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bstract

We explore the interplay of fluid inertia and fluid elasticity in planar entry flows by studying the flow of weakly elastic solutions through
icrofabricated planar contraction geometries. The small characteristic lengthscales make it possible to achieve a wide range of Weissenberg

umbers (0.4 < Wi < 42) and Reynolds numbers (0.03 < Re < 12), allowing access to a large region of Wi–Re space that is typically unattainable
n conventional macroscale entry flow experiments. Experiments are carried out using a series of dilute solutions (0.78 < c/c* < 1.09) of a high
olecular weight polyethylene oxide, in which the solvent viscosity is varied in order to achieve a range of elasticity numbers, 2.8 < El = Wi/Re < 68.
luorescent streak imaging and micro-particle image velocimetry (�-PIV) are used to characterize the kinematics, which are classified into a number
f flow regimes including Newtonian-like flow at low Wi, steady viscoelastic flow, unsteady diverging flow and vortex growth regimes. Progressive
hanges in the centreline velocity profile are used to identify each of the flow regimes and to map the resulting stability boundaries in Wi–Re
E
Dpace. The same flow transitions can also be detected through measurements of the enhanced pressure drop across the contraction/expansion which

rise from fluid viscoelasticity. The results of this work have significant design implications for lab-on-a-chip devices, which commonly contain
omplex geometric features and transport complex fluids, such as those containing DNA or proteins. The results also illustrate the potential for
sing microfab-ricated devices as rheometric tools for measuring the extensional properties of weakly elastic fluids.

2007 Elsevier B.V. All rights reserved.
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. Introduction

In macroscale devices (i.e. geometries in which the character-
stic lengthscale is on the order of millimeters), it is essentially
mpossible to generate large deformation rates and correspond-
ngly high Weissenberg numbers (Wi) in low viscosity elastic
uids, whilst also maintaining small Reynolds numbers (Re).
s a result, it is difficult to induce an elastic response in which

he effects of viscoelasticity are not dampened (or completely
uashed) by the competing effects of fluid inertia. Microfluidic
evices offer a solution by allowing high deformation rates and
oncomitantly low Reynolds numbers; a result that is directly
U
N

C
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ttributable to the small lengthscale of the device.
Several recent studies have shown that the reduced length-

cales associated with microfluidic devices (on the order of

∗ Corresponding author. Tel. +61 7 33653661; fax: +61 7 33654199.
E-mail address: j.cooperwhite@uq.edu.au (J.J. Cooper-White).

27

d 28

o 29

s
s
A
f

377-0257/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2007.02.006
ow; Polyethylene oxide

ens to hundreds of microns) can enhance the magnitude of
iscoelastic effects in dilute polymer solutions. This has been
emonstrated in micro-fabricated converging or planar contrac-
ion geometries by Groisman and Quake [1] and in the recent
ork of Rodd et al. [2]. The same phenomena were also observed

n the much earlier work of James and Saringer [3] at simi-
ar lengthscales and using similar aqueous solutions of flexible
olymers. The importance of the device lengthscale and its effect
n fluid elasticity is reflected in the definition of the elasticity
umber, El = λη/(ρl2), which is dependent only on fluid proper-
ies (relaxation time, solution viscosity, and fluid density) and
he characteristic lengthscale of the device, l.

In addition to the unique flow conditions attainable by scaling
own the geometry, microfluidic devices also offer the advantage
f allowing access to a greater range of Wi and Re. This has been
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

hown in our previous work [2], in which elasticity numbers 30

panning almost two orders of magnitude could be achieved. 31

ccessibility to wide regions of Wi–Re space provides an avenue 32

or generating suitable experimental data to test the performance 33
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f constitutive models over a wide range of flow conditions (with
nd without inertia). Furthermore, the ability of achieving high
i at low Re offers the possibility of devloping microfluidic

heometers suitable for probing the rheological properties of
eakly elastic fluids such as inks or dilute polymer solutions

hat appear Newtonian under the conditions that can be attained
n conventional rheometers [2,4].

Very few experiments have been conducted specifically to test
he effect of the elasticity number on complex viscoelastic flows,
hich is primarily attributed to the limited range of parameter

pace accessible through macro-scale experiments. With regards
o planar contraction flows, the most thorough investigations of
he effect of the elasticity number have been achieved through
umerical simulations (see Table 1 ). We have previously pro-
ided a broader survey of experimental works in [2]; however in
able 1 we focus on planar flows which specifically investigate at

east one of the following: (i) planar versus axisymmetric geome-
ries, (ii) the effect of the elasticity number and (iii) the role of the
iscoelastic Mach number,Ma = √

ReWi. In addition, many of
he references in Table 1 also provide numerical predictions of
he centreline velocity and/or extensional viscosity predictions.

To our knowledge, Rodd et al. [2] is the only experimental
tudy which provides at least preliminary insight into the effect
f El on the non-linear dynamics of planar entry flows. However,
he range of values of the elasticity number in [2] was achieved
y varying the polymer concentration, which is expected to
ead to additional non-linear rheological effects associated with
ariable chain–chain interactions.

In the present work, we investigate the flow of four dilute
olyethylene oxide solutions (0.78 < c/c* < 1.09) through a
icrofabricated abrupt contraction–expansion geometry (con-

raction ratio, CR = 16), in which the smallest lengthscale of the
evice is 26 �m in the throat of the contraction. A range of elas-
icity numbers (2.8 < El < 68) are achieved by varying the solvent
iscosity whilst maintaining a constant polymer concentration
n solution (c = 0.075 wt.%). Experiments are performed over
range of flow conditions corresponding to 0.03 < Re < 12 and
.4 < Wi < 42. Fluorescent streak imaging, micro-particle image
elocimetry and pressure drop measurements are used to char-
cterize the upstream flow kinematics associated with steady
nd time-dependent three-dimensional flow for both the elastic
olutions and a Newtonian fluid, and to evaluate the extra pres-
ure drop due to the elasticity of the solutions. Lastly, we assess
he importance of the viscoelastic Mach number [5,6], and its
ole in determining the onset of diverging flow in this set of low
iscosity elastic solutions.

.1. Flow phenomena in viscoelastic entry flows

.1.1. Planar versus axisymmetric geometries
It has been shown, both experimentally and numerically,

hat the kinematics associated with entry flows in planar and
xisymmetric geometries are inherently quite different. For
U
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hear-thinning elastic fluids in planar contraction geometries,
lastic corner vortices grow with increasing Wi; however the
xtent of vortex growth within a planar geometry [7–10] is
ess than in the equivalent axisymmetric geometry [11]. Table 1
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dentifies cases in which numerical simulations have been able
o reproduce either qualitatively or quantitatively the results of
pecific experimental studies.

For Boger fluids however, vortex growth has not been
bserved in macro-scale planar contractions. Experimentally,
igen and Walters [12] found (through both pressure drop
easurements and streakline images) that for low to moder-

te flowrates, there is no discernable difference between the
pstream flow dynamics in a Boger fluid and a Newtonian fluid in
16 to 1 planar contraction. A number of 2D numerical simula-

ions of flow through planar contractions for an Oldyroyd-B fluid
13,14] or an upper-convected Maxwell fluid [15–20], all lead
o the same conclusion; the size of the corner vortex decreases
ith increasing Weissenberg number. However, higher values
f Wi have been found to lead to the formation of unstable lip
ortices. This has been observed both experimentally [12] and
umerically [14,17].

The only case in which elastic corner vortex growth in Boger
uids has been observed in planar contractions has been in the
ecent experimental results of Rodd et al. [2]. In their work,
icro-fabricated planar contractions were used in conjunction
ith a set of low viscosity Boger fluids in order to induce vortex
rowth, however this was only observed at moderate Reynolds
umbers (Re > 11).

The reduced magnitude of elastic vortex growth that is
bserved experimentally in planar geometries, compared with
heir axisymmetric counterpart, is commonly attributed to the
educed strain rate in the geometry and/or the reduced total
encky strain that is experienced by a polymer molecule as

t flows through the contraction (εaxi = 2 ln CR, compared with
planar = ln CR) [21]. However, even for high contraction ratios,
on-linearities in the dynamic response have been found to be
irtually absent in planar geometries [22]. Changing the con-
raction ratio by adjusting the upstream channel width results
n an increase in the total Hencky strain however this extra
ontribution only occurs in the upstream tail of the strain rate
rofile, i.e. regions in which the strain rate is typically small
nd less than the critical value, ε̇crit = 1/λ, required for poly-
er extension. As a result, the Hencky strain that is accumulated

n high strain rate regions that actually lead to chain extension
emains unchanged [22]. It is therefore the non-homogeneity
f the strain rate profile observed in planar contraction flows
hat is considered responsible for the lack of non-linearity in the
tress-response. This observation was made by Genieser et al.
ased on birefringence measurements in Boger fluids and 1D
redictions using the Geisekus model, and the upper-convected
nd linear Maxwell models [22]. Their arguments however, do
ot explain off-centreline dynamics, such as the sustained vortex
rowth observed in shear-thinning viscoelastic fluids.

Quinzani et al. also made point-wise flow-induced bire-
ringemence measurements in a shear-thinning viscoelastic fluid
owing through a 4:1 planar contraction [23,24]. Although they
uantify in great detail the fluid velocity, shear stress and first
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

ormal stress difference as a function of spatial position, their 142

easurements were only carried out in a planar geometry, pre- 143

luding any direct comparison of the corresponding extensional 144

tresses induced in planar and axisymmetric geometries for the 145
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3
Table 1
Review of previous entry flow studies in axisymmetric (A), planar (P), and square (S) geometries: an addendum to Table 1 of Rodd et al. 2005 [2]

Author Year Exp,
num.

Planar,
axisymmetric,
square

2D, 3D Aspect ratio,
Λu = h/wu

Contraction
ratio, CR

Fluid Rheology Wi range Re range Comments

Genieser
et al.

2003 E, N P 2D 1 8.32 Boger fluid, 0.3%
PIB/PB Giesekus
fluid UCM fluid

Giesekus model,
UCM model

0 < Wi < 2.9 Unknown For CR = 8, effects of elasticity in
dimensionless strain rate profile
observed for Wi > 2
Three-dimensional effects observed
at Wi > 2.3 (CR = 8) and Wi > 3.1
(CR = 32). For both CR = 8 and 32,
negligible non-linear effects in ηE

observed for all 0 < Wi < 3.1, for total
Hencky strains ε= 3.5; attributed to
non-homogenous strain rate profile,
slow response of long relaxation time
modes, and contribution of solvent
viscosity ηE

Quinzani
et al.

1995 E P 3D 10 4 5% PIB in
tetradecane

ψ1, η 0.25 < Wi < 0.77 0.08 < Re < 1.43 Flow-induced birefringence (FIB)
measurements indicate a peak in the
transient extensional viscosity along
centreline that decreases with
increasing Wi. No flow visualisation

Quinzani
et al.

1994 E P 2D 10 3.91 5% PIB in
tetradecane

ψ1, η, η′, η′ ′, λ
determined using
UCM
(upper-convected
Maxwell) model

0.25 < Wi < 0.77
(shear-rate dep.)
0.4 < Wi0 < 4.15
(zero-shear)

0.08 < Re < 1.43
(shear-rate dep.)
0.08 < Re0 < 0.8
(zero-shear)

Laser doppler velocimetry (LDV)
and FIB used to measure axial
velocity, shear stress and first normal
stress difference (axial and radial).
Maximum in centreline N1 and τxy in
lateral profile increases with Wi.
Small overshoot in axial velocity
observed just downstream of
contraction for mod. to high Wi

Kim et al. 2005 N P 2D – 4 Oldroyd-B fluid
with ηs/η0 = 1/9

Oldroyd-B model 0 < Wi < 5 Re = 0, 0.1 For Re = 0, vortex size reduces, lip
vortex increases with increasing Wi.
Lip vortex intensity a strong function
of mesh refinement. Agreement with
Alves et al. (2003) in both vortex size
and intensity. Predicts ‘delayed’
acceleration at centreline in region
nearest contraction plane.
Accompanied by overshoot in Vz

Webster 2004 N P 2D – 4 Oldroyd-B fluid
with ηs/η0 = 1/9

Oldroyd-B model Wi = 0.3, 2 Re = 0 Start-up flows with transient/static
inlet boundary conditions. Steady
state vortex size is unchanged with
higher Wi; effect of higher Wi is to
increase the time taken to reach
steady state, and intermediate vortex
size in approaching steady state

dx.doi.org/10.1016/j.jnnfm.2007.02.006
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Table 1 (Continued )

Author Year Exp,
num.

Planar,
axisymmetric,
square

2D, 3D Aspect ratio,
Λu = h/wu

Contraction
ratio, CR

Fluid Rheology Wi range Re range Comments

Aboubacar
et al.

2002 N A, P 2D – 4 PTT fluid with
ε= 0.02, 0.25 and
ηs/η0 = 1/9
Oldroyd-B model

4 variants of PTT and
Oldroyd-B models

0 < Wi < 35 Re = 0 Oldroyd-B, planar: vortex size
reduction with increasing Wi. PTT
with ε= 0.25, 0.02: vortex growth,
followed by a vortex reduction at
higher Wi. Delayed (higher Wi) onset
of vortex reduction for higher values
of ε

Moatssime 2001 N P 2D – 4 Oldroyd-B fluid
with ηs/η0

unspecified

Oldroyd-B model 1 < Wi < 4.5 Re = 0.1 Upstream behaviour in the first
normal stress difference not
distinguishable for 1.5 < Wi < 4.5.
Higher Wi increases peak value in �1

at contraction plane and leads to
longer downstream recovery

Ryssel and
Brunn

1999 N P 2D – 4 Quasi-Newtonian
Giesekus fluid

Geisekus and
quasi-Newtonian
model

Wi = 1.45 Re = 0.56 Results for QNF agree qualitatively
with those of Quinzani, in terms of
axial and lateral velocity profiles,
shear stress and first normal stress
profiles. Velocity overshoot predicted
by the Giesekus model is not
predicted for QNF (agrees with
experiment)

Xue et al. 1998 (i) N P 2D and
3D

0.5–5 4 PTT fluid with
ε= 0.02, 0.25 and
ηs/η0 = 0
Oldroyd-B and
UCM fluid

UCM, PTT,
Oldroyd-B models

0 < Wi < 4.4 0.06 < Re < 0.6 Vortex growth at small Re = 0.06 for
increasing Wi. For higher Re > 0.5
size of vortex overpredicted by
creeping assumption for both
Newtonian and viscoelastic. For
constant Re > 0, size of salient corner
vortex is constant for increasing Wi.
Vortex mechanisms dependent on
elasticity (El) and Mach (Ma)
numbers. 2D approximation valid for
upstream ratio Λu = h/wu > 5

Xue et al. 1998 (ii) N P, S 2D and
3D

– 4 PTT fluid with
ε= 0.25 and
ηs/η0 = 1/9. UCM
fluid with λ= 0.8 s

Simplified PTT
model, UCM model

0 < Wi < 7.2 0.01 < Re < 0.1 Vortex growth observed for UCM
fluid in square-square contraction
and not planar. For PTT fluid, vortex
growth occurs in the planar geometry
although to a lesser degree than in
axisymmetric. Peak in the predicted
transient extensional viscosity along
the centreline for PTT less than for a
Newtonian fluid.

dx.doi.org/10.1016/j.jnnfm.2007.02.006
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ame fluid. Raiford and co-authors explored the flow of the same
hear-thinning fluid in an axisymmetric contraction, however
hey only quantified the velocity field.

.1.2. Interplay of fluid inertia and fluid elasticity: effect of
he elasticity number and the viscoelastic Mach number

The relative magnitudes of fluid elasticity and fluid inertia
ay be expressed in terms of the elasticity number, El = Wi/Re.
or a given experiment in which the geometry is fixed, the elas-

icity number is therefore the slope of the trajectory in Wi–Re
pace that represents a series of step flow-rate experiments. An
xample of this representation of previous entry flow experi-
ents may be found in [2], in which the various flow regimes

ave been illustrated as a phase diagram in Wi–Re space. In
ases for which the fluid properties (relaxation time and fluid
iscosity) are independent of shear-rate, the elasticity number
s constant and experiments are represented by lines of constant
lope in Wi–Re space. An alternative representation of entry
ow experiments in which both fluid inertia and fluid elastic-

ty are significant can be developed in terms of the viscoelastic
ach number,Ma = √

WiRe. The Mach number is the ratio of
he local velocity, v to the speed of a viscoelastic shear wave,
s = √

G/ρ = √
ηp/ρλ. Here, G is the elastic modulus of the

uid, which for a Maxwell body may also be defined as ηp/λ.
he definition of Ma therefore shows that it is only possible

o induce viscoelastic shear waves if both Re �= 0 and Wi �= 0.
onsequently, the results of numerical simulations which utilize
on-zero values of Wi and Re are inherently different from those
n which either Wi = 0 or Re = 0. Hulsen [5] proposes that the
nset of diverging flow corresponds to a transition from elliptic
orticity transport (sub-critical) to hyperbolic vorticity trans-
ort (super-critical), which occurs at Ma = 1. By analogy to a
hase diagram of flow regimes in Wi–Re space, an equivalent
epresentation of previous studies of viscoelastic flows through
ontractions may also be constructed in El–Ma space [20]. How-
ver, an advantage of utilizing the Wi–Re co-ordinate system is
hat there exists a well-defined Newtonian flow limit at Wi = 0.
here is no equivalent limit in El–Ma space which corresponds
xclusively to Newtonian flow.

As noted earlier, the influence of the elasticity number on pla-
ar entry flows has been explored almost exclusively through
umerical simulations, as summarized in the present work in
able 1, and in Table 1 of [2]. For both Newtonian and vis-
oelastic entry flows, an increase in Reynolds number results in
reduction in vortex size. However, this “inertial” suppression
f the upstream corner vortex often relies on the cooperative
ffects of fluid elasticity. For example, Kim et al. [14] found
hat an increase in the Reynolds number from Re = 0 to Re = 0.1
ad no effect on the vortex length in a Newtonian fluid. For an
ldroyd-B fluid, the same change in Reynolds number leads to a

lear reduction in vortex size. The interplay of inertia and elastic-
ty demonstrated by this calculation has been observed in several
iscoelastic flows in which the Reynolds number is small (i.e.
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

e � 1), but non-zero. An example of this includes the presence 198

f diverging streamlines, which have been observed experimen- 199

ally in the entry flow of Boger fluids, at Reynolds numbers less 200

han 0.1 [25,26], and more commonly in shear-thinning elastic 201

dx.doi.org/10.1016/j.jnnfm.2007.02.006
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uids [7–11,27,28]. In the latter case, inertia has always been
resent due to the shear-thinning nature of the fluids. As dis-
ussed in [2], diverging streamlines are identified as those which
ocally diverge away from the centreline immediately upstream
f the contraction plane, prior to converging again as the flow
nters the contraction throat. They are considered a signature
eature of contraction flows in which both inertia and elasticity
re important.

For sufficiently high elasticity numbers, an increase in
eynolds number can simultaneously lead to the growth of lip
ortices. However, it is argued by Xue et al. [19], that the pres-
nce of the lip vortex is not a result of fluid inertia, but relies
ore on small, but non-zero, values of the relevant non-linear

onstitutive parameter (in the case of [19], the fluid is described
y the PTT model and the parameter ε= 0.02). In addition, the
resence of lip vortices is also dependent on mesh refinement,
hich has been the cause of discrepancies in the predicted lip
ortex dynamics that have been reported by different numeri-
al studies. Several other computational works investigating the
ffect of inertia on planar entry flows of shear-thinning fluids
PTT, FENE-P) [13,14,19,20,29] and Boger fluids (Oldroyd-B,
CM) fluids [15,16,19,20] are detailed in Table 1.
Hulsen [5] and Joseph [6] have previously discussed the rel-

vance of the vis-coelastic Mach number, Ma = v/c, and its
pplication to viscoelastic entry flows. For the most elastic fluid
onsidered in Hulsen’s calculations [5], the onset of diverging
ow corresponds to conditions in which regions of Ma > 1 extend
pstream of the contraction plane in a circular geometry. How-
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ver, this criterion did not appear to hold for higher values of
(lower fluid elasticity). For a PTT fluid with ε= 0.25, diverg-

ng streamlines did not develop over the entire range of flow
onditions tested, despite the large regions of Ma > 1 that exist

o
f
(
t
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t higher flowrates. Hulsen [5] therefore suggested that the vis-
oelastic Mach number cannot be the only parameter important
n determining the onset of diverging flow. Xue et al. [20] also
mphasize the importance of both the Mach number and the
lasticity number, and present a phase diagram of vortex mech-
nisms in terms of El–Ma space. Their phase diagram indicates
he requirement of a high elasticity number and at least moderate
alues of the Mach number in order to generate upstream corner
ortices. In their work [20], unstable flow was observed at high
lasticity numbers and high Mach numbers.

. Experimental

.1. Channel geometry and fabrication

In Fig. 1 we show a schematic of the microdevice used in
he present experiments. The dimensions of the planar 16:1:16
ontraction–expansion geometry are very similar to those used
n our previous work [2], with an upstream channel width, wu,
f 400 �m, a contraction throat width, wc, of 26 �m and a uni-
orm channel depth, h of 55 �m. Channels are fabricated in
DMS using standard soft-lithography techniques and SU-8
hotolithography. Further details of the fabrication procedure
ay be found in [2,30].
In contrast to [2], in the present work PDMS channels are

onded to PDMS-covered glass coverslips in order to achieve
niform surface properties on all four walls of the channels.
DMS is spin-coated onto the glass coverslip using a spin speed
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

f 3000 rpm to achieve a ∼20 �m-thick layer of PDMS. The dif- 259

erent ratios of PDMS to curing agent (CA) between the channel 260

PDMS:CA = 5) and the coverslip (PDMS:CA = 10) ensure that 261

he seal between the two surfaces is able to withstand pressures 262

dx.doi.org/10.1016/j.jnnfm.2007.02.006
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Table 2
Solution properties and experimental parameters

Glycerol in solvent (wt.%)

15 30 45 60

ηs (mPa s) 1.56 2.61 4.68 10.6
η0 (mPa s) 2.96 4.79 9.03 17.3
ηp (mPa s) 1.40 2.18 4.35 6.76
ρ (kg/m3) 1073 1112 1153 1196
λCaBER (ms) 8.3 10.3 17.2 20.8
λZimm (ms) 0.542 0.869 1.34 2.31
[η] (ml/g) 924 886 763 582
Rg (nm) 202 199 189 173
γ̇c (s−1) 750–56,800 750–37,400 750–32,900 750–23,800
R 9–5.1
W 5–36
E
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the lack of available experimental data regarding the influence 319

of glycerol content on the parameters in the Mark–Houwink 320

correlation for PEO. The front factor F = 0.463 was therefore 321

calculated for a good solvent (ν = 0.55), which in combination 322
N
C

O
R

R
E

C
TE

e 0.14–11.5 0.0
i 0.4–32 0.6
l 2.8 7.0

n excess of 180 kPa. Bonding is achieved by placing the two sur-
aces together after 20 min of baking at 80 ◦C, and then baking
he sealed channel at 80 ◦C for a further 24 h.

Pressure taps are located 3 mm upstream and 3 mm
ownstream of the contraction midpoint. The volumetric
owrate is controlled via a precision syringe pump (Har-
ard Apparatus PHD2000), in order to achieve a range of
owrates, 0.01 ml/h < Q < 9 ml/h. These correspond to charac-

eristic deformation rates of 149 s−1 < γ̇c = 2Q/(w2
c × h) <

.35 × 105 s−1 in the contraction throat (where Q is the vol-
metric flowrate, wc the contraction width and h is the uniform
epth of the channel). Further details of the pressure measure-
ent setup, transducer calibration and data acquisition can be

ound in [2,30].

.2. Fluid rheology

.2.1. Relaxation times
Four aqueous solutions containing 0.075 wt.% of a weakly

olydisperse sample of high molecular weight polyethylene
xide (PEO, MW = 2 × 106 g/mol, polydispersity index = 1.13,
ldrich) were prepared using mixtures of water and increasing

mounts of glycerol (15, 30, 45 and 60 wt.%) as the solvent.
or brevity, we hereafter denote the four polymer solutions by
15G, P30G, P45G, and P60G, for the PEO solutions contain-

ng 15, 30, 45 and 60% glycerol, respectively. The rheological
roperties for each of these solutions are given in Table 2. All
olution properties were measured at 23 ◦C.

Characteristic relaxation times for each of the four solu-
ions were calculated according to Zimm theory (as was done
n our previous work [2]), and were also measured using
apillary breakup extensional rheometry (CaBER) [31]. The
eometrical configuration of the CaBER device employed in
he present experiments was similar to that used in [2] (Λ= 1.57,
0 = 2.5 mm). The measured relaxation times were found to have
range of 4 ms < λ< 40 ms.
 U
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The Zimm relaxation time is calculated from an expression
f the form

Zimm = F
[η]MWηs

NAkBT
(1)
 P
R

O
O

F 0.05–2.0 0.03–0.6
1–38 1.7–42
19 68

here MW is the molecular weight, NA the Avogadro’s constant,
B the Boltzmann’s constant, T the absolute temperature, ηs the
olvent viscosity, and [η] is the intrinsic viscosity. The prefactor,

may be estimated by the Riemann Zeta function, ζ(3ν)−1 =
∞
i=11/i3ν in which ν is the solvent quality exponent [32].
Values of the intrinsic viscosity used in the above expression

ere obtained from U-tube capillary viscometer measurements
nd were found to be a strong function of the mass fraction of
lycerol in solution. This is illustrated in Fig. 2, in which the
ntrinsic viscosity decreases from 1026 to 582 ml/g as the glyc-
rol content is increased from 0 to 60 wt.%. This suggests that
he thermodynamic solvent quality, ν, reduces as the glycerol
ontent is increased, resulting in a progressive collapse in the
imensions of the unperturbed polymer coil. A measure of the
hange in polymer coil size as a function of intrinsic viscosity
an be approximated according to the Fox–Flory equation [33],
or which values are given in Table 2.

The value of the solvent quality, ν, could not be deter-
ined for each solution of varying glycerol content due to
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

Fig. 2.
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Fig. 3.

ith the measured intrinsic viscosity data, was used to calcu-
ate Zimm times for each of the PEO solutions, λZimm = 0.54,
.87, 1.34, and 2.31 ms, in order of increasing glycerol
ontent.

In Fig. 3, our measured values of the effective fluid relax-
tion time measured in elongational flow using the CaBER
evice are presented on a master plot of λeff/λZimm versus c/c*

or a number of aqueous PEO solutions [32]. The values of
eff/λZimm ∼ 10–20 for the present solutions were found to agree
ith those obtained from various drop breakup [32,34] and jet-

ing experiments [35]. This agreement is expected as, in all
ases, the characteristic relaxation time is extracted from the
lament dynamics associated with the strong transient flow of
low-viscosity polymer solution undergoing elasto-capillary

hinning. However, the large discrepancy between the calculated
imm times and the measured CaBER relaxation times sug-
ests that the imposed flow field during CaBER measurements
s significantly affecting the polymer chain dynamics and/or the
heoretical analysis of the thinning dynamics is overly simplified
36,37].

In order to avoid any confusion regarding relaxation times
hroughout this work, we will use the Zimm relaxation time
n all following discussions and Weissenberg number calcula-
ions, and this will be denoted generically by λ. Our justification
or this choice is as follows: firstly, the Zimm time is gener-
lly of the same order of magnitude as the timescales obtained
y fitting constitutive models, such as the Oldroyd-B model
o viscosity and first normal stress difference data obtained
n steady shear [38]. Numerical simulations using these mod-
ls can only be expected to predict the results of the present
xperiments if the computed material functions for the con-
titutive model are close to those measured in the fluid. The
ncrease in λeff during transient elongation that is shown in
ig. 3 must therefore be predicted from the constitutive theory.
lthough current closed form theories for polymer solutions do
U
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ot show such increases, recent Brownian dynamics calcula-
ions with bead-spring chains in planar elongation do show a
imilar concentration-dependence in the longest relaxation time
39]. Similarly, the results of the present experiments may only
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e compared with those of previous macroscale experiments (in
hich the fluid rheology is often well-described by constitutive
odels such as the Oldroyd-B model) if comparable definitions

f timescales are used.

.2.2. Steady shear viscosity
The steady shear viscosity of all polymer solutions and

heir solvents was measured using a stress-controlled rheome-
er (AR2000) using a double-gap Couette cell attachment. The
iscosities of each of the solutions were found to be constant
ver the range of shear rates, 2 s−1 < γ̇ < 3000 s−1, with val-
es ranging from 3 to 17 mPa s (Table 2). The density of the four
EO solutions was measured using calibrated 5 ml density flasks
t 23 ◦C. The density of the solutions increased linearly with
ass fraction of glycerol, and as a result, PEO concentrations

when expressed in units of g/ml) vary between 8.05 × 10−4

nd 8.97 × 10−4 g/ml. These values of concentration are used to
etermine values of c/c*, in order to maintain consistency with
he units for [η], ml/g.

Since the microfluidic geometry is the same for all measure-
ents presented in this work, the elasticity number, El = η0λ/ρl2

nly varies due to changes in the relaxation time, the solution
iscosity and less significantly, by the density. The four solutions
ontaining solvents 15, 30, 45 and 60% glycerol in water, corre-
pond to elasticity numbers El = 3.8, 7.1, 19, and 68, respectively,
sing a constant lengthscale,wc = 26 �m, the Zimm relaxation
ime and the measured solution properties presented in Table 2.
n our previous work [2], we used the same geometry and three
olutions of various elasticity numbers, El = 8.4, 3.8 and 89,
hich were all calculated using the CaBER-determined relax-

tion times. For the purpose of comparison only, if the elasticity
umbers for the present experiments are re-calculated based
n their CaBER-determined relaxation times, these values are
l = 43, 84, 240 and 610 for the P15G, P30G, P45G and P60G
olutions, respectively; i.e. an order of magnitude higher than
hose used in [2].

.2.3. Flow visualisation
The upstream kinematics associated with the flow of

eionized water and all PEO solutions through the 16:1
ontraction were visualized using fluorescent streak imaging
nd micro-particle image velocimetry (�-PIV). A schematic
f the geometry and the imaging setup are detailed in
ig. 4.

In order to generate streak images, fluids were seeded
ith 1.1 �m epi-fluorescent particles (Ex./Em. = 520/580 nm,
= 0.02 wt.%), and exposed to a continuous illumination Mer-
ury lamp. Further details on the streak imaging setup may be
ound in [2]. As in our previous work [2], the measurement depth,
zm [40] is chosen as the appropriate lengthscale to represent the
epth of the image plane on which streak lines are observed. For
ur streak imaging setup (M = 10×, NA = 0.3), the measurement
epth was found to be δzm = 33.6, which is 60% of the channel
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

epth. 413

PIV image pairs were acquired using a SensicamQE double- 414

rame camera in conjunction with a double-pulsed 532 nm 415

d:YAG laser, in which the exposure time of each image is set 416

dx.doi.org/10.1016/j.jnnfm.2007.02.006
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ig. 4.
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y the pulse width, δt = 5 ns. Images of 0.51 �m epi-fluorescent
articles were acquired through a 20× (NA = 0.5) objective lens,
or which the resulting measurement depth is 12 �m; this is
quivalent to 21% of the channel depth. The majority of PIV
mages (apart from those used to generate the out-of-plane veloc-
ty profile in Fig. 6b) were acquired at the centreplane (y = 0),
hich was identified as the midpoint of two stationary fluo-

escent particles adhered to the top and bottom surfaces of the
icrochannel. The uncertainty of the centreplane position (and

ut-of-plane position) is therefore a function of the uncertainty
f locating an individual particle (i.e. DOF = 0.86 �m), the size
f the particle (dp = 0.5 �m), and the size of a division on the
icroscope focussing micrometer; error values were calculated

o be εy = ±2 �m and are represented by horizontal error bars
n Fig. 6b.

The time between individual PIV images,�t, was set in order
U
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o achieve an optimum particle displacement (2dp <�x < 7.5dp,
n which dp is the particle diameter) [40,41] between images
t all positions along the centreline. To accommodate regions
f higher velocities nearer the contraction, a second set of

t
t
u
g

mages were acquired using a smaller value of �t; one quar-
er of the value used for regions further upstream. The time
etween laser pulses, �t was therefore adjusted over the range
19 �s <�t < 634 �s) according to the flowrate and region of
nterest (i.e. the local velocity).

A conventional cross-correlation PIV algorithm (TSI Insight,
ttp://www.tsi.com) was used to analyze each image pair. Inter-
ogation areas of 32 × 32 and 16 × 16 pixels (with Nyquist
riterion) were used to generate full field velocity maps. Further
etails on PIV processing algorithms and optimization guide-
ines can be found elsewhere [40,30]. Two modes of PIV image
rocessing were utilized during experiments. The first mode
as used only for steady flows in which 25 image pairs were

nsemble-averaged to obtain a single vector field. The second
ode was used for unstable flows, in which only one pair of

mages was used to characterize the flow at a particular instant in
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

ime. Post-processing techniques to remove spurious vectors and 453

o interpolate for missing vectors were only applied in regions 454

pstream of the contraction (z/wc < −5), i.e. where velocity 455

radients are relatively small.

dx.doi.org/10.1016/j.jnnfm.2007.02.006
http://www.tsi.com/
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.3. Dimensionless groups

Four dimensionless quantities are used to characterize the
ynamics of the flow of the polymer solutions through the 16:1
ontraction geometry: the Weissenberg number (Wi), Reynolds
umber (Re), elasticity number (El) and the viscoelastic Mach
umber (Ma). The following definitions for Wi, Re and El were
lso used in our previous work [2], and for consistency, we follow
he same notation and definitions. The Weissenberg number is
efined in terms of a characteristic polymer relaxation time and
he average shear rate in the contraction throat:

i = λγ̇c = λV̄c

wc/2
= λQ

hw2
c/2

, (2)

n which V̄c = Q/(wch) is the average velocity, wc the contrac-
ion width, h the depth of the channel, Q the volumetric flowrate,
nd λ is the Zimm relaxation time.

The Reynolds number is defined in terms of the average veloc-
ty in the contraction throat, V̄c, and the hydraulic diameter, Dh,
hich is given by Dh = 2wch/(wc + h):

e = ρV̄cDh

η0
= 2ρQ

(wc + h)η0
, (3)

here the fluid density is denoted byρ. Although we have chosen
0 as the characteristic viscosity in the above expression, the
eak variation of the shear viscosity of dilute polymer solutions,

nd the relative magnitudes of the zero-shear and infinite-shear
iscosities for all solutions (Table 2) indicate that the choice of
haracteristic viscosity (i.e. zero-shear, infinite-shear, or a local
hear-rate dependent) would have minimal effect on both the
elative values and magnitude of Re for all flow conditions.

The elasticity number represents the ratio of elastic to inertial
tresses, and is independent of kinematics. It is only dependent
n the properties of the fluid and on the characteristic length-
cales of the device, h and wc:

l = Wi

Re
= λη

ρwcDh
= λη(wc + h)

2ρw2
ch

(4)

The viscoelastic Mach number, Ma = V/c, is the ratio of a
haracteristic velocity, V to the viscoelastic wave speed, cs =
G/ρ, where G = ηp/λ is the elastic modulus of the fluid and ηp

s the polymer contribution to the zero-shear viscosity.
As described in Section 1.1.2, the magnitude of the viscoelas-

ic Mach number can be used to identify regions of elliptic
Ma < 1) and hyperbolic (Ma > 1) vorticity transport. This is
he case for a Maxwell type fluid in which the solvent vis-
osity ηs = 0, and true hyperbolicity is phenomenologically not
ossible when a Newtonian solvent is present; the viscous con-
ribution to the stress results in a dispersion of the shear waves.
owever, when ηp/ηs 
 1 or ηE/ηs 
 1 the elastic stresses are
uch greater than the viscous stresses and very similar phe-

omena may occur. This has been documented by Hulsen [5]
U
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ho simulated the circular entry flow for an Oldroyd-type fluid
n which η0/ηs = 6. In the present work, the local viscoelastic

ach number |v-(x, y)|/c is evaluated throughout each complex
ow using the PIV-determined velocity field. For the solutions
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sed in the present work, ηp/ηs ∼ O(1). Furthermore, pressure
rop measurements in Section 3.3 suggest that for the most elas-
ic solution limε̇→∞ηE/ηs < 10. The low values of ηp/ηs may
herefore lead to a condition in which Ma > 1 is not an exact
riterion for determining regions of hyperbolic vorticity trans-
ort. However, comparing the relative magnitude of the local
iscoelastic Mach number between individual experiments may
till be expected to be qualitatively meaningful.

The dimensionless pressure, �P is obtained by normalising
he differential pressure �P12 = P1 − P2 by the linear slope of
he pressure drop/flowrate curve that is observed in all experi-

ents at low De [12]. Hence,�P(Re,De) = �P12/(sQ), where
= d�P12/dQ when Q → 0. This procedure is identical to that
ollowed in [2].

. Results

.1. Streak imaging

Streak images of each of the four solutions were used to
dentify the onset of “steady viscoelastic flow” at Weissenberg
umbers of (Wi ∼= 3–4) for the three lower elasticity number
olutions (El = 2.8, 7, and 19). In this flow regime, converging
treak lines exhibit an inflection upstream of the contraction
lane, such as those illustrated in Fig. 5d. This is in contrast to
ewtonian flows, in which the converging streak lines only expe-

ience an inflection upon entering the contraction. For the most
lastic solution, P60G (El = 68) the transition from Newtonian-
ike to steady viscoelastic flow occurs at a higher Weissenberg
umber, Wi ∼= 10.

Streak images for all solutions at Wi ∼= 10–11 are presented
n Fig. 5. For El = 2.8, 7 and 19, this corresponds to the “diverging
ow” regime. Pronounced additional streamline curvature can
e observed upstream of the contraction plane. Again, the transi-
ion to diverging flow for the most elastic solution, El = 68 occurs
t a higher Weissenberg number, Wi ∼= 17–20. At Wi ∼= 17, the
ow of the other three solutions becomes three-dimensional,
nstable and time-dependent.

In unsteady flows, it is difficult to characterize the vor-
ex mechanism using streak image analysis, due to the high
requency of oscillations in the flow structure and the three
imensional nature of the flow. PIV partly resolves these dif-
culties, firstly by capturing an image of the flow field over
small time interval (1 < dt < O(102) �s) to achieve instanta-

eous vector maps, and secondly, by interrogating a smaller
easurement depth (δzm) by using a higher numerical aper-

ure objective. Analysis of flow structures within the diverging
nd unstable flow regimes will therefore be addressed in the
ollowing sections.

.2. Micro-particle image velocimetry

.2.1. Experimental validation: Newtonian flow in a
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

ectangular channel 553

In order to quantify the velocity field associated with the 554

omplex flow through a planar contraction, it is first necessary 555

o confirm that the combined measurement and analysis tech- 556

dx.doi.org/10.1016/j.jnnfm.2007.02.006
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In Fig. 6, we compare the axial velocity profiles measured 598
N
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F

ique yields correct values of the velocity. This was achieved by
onducting PIV measurements in a section of the PDMS channel
n which the flow is rectilinear (i.e. far upstream of the contrac-
ion). Velocities were measured in both the x–y planes and x–z
lanes in order to construct the three-dimensional velocity pro-
le, which was then compared with the analytical solution for
oiseuille flow in a channel of rectangular cross-section. In the
resent geometry, x is in the direction of the channel width, y is
n the direction of the channel depth, and z is in the direction of
he flow.

Eq. (5) represents the z-component of the dimensionless
avier–Stokes equations, in which v′z = vz/〈vz〉u is the dimen-

ionless axial velocity, and ξ = x/(wu/2) and ν= y/(h/2) are the
imensionless x and y positions, respectively. For viscous flows,
t is customary to normalize the pressure gradient with the vis-
ous pressure, Pvisc =μ〈vz〉u/(h/2)2, such that the dimensionless
ressure drop is given by �P = (dP/dz)/Pvisc.

1

α2

∂2v′z
∂ξ2 + ∂2v′z

∂ν2 = �P (5)

Use of Eq. (6) below as the general form of the solution for
′
z reduces Eq. (5) to a Laplace equation, which can then be
olved easily using the method of ‘separation of variables’ with

′
U

Please cite this article in press as: L.E. Rodd et al., Role of the elasticity nu
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omogenous boundary conditions, vz = 0 at ν = ±1 and ξ = ±1,
v′z/∂ξ = 0 at ξ = 0, and ∂v′z/∂ν = 0 at ν = 0.

′
z(ξ, ν) = X(ξ)Y (ν) +�P(ν) (6)

u
x
T
d

 P

The resulting solution to the axial velocity in a rectangular
hannel is given by [42]:

′
z =

∑∞
n=0((−1)n/σ3

n) cos(σnν)[1 − (cosh(σnαξ)/cosh(σnα))]∑∞
n=0(1/σ4

n) − (1/σ5
nα) tanh(σnα)

(7)

nd the pressure gradient is given by:

dP

dz
= �Pμ〈vz〉u

(h/2)2 = μ〈vz〉u

2(h/2)2

∞∑
n=0

[
1

σ4
n

− 1

σ5
nα

tanh(σnα)

]

(8)

n which σn = (2n + 1)π/2, n = 0, 1, 2, . . . and α = wu/h = 7.27.
he solution for dP/dz converges rapidly and we use the first 6

erms of the series.
Experimental measurement of the in-plane (x–z plane) veloc-

ty profile was achieved using conventional micro-PIV in which
he entire profile could be captured in a single field of view. The
ut-of-plane (y–z plane) velocity profile was obtained point-by-
oint, by measuring the maximum velocity in the x–z plane and
uccessively stepping the focal plane vertically through the depth
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

sing PIV in the 400 �m × 55 �m straight channel (in both the 599

–z and y–z planes) with those obtained analytically (Eq. (7)). 600

he close agreement between the experimental and analytical 601

ata validates our PIV setup and image processing algorithms.
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.2.2. Flow in a 16:1 planar contraction: Newtonian flow
In Fig. 7a, we compare the streamlines evaluated from the PIV

ata (using a commercial stream-tracing algorithm in Tecplot)
ith those obtained through streak imaging for water flow-

ng through a 16:1 contraction at a Reynolds number, Re = 7.3
Q = 1 ml/h). For a steady flow, the velocity field {vz(x, z), vx(x,
)} determined using �-PIV can also be converted into a set of
treamlines (strictly pathlines) using a pathline integration tech-
ique. Fig. 7 illustrates the excellent agreement between the
wo techniques, regardless of the particle size used in each case
0.5 �m for PIV and 1 �m for streak imaging).

Typical axial velocity profiles of a Newtonian fluid (water)
raveling along the centerline towards an abrupt 400:26 con-
raction are presented in Fig. 7b for a range of flowrates,
.09 ml/h < Q < 1 ml/h (0.65 < Re < 7.8). The profiles superpose
or all flowrates over this range. At positions along the centreline
nd just upstream of the contraction plane, −1 < z < 0, the dimen-
ionless velocity increases approximately linearly with slope
(δvz/δz)(wc/〈vz〉)) � 10.
Please cite this article in press as: L.E. Rodd et al., Role of the elasticity nu
contraction geometries, J. Non-Newtonian Fluid Mech. (2007), doi:10.10

In Fig. 8a, we present lateral velocity profiles of v′z versus x
or the Newtonian fluid, in which v′z is the dimensionless axial
elocity, and x is the distance from the centerline towards the

f
b
fi

Fig. 7.

ide walls of the channel. The velocity profiles are presented at a
umber of axial positions (z = −300, −200, −100 and −50 �m,
llustrating the evolution of the velocity profile as the contraction
lane is approached. Because PIV data is discrete and represents
he velocity over a quarter of an interrogation region of 32 × 32
ixels, axial velocity profiles are extracted at locations nearest
hese nominal values. The real locations of these measurement
lanes are specified in each corresponding figure. At a nomi-
al distance z = −300 �m upstream of the contraction plane, the
rofile is that of fully developed flow in a rectangular channel for
n upstream aspect ratio,Λu = 1/αu = h/wu = 0.14. The ana-
ytical solution for fully developed flow in a 400 �m × 55 �m
hannel is also shown in Fig. 8a by the solid line.

At locations nearer the contraction plane, z = −200 �m, a
eak in the z-component of the velocity develops and velocities
earest the side walls of the channel exhibit a negative deviation
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

rom the fully developed profile. At this point, fluid elements 640

egin to feel the presence of the contraction. This effect ampli- 641

es as the contraction plane is approached (z = −100 �m and 642
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= −50 �m). Streamline convergence is also illustrated by the
lots of v′x versus x presented in Fig. 8b, in which non-zero val-
es of v′x begin to develop at axial positions, z = −200 �m and
row as the contraction plane is approached. The symmetry of
he flow is elucidated in the plots of v′x versus x by the reflection
n absolute values of v′x about the centerline axis, x = 0.

In accordance with the centerline velocities presented in
ig. 7b, there is little observable difference between the lateral
elocity profiles (for both v′z(x) and v′z(z)) at Reynolds numbers,
e = 0.65 and 7.3 (Q = 0.09 and 1 ml/h). Error bars correspond-

ng to measurements at z = −50 �m have been included in both
ig. 8a and b and indicate the spread of the data for all Newtonian
ow conditions.

Small variances in axial position (z = −46.7 �m for Re = 0.65
nd z = −47.4 �m for Re = 7.3) have been accounted for in the
alculated error. The discrepancy in peak velocities may partly
U
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e attributed to small obstructions to the flow which result from
he lodging of debris or fluorescent particles in the vicinity of the
ontraction throat. These appear in the raw PIV images as very
right regions, much larger than when observed under transmit-
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ed light, and are typically observed only at higher flowrates.
hey would, however, be expected to cause a local increase in

he velocity due to an effective reduction in the channel width
t the contraction entrance.

.2.3. Effect of fluid elasticity
Having determined the accuracy of our PIV measurements

ith a Newtonian fluid, we can qualify changes in the veloc-
ty fields measured for the four low viscosity elastic solutions,
15G, P30G, P45G and P60G. For brevity, we provide a
etailed analysis for fluid P45G, over a range of flow con-
itions, 0.1 < Re < 1.3, 2 < Wi < 24, corresponding to flowrates,
.1 ml/h < Q < 1.2 ml/h. Summaries of the results for all fluids
ill be presented in following sections.
In our previous work [2], we demonstrated that the primary

ffect of fluid elasticity in micron-scale contraction flows was
he generation of complex flow structures upstream of the con-
raction plane at moderate to high Weissenberg numbers, and
he dampening of downstream vortices arising from fluid iner-
ia. In the present work, we observe the same effects of fluid
lasticity, however with the use of micro-PIV, it is possible to
uantitatively assess the progressive changes in the velocity field
hat occur as the flow transitions between the Newtonian-like,
teady viscoelastic, inertio-elastic, and diverging flow regimes.

.2.3.1. Steady flow: transition from Newtonian-like to steady
iscoelastic flow. In Fig. 9, we present the streak images and PIV
treamlines upstream of the contraction plane for fluid P45G
t flow conditions corresponding to Newtonian-like (Fig. 9a),
teady viscoelastic (Fig. 9b), and diverging flow (Fig. 9c). For
teady and stable flows (such as the first two cases), smooth
nd nearly complete PIV vector maps could be achieved using
n ensemble average of 25 image pairs. This procedure was
ess successful for diverging flow regimes, in which the flow
s unstable and ensemble averaging could not be implemented.
onsequently, blank regions in the velocity field hindered the
onstruction of streamlines without the use of interpolation fil-
ers.

Fig. 10a and b illustrate the evolution in centerline veloc-
ty profiles for fluid P45G, in terms of the dimensionless
ariables, v′z and ζ = z/wc, corresponding to the Newtonian-
ike and steady viscoelastic flow regimes. At low values of
he Weissenberg number, Wi < 4 (Re < 0.22, Q < 0.2 ml/h), the
xial velocity profile at the centerline exhibits Newtonian-like
ehaviour. Beyond a critical Weissenberg number, Wi > 4, the
enterline velocity profile exhibits a delayed fluid acceleration
n regions nearest the contraction throat. As a result, an inflection
n the velocity profile appears at approximately ζ ∼= −2.5, and
t a dimensionless axial velocity, v′z ∼= 4.5, consistently for all
owrates corresponding to 4 < Wi < 7 (0.2 ml/h < Q < 0.35 ml/h,
.22 < Re < 0.38). At first, this may appear to be an inertially
nduced phenomenon; however the velocity profiles in Fig. 7
onfirm that the same inflection in the velocity profile is not
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

bserved for a Newtonian fluid at the same Reynolds number. 714

urthermore, numerical simulations for a Newtonian fluid indi- 715

ate that this behaviour is not observed for Reynolds numbers as 716

igh as Re = 218 in the absence of fluid elasticity [43]. Analysis 717
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ig. 9.
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f the streak images in Fig. 9 indicate that this effect is a hall-
ark of steady viscoelastic flow in the contraction region. The

eparture from Newtonian flow is clearly illustrated in Fig. 10b,
hich displays the common inflection point for all profiles,

nd the increased degree of flattening that occurs with higher
owrates.

At low flowrates, Q = 0.1 ml/h (Re = 0.11, Wi = 2), both lat-
ral velocity profiles, v′x(x) and v′z(x) for fluid P45G are similar
o those observed for Newtonian flow presented in Fig. 8, at all
U
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pstream positions, −300 �m < z < 0 �m. At higher flowrates
0.1 ml/h < Q < 0.35 ml/h) we observe progressive changes in
he lateral velocity profiles (particularly in v′z(x)) which reflect
he “flattening” of the centerline velocity profile in the region

n
i
a
o

2 < ζ < 0 depicted in Fig. 10. At z = −100 �m, the peak in the
ormalized axial velocity increases as the flowrate is increased,
hile at z = −50 �m, the peak velocity decreases.

.2.3.2. Time-dependent flow: transition to diverging flow. Fol-
owing the onset of diverging flow, Q > 0.35 ml/h (Wi > 7.02,
e > 0.38), the flow becomes unstable and time-dependent. This

s indicated by the reduced coherence of the streak lines in
ig. 9c, which accompanies diverging flow. The time-dependent
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

ature of the flow field in the diverging flow regime is illustrated 739

n Figs. 11a and b, which were acquired successively at t = 0 s 740

nd t = 0.4 s. These images illustrate the instantaneous structure 741

f the flow field following the onset of an instability. 742
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The dynamics and structure of diverging flow were char-
cterized according to the “degree of divergence” (spatial
haracteristics) in the flow and the “amplitude of fluctua-
ion” (temporal characteristics). Firstly, we consider the spatial
haracteristics of diverging flow. The degree of divergence is
anifested in the shape of the axial velocity profile at the cen-

reline. The centerline velocity profile is only meaningful when
he flow is symmetric, and since the diverging flow is unstable
nd time-dependent, it was necessary to isolate instantaneous
IV vector maps in which the flow was symmetric (such as the
ow illustrated in Fig. 9c).

The centreline velocity can then be extracted from these
mages as shown in Fig. 12. This figure illustrates the evolution
f the centerline velocity profile in fluid P45G upstream of the
ontraction plane, as the flowrate increases from Q = 0.4 ml/h
o Q = 0.9 ml/h. The velocity profile corresponding to the ini-
ial Newtonian-like flow (Q = 0.1 ml/h) is also included for
eference. In the diverging flow regime, streamlines diverge
way from the centerline upstream of the contraction and then
e-converge just prior to entering the contraction throat (see
ig. 9c). In order to conserve mass locally, fluid elements travel-
U
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ng along the centerline must decelerate as adjacent streamlines
egin to diverge. As a result, a higher “degree of divergence”
eads to a smaller value of the minimum centerline velocity.

e can therefore use the minimum axial velocity as one mea-
Fig. 11.

ure of the degree of divergence. Another quantity which can be
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

Fig. 12.
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iverging streamlines. As the flowrate increases, the position
f maximum velocity shifts further upstream and the minimum
entreline velocity reduces.

The axial velocity curves are numerically integrated for each
alue of z, in order to quantify an effective measure of the
n-plane flowrate, represented by Az = ∫ x=200

x=−200 v
′
z(x) dx. The

ntegral Az is calculated for each z-position and for a range
f flowrates just prior to and following the onset of diverg-
ng flow, 0.35 ml/h < Q < 0.6 ml/h (7 < Wi < 12, 0.38 < Re < 0.65).
s we also observed for steady viscoelastic flows, the value
f Az progressively reduces as ζ→ 0, suggesting that fluid
lements are moving away from the centreplane in the y-
irection; i.e. the flow near the contraction plane is increasingly
hree-dimensional. As the flowrate is increased, the departure
rom locally two-dimensional flow (at the centreplane) becomes
ore pronounced and develops at locations further upstream.
or flowrates, Q > 0.55 ml/h (Wi > 11), the departure from 2D
ow appears to saturate, at which point Az reduces to ∼50%
f the equivalent fully developed value at an axial position,
= −2.

.2.3.3. Unstable flow: characterizing streamline oscillations.
nstable viscoelastic flows were characterized according to the

mplitude of the fluctuation. This was evaluated from analysis of
he temporal characteristics of the flow field. Here, we define the
mplitude of the fluctuation as the magnitude of the maximum
ideways displacement from the centreline that the fluid core
xperiences during the unsteady flow. The location of the core is
dentified as the x-co-ordinate of the maximum axial velocity, in
n arbitrarily chosen plane (z = −100 �m, y = 0 �m). The loca-
ion of this maximum is most easily identified in regions of high
elocity gradients (in the x-direction). In light of this, we have
hosen a value of z that coincides with regions in the vicinity
f the bottleneck. PIV-generated streak images in Fig. 11 indi-
ate that z = −100 �m is a suitable choice. The axial velocity
rofile at this measurement plane, z = −100 �m was evaluated
ver a series of 25 images (10 s). By evaluating only the x-
ositions of the velocity peak in each profile, it was possible
o quantify the lateral location of the fluid core as a function of
ime. The standard deviation of all 25 positions was then used
s a measure of the amplitude of the fluctuation. This process
as repeated for all flowrates in both stable and unstable flow

egimes.
For steady Newtonian-like flow, the value of the dimen-

ionless amplitude of the instability is close to zero (as
xpected). However, it increases as the flowrate increases
eyond Q = 0.7 ml/h (Wi = 14) and a transition to unstable flow
ccurs. This behaviour is depicted in Fig. 13. A prominent
eature of this figure is the reduction in fluctuation amplitude
or Q > 1.2 ml/h. From streak images, it was found that this
oincides with the onset of vortex growth, which assists in
tabilizing the position of the central fluid core. For compari-
on, we also show in Fig. 13 the magnitude of the fluctuation
U
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valuated at a second axial positoin, z = −150 �m. There is
nly a weak dependence on axial position, particularly in the
egion of unstable flow, and this indicates the robustness of this
easurement.

t
t
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c

 P
R

O
O Fig. 13.

.2.4. The viscoelastic Mach number, Ma
Contour plots of the local viscoelastic Mach number are pre-

ented in Fig. 14. The four images correspond to Newtonian-like
ow (Fig. 14a), steady viscoelastic flow (Fig. 14b), and the onset
f diverging flow (Fig. 14c). For Newtonian-like flow (Wi = 2.0),
he region nearest the contraction entrance is occupied predom-
nantly by contours of Ma < 0.3 (Fig. 14a). The maximum value
f the Mach number that occurs in the contraction throat at the
enter-line (based on a fully developed profile in the contrac-
ion) isMac max = 0.7. As the flowrate is increased (Wi = 7) and
transition to steady viscoelastic flow occurs, the region near

he contraction entrance experiences higher Mach numbers of
pproximately Ma < 0.8 (Fig. 14b). The maximum value in the
ontraction throat is Ma = 2.7. In this regime, the contours of
onstant Mach number exhibit a mildly elongated shape, in con-
rast to the circular-shape contours observed in Newtonian-like
ows. The distortion of these circular contours becomes more
ronounced in the diverging flow regime as shown in Fig. 14c
nd d. At the onset of the diverging flow (Wi = 9), contours of
alue Ma = 0.8 are easily identifiable upstream of the contrac-
ion. The maximum value of the viscoelastic Mach number in
he contraction throat is Mac max = 3.5. This general evolution
f the flow field is of the same form as described by Hulsen [5],
n which large upstream regions of Ma > 1 corresponded to the
nset of diverging flow for high elasticity solutions (ε= 0.02).

.2.5. Effect of solvent viscosity: the elasticity number
In order to evaluate the effect of changing the elasticity num-

er, we now compare a selection of the kinematic quantities
resented above. Firstly, the centerline velocity profiles are pre-
ented for each of the elasticity numbers at the same Weissenberg
umber. This enables a direct assessment of the effects of fluid
nertia on the centerline kinematics. Secondly, contour maps of
he local viscoelastic Mach number will be presented for each of
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

he fluids at or near the onset of diverging flow. The goal here is 861

o assess the validity of the Ma > 1 criterion for the development 862

f diverging streamlines, at different elasticity numbers. Lastly, 863

enterline profiles of the strain rate will be presented for each of 864
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tudied in the PIV measurements.
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.2.5.1. Effect of elasticity number on the centerline velocity
rofile. The centerline velocity profiles for each of the fluids,
l = 2.8, 7, 19 and 68 are presented in Fig. 15, for Weissenberg

e
h
t
h

Fig. 15.

umbers, Wi = 7, 11. At low Wi (Wi = 2), the centerline velocity
rofile exhibits Newtonian-like characteristics for all elastic-
ty numbers, 2.8 < El < 68 (such as those in Fig. 7b). At Wi = 7
Fig. 15a), the onset of steady viscoelastic flow is identified by
he local inflection of the velocity profile for 2.8 < El < 7, whilst
or the highest elasticity number, El = 68, the centreline veloc-
ty profile retains Newtonian-like characteristics. The effects of
lasticity are most prominent for El = 7, and result in a higher
ormalized velocity upstream of the inflection point, as well as a
atter velocity profile immediately downstream of the inflection
oint. The higher Weissenberg number for fluid P30G (Wi = 7.8,
ompared with Wi = 7.0 for P45G) may be partially responsible
or this enhanced elastic effect.

At Wi = 11 (Fig. 15b), characteristics of diverging streamlines
re observed in the centreline velocity profile for El = 19; this is
llustrated by the local velocity minimum observed just upstream
f the contraction. For El = 7, the flat velocity profile near the
nflection point suggests the approaching onset of diverging flow,
hile for El = 2.8, the mildly inflected velocity profile indicates

hat the flow is still steady and viscoelastic in character.
The above information can be summarized in a flow transi-

ion map in Wi–Re space, which is presented in Fig. 16. At high
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

lasticity numbers, transitions between flow regimes occur at 892

igher Weissenberg numbers. For moderate elasticity numbers, 893

he critical values of Wi for the onset of flow transitions are lower, 894

owever as the elasticity number is further reduced, these val- 895
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es increase slightly. This implies the existence of a minimum
n the boundary between flow regimes, which coincides approx-
mately with our experiments for the P45G fluid with El = 19.
hese results agree qualitatively with observations made in pre-

i
t
a
t

Fig. 17.
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ious numerical and experimental works (Table 1, and Table 1
f [2]); the generation of vortices and other viscoelastic effects
re retarded by very high elasticity numbers (e.g. planar flows of
oger fluids [12]) and develop due to an interplay of elasticity
nd fluid inertia. Furthermore, a Reynolds number that is too
arge dampens the effects of viscoelasticity, and in particular,
nhibits the growth of elastic upstream vortices.

.2.5.2. Diverging flow and the viscoelastic Mach number;
ffect of El. Fig. 17a–d show contour plots of the viscoelastic
ach number for each of the four solutions near or at the onset

f diverging flow. The corresponding flow conditions for each
f the sub-figures are (a) El = 2.8, Wi = 11, (b) El = 7, Wi = 10,
c) El = 19, Wi = 11, and (d) El = 68, Wi = 24. For El = 7, 19 and
8, the onset of diverging flow concincides with a local Mach
umber, Ma = 0.8, in a region just upstream of the contraction
lane in the vicinity of the diverging streamlines. However, for
he least elastic solution (El = 2.8), the equivalent value of Ma
 P
R

O

mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

s much larger. For example, in Fig. 17a, the local values of 917

he Mach number upstream of the contraction plane are as high 918

s 1.6, yet diverging flow is still absent. This result supports 919

he assertion of Hulsen, in that large values of the Mach num- 920
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er do not explicitly lead to diverging flow and that the critical
alue of the Mach number is not the only important parameter
n predicting the onset of diverging flow in polymer solutions
ith significant solvent viscosities. Furthermore, Hulsen finds

hat the presence of diverging flow (at Ma ∼= 1) is only true for
igh elasticity solutions (ε= 0.02), which also agrees with our
bservations.

.2.5.3. Centreline strain rate profiles; the onset of elasticity.
imilar to the inflection observed in the centreline velocity pro-
le in Figs. 12 and 15, the evolution of the centreline strain rate
ay also be used to identify the effects of fluid viscoelasticity.
urthermore, values of the strain rate may be used to determine

he local values of the Deborah number, De = ε̇(z)λ in which
may be a theoretical Zimm time or a CaBER-determined

elaxation time. By evaluating the centreline strain rate using
entreline velocity data (ε̇ = δvz/δz), it was found that the max-
mum strain rate, ε̇max occurs just upstream of the contraction
lane. By incorporating the Zimm time, we find that the onset of
iscoelastic effects corresponds closely to a value of Demax = 1
or fluids P15G, P30G and P45G. For fluid P60G, values of
emax are greater than unity for all flow conditions, including

hose in which Newtonian-like behaviour is observed. This is
onsistent with Fig. 16 which illustrates that the onset of vis-
oelastic effects occurs at a higher Weissenberg number for
uids with high viscosities and high elasticity numbers (e.g.
l = 68). The correlation between Demax > 1 and the onset of
uid elasticity for the other three fluids, however, supports our
hoice of the Zimm time as the most suitable timescale for char-
cterizing these viscoelastic flows. Furthermore, it was found
hat the ratio of the maximum strain rate and the downstream
hear rate, ε̇max/γ̇c ∼= 0.4–0.5, was found to be approximately
onsistent between all flowrates and for all elasticity numbers.
ince the maximum axial strain rate on the centreplane and the
ownstream shear rate are of the same order of magnitude, both
ay be considered equally suitable quantities for calculating the

haracteristic Weissenberg number (or Deborah number) in this
eometry.

.3. Pressure drop measurements

Pressure measurements were validated in a rectilinear chan-
el flow using a similar procedure to that used for the validation
f PIV vectors. In contrast to the PIV measurements, a second
ectangular channel with a smaller cross-section and without
contraction–expansion was used. The smaller channel cross-

ection (55 �m × 57 �m) was chosen in order to achieve larger
and thus more readily measureable) total pressure drops than
ould be attained in the corresponding 400 �m × 55 �m chan-
el. Fig. 18 illustrates the differential pressure drop measured
ver a 6 mm section of the rectangular channel with dimensions
5 �m × 57 �m. Again, the experimental pressure measure-
ents show very close agreement with the analytical solution
U
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Eq. (8)). Discrepancies between the data and the analytical
olution at high pressure drops (�P12 > 35 kPa) are a result
f the upper limit of the nominal range of the pressure sensor
0–5 psi).
O Fig. 18.
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

Fig. 19.
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eometry can be found elsewhere [43], and agree closely with
he experimental data presented here. The pressure drop/flowrate
urves for the P15G, P30G and P45G fluids show similar
haracteristics. At low flowrates, the differential pressure drop
P12 is linear with Q, and follows the expected behaviour

or a Newtonian fluid. The slopes of the curve in this region,
1 = limQ→0d�P12/dQ, for each of the PEO solutions (P15G,
30G, P45G and P60G) are 2.66, 3.78, 7.43 and 13.0 kPa h/ml,
espectively. At a critical flowrate (whose value depends on the
lasticity number), the slope increases abruptly, corresponding
o the onset of viscoelastic effects. In this second region, the
lope, maintains a constant value of s2 = 16.9, 24.9, 43.1, and
0.6 kPa h/ml in order of increasing elasticity number, respec-
ively. At higher flowrates again, the measured pressure drop
eviates from the previous region of constant slope, resulting
n a local shoulder in the �P12–Q curve. This final transition
s observed only for El = 2.8, 7.0 and 19 and corresponds to the
nset of unstable vortex growth. At higher flowrates, the large
lastic vortices restabilize and undergo steady upstream growth,
hich results in a third linear region in the �P–Q curve. Note

hat the value of s2 in the constant slope regions on either side
f the shoulder are the same. The flow characteristics in the
wo regimes that lead to non-linear viscoelatic effects have sim-
lar contributions to the total pressure drop. Streak images from
he corresponding experiments also indicated that the flow field
as symmetric in both regimes, and in the case where the flow
as unstable (diverging flow), the time-averaged configuration
f the flow field was also symmetric. This is in contrast with
he unstable vortex growth regime, in which the flow remains
argely asymmetric due to the presence of bi-stable vortices.

In Fig. 19b, we replot the data in terms of the dimensionless
ressure drop �P as a function of Reynolds number, for elas-
icity numbers, El = 0, 2.8, 7.0, 19 and 68. For the Newtonian
uid (El = 0), the dimensionless pressure drop has a constant
alue, �P ∼= 1 for Reynolds numbers, Re < 40. Although not
hown here, the dimensionless pressure drop for water increases
o values above unity for Re > 40; this is a result of entrance
nd exit losses (which scale as ρV2), and become significant at
igh Reynolds numbers. At Re = 68, the dimensionless pressure
rop for water reaches a value of�P = 1.13. However, since all
xperiments with the PEO solutions were performed at Re < 12,
uch purely inertial contributions to the extra pressure drop are
ot expected and the increase in the pressure drop arises from
iscoelasticity.

In Fig. 19b, the presence of the shoulders noted previously
ppear as peaks in the dimensionless pressure drop. The value
f the peak pressure drops are �Ppeak = 4.14, 4.71 and 4.81,
or P15G, P30G and P45G, respectively. There is no observable
eak in the curve for the most elastic solution, P60G, however
nly a limited range of flowrates beyond the inception of vor-
ex growth (0.9 ml/h < Q < 1.2 ml/h) was tested. Streak images
orresponding to this range of flowrates, did however suggest
hat in this high elasticity fluid the viscoelastic vortices were
U
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ignificantly more stable and symmetric, even during the early
tages of vortex growth. This may explain the lack of shoulder
n the�P–Q curve, which appears to accompany a transition to
n unsteady flow with fluctuating corner vortices.

P
s
a
m

 P
R

O
O Fig. 20.

In Fig. 20, the dimensionless pressure drop is presented as a
unction of the Weissenberg number. For the three lowest elas-
icity numbers, the evolution of �P with Weissenberg number
pproximately superimpose, particularly at the onset of elastic
ffects, corresponding to�P > 1 and in the region of the unsta-
le vortex shoulder. In this figure, four regions have been labelled
nd correspond to (I) Newtonian-like flow, (II) steady viscoelas-
ic flow, (III) diverging flow (3D, time-dependent flow), and (IV)
ortex growth regimes, which have been described in the PIV
nd streak image results. It was found that steady viscoelastic
ow corresponds to a region of �P = 1, i.e., the progressive
evelopment of a steady viscoelastic flow field does not incur a
easureable extra pressure drop. The first effects of viscoelas-

icity in this planar contraction flow are thus quite weak and only
ead to small changes in the streamline patterns and an inflec-
ion point in the centreline velocity (see Figs. 9b and 10). The
nset of diverging streamlines (region III) at higher Wi, is how-
ver accompanied by an increase in the dimensionless pressure
rop,�P > 1. In region IV,�P continues to increase as a result
f the progressive growth in the size of the unstable vortices.
nder conditions of steady imposed flowrate in this region, vor-

ices were observed to continuously form and collapse, resulting
n a shark-tooth waveform in the transient pressure response.
he region following the shoulder corresponds to steady vortex
rowth, during which the elastic corner vortices no longer grow
nd collapse.

For the highest elasticity number, El = 68, the onset of each
f the four regions (I–IV) occur at higher Weissenberg numbers,
ompared with the other three solutions. For each solution, �P
ppears to approach a plateau value for Wi → ∞. For El = 68,
PWi→∞ appears to approach a value of ∼= 3–4, which is lower

han the asymptotic value for the other three less-elastic solutions
ΔPWi→∞ ∼= 5–6). This discernable difference in the magni-
ude of�P confirms that the contrasting behaviour observed in
mber in the entry flow of dilute polymer solutions in micro-fabricated
16/j.jnnfm.2007.02.006

IV and streak images for the highest elasticity number polymer 1070

olution is not merely a consequence of a choice in the relax- 1071

tion time (this affects Weissenberg number only), but is also 1072

anifested in the resulting dynamics.
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. Conclusions

The primary purpose of this work was to explore the role
f the background solvent viscosity on the planar entry flow of
ilute polymer solutions, corresponding to Elasticity numbers,
.8 < El < 68. This was achieved using micro-fabricated contrac-
ion geometries and dilute solutions of polyethylene oxide in
lycerol/water mixtures. Each fluid exhibited behaviour cor-
esponding to flow regimes which have been identified as (i)
ewtonian-like flow, (ii) steady viscoelastic flow, (iii) diverging
ow and (iv) elastic corner vortex growth (both unstable and
table). These regimes were identified through streak images,
-PIV measurements and pressure drop measurements.

A change in the shape of the streamlines upstream of the con-
raction at low Weissenberg numbers (corresponding to steady
iscoelastic flow) was demonstrated to be a result of fluid elas-
icity because no change in the centreline velocity profile was
bserved in a Newtonian fluid at corresponding Reynolds num-
ers or even at an order of magnitude higher. These subtle
iscoelastic changes in the centreline velocity profile, however,
id not lead to a measureable extra pressure drop; an increase in
he dimensionless pressure drop above unity was only observed
or higher flowrates following the onset of diverging flow.

The instantaneous structures of three-dimensional unsta-
le viscoelastic flow upstream of the contraction plane
ere resolved using �-PIV. As expected, the degree of

hree-dimensionality was found to increase with increasing
eissenberg number, and flow appeared to be directed away

rom the centreplane. This unstable flow was characterised by
he amplitude of the fluctuations in the axial velocity which
ncreased with increasing Weissenberg number. The succes-
ive growth and collapse of the elastic corner vortices at high
eissenberg numbers resulted in shark-tooth oscillations in the

nstantaneous pressure traces and a shoulder in the dimension-
ess time-averaged pressure drop curve. The decrease in the
mplitude of the velocity and pressure drop fluctuations at very
igh Weissenberg number correspond to a restabilization of the
ow and progressive upstream elastic vortex growth.

These results can be summarized in a flow transition map
hat can be best represented in Wi–Re space (Fig. 16). This map
llustrates that the critical flowrates vary with both Re and Wi
nd correspond to a higher Weissenberg number for the high-
st elasticity number, El = 68. For lower elasticity numbers, the
ransition between flow regimes is a weak function of El, such
hat transitions occur at marginally higher Weissenberg numbers
ith decreasing elasticity number. This non-linear interaction
etween inertial and elastic effects helps rationalize previous
ork, in which Boger fluids (which correspond to high elasticity
umbers) only exhibited weak viscoelastic effects [12], and low
lasticity number contraction flows failed to exhibit viscoelastic
ffects due to the overwhelming effects of fluid inertia.

Evaluation of the full kinematic field upstream of the con-
raction plane also showed that the onset of diverging flow
U
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annot be solely represented by a critical local value of the vis-
oelastic Mach number. For the lowest elasticity number fluid,
l = 2.8, viscoelastic Mach numbers in excess of one could still
e achieved even in the absence of diverging flow. The onset
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f viscoelastic effects in the upstream flow could be correlated
ith exceeding a critical strain rate defined by the inverse of

he Zimm time. This supports the idea that the Zimm relaxation
ime of a polymer solution is the appropriate timescale to be
sed in predicting the onset of viscoelastic effects in viscoelastic
ntry flow problems. Although the chains do become stretched
s they enter a contraction, the total Hencky strain is less than
hat encountered in capillary breakup experiments.

Our study demonstrates the value of �-PIV as a tool
or understanding and quantifying the kinematic phenom-
na associated with both steady and unsteady viscoelastic
ows at micron-lengthscales. Furthermore, the subtlety of the

ransitions between successive flow regimes (particularly the
rogressive development of steady viscoelastic flow), and the
hree-dimensional nature of the viscoelastic flow that develops
t higher Weissenberg numbers, suggest that �-PIV is the most
ffective technique for reliably and quantitatively characteriz-
ng the kinematics of a complex flow over a wide range of flow
egimes. This work has important implications in the design of
icrofluidics devices (such as lab-on-a-chip devices) in which

he fluid being transported is often non-Newtonian. Addition-
lly, this work provides quantitative data which may be used
o validate the permformance of constitutive models in predict-
ng three-dimensional planar entry flows in which both fluid
lasticity and inertia are important.
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