant polymer concentration
in solution (¢=0.075 wt.%). Experiments are performed over
a range of flow conditions corresponding to 0.03 <Re <12 and
0.4 < Wi <42. Fluorescent streak imaging, micro-particle image
velocimetry and pressure drop measurements are used to char-
acterize the upstream flow kinematics associated with steady
and time-dependent three-dimensional flow for both the elastic
solutions and a Newtonian fluid, and to evaluate the extra pres-
sure drop due to the elasticity of the solutions. Lastly, we assess
the importance of the viscoelastic Mach number [5,6], and its
role in determining the onset of diverging flow in this set of low
viscosity elastic solutions.

1.1. Flow phenomena in viscoelastic entry flows

1.1.1. Planar versus axisymmetric geometries

It has been shown, both experimentally and numerically,
that the kinematics associated with entry flows in planar and
axisymmetric geometries are inherently quite different. For
shear-thinning elastic fluids in planar contraction geometries,
elastic corner vortices grow with increasing Wi; however the
extent of vortex growth within a planar geometry [7-10] is
less than in the equivalent axisymmetric geometry [11]. Table 1

identifies cases in which numerical simulations have been able
to reproduce either qualitatively or quantitatively the results of
specific experimental studies.

For Boger fluids however, vortex growth has not been
observed in macro-scale planar contractions. Experimentally,
Nigen and Walters [12] found (through both pressure drop
measurements and streakline images) that for low to moder-
ate flowrates, there is no discernable difference between the
upstream flow dynamics in a Boger fluid and a Newtonian fluid in
a 16 to 1 planar contraction. A number of 2D numerical simula-
tions of flow through planar contractions for an Oldyroyd-B fluid
[13,14] or an upper-convected Maxwell fluid [15-20], all lead
to the same conclusion; the size of the corner vortex decreases
with increasing Weissenberg number. However, higher values
of Wi have been found to lead to the formation of unstable lip
vortices. This has been observed both experimentally [12] and
numerically [14,17].

The only case in which elastic corner vortex growth in Boger
fluids has been observed in planar contractions has been in the
recent experimental results of Rodd et al. [2]. In their work,
micro-fabricated planar contractions were used in conjunction
with a set of low viscosity Boger fluids in order to induce vortex
growth, however this was only observed at moderate Reynolds
numbers (Re>11).

The reduced magnitude of elastic vortex growth that is
observed experimentally in planar geometries, compared with
their axisymmetric counterpart, is commonly attributed to the
reduced strain rate in the geometry and/or the reduced total
Hencky strain that is experienced by a polymer molecule as
it flows through the contraction (eax; =2 In CR, compared with
€planar =10 CR) [21]. However, even for high contraction ratios,
non-linearities in the dynamic response have been found to be
virtually absent in planar geometries [22]. Changing the con-
traction ratio by adjusting the upstream channel width results
in an increase in the total Hencky strain however this extra
contribution only occurs in the upstream tail of the strain rate
profile, i.e. regions in which the strain rate is typically small
and less than the critical value, é.4 = 1/A, required for poly-
mer extension. As aresult, the Hencky strain that is accumulated
in high strain rate regions that actually lead to chain extension
remains unchanged [22]. It is therefore the non-homogeneity
of the strain rate profile observed in planar contraction flows
that is considered responsible for the lack of non-linearity in the
stress-response. This observation was made by Genieser et al.
based on birefringence measurements in Boger fluids and 1D
predictions using the Geisekus model, and the upper-convected
and linear Maxwell models [22]. Their arguments however, do
not explain off-centreline dynamics, such as the sustained vortex
growth observed in shear-thinning viscoelastic fluids.

Quinzani et al. also made point-wise flow-induced bire-
fringemence measurements in a shear-thinning viscoelastic fluid
flowing through a 4:1 planar contraction [23,24]. Although they
quantify in great detail the fluid velocity, shear stress and first
normal stress difference as a function of spatial position, their
measurements were only carried out in a planar geometry, pre-
cluding any direct comparison of the corresponding extensional
stresses induced in planar and axisymmetric geometries for the
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Table 1

Review of previous entry flow studies in axisymmetric (A), planar (P), and square (S) geometries: an addendum to Table 1 of Rodd et al. 2005 [2]

Author

Year Exp,

num.

Planar,
axisymmetric,
square

2D,3D  Aspect ratio,

Ay = h/wy

Contraction  Fluid

ratio, CR

Rheology

Wi range

Re range

Comments

Genieser
et al.

Quinzani
et al.

Quinzani
et al.

Kim et al.

Webster

2003 E,N

1995 E

1994 E

2005 N

2004 N

P

2D

3D

2D

2D

2D

10

10

8.32 Boger fluid, 0.3%
PIB/PB Giesekus
fluid UCM fluid

Giesekus model,
UCM model

4 5% PIB in
tetradecane

Y1, n

3.91 5% PIB in
tetradecane

Ym0, A
determined using
UCM
(upper-convected
Maxwell) model

4 Oldroyd-B fluid
with ns/no=1/9

Oldroyd-B model

4 Oldroyd-B fluid
with ns/no=1/9

Oldroyd-B model

0<Wi<29

0.25<Wi<0.77

0.25<Wi<0.77
(shear-rate dep.)
0.4 < Wip<4.15
(zero-shear)

0<Wi<5

Wi=0.3,2

Unknown

0.08<Re<1.43

0.08<Re<1.43
(shear-rate dep.)
0.08<Rep<0.8
(zero-shear)

Re=0,0.1

Re=0

For CR =8, effects of elasticity in
dimensionless strain rate profile
observed for Wi>2
Three-dimensional effects observed
at Wi>2.3 (CR=8) and Wi>3.1

(CR =32). For both CR =8 and 32,
negligible non-linear effects in ng
observed for all 0 < Wi< 3.1, for total
Hencky strains € =3.5; attributed to
non-homogenous strain rate profile,
slow response of long relaxation time
modes, and contribution of solvent
viscosity ng

Flow-induced birefringence (FIB)
measurements indicate a peak in the
transient extensional viscosity along
centreline that decreases with
increasing Wi. No flow visualisation
Laser doppler velocimetry (LDV)
and FIB used to measure axial
velocity, shear stress and first normal
stress difference (axial and radial).
Maximum in centreline Ny and 7y, in
lateral profile increases with Wi.
Small overshoot in axial velocity
observed just downstream of
contraction for mod. to high Wi

For Re =0, vortex size reduces, lip
vortex increases with increasing Wi.
Lip vortex intensity a strong function
of mesh refinement. Agreement with
Alves et al. (2003) in both vortex size
and intensity. Predicts ‘delayed’
acceleration at centreline in region
nearest contraction plane.
Accompanied by overshoot in V,
Start-up flows with transient/static
inlet boundary conditions. Steady
state vortex size is unchanged with
higher Wi; effect of higher Wi is to
increase the time taken to reach
steady state, and intermediate vortex
size in approaching steady state
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Table 1 (Continued )

Author Year Exp, Planar, 2D,3D  Aspectratio, Contraction Fluid Rheology Wi range Re range Comments
num. axisymmetric, Ay =h/w, ratio, CR
square
Aboubacar 2002 N A,P 2D - 4 PTT fluid with 4 variants of PTT and 0<Wi<35 Re=0 Oldroyd-B, planar: vortex size
etal. £=0.02,0.25and  Oldroyd-B models reduction with increasing Wi. PTT
ns/mo=1/9 with £ =0.25, 0.02: vortex growth,
Oldroyd-B model followed by a vortex reduction at
higher Wi. Delayed (higher Wi) onset
of vortex reduction for higher values
of e
Moatssime 2001 N P 2D - 4 Oldroyd-B fluid Oldroyd-B model 1<Wi<4.5 Re=0.1 Upstream behaviour in the first
with ns/no normal stress difference not
unspecified distinguishable for 1.5 < Wi<4.5.
Higher Wi increases peak value in {5
at contraction plane and leads to
longer downstream recovery
Ryssel and 1999 N P 2D - 4 Quasi-Newtonian ~ Geisekus and Wi=1.45 Re=0.56 Results for QNF agree qualitatively
Brunn Giesekus fluid quasi-Newtonian with those of Quinzani, in terms of
model axial and lateral velocity profiles,
shear stress and first normal stress
profiles. Velocity overshoot predicted
by the Giesekus model is not
predicted for QNF (agrees with
experiment)
Xue et al. 1998 i) N P 2D and 0.5-5 4 PTT fluid with UCM, PTT, O0<Wi<4.4 0.06<Re<0.6 Vortex growth at small Re =0.06 for
3D £=0.02,0.25and Oldroyd-B models increasing Wi. For higher Re >0.5
ns/mo=0 size of vortex overpredicted by
Oldroyd-B and creeping assumption for both
UCM fluid Newtonian and viscoelastic. For
constant Re > 0, size of salient corner
vortex is constant for increasing Wi.
Vortex mechanisms dependent on
elasticity (El) and Mach (Ma)
numbers. 2D approximation valid for
upstream ratio A, = h/wy > 5
Xueetal. 1998 (ii)) N P S 2Dand - 4 PTT fluid with Simplified PTT 0<Wi<7.2 0.01<Re<0.1 Vortex growth observed for UCM
3D £=0.25 and model, UCM model fluid in square-square contraction

ns/no =1/9. UCM
fluid with A =0.8 s

and not planar. For PTT fluid, vortex
growth occurs in the planar geometry
although to a lesser degree than in
axisymmetric. Peak in the predicted
transient extensional viscosity along
the centreline for PTT less than for a
Newtonian fluid.
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§ .- SE oz 5 5w same ﬂu.id. Raiforc} agd co—authors explgred the ﬂoYV of the same
< 5 s g 3 Q % é) = = %~§D shear-thinning fluid in an axisymmetric contraction, however
% Elé 28 E‘; ;: 3 E %” 8 § -% ;‘;’ g 5 they only quantified the velocity field.

SFSESESEELRE S L5 EEATG
E g’ é 2 g i 8 % 2 “F;f 2 ‘?:; gg % § g 1.1.2. Interplay of fluid inertia and fluid elasticity: effect of
§ 8 5 § 5§48 Eé v g § g' ; é é % & § the elasticity number and the viscoelastic Mach number
£ "q'; g g g sz288 = £ = é =52 gz The relative magnitudes of fluid elasticity and fluid inertia
2z Q g2 i; ; % %5 § § 5 5% fn 2 g é may be expressed in terms of the elasticity number, El = Wi/Re.
27 é g8 g % g u\é c2 ;0; E5s g g For a given experiment in which the geometry is fixed, the elas-
g % 3 % 2E35ECE 3 g { ER E g 2 ticity number is therefore the slope of the trajectory in Wi—Re
LS PP T 5 E€ScE5ma= y ) p jectory
space that represents a series of step flow-rate experiments. An
example of this representation of previous entry flow experi-
& ments may be found in [2], in which the various flow regimes
< % have been illustrated as a phase diagram in Wi—Re space. In
< & cases for which the fluid properties (relaxation time and fluid
g g viscosity) are independent of shear-rate, the elasticity number
is constant and experiments are represented by lines of constant
slope in Wi—-Re space. An alternative representation of entry
= © flow experiments in which both fluid inertia and fluid elastic-
f\z Ti ity are significant can be developed in terms of the viscoelastic
% % Mach number, Ma = +/ Wi Re. The Mach number is the ratio of
< - the local velocity, v to the speed of a viscoelastic shear wave,
¢cs = +/G/p = +/np/pA. Here, G is the elastic modulus of the
_ fluid, which for a Maxwell body may also be defined as np/A.
b The definition of Ma therefore shows that it is only possible
2 o to induce viscoelastic shear waves if both Re 0 and Wi=£0.
‘% g Consequently, the results of numerical simulations which utilize
S E non-zero values of Wi and Re are inherently different from those
© A in which either Wi=0 or Re=0. Hulsen [5] proposes that the
w0 onset of diverging flow corresponds to a transition from elliptic
22 % 1 vorticity transport (sub-critical) to hyperbolic vorticity trans-
2" < :j port (super-critical), which occurs at Ma=1. By analogy to a
% \Z E d phase diagram of flow regimes in Wi—Re space, an equivalent
5= £ < representation of previous studies of viscoelastic flows through
o= s contractions may also be constructed in El-Ma space [20]. How-
ever, an advantage of utilizing the Wi—Re co-ordinate system is
< < that there exists a well-defined Newtonian flow limit at Wi=0.
There is no equivalent limit in El-Ma space which corresponds
exclusively to Newtonian flow.
= As noted earlier, the influence of the elasticity number on pla-
nar entry flows has been explored almost exclusively through
% numerical simulations, as summarized in the present work in
84 8 Table 1, and in Table 1 of [2]. For both Newtonian and vis-
coelastic entry flows, an increase in Reynolds number results in
a reduction in vortex size. However, this “inertial” suppression
of the upstream corner vortex often relies on the cooperative
effects of fluid elasticity. For example, Kim et al. [14] found
< that an increase in the Reynolds number from Re =0 to Re=0.1
had no effect on the vortex length in a Newtonian fluid. For an
Oldroyd-B fluid, the same change in Reynolds number leads to a
- & clear reduction in vortex size. The interplay of inertia and elastic-
N o ity demonstrated by this calculation has been observed in several
= = viscoelastic flows in which the Reynolds number is small (i.e.
Re < 1), but non-zero. An example of this includes the presence
g - of diverging streamlines, which have been observed experimen-
g i:’ tally in the entry flow of Boger fluids, at Reynolds numbers less
= am than 0.1 [25,26], and more commonly in shear-thinning elastic
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fluids [7-11,27,28]. In the latter case, inertia has always been
present due to the shear-thinning nature of the fluids. As dis-
cussed in [2], diverging streamlines are identified as those which
locally diverge away from the centreline immediately upstream
of the contraction plane, prior to converging again as the flow
enters the contraction throat. They are considered a signature
feature of contraction flows in which both inertia and elasticity
are important.

For sufficiently high elasticity numbers, an increase in
Reynolds number can simultaneously lead to the growth of lip
vortices. However, it is argued by Xue et al. [19], that the pres-
ence of the lip vortex is not a result of fluid inertia, but relies
more on small, but non-zero, values of the relevant non-linear
constitutive parameter (in the case of [19], the fluid is described
by the PTT model and the parameter € =0.02). In addition, the
presence of lip vortices is also dependent on mesh refinement,
which has been the cause of discrepancies in the predicted lip
vortex dynamics that have been reported by different numeri-
cal studies. Several other computational works investigating the
effect of inertia on planar entry flows of shear-thinning fluids
(PTT, FENE-P) [13,14,19,20,29] and Boger fluids (Oldroyd-B,
UCM) fluids [15,16,19,20] are detailed in Table 1.

Hulsen [5] and Joseph [6] have previously discussed the rel-
evance of the vis-coelastic Mach number, Ma = v/c, and its
application to viscoelastic entry flows. For the most elastic fluid
considered in Hulsen’s calculations [5], the onset of diverging
flow corresponds to conditions in which regions of Ma > 1 extend
upstream of the contraction plane in a circular geometry. How-
ever, this criterion did not appear to hold for higher values of
€ (lower fluid elasticity). For a PTT fluid with € =0.25, diverg-
ing streamlines did not develop over the entire range of flow
conditions tested, despite the large regions of Ma> 1 that exist

(a)

Direction

at higher flowrates. Hulsen [5] therefore suggested that the vis-
coelastic Mach number cannot be the only parameter important
in determining the onset of diverging flow. Xue et al. [20] also
emphasize the importance of both the Mach number and the
elasticity number, and present a phase diagram of vortex mech-
anisms in terms of EI-Ma space. Their phase diagram indicates
the requirement of a high elasticity number and at least moderate
values of the Mach number in order to generate upstream corner
vortices. In their work [20], unstable flow was observed at high
elasticity numbers and high Mach numbers.

2. Experimental
2.1. Channel geometry and fabrication

In Fig. 1 we show a schematic of the microdevice used in
the present experiments. The dimensions of the planar 16:1:16
contraction—expansion geometry are very similar to those used
in our previous work [2], with an upstream channel width, w,,,
of 400 wm, a contraction throat width, w¢, of 26 wm and a uni-
form channel depth, # of 55 um. Channels are fabricated in
PDMS using standard soft-lithography techniques and SU-8
photolithography. Further details of the fabrication procedure
may be found in [2,30].

In contrast to [2], in the present work PDMS channels are
bonded to PDMS-covered glass coverslips in order to achieve
uniform surface properties on all four walls of the channels.
PDMS is spin-coated onto the glass coverslip using a spin speed
of 3000 rpm to achieve a ~20 pm-thick layer of PDMS. The dif-
ferent ratios of PDMS to curing agent (CA) between the channel
(PDMS:CA =5) and the coverslip (PDMS:CA = 10) ensure that
the seal between the two surfaces is able to withstand pressures
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Table 2
Solution properties and experimental parameters

Glycerol in solvent (wt.%)

15 30 45 60
ns (mPas) 1.56 2.61 4.68 10.6
no (mPas) 2.96 4.79 9.03 17.3
np (mPas) 1.40 2.18 4.35 6.76
p (kg/m?) 1073 1112 1153 1196
ACaBER (mMS) 8.3 10.3 17.2 20.8
AZimm (MS) 0.542 0.869 1.34 2.31
[n] (ml/g) 924 886 763 582
R, (nm) 202 199 189 173
e 57h 750-56,800 750-37,400 750-32,900 750-23,800
Re 0.14-11.5 0.09-5.1 0.05-2.0 0.03-0.6
Wi 0.4-32 0.65-36 1-38 1.7-42
El 2.8 7.0 19 68

in excess of 180 kPa. Bonding is achieved by placing the two sur-
faces together after 20 min of baking at 80 °C, and then baking
the sealed channel at 80 °C for a further 24 h.

Pressure taps are located 3mm upstream and 3 mm
downstream of the contraction midpoint. The volumetric
flowrate is controlled via a precision syringe pump (Har-
vard Apparatus PHD2000), in order to achieve a range of
flowrates, 0.01 ml/h < Q <9 ml/h. These correspond to charac-
teristic deformation rates of 149s™! < . =20Q/(w? x h) <
1.35 x 10° s~! in the contraction throat (where Q is the vol-
umetric flowrate, w. the contraction width and /4 is the uniform
depth of the channel). Further details of the pressure measure-
ment setup, transducer calibration and data acquisition can be
found in [2,30].

2.2. Fluid rheology

2.2.1. Relaxation times

Four aqueous solutions containing 0.075 wt.% of a weakly
polydisperse sample of high molecular weight polyethylene
oxide (PEO, My =2 x 10° g/mol, polydispersity index =1.13,
Aldrich) were prepared using mixtures of water and increasing
amounts of glycerol (15, 30, 45 and 60 wt.%) as the solvent.
For brevity, we hereafter denote the four polymer solutions by
P15G, P30G, P45G, and P60G, for the PEO solutions contain-
ing 15, 30, 45 and 60% glycerol, respectively. The rheological
properties for each of these solutions are given in Table 2. All
solution properties were measured at 23 °C.

Characteristic relaxation times for each of the four solu-
tions were calculated according to Zimm theory (as was done
in our previous work [2]), and were also measured using
capillary breakup extensional rheometry (CaBER) [31]. The
geometrical configuration of the CaBER device employed in
the present experiments was similar to that used in [2] (A =1.57,
ho=2.5 mm). The measured relaxation times were found to have
arange of 4 ms <A <40 ms.

The Zimm relaxation time is calculated from an expression
of the form

[n]Mwns

1
NakgT M

AZimm = F

where My is the molecular weight, Na the Avogadro’s constant,
kp the Boltzmann’s constant, T the absolute temperature, 5 the
solvent viscosity, and [5] is the intrinsic viscosity. The prefactor,
F may be estimated by the Riemann Zeta function, {(3v)~! =
3792, 1/ in which v is the solvent quality exponent [32].

Values of the intrinsic viscosity used in the above expression
were obtained from U-tube capillary viscometer measurements
and were found to be a strong function of the mass fraction of
glycerol in solution. This is illustrated in Fig. 2, in which the
intrinsic viscosity decreases from 1026 to 582 ml/g as the glyc-
erol content is increased from O to 60 wt.%. This suggests that
the thermodynamic solvent quality, v, reduces as the glycerol
content is increased, resulting in a progressive collapse in the
dimensions of the unperturbed polymer coil. A measure of the
change in polymer coil size as a function of intrinsic viscosity
can be approximated according to the Fox—Flory equation [33],
for which values are given in Table 2.

The value of the solvent quality, v, could not be deter-
mined for each solution of varying glycerol content due to
the lack of available experimental data regarding the influence
of glycerol content on the parameters in the Mark—Houwink
correlation for PEO. The front factor F=0.463 was therefore
calculated for a good solvent (v=0.55), which in combination

1100 T T T

¥ T ¥ T b T
e Present work
= Tirtaatmadja et al. 2006
1000 -

900
800

700

Intrinsic Viscosity, mlig

600 -

" 1 " 1 a 1 i 1 " 1 "
0.0 0.1 0.2 0.3 0.4 0.5 0.6

500 L
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Fig. 2.
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with the measured intrinsic viscosity data, was used to calcu-
late Zimm times for each of the PEO solutions, Azjmm = 0.54,
0.87, 1.34, and 2.31ms, in order of increasing glycerol
content.

In Fig. 3, our measured values of the effective fluid relax-
ation time measured in elongational flow using the CaBER
device are presented on a master plot of Acff/Azimm versus clc”
for a number of aqueous PEO solutions [32]. The values of
Aeft/Azimm ~ 10-20 for the present solutions were found to agree
with those obtained from various drop breakup [32,34] and jet-
ting experiments [35]. This agreement is expected as, in all
cases, the characteristic relaxation time is extracted from the
filament dynamics associated with the strong transient flow of
a low-viscosity polymer solution undergoing elasto-capillary
thinning. However, the large discrepancy between the calculated
Zimm times and the measured CaBER relaxation times sug-
gests that the imposed flow field during CaBER measurements
is significantly affecting the polymer chain dynamics and/or the
theoretical analysis of the thinning dynamics is overly simplified
[36,37].

In order to avoid any confusion regarding relaxation times
throughout this work, we will use the Zimm relaxation time
in all following discussions and Weissenberg number calcula-
tions, and this will be denoted generically by A. Our justification
for this choice is as follows: firstly, the Zimm time is gener-
ally of the same order of magnitude as the timescales obtained
by fitting constitutive models, such as the Oldroyd-B model
to viscosity and first normal stress difference data obtained
in steady shear [38]. Numerical simulations using these mod-
els can only be expected to predict the results of the present
experiments if the computed material functions for the con-
stitutive model are close to those measured in the fluid. The
increase in A during transient elongation that is shown in
Fig. 3 must therefore be predicted from the constitutive theory.
Although current closed form theories for polymer solutions do
not show such increases, recent Brownian dynamics calcula-
tions with bead-spring chains in planar elongation do show a
similar concentration-dependence in the longest relaxation time
[39]. Similarly, the results of the present experiments may only

be compared with those of previous macroscale experiments (in
which the fluid rheology is often well-described by constitutive
models such as the Oldroyd-B model) if comparable definitions
of timescales are used.

2.2.2. Steady shear viscosity

The steady shear viscosity of all polymer solutions and
their solvents was measured using a stress-controlled rheome-
ter (AR2000) using a double-gap Couette cell attachment. The
viscosities of each of the solutions were found to be constant
over the range of shear rates, 2 s7! < y < 3000 s~! with val-
ues ranging from 3 to 17 mPa s (Table 2). The density of the four
PEO solutions was measured using calibrated 5 ml density flasks
at 23 °C. The density of the solutions increased linearly with
mass fraction of glycerol, and as a result, PEO concentrations
(when expressed in units of g/ml) vary between 8.05 x 10™*
and 8.97 x 10~* g/ml. These values of concentration are used to
determine values of ¢/c”, in order to maintain consistency with
the units for [n], ml/g.

Since the microfluidic geometry is the same for all measure-
ments presented in this work, the elasticity number, El =no)/ ,012
only varies due to changes in the relaxation time, the solution
viscosity and less significantly, by the density. The four solutions
containing solvents 15, 30, 45 and 60% glycerol in water, corre-
spond to elasticity numbers E/=3.8,7.1, 19, and 68, respectively,
using a constant lengthscale, w, = 26 wm, the Zimm relaxation
time and the measured solution properties presented in Table 2.
In our previous work [2], we used the same geometry and three
solutions of various elasticity numbers, E/=8.4, 3.8 and 89,
which were all calculated using the CaBER-determined relax-
ation times. For the purpose of comparison only, if the elasticity
numbers for the present experiments are re-calculated based
on their CaBER-determined relaxation times, these values are
El=43, 84, 240 and 610 for the P15G, P30G, P45G and P60G
solutions, respectively; i.e. an order of magnitude higher than
those used in [2].

2.2.3. Flow visualisation

The upstream kinematics associated with the flow of
deionized water and all PEO solutions through the 16:1
contraction were visualized using fluorescent streak imaging
and micro-particle image velocimetry (u-PIV). A schematic
of the geometry and the imaging setup are detailed in
Fig. 4.

In order to generate streak images, fluids were seeded
with 1.1 pm epi-fluorescent particles (Ex./Em.=520/580nm,
¢=0.02wt.%), and exposed to a continuous illumination Mer-
cury lamp. Further details on the streak imaging setup may be
foundin [2]. Asinour previous work [2], the measurement depth,
8zm [40] is chosen as the appropriate lengthscale to represent the
depth of the image plane on which streak lines are observed. For
our streak imaging setup (M = 10x, NA =0.3), the measurement
depth was found to be 8z, =33.6, which is 60% of the channel
depth.

PIV image pairs were acquired using a SensicamQE double-
frame camera in conjunction with a double-pulsed 532nm
Nd:YAG laser, in which the exposure time of each image is set
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by the pulse width, §z=5ns. Images of 0.51 pwm epi-fluorescent
particles were acquired through a 20 x (NA =0.5) objective lens,
for which the resulting measurement depth is 12 pm; this is
equivalent to 21% of the channel depth. The majority of PIV
images (apart from those used to generate the out-of-plane veloc-
ity profile in Fig. 6b) were acquired at the centreplane (y=0),
which was identified as the midpoint of two stationary fluo-
rescent particles adhered to the top and bottom surfaces of the
microchannel. The uncertainty of the centreplane position (and
out-of-plane position) is therefore a function of the uncertainty
of locating an individual particle (i.e. DOF=0.86 pm), the size
of the particle (dp =0.5 wm), and the size of a division on the
microscope focussing micrometer; error values were calculated
to be €y = £2 um and are represented by horizontal error bars
in Fig. 6b.

The time between individual PIV images, At, was setin order
to achieve an optimum particle displacement (2d, < Ax<7.5d,,
in which d;, is the particle diameter) [40,41] between images
at all positions along the centreline. To accommodate regions
of higher velocities nearer the contraction, a second set of

Side view

images were acquired using a smaller value of At; one quar-
ter of the value used for regions further upstream. The time
between laser pulses, At was therefore adjusted over the range
(19 ps < At< 634 ws) according to the flowrate and region of
interest (i.e. the local velocity).

A conventional cross-correlation PIV algorithm (TSI Insight,
http://www.tsi.com) was used to analyze each image pair. Inter-
rogation areas of 32 x 32 and 16 x 16 pixels (with Nyquist
criterion) were used to generate full field velocity maps. Further
details on PIV processing algorithms and optimization guide-
lines can be found elsewhere [40,30]. Two modes of PIV image
processing were utilized during experiments. The first mode
was used only for steady flows in which 25 image pairs were
ensemble-averaged to obtain a single vector field. The second
mode was used for unstable flows, in which only one pair of
images was used to characterize the flow at a particular instant in
time. Post-processing techniques to remove spurious vectors and
to interpolate for missing vectors were only applied in regions
upstream of the contraction (z/w. < —5), i.e. where velocity
gradients are relatively small.
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2.3. Dimensionless groups

Four dimensionless quantities are used to characterize the
dynamics of the flow of the polymer solutions through the 16:1
contraction geometry: the Weissenberg number (Wi), Reynolds
number (Re), elasticity number (EIl) and the viscoelastic Mach
number (Ma). The following definitions for Wi, Re and El were
alsoused in our previous work [2], and for consistency, we follow
the same notation and definitions. The Weissenberg number is
defined in terms of a characteristic polymer relaxation time and
the average shear rate in the contraction throat:

AV, 20

W’:)\,'Zizi’
LA 2 T hw?)2

(2)
in which V. = Q/(wch) is the average velocity, w, the contrac-
tion width, 4 the depth of the channel, Q the volumetric flowrate,
and X is the Zimm relaxation time.

The Reynolds number is defined in terms of the average veloc-
ity in the contraction throat, V., and the hydraulic diameter, Dy,
which is given by Dy = 2wch/(we + h):

_ pVeDn 200

Re = ,
no (we + h)no

3

where the fluid density is denoted by p. Although we have chosen
no as the characteristic viscosity in the above expression, the
weak variation of the shear viscosity of dilute polymer solutions,
and the relative magnitudes of the zero-shear and infinite-shear
viscosities for all solutions (Table 2) indicate that the choice of
characteristic viscosity (i.e. zero-shear, infinite-shear, or a local
shear-rate dependent) would have minimal effect on both the
relative values and magnitude of Re for all flow conditions.

The elasticity number represents the ratio of elastic to inertial
stresses, and is independent of kinematics. It is only dependent
on the properties of the fluid and on the characteristic length-
scales of the device,  and wc:

Wi Ap An(we + h)
" Re 2pw2h

El “

pwe Dy

The viscoelastic Mach number, Ma=V/c, is the ratio of a
characteristic velocity, V to the viscoelastic wave speed, ¢; =
V/G/p, where G = np/A is the elastic modulus of the fluid and 7,
is the polymer contribution to the zero-shear viscosity.

As described in Section 1.1.2, the magnitude of the viscoelas-
tic Mach number can be used to identify regions of elliptic
(Ma< 1) and hyperbolic (Ma> 1) vorticity transport. This is
the case for a Maxwell type fluid in which the solvent vis-
cosity ns =0, and true hyperbolicity is phenomenologically not
possible when a Newtonian solvent is present; the viscous con-
tribution to the stress results in a dispersion of the shear waves.
However, when n,/ns >> 1 or ng/ns >> 1 the elastic stresses are
much greater than the viscous stresses and very similar phe-
nomena may occur. This has been documented by Hulsen [5]
who simulated the circular entry flow for an Oldroyd-type fluid
in which n¢/ns=6. In the present work, the local viscoelastic
Mach number |v(x, y)|/c is evaluated throughout each complex
flow using the PIV-determined velocity field. For the solutions

used in the present work, np/ns ~ O(1). Furthermore, pressure
drop measurements in Section 3.3 suggest that for the most elas-
tic solution lim¢_, oong/ns < 10. The low values of np/ns may
therefore lead to a condition in which Ma>1 is not an exact
criterion for determining regions of hyperbolic vorticity trans-
port. However, comparing the relative magnitude of the local
viscoelastic Mach number between individual experiments may
still be expected to be qualitatively meaningful.

The dimensionless pressure, AP is obtained by normalising
the differential pressure AP =P — P, by the linear slope of
the pressure drop/flowrate curve that is observed in all experi-
ments atlow De [12]. Hence, AP(Re, De) = AP12/(sQ), where
s=dAP12/dQ when Q — 0. This procedure is identical to that
followed in [2].

3. Results
3.1. Streak imaging

Streak images of each of the four solutions were used to
identify the onset of “steady viscoelastic flow” at Weissenberg
numbers of (Wi = 3-4) for the three lower elasticity number
solutions (El=2.8, 7, and 19). In this flow regime, converging
streak lines exhibit an inflection upstream of the contraction
plane, such as those illustrated in Fig. 5d. This is in contrast to
Newtonian flows, in which the converging streak lines only expe-
rience an inflection upon entering the contraction. For the most
elastic solution, P60G (EI = 68) the transition from Newtonian-
like to steady viscoelastic flow occurs at a higher Weissenberg
number, Wi = 10.

Streak images for all solutions at Wi = 10-11 are presented
inFig. 5. For E1=2.8,7 and 19, this corresponds to the “diverging
flow” regime. Pronounced additional streamline curvature can
be observed upstream of the contraction plane. Again, the transi-
tion to diverging flow for the most elastic solution, EI = 68 occurs
at a higher Weissenberg number, Wi = 17-20. At Wi = 17, the
flow of the other three solutions becomes three-dimensional,
unstable and time-dependent.

In unsteady flows, it is difficult to characterize the vor-
tex mechanism using streak image analysis, due to the high
frequency of oscillations in the flow structure and the three
dimensional nature of the flow. PIV partly resolves these dif-
ficulties, firstly by capturing an image of the flow field over
a small time interval (1 <dr<O(10%) Ws) to achieve instanta-
neous vector maps, and secondly, by interrogating a smaller
measurement depth (8zp,) by using a higher numerical aper-
ture objective. Analysis of flow structures within the diverging
and unstable flow regimes will therefore be addressed in the
following sections.

3.2. Micro-particle image velocimetry

3.2.1. Experimental validation: Newtonian flow in a
rectangular channel

In order to quantify the velocity field associated with the
complex flow through a planar contraction, it is first necessary
to confirm that the combined measurement and analysis tech-
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Re=1.05 Wi=11.0

Fig. 5.

nique yields correct values of the velocity. This was achieved by
conducting PIV measurements in a section of the PDMS channel
in which the flow is rectilinear (i.e. far upstream of the contrac-
tion). Velocities were measured in both the x—y planes and x—z
planes in order to construct the three-dimensional velocity pro-
file, which was then compared with the analytical solution for
Poiseuille flow in a channel of rectangular cross-section. In the
present geometry, x is in the direction of the channel width, y is
in the direction of the channel depth, and z is in the direction of
the flow.

Eq. (5) represents the z-component of the dimensionless
Navier-Stokes equations, in which v, = v,/(v;), is the dimen-
sionless axial velocity, and § = x/(wy/2) and v = y/(h/2) are the
dimensionless x and y positions, respectively. For viscous flows,
it is customary to normalize the pressure gradient with the vis-
cous pressure, Pyisc = i (v2)u/(h/2)?, such that the dimensionless

pressure drop is given by AP = (dP/dz)/ Pyisc.
1 32 / 82 ’
R VN 5)

o2 32 a2

Use of Eq. (6) below as the general form of the solution for
v, reduces Eq. (5) to a Laplace equation, which can then be
solved easily using the method of ‘separation of variables’ with
homogenous boundary conditions, v, = 0 atv=+1and £==1,
o, /0 =0at£=0, and v /v = 0 at v=0.

V(5 v) = XY (v) + AP(v) (6)

El=7.1 Q=0.8 ml/hr
Re=1.47 Wi=10.4

EI=68 0=0.3 ml/hr
Re=0.15 Wi=10.4

The resulting solution to the axial velocity in a rectangular
channel is given by [42]:

= Zneo((=1)" /o) cos(onv)[1 — (cosh(o,at)/cosh(o,a))]

z Soo2 o(1/oh) — (1/07 ) tanh(oy, )
@)
and the pressure gradient is given by:
P A
d_ — PM(UZZ = 5 Z [ i tanh(anoe)
dz (h/2) 2(h / 2) Op o
®)

inwhicho,=Q2n+ 1)7/2,n=0,1,2,...and o = wy/h = 7.27.
The solution for dP/dz converges rapidly and we use the first 6
terms of the series.

Experimental measurement of the in-plane (x—z plane) veloc-
ity profile was achieved using conventional micro-PIV in which
the entire profile could be captured in a single field of view. The
out-of-plane (y—z plane) velocity profile was obtained point-by-
point, by measuring the maximum velocity in the x—z plane and
successively stepping the focal plane vertically through the depth
of the channel.

In Fig. 6, we compare the axial velocity profiles measured
using PIV in the 400 pwm x 55 pm straight channel (in both the
x—z and y—z planes) with those obtained analytically (Eq. (7)).
The close agreement between the experimental and analytical
data validates our PIV setup and image processing algorithms.
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3.2.2. Flow in a 16:1 planar contraction: Newtonian flow

InFig. 7a, we compare the streamlines evaluated from the PIV
data (using a commercial stream-tracing algorithm in Tecplot)
with those obtained through streak imaging for water flow-
ing through a 16:1 contraction at a Reynolds number, Re=7.3
(O =1ml/h). For a steady flow, the velocity field {v,(x, z), v.(x,
2)} determined using p.-PIV can also be converted into a set of
streamlines (strictly pathlines) using a pathline integration tech-
nique. Fig. 7 illustrates the excellent agreement between the
two techniques, regardless of the particle size used in each case
(0.5 pm for PIV and 1 pm for streak imaging).

Typical axial velocity profiles of a Newtonian fluid (water)
traveling along the centerline towards an abrupt 400:26 con-
traction are presented in Fig. 7b for a range of flowrates,
0.09 ml/h< Q <1 ml/h (0.65 <Re <7.8). The profiles superpose
for all flowrates over this range. At positions along the centreline
and just upstream of the contraction plane, —1 <z <0, the dimen-
sionless velocity increases approximately linearly with slope
((8vz/82)(we/ (vz))) = 10.

In Fig. 8a, we present lateral velocity profiles of v’ versus x
for the Newtonian fluid, in which v’z is the dimensionless axial
velocity, and x is the distance from the centerline towards the

<
—e— Q= 0.09ml/hr, Re = 0.65 ;
—u—Q=0.5mlhr, Re = 3.64 ‘
201 |—4—Q=1.0mlhr, Re=73 i
.
+ <4
A 150 i
a" [
.!N
> 10} i
51 i
o L 1 " 1 " 1 L 1 " 1 1 1 L
14 12 40 -8 ) 4 2 0
zZiwg
Fig. 7.

side walls of the channel. The velocity profiles are presented at a
number of axial positions (z=—300, —200, —100 and —50 pm,
illustrating the evolution of the velocity profile as the contraction
plane is approached. Because PIV data is discrete and represents
the velocity over a quarter of an interrogation region of 32 x 32
pixels, axial velocity profiles are extracted at locations nearest
these nominal values. The real locations of these measurement
planes are specified in each corresponding figure. At a nomi-
nal distance z = —300 wm upstream of the contraction plane, the
profile is that of fully developed flow in a rectangular channel for
an upstream aspect ratio, Ay = /oy = h/wy = 0.14. The ana-
lytical solution for fully developed flow in a 400 pm x 55 pm
channel is also shown in Fig. 8a by the solid line.

At locations nearer the contraction plane, z=—200 um, a
peak in the z-component of the velocity develops and velocities
nearest the side walls of the channel exhibit a negative deviation
from the fully developed profile. At this point, fluid elements
begin to feel the presence of the contraction. This effect ampli-
fies as the contraction plane is approached (z=—100 pm and
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z=—50 pm). Streamline convergence is also illustrated by the
plots of v/, versus x presented in Fig. 8b, in which non-zero val-
ues of v/, begin to develop at axial positions, z=—200 pm and
grow as the contraction plane is approached. The symmetry of
the flow is elucidated in the plots of v/, versus x by the reflection
in absolute values of v; about the centerline axis, x=0.

In accordance with the centerline velocities presented in
Fig. 7b, there is little observable difference between the lateral
velocity profiles (for both v’Z (x) and v; (z)) at Reynolds numbers,
Re=0.65 and 7.3 (Q=0.09 and 1 ml/h). Error bars correspond-
ing to measurements at z = —50 wm have been included in both
Fig. 8a and b and indicate the spread of the data for all Newtonian
flow conditions.

Small variances in axial position (z = —46.7 pm for Re =0.65
and z = —47.4 um for Re=7.3) have been accounted for in the
calculated error. The discrepancy in peak velocities may partly
be attributed to small obstructions to the flow which result from
the lodging of debris or fluorescent particles in the vicinity of the
contraction throat. These appear in the raw PIV images as very
bright regions, much larger than when observed under transmit-

ted light, and are typically observed only at higher flowrates.
They would, however, be expected to cause a local increase in
the velocity due to an effective reduction in the channel width
at the contraction entrance.

3.2.3. Effect of fluid elasticity

Having determined the accuracy of our PIV measurements
with a Newtonian fluid, we can qualify changes in the veloc-
ity fields measured for the four low viscosity elastic solutions,
P15G, P30G, P45G and P60G. For brevity, we provide a
detailed analysis for fluid P45G, over a range of flow con-
ditions, 0.1 <Re< 1.3, 2< Wi< 24, corresponding to flowrates,
0.1 ml/h< Q< 1.2ml/h. Summaries of the results for all fluids
will be presented in following sections.

In our previous work [2], we demonstrated that the primary
effect of fluid elasticity in micron-scale contraction flows was
the generation of complex flow structures upstream of the con-
traction plane at moderate to high Weissenberg numbers, and
the dampening of downstream vortices arising from fluid iner-
tia. In the present work, we observe the same effects of fluid
elasticity, however with the use of micro-PIV, it is possible to
quantitatively assess the progressive changes in the velocity field
that occur as the flow transitions between the Newtonian-like,
steady viscoelastic, inertio-elastic, and diverging flow regimes.

3.2.3.1. Steady flow: transition from Newtonian-like to steady
viscoelastic flow. InFig.9, we present the streak images and PIV
streamlines upstream of the contraction plane for fluid P45G
at flow conditions corresponding to Newtonian-like (Fig. 9a),
steady viscoelastic (Fig. 9b), and diverging flow (Fig. 9¢). For
steady and stable flows (such as the first two cases), smooth
and nearly complete PIV vector maps could be achieved using
an ensemble average of 25 image pairs. This procedure was
less successful for diverging flow regimes, in which the flow
is unstable and ensemble averaging could not be implemented.
Consequently, blank regions in the velocity field hindered the
construction of streamlines without the use of interpolation fil-
ters.

Fig. 10a and b illustrate the evolution in centerline veloc-
ity profiles for fluid P45G, in terms of the dimensionless
variables, v and { = z/we, corresponding to the Newtonian-
like and steady viscoelastic flow regimes. At low values of
the Weissenberg number, Wi<4 (Re<0.22, 0 <0.2ml/h), the
axial velocity profile at the centerline exhibits Newtonian-like
behaviour. Beyond a critical Weissenberg number, Wi > 4, the
centerline velocity profile exhibits a delayed fluid acceleration
in regions nearest the contraction throat. As aresult, an inflection
in the velocity profile appears at approximately ¢ = —2.5, and
at a dimensionless axial velocity, v’Z = 4.5, consistently for all
flowrates corresponding to 4 < Wi<7 (0.2 ml/h< Q< 0.35 ml/h,
0.22<Re<0.38). At first, this may appear to be an inertially
induced phenomenon; however the velocity profiles in Fig. 7
confirm that the same inflection in the velocity profile is not
observed for a Newtonian fluid at the same Reynolds number.
Furthermore, numerical simulations for a Newtonian fluid indi-
cate that this behaviour is not observed for Reynolds numbers as
high as Re =218 in the absence of fluid elasticity [43]. Analysis
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of the streak images in Fig. 9 indicate that this effect is a hall-
mark of steady viscoelastic flow in the contraction region. The
departure from Newtonian flow is clearly illustrated in Fig. 10b,
which displays the common inflection point for all profiles,
and the increased degree of flattening that occurs with higher
flowrates.

At low flowrates, Q=0.1 ml/h (Re=0.11, Wi=2), both lat-
eral velocity profiles, v/.(x) and v; (x) for fluid P45G are similar
to those observed for Newtonian flow presented in Fig. 8, at all
upstream positions, —300 um <z<O0 pwm. At higher flowrates
(0.1 ml/h< Q@ <0.35ml/h) we observe progressive changes in
the lateral velocity profiles (particularly in v/ (x)) which reflect
the “flattening” of the centerline velocity profile in the region

—2<¢ <0 depicted in Fig. 10. At z=—100 pm, the peak in the
normalized axial velocity increases as the flowrate is increased,
while at z=—50 pwm, the peak velocity decreases.

3.2.3.2. Time-dependent flow: transition to diverging flow. Fol-
lowing the onset of diverging flow, Q >0.35 ml/h (Wi>7.02,
Re >0.38), the flow becomes unstable and time-dependent. This
is indicated by the reduced coherence of the streak lines in
Fig. 9¢c, which accompanies diverging flow. The time-dependent
nature of the flow field in the diverging flow regime is illustrated
in Figs. 11a and b, which were acquired successively at t=0s
and r=0.4s. These images illustrate the instantaneous structure
of the flow field following the onset of an instability.
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The dynamics and structure of diverging flow were char-
acterized according to the “degree of divergence” (spatial
characteristics) in the flow and the “amplitude of fluctua-
tion” (temporal characteristics). Firstly, we consider the spatial
characteristics of diverging flow. The degree of divergence is
manifested in the shape of the axial velocity profile at the cen-
treline. The centerline velocity profile is only meaningful when
the flow is symmetric, and since the diverging flow is unstable
and time-dependent, it was necessary to isolate instantaneous
PIV vector maps in which the flow was symmetric (such as the
flow illustrated in Fig. 9c).

The centreline velocity can then be extracted from these
images as shown in Fig. 12. This figure illustrates the evolution
of the centerline velocity profile in fluid P45G upstream of the
contraction plane, as the flowrate increases from Q=0.4 ml/h
to @=0.9 ml/h. The velocity profile corresponding to the ini-
tial Newtonian-like flow (Q=0.1ml/h) is also included for
reference. In the diverging flow regime, streamlines diverge
away from the centerline upstream of the contraction and then
re-converge just prior to entering the contraction throat (see
Fig. 9c). In order to conserve mass locally, fluid elements travel-
ing along the centerline must decelerate as adjacent streamlines
begin to diverge. As a result, a higher “degree of divergence”
leads to a smaller value of the minimum centerline velocity.
We can therefore use the minimum axial velocity as one mea-

Fig. 11.

sure of the degree of divergence. Another quantity which can be
used to characterize this behaviour is the location of the “bottle-
neck” just upstream of the diverging streamlines. This can also
be identified in the centerline velocity profile as the location of
the maximum velocity in the region immediately upstream of
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diverging streamlines. As the flowrate increases, the position
of maximum velocity shifts further upstream and the minimum
centreline velocity reduces.

The axial velocity curves are numerically integrated for each
value of z, in order to quantify an effective measure of the
in-plane flowrate, represented by A, = f;::_z(z)go v.(x) dx. The
integral A; is calculated for each z-position and for a range
of flowrates just prior to and following the onset of diverg-
ing flow, 0.35 ml/h< Q <0.6 ml/h (7 < Wi<12,0.38 < Re < 0.65).
As we also observed for steady viscoelastic flows, the value
of A, progressively reduces as ¢— 0, suggesting that fluid
elements are moving away from the centreplane in the y-
direction; i.e. the flow near the contraction plane is increasingly
three-dimensional. As the flowrate is increased, the departure
from locally two-dimensional flow (at the centreplane) becomes
more pronounced and develops at locations further upstream.
For flowrates, Q > 0.55 ml/h (Wi > 11), the departure from 2D
flow appears to saturate, at which point A, reduces to ~50%
of the equivalent fully developed value at an axial position,
{=-2.

3.2.3.3. Unstable flow: characterizing streamline oscillations.
Unstable viscoelastic flows were characterized according to the
amplitude of the fluctuation. This was evaluated from analysis of
the temporal characteristics of the flow field. Here, we define the
amplitude of the fluctuation as the magnitude of the maximum
sideways displacement from the centreline that the fluid core
experiences during the unsteady flow. The location of the core is
identified as the x-co-ordinate of the maximum axial velocity, in
an arbitrarily chosen plane (z=—100 pm, y =0 wm). The loca-
tion of this maximum is most easily identified in regions of high
velocity gradients (in the x-direction). In light of this, we have
chosen a value of z that coincides with regions in the vicinity
of the bottleneck. PIV-generated streak images in Fig. 11 indi-
cate that z=—100 wm is a suitable choice. The axial velocity
profile at this measurement plane, z=—100 wm was evaluated
over a series of 25 images (10s). By evaluating only the x-
positions of the velocity peak in each profile, it was possible
to quantify the lateral location of the fluid core as a function of
time. The standard deviation of all 25 positions was then used
as a measure of the amplitude of the fluctuation. This process
was repeated for all flowrates in both stable and unstable flow
regimes.

For steady Newtonian-like flow, the value of the dimen-
sionless amplitude of the instability is close to zero (as
expected). However, it increases as the flowrate increases
beyond Q=0.7 ml/h (Wi=14) and a transition to unstable flow
occurs. This behaviour is depicted in Fig. 13. A prominent
feature of this figure is the reduction in fluctuation amplitude
for Q> 1.2ml/h. From streak images, it was found that this
coincides with the onset of vortex growth, which assists in
stabilizing the position of the central fluid core. For compari-
son, we also show in Fig. 13 the magnitude of the fluctuation
evaluated at a second axial positoin, z=—150 pwm. There is
only a weak dependence on axial position, particularly in the
region of unstable flow, and this indicates the robustness of this
measurement.

4.0 v T r —
|

. r .
| Stable flow ¢ Il Unstable/
Diverging flow

35

3.0+
—m—z=-100 um
®—z=-150 um

25

20
15+
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Dimensionless Amplitude of Instability

0.0

Wi

Fig. 13.

3.2.4. The viscoelastic Mach number, Ma

Contour plots of the local viscoelastic Mach number are pre-
sented in Fig. 14. The four images correspond to Newtonian-like
flow (Fig. 14a), steady viscoelastic flow (Fig. 14b), and the onset
of diverging flow (Fig. 14¢). For Newtonian-like flow (Wi =2.0),
the region nearest the contraction entrance is occupied predom-
inantly by contours of Ma <0.3 (Fig. 14a). The maximum value
of the Mach number that occurs in the contraction throat at the
center-line (based on a fully developed profile in the contrac-
tion) is Mac max = 0.7. As the flowrate is increased (Wi =7) and
a transition to steady viscoelastic flow occurs, the region near
the contraction entrance experiences higher Mach numbers of
approximately Ma <0.8 (Fig. 14b). The maximum value in the
contraction throat is Ma=2.7. In this regime, the contours of
constant Mach number exhibit a mildly elongated shape, in con-
trast to the circular-shape contours observed in Newtonian-like
flows. The distortion of these circular contours becomes more
pronounced in the diverging flow regime as shown in Fig. 14c
and d. At the onset of the diverging flow (Wi=9), contours of
value Ma=0.8 are easily identifiable upstream of the contrac-
tion. The maximum value of the viscoelastic Mach number in
the contraction throat is Macmax = 3.5. This general evolution
of the flow field is of the same form as described by Hulsen [5],
in which large upstream regions of Ma > 1 corresponded to the
onset of diverging flow for high elasticity solutions (e =0.02).

3.2.5. Effect of solvent viscosity: the elasticity number

In order to evaluate the effect of changing the elasticity num-
ber, we now compare a selection of the kinematic quantities
presented above. Firstly, the centerline velocity profiles are pre-
sented for each of the elasticity numbers at the same Weissenberg
number. This enables a direct assessment of the effects of fluid
inertia on the centerline kinematics. Secondly, contour maps of
the local viscoelastic Mach number will be presented for each of
the fluids at or near the onset of diverging flow. The goal here is
to assess the validity of the Ma > 1 criterion for the development
of diverging streamlines, at different elasticity numbers. Lastly,
centerline profiles of the strain rate will be presented for each of
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the polymer solutions, over the entire range of flow conditions
studied in the PIV measurements.

3.2.5.1. Effect of elasticity number on the centerline velocity
profile. The centerline velocity profiles for each of the fluids,
El=2.8,7, 19 and 68 are presented in Fig. 15, for Weissenberg
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numbers, Wi=7, 11. At low Wi (Wi=2), the centerline velocity
profile exhibits Newtonian-like characteristics for all elastic-
ity numbers, 2.8 < EI <68 (such as those in Fig. 7b). At Wi=7
(Fig. 15a), the onset of steady viscoelastic flow is identified by
the local inflection of the velocity profile for 2.8 < El <7, whilst
for the highest elasticity number, El =68, the centreline veloc-
ity profile retains Newtonian-like characteristics. The effects of
elasticity are most prominent for £l =7, and result in a higher
normalized velocity upstream of the inflection point, as well as a
flatter velocity profile immediately downstream of the inflection
point. The higher Weissenberg number for fluid P30G (Wi=7.8,
compared with Wi =7.0 for P45G) may be partially responsible
for this enhanced elastic effect.

At Wi=11 (Fig. 15b), characteristics of diverging streamlines
are observed in the centreline velocity profile for E/=19; this is
illustrated by the local velocity minimum observed just upstream
of the contraction. For El="7, the flat velocity profile near the
inflection point suggests the approaching onset of diverging flow,
while for El=2.8, the mildly inflected velocity profile indicates
that the flow is still steady and viscoelastic in character.

The above information can be summarized in a flow transi-
tion map in Wi—Re space, which is presented in Fig. 16. At high
elasticity numbers, transitions between flow regimes occur at
higher Weissenberg numbers. For moderate elasticity numbers,
the critical values of Wi for the onset of flow transitions are lower,
however as the elasticity number is further reduced, these val-
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ues increase slightly. This implies the existence of a minimum
in the boundary between flow regimes, which coincides approx-
imately with our experiments for the P45G fluid with El=19.
These results agree qualitatively with observations made in pre-

(a) 16.1 Contraction: P15G Q= 1.4 ml/hr, Wi = 11, Re = 4.0
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vious numerical and experimental works (Table 1, and Table 1
of [2]); the generation of vortices and other viscoelastic effects
are retarded by very high elasticity numbers (e.g. planar flows of
Boger fluids [12]) and develop due to an interplay of elasticity
and fluid inertia. Furthermore, a Reynolds number that is too
large dampens the effects of viscoelasticity, and in particular,
inhibits the growth of elastic upstream vortices.

3.2.5.2. Diverging flow and the viscoelastic Mach number;
effect of El. Fig. 17a—d show contour plots of the viscoelastic
Mach number for each of the four solutions near or at the onset
of diverging flow. The corresponding flow conditions for each
of the sub-figures are (a) E[=2.8, Wi=11, (b) El=7, Wi=10,
() El=19,Wi=11, and (d) El = 68, Wi=24. For El=7, 19 and
68, the onset of diverging flow concincides with a local Mach
number, Ma=0.8, in a region just upstream of the contraction
plane in the vicinity of the diverging streamlines. However, for
the least elastic solution (El=2.8), the equivalent value of Ma
is much larger. For example, in Fig. 17a, the local values of
the Mach number upstream of the contraction plane are as high
as 1.6, yet diverging flow is still absent. This result supports
the assertion of Hulsen, in that large values of the Mach num-

(c) 16.1 Contraction:P45G Q= 0.55 ml/hr, Wi =11, Re = 0.59
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ber do not explicitly lead to diverging flow and that the critical
value of the Mach number is not the only important parameter
in predicting the onset of diverging flow in polymer solutions
with significant solvent viscosities. Furthermore, Hulsen finds
that the presence of diverging flow (at Ma = 1) is only true for
high elasticity solutions (¢ =0.02), which also agrees with our
observations.

3.2.5.3. Centreline strain rate profiles; the onset of elasticity.
Similar to the inflection observed in the centreline velocity pro-
file in Figs. 12 and 15, the evolution of the centreline strain rate
may also be used to identify the effects of fluid viscoelasticity.
Furthermore, values of the strain rate may be used to determine
the local values of the Deborah number, De = é(z)A in which
A may be a theoretical Zimm time or a CaBER-determined
relaxation time. By evaluating the centreline strain rate using
centreline velocity data (¢ = §v,/§z), it was found that the max-
imum strain rate, émax Occurs just upstream of the contraction
plane. By incorporating the Zimm time, we find that the onset of
viscoelastic effects corresponds closely to a value of Depyx = 1
for fluids P15G, P30G and P45G. For fluid P60G, values of
Denax are greater than unity for all flow conditions, including
those in which Newtonian-like behaviour is observed. This is
consistent with Fig. 16 which illustrates that the onset of vis-
coelastic effects occurs at a higher Weissenberg number for
fluids with high viscosities and high elasticity numbers (e.g.
El=68). The correlation between Demax > 1 and the onset of
fluid elasticity for the other three fluids, however, supports our
choice of the Zimm time as the most suitable timescale for char-
acterizing these viscoelastic flows. Furthermore, it was found
that the ratio of the maximum strain rate and the downstream
shear rate, émax/yc = 0.4-0.5, was found to be approximately
consistent between all flowrates and for all elasticity numbers.
Since the maximum axial strain rate on the centreplane and the
downstream shear rate are of the same order of magnitude, both
may be considered equally suitable quantities for calculating the
characteristic Weissenberg number (or Deborah number) in this
geometry.

3.3. Pressure drop measurements

Pressure measurements were validated in a rectilinear chan-
nel flow using a similar procedure to that used for the validation
of PIV vectors. In contrast to the PIV measurements, a second
rectangular channel with a smaller cross-section and without
a contraction—expansion was used. The smaller channel cross-
section (55 wm x 57 wm) was chosen in order to achieve larger
(and thus more readily measureable) total pressure drops than
could be attained in the corresponding 400 pm x 55 wm chan-
nel. Fig. 18 illustrates the differential pressure drop measured
over a 6 mm section of the rectangular channel with dimensions
55 wm x 57 wm. Again, the experimental pressure measure-
ments show very close agreement with the analytical solution
(Eq. (8)). Discrepancies between the data and the analytical
solution at high pressure drops (APj2>35kPa) are a result
of the upper limit of the nominal range of the pressure sensor
(0-5 psi).
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Fig. 18.

In Fig. 19a we present measurements of the total pressure
drop in water and the four elastic solutions flowing through the
16:1 contraction. Numerical predictions of the pressure drop for
a Newtonian fluid through the same 16:1 contraction—expansion
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geometry can be found elsewhere [43], and agree closely with
the experimental data presented here. The pressure drop/flowrate
curves for the P15G, P30G and P45G fluids show similar
characteristics. At low flowrates, the differential pressure drop
AP1; is linear with Q, and follows the expected behaviour
for a Newtonian fluid. The slopes of the curve in this region,
51 = limg_,0dA P12/dQ, for each of the PEO solutions (P15G,
P30G, P45G and P60G) are 2.66, 3.78, 7.43 and 13.0 kPah/ml,
respectively. At a critical flowrate (whose value depends on the
elasticity number), the slope increases abruptly, corresponding
to the onset of viscoelastic effects. In this second region, the
slope, maintains a constant value of s, =16.9, 24.9, 43.1, and
60.6 kPah/ml in order of increasing elasticity number, respec-
tively. At higher flowrates again, the measured pressure drop
deviates from the previous region of constant slope, resulting
in a local shoulder in the APj>—Q curve. This final transition
is observed only for E/=2.8, 7.0 and 19 and corresponds to the
onset of unstable vortex growth. At higher flowrates, the large
elastic vortices restabilize and undergo steady upstream growth,
which results in a third linear region in the AP-Q curve. Note
that the value of s, in the constant slope regions on either side
of the shoulder are the same. The flow characteristics in the
two regimes that lead to non-linear viscoelatic effects have sim-
ilar contributions to the total pressure drop. Streak images from
the corresponding experiments also indicated that the flow field
was symmetric in both regimes, and in the case where the flow
was unstable (diverging flow), the time-averaged configuration
of the flow field was also symmetric. This is in contrast with
the unstable vortex growth regime, in which the flow remains
largely asymmetric due to the presence of bi-stable vortices.

In Fig. 19b, we replot the data in terms of the dimensionless
pressure drop AP as a function of Reynolds number, for elas-
ticity numbers, El =0, 2.8, 7.0, 19 and 68. For the Newtonian
fluid (El=0), the dimensionless pressure drop has a constant
value, AP = 1 for Reynolds numbers, Re <40. Although not
shown here, the dimensionless pressure drop for water increases
to values above unity for Re >40; this is a result of entrance
and exit losses (which scale as pV?2), and become significant at
high Reynolds numbers. At Re = 68, the dimensionless pressure
drop for water reaches a value of AP = 1.13. However, since all
experiments with the PEO solutions were performed at Re < 12,
such purely inertial contributions to the extra pressure drop are
not expected and the increase in the pressure drop arises from
viscoelasticity.

In Fig. 19b, the presence of the shoulders noted previously
appear as peaks in the dimensionless pressure drop. The value
of the peak pressure drops are APpesx =4.14,4.71and4.81,
for P15G, P30G and P45G, respectively. There is no observable
peak in the curve for the most elastic solution, P60G, however
only a limited range of flowrates beyond the inception of vor-
tex growth (0.9 ml/h< Q< 1.2ml/h) was tested. Streak images
corresponding to this range of flowrates, did however suggest
that in this high elasticity fluid the viscoelastic vortices were
significantly more stable and symmetric, even during the early
stages of vortex growth. This may explain the lack of shoulder
in the AP—Q curve, which appears to accompany a transition to
an unsteady flow with fluctuating corner vortices.
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In Fig. 20, the dimensionless pressure drop is presented as a
function of the Weissenberg number. For the three lowest elas-
ticity numbers, the evolution of AP with Weissenberg number
approximately superimpose, particularly at the onset of elastic
effects, corresponding to AP > 1 and in the region of the unsta-
ble vortex shoulder. In this figure, four regions have been labelled
and correspond to (I) Newtonian-like flow, (IT) steady viscoelas-
tic flow, (IIT) diverging flow (3D, time-dependent flow), and (IV)
vortex growth regimes, which have been described in the PIV
and streak image results. It was found that steady viscoelastic
flow corresponds to a region of AP =1, i.e., the progressive
development of a steady viscoelastic flow field does not incur a
measureable extra pressure drop. The first effects of viscoelas-
ticity in this planar contraction flow are thus quite weak and only
lead to small changes in the streamline patterns and an inflec-
tion point in the centreline velocity (see Figs. 9b and 10). The
onset of diverging streamlines (region III) at higher Wi, is how-
ever accompanied by an increase in the dimensionless pressure
drop, AP > 1.Inregion IV, AP continues to increase as a result
of the progressive growth in the size of the unstable vortices.
Under conditions of steady imposed flowrate in this region, vor-
tices were observed to continuously form and collapse, resulting
in a shark-tooth waveform in the transient pressure response.
The region following the shoulder corresponds to steady vortex
growth, during which the elastic corner vortices no longer grow
and collapse.

For the highest elasticity number, EI =68, the onset of each
of the four regions (I-IV) occur at higher Weissenberg numbers,
compared with the other three solutions. For each solution, AP
appears to approach a plateau value for Wi — oo. For El=68,
APwi—s o appears to approach a value of = 3—4, which is lower
than the asymptotic value for the other three less-elastic solutions
(APwi— oo = 5-6). This discernable difference in the magni-
tude of AP confirms that the contrasting behaviour observed in
PIV and streak images for the highest elasticity number polymer
solution is not merely a consequence of a choice in the relax-
ation time (this affects Weissenberg number only), but is also
manifested in the resulting dynamics.

Please cite this article in press as: L.E. Rodd et al., Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated
contraction geometries, J. Non-Newtonian Fluid Mech. (2007), doi:10.1016/j.jnnfm.2007.02.006

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072


dx.doi.org/10.1016/j.jnnfm.2007.02.006

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

112

1113

1114

1115

1116

117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

+Model
JNNFM 2678 1-22

L.E. Rodd et al. / J. Non-Newtonian Fluid Mech. xxx (2007 ) xxx—xxx 21

4. Conclusions

The primary purpose of this work was to explore the role
of the background solvent viscosity on the planar entry flow of
dilute polymer solutions, corresponding to Elasticity numbers,
2.8 < El< 68. This was achieved using micro-fabricated contrac-
tion geometries and dilute solutions of polyethylene oxide in
glycerol/water mixtures. Each fluid exhibited behaviour cor-
responding to flow regimes which have been identified as (i)
Newtonian-like flow, (ii) steady viscoelastic flow, (iii) diverging
flow and (iv) elastic corner vortex growth (both unstable and
stable). These regimes were identified through streak images,
w-PIV measurements and pressure drop measurements.

A change in the shape of the streamlines upstream of the con-
traction at low Weissenberg numbers (corresponding to steady
viscoelastic flow) was demonstrated to be a result of fluid elas-
ticity because no change in the centreline velocity profile was
observed in a Newtonian fluid at corresponding Reynolds num-
bers or even at an order of magnitude higher. These subtle
viscoelastic changes in the centreline velocity profile, however,
did not lead to a measureable extra pressure drop; an increase in
the dimensionless pressure drop above unity was only observed
for higher flowrates following the onset of diverging flow.

The instantaneous structures of three-dimensional unsta-
ble viscoelastic flow upstream of the contraction plane
were resolved using w-PIV. As expected, the degree of
three-dimensionality was found to increase with increasing
Weissenberg number, and flow appeared to be directed away
from the centreplane. This unstable flow was characterised by
the amplitude of the fluctuations in the axial velocity which
increased with increasing Weissenberg number. The succes-
sive growth and collapse of the elastic corner vortices at high
Weissenberg numbers resulted in shark-tooth oscillations in the
instantaneous pressure traces and a shoulder in the dimension-
less time-averaged pressure drop curve. The decrease in the
amplitude of the velocity and pressure drop fluctuations at very
high Weissenberg number correspond to a restabilization of the
flow and progressive upstream elastic vortex growth.

These results can be summarized in a flow transition map
that can be best represented in Wi—Re space (Fig. 16). This map
illustrates that the critical flowrates vary with both Re and Wi
and correspond to a higher Weissenberg number for the high-
est elasticity number, El=68. For lower elasticity numbers, the
transition between flow regimes is a weak function of El, such
that transitions occur at marginally higher Weissenberg numbers
with decreasing elasticity number. This non-linear interaction
between inertial and elastic effects helps rationalize previous
work, in which Boger fluids (which correspond to high elasticity
numbers) only exhibited weak viscoelastic effects [12], and low
elasticity number contraction flows failed to exhibit viscoelastic
effects due to the overwhelming effects of fluid inertia.

Evaluation of the full kinematic field upstream of the con-
traction plane also showed that the onset of diverging flow
cannot be solely represented by a critical local value of the vis-
coelastic Mach number. For the lowest elasticity number fluid,
El=2.8, viscoelastic Mach numbers in excess of one could still
be achieved even in the absence of diverging flow. The onset

of viscoelastic effects in the upstream flow could be correlated
with exceeding a critical strain rate defined by the inverse of
the Zimm time. This supports the idea that the Zimm relaxation
time of a polymer solution is the appropriate timescale to be
used in predicting the onset of viscoelastic effects in viscoelastic
entry flow problems. Although the chains do become stretched
as they enter a contraction, the total Hencky strain is less than
that encountered in capillary breakup experiments.

Our study demonstrates the value of w-PIV as a tool
for understanding and quantifying the kinematic phenom-
ena associated with both steady and unsteady viscoelastic
flows at micron-lengthscales. Furthermore, the subtlety of the
transitions between successive flow regimes (particularly the
progressive development of steady viscoelastic flow), and the
three-dimensional nature of the viscoelastic flow that develops
at higher Weissenberg numbers, suggest that p-PIV is the most
effective technique for reliably and quantitatively characteriz-
ing the kinematics of a complex flow over a wide range of flow
regimes. This work has important implications in the design of
microfluidics devices (such as lab-on-a-chip devices) in which
the fluid being transported is often non-Newtonian. Addition-
ally, this work provides quantitative data which may be used
to validate the permformance of constitutive models in predict-
ing three-dimensional planar entry flows in which both fluid
elasticity and inertia are important.
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