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Abstract

In this paper a network model for wormlike micellar solutions is pre-
sented which incorporates scission and reforming of the chains, based
on a discrete version of Cates’ theory. Specifically we consider two elas-
tically active Hookean species: long chains which can break to form
short chains which themselves can recombine to form a long chain.
The chains undergo rupture at a rate dependent on the local elonga-
tion and deformation rate. This two species model, developed for an
understanding of inhomogeneous flows, is examined in this paper in
various deformations; steady state shear flow, step strain, extension,
and linear small angle oscillatory flow in homogeneous conditions. The
values of the model parameters and their effects on the flow predictions
are examined.

1 Introduction

Wormlike micelles, also known as living polymers, have been the center of
numerous theoretical and experimental studies, see for example the reviews
[1], [2]. Unlike typical polymers these long macromolecular assemblies can
break and reform continuously, showing distinctive behaviors under different
deformation conditions. Observations in small amplitude oscillatory shear
(SAOS) flows show that under certain conditions the linear viscoelastic re-
sponse is primarily a single mode Maxwell response [3], [4]. Specifically,
if we denote τbreak as the expected time for breakage of the micelle, and
τreptation as the expected time for a micelle to reptate out of its entangle-
ments, when τbreak << τreptation, Cates, [5], showed that wormlike micellar
mixtures have a single mode Maxwellian response in the linear viscoelastic
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regime, with a second mode important only at high frequencies. He also
showed that the time scale associated with this first, dominant, mode is
τeff = (τreptationτbreak)

1
2 [5], [6]. In steady state shear experiments, at small

shear rates, γ̇ < γ̇1, and large shear rates, γ̇ > γ̇2, these mixtures exhibit a
linear dependence of the stress on the shear rate. However, given the right
conditions in concentration, salinity, and temperature [7], a stress plateau
in an intermediate shear-rate region, γ̇1 < γ̇ < γ̇2, is observed in the flow
curve and, in these cases, experiments in a circular Couette cell show the
formation of two primary ‘shear bands’, a high shear rate region near the
inner or moving wall connected to a low shear rate region near the outer or
fixed wall [8], [9], [10].

In uniaxial extension flows experiments have shown a plateau in the
extensional viscosity for small extensional rates, followed by a sharp exten-
sional thickening and, at a critical elongational rate, an extensional thinning.
[11]

In step strain these mixtures show a factorization of the shear stress
as σrθ = γ G0 g(t)h(γ) where G(t) = G0g(t) is the stress relaxation mod-
ulus and h(γ) the damping function. Experiments have shown that G(t)
can be well described by single exponential relaxation G(t) = G0e

−t/λ.
The damping function may have a more complex response. Experiments
by Brown et. al. [12] on a CTAB/NaSal system show a strain-hardening fol-
lowed by a strain-softening. Recent experiments with a CPyCl/NaSal solu-
tion show a monotonic softening response similar to that described by the
Doi-Edwards model [13]. Additionally, experiments show that the Lodge-
Meissner relation is obeyed up to strains of γ0 ∼ 8 [13].

The present work presents a constitutive model to describe the flow of
wormlike micellar solutions under these different deformation conditions and
details the predictions and parameter dependence of the model. The model
includes scission and reformation effects.

Various approaches have been taken in modeling wormlike micellar solu-
tions. Cates [14] introduced reaction dynamics to account for the reversible
breaking and reforming of the micellar chains. In his model there are two
different time scales, the reptation time and the breaking time. Although
experiments have shown good agreement with his model, especially in linear
deformations, that model still fails to predict stress overshoot in the start
up of steady shear [6] and to our knowledge no calculations in extensional
flow have been done for that model. Other authors have combined dumb-
bell models for elastic chains and network theory by introducing creation
and destruction terms in the evolution equation of the dumbbells [15]-[16].
Different forms of these breaking and reforming terms have been considered.
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Bautista et. al. [17] developed a single species model based on a codeforma-
tional Maxwell constitutive equation and included a kinetic equation gov-
erning the relaxation time to account for the dependence of the breakage
rate on the shear rate. This particular version of their model predicts a
multivalued shear stress versus shear rate curve and hence one expects that
the model will demonstrate shear banding.

Two species models have been considered to describe associative poly-
meric networks. These mixtures do not typically exhibit shear banding,
but these models do incorporated two species in a network with attachment
and detachment of strands. Using Brownian dynamics simulations to eval-
uated the rheological behavior of reversible polymeric networks, Van den
Brule et. al. [18] assumed that the probability of attachment to the network
is proportional to the stretch of the dumbbell. They introduced a FENE-like
term in the probability of detachment to account for the fact that during
flow a chain has a higher probability of detaching once it becomes more fully
stretched. Brownian dynamics were also used in the work of Hernandez-
Cifre et. al. [16] to simulate reversible polymeric networks, they considered
two separate species, one representing active chains connected to the net-
work by both ends, and the other representing dangling chains connected
to the network by one end only. In their work, disassociation from the net-
work was an exponential function of stress and, by using the same form of
the association rate as van den Brule et. al., they were able to predict shear
thickening. Tripathi et. al. [19] in their two species network model for asso-
ciative polymers derived a destruction rate for the bridging chains which is
proportional to a power of the Warner spring function, the power is related
to the molecular weight of the species. In their work the creation rate of the
bridging chains was proportional to a function of the shear rate and stress.

Single species bead-spring models based on the Johnson-Segalmann con-
stitutive equation were considered by Olmsted and collaborators. In these
models the number density of the species was kept fixed and numerical stud-
ies were carried out with and without non-local diffusion terms, [20], [21],
[22]. A similar model but with addition of variable density was considered
in [23], [24]. These models result in a nonmonotone stress-strain rate curve
under homogeneous flow conditions. Under inhomogeneous flow conditions,
with the addition of a viscous solvent and the incorporation of stress dif-
fusion terms, these models predict a stress plateau in the flow curve for a
range of shear rates. Numerical studies have shown that, without diffusion,
this steady state solution depends on the flow history [20]. For shear rates
within the plateau region, these models predict shear banding in the veloc-
ity profiles across the gap in a cylindrical Couette geometry. Such models

3



are phenomenological, that is they do not relate directly to the dynamics of
the micellar system. Additionally, the Johnson-Segalman model predicts a
singularity in the Trouton ratio at a finite elongational rate and exhibits a
nonphysical negative damping in rapid step strain deformation [25]. Exper-
iments using NMR microscopy [26] and small-angle neutron scattering [27]
have also shown that for a model to be able to accurately describe the highly
non-linear behavior of some wormlike micellar solutions, it should include
local effects in the orientation and dynamics of the molecules, as opposed to
a bulk average of the properties. For these reasons alternative models, tied
to the physics of the micellar breakage and reforming processes, should be
considered.

The present approach is based on a discrete version of Cates’ original
reversible breaking theory. In contrast to Cates’ model in which reptation
theory was used, the breaking and reforming dynamics in this model are
incorporated into network theory in which we follow elastic segments of
wormy micelles between entanglement points. In the present approach two
different species are considered, one of length L that breaks in the middle
to form two of length L/2. These recombine to form one species of length
L as shown in Figure 1.

Figure 1: Micellar network: a. Cates’ model with a continuous distribution
of lengths N(L). b . Our discrete two species model.

In this paper we formulate the model and consider predictions under
different deformation conditions assuming homogeneous flow. In Section 2
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we present the formulation and non-dimensionalization of our model. In
Section 3 the governing equations describing steady and transient shear
flow in a cylindrical Couette geometry and in uniaxial extensional flows
are presented. Section 4 deals with analysis of the model in the linear
viscoelastic regime, specifically small amplitude oscillation. Also, a first
look at the model parameters and their effects on the model predictions and
in particular on the magnitude of the zero shear rate viscosity are studied. In
Section 5 nonlinear material functions in step strain, and steady homogenous
shear and elongational flow are studied. The dependency of the material
functions on model parameters such as the equilibrium number density of
each species and the breakage rate are explored. Part II of this paper [13],
consists of a detailed comparison of experiments with the predictions of the
model and parameter selection for the model in agreement with experiments.
A third paper, Part III [28], analyzes the model computationally in steady
and transient inhomogeneous shearing flows.

2 Formulation of the Model

In the model presented here we simplify Cates’ dynamics by considering only
two species of wormlike micelles. We consider species A, which are chains of
length L units that break at the middle to form chains of length L/2 units,
denoted species B. Analogously, the short chains can join at their ends to
reform into one long chain. This discrete dynamics is opposed to Cates’ the-
ory in which chains can break with equal probability at any point along their
length, and in which chains of any length can join to form a longer chain.
This simplification of Cates’ breakage dynamics allows us to understand the
species interaction, to examine the model in a variety of nonlinear flow con-
ditions, and in particular, to develop a theory which consistently captures
the spatial variations in the number density of each species. This is key
to understanding the experimental behavior of wormlike micellar solutions
and the selection of the stress at which these solutions show shear banding
[29]. One effect the continuous, versus the discrete, dynamics has on our
results is that by allowing the chains to break at any point, the rate of break-
age is effectively increased and the breakage time correspondingly decreased.

Let Ψ
′

A(r′,Q′, t′), Ψ
′

B(r′,Q′, t′) represent the number density distribu-
tion of each species in space, configuration space and time. Here Q

′

is the
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end to end vector of the chain. Then,

n′

α(r′, t′) =

∫

Ψ
′

αdQ′

represents the dimensional number density of species α as a function of space
and time. Here and throughout this paper primes represent dimensional
variables.

The equations governing the configuration density function, using net-
work theory coupled with bead-spring kinetics, and assuming Hookean forces,
can be obtained generalizing techniques introduced by Bird, Curtis, Arm-
strong and Hassager, [30], [31], [32] and used in [23], [24], to a two species
model:

Ψ
′

A,t′ + ∇r′ ·
(

v′

AΨ
′

A

)

+ ∇Q′

(

Q′ · ∇v′

A

)

Ψ
′

A −∇r′ ·
kT

2ζA
∇r′Ψ

′

A

+∇Q′ · 2HA

ζA
Q′Ψ

′

A −∇Q′

2kT

ζA
∇Q′Ψ

′

A =
c
′

B

2
Ψ

′

B ∗ Ψ
′

B − c
′

AΨ
′

A (1a)

Ψ
′

B,t′ + ∇r′ ·
(

v′

BΨ
′

B

)

+ ∇Q′

(

Q′ · ∇v′

B

)

Ψ
′

B −∇r′ ·
kT

2ζB
∇r′Ψ

′

B

+∇Q′ · 2HB

ζB
Q′Ψ

′

B −∇Q′

2kT

ζB
∇Q′Ψ

′

B = −c
′

BΨ
′

B ∗ Ψ
′

B + 2c
′

AΨ
′

A (1b)

In these equations k is the Boltzmann constant, T is temperature, ζα

represents the drag coefficient of the species α, cA
′ represents the dimensional

breakage rate, cB
′ represents the dimensional reforming rate per micelle, and

Hα is the spring constant or elasticity of the αth species.
The flux of species A and B relative to the main flow is given by

j′A = −kT

ζA
∇′ρ′A +

2mHA

ζA
∇′ · {Q′Q′}A, (2a)

j′B = −kT

ζB
∇′ρ′B +

mHB

ζB
∇′ · {Q′Q′}B . (2b)

The second term on the right hand side of Equations (2) arises from assuming
there is a finite spatial extent for the dumbbell and the mass is distributed

at the two ends, one bead at (r′ + Q
′

2 ,Q
′

, t
′

) and the other at (r′− Q
′

2 ,Q
′

, t
′

)
[23], [31], [32].
By integrating the Smoluchowski equations (1) over Q′, with ρ′A = 4mn′

A
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and ρ′B = 2mn′

B, we obtain the evolution equations governing the number
densities of each species,

Dn′

A

Dt′
= −∇′ · j′A

4m
+

cB
′

2
n′ 2

B − cA
′n′

A, (3a)

Dn′

B

Dt′
= −∇′ · j′B

2m
− cB

′n′ 2
B + 2cA

′n′

A. (3b)

The functional form of the reaction rates, cA
′, cB

′, for the breaking and
reforming of the chains will be discussed in Section 2.3. For now we assume
they are functions of the average extension of the chains and the shear rate:

cA
′
(

n′

A, {Q′Q′}A, γ̇ ′
)

, cB
′
(

n′

B , {Q′Q′}B , γ̇′
)

.

Substituting for the flux from equations (2) into (3), the equations for
the number density for each species become

Dn′

A

Dt′
= 2DA∇′ 2n′

A − DAHA

kT
∇′∇′ : {Q′Q′}A +

cB
′

2
n

′2
B − cA

′n′

A (4a)

Dn′

B

Dt′
= 2DB∇′ 2n′

B − DBHB

kT
∇′∇′ : {Q′Q′}B − cB

′n
′2
B + 2cA

′n′

A(4b)

Here the diffusivities of the A and B chains are DA = kT
2ζA

,DB = kT
2ζB

,

respectively. The stress associated with the αth species is related to the
second moment of the distribution by

{Q′Q′}α =

∫

Q′Q′Ψ
′

αdQ′. (5)

Then multiplying the distribution equations (1) by Q
′

Q
′

and integrating
over the configuration space, dQ′, we find the equations for the second mo-
ment of each species:

{Q′Q′}A(1′) +
4HA

ζA
{Q′Q′}A − 4n′

AkT

ζA
I − DA∇

′2{Q′Q′}A

=
cB

′

2
{Q′Q′}B n′

B − cA
′{Q′Q′}A, (6a)

{Q′Q′}B(1′ ) +
4HB

ζB
{Q′Q′}B − 4n′

BkT

ζB
I − DB∇

′2{Q′Q′}B

= −cB
′{Q′Q′}B n′

B + 2cA
′{Q′Q′}A, (6b)
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where (·)(1′) represents the upper convected time derivative defined as

(·) =
D

Dt′
(·) − (∇′v′)⊺ · (·) − (·) · (∇′v′).

Because the flow may be inhomogeneous, that is the number density of
each species varies in space and time, n′

α(r, t) can not be factored out of the
second moment, that is

{Q′

Q
′}α 6= n′

α < Q
′

Q
′

>α .

Finally, the total micellar contribution to the stress is given by

σ′ = HA{Q′Q′}A + HB{Q′Q′}B (7)

2.1 Non-dimensionalization

The equations are nondimensionalized as follows:

r =
r′

d
t =

t′

λeff
v =

λeffv
′

d
{QQ}α =

HA{Q′Q′}α

n
′0
AkT

nα =
n′

α

n
′0
A

where α = A, B; d is a macroscopic characteristic length, in circular Couette
geometry, d = Ro −Ri where Ro, Ri are the outer and inner radii; λeff is the

effective relaxation time of the network; and
√

n
′0
AkT/HA is a characteristic

microscopic length scale for an elastic segment of species A where n
′0
A is the

dimensional value of the number density of chains of length L at equilibrium
conditions. The relaxation time of the αth species is λα = ζα

4Hα
. As opposed

to being located solely at the beads, as in bead-spring dumbbells models,
the drag is distributed along the chain, in accordance with network theory,
and hence depends nonlinearly on the molecular weight of the chain.

As will be seen through fitting to experimental data, the shorter chains
have a much shorter relaxation time, λB, than that of the longer chains, λA.
Note that, since we only consider two species, we are tracking “all” short
segments as species B and “all” long entangled chains as species A. Then,
from reptation theory [33], one would expect that λA ∼ L3/Le where Le is
the entanglement length [6]. On the other hand, species B represents short
segments with a Roussian-like relaxation, so that λB ∼ (L/2)2 [6]. These
implies,

λA

λB
∼ 4

L

Le
>> 1, (8)
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hence, after the values of λA and λB are determined, the ratio in the right
hand-side of Equation (8) should be an indicator of how long and/or entan-
gled are the chains in the system. After we include more species, dependence
on the molecular weight for the longer chains is expected to be λα ∼ M3.4

α

[34], [?].
We define,

A =

∫

QQΨAdQ = {QQ}A, (9a)

B =

∫

QQΨBdQ = {QQ}B. (9b)

Additionally, the dimesnionless breakage and reformation rates are given by

cA = λA c′A, cB = λA n′ 0
A c′B (10)

where cA is the ratio of the relaxation time of the long chains to the breakage
time of the long chain, similarly for cB and the shorter chains. The ratio
of the relaxation time of the short chains to the relaxation time of the long
chains is denoted by,

ǫ =
λB

λA
, (11)

and that of the relaxation time of the long chains to the effective relaxation
time of the network, as

µ =
λA

λeff
. (12)

The ratio of the spring constant of the shorter chains to that of the longer
chains is

HB

HA
= H∗. (13)

If the network segments are ideal Hookean entropic springs, then we expect

HB =
3kT

l2NB
and HA =

3kT

l2NA
=

3kT

2l2NB
,

where Nα is the number of Kuhn steps of length l in the segment of species α.
Note that NA = 2NB so H∗ = 2. The parameters ǫ, µ are to be determined
by fitting to experiments.

Finally, the non-dimensional total stress σ is given by

σ =
σ′

G0
= ({QQ}A + H∗{QQ}B)

= A + 2B (14)

where G0 = n
′0
AkT .

9



2.2 Governing Equations

With the scaling and parameters introduced in Section 2.1, Equations (4)-(6)
become

µ
DnA

Dt
= 2δA∇2nA − δA∇∇ : A +

1

2
cBn2

B − cAnA, (15a)

µ
DnB

Dt
= 2δB∇2nB − 2δB ∇∇ : B − cBn2

B + 2cAnA, (15b)

µA(1) + A− nA I− δA∇2A = cB nB B − cAA, (16a)

ǫµB(1) + B− nB

2
I − ǫδB∇2B = −2ǫ cB nB B + 2ǫ cAA, (16b)

Here we have defined non-dimensional diffusion constants δα = λADα/d2 for
α = A,B.

These equations for the number density and stress must be coupled with
the fluid equations of conservation of mass, and of conservation of momen-
tum:

∇ · v = 0, (17)

E−1 ∂v

∂t
= ∇ · Π, (18)

where E is an elasticity number defined as

E =
G0λ

2
eff

ρd2
=

De

Re
. (19)

Here Re =
ρV ′d

η′0
is the Reynolds number and De =

λeffV ′

d
is the Deborah

number where V ′ is the velocity at the moving wall. Thus with our scaling
the dimensionless value of the velocity at the moving boundary is De. The
dimensionless diffusion constants are

δA =
λADA

d2
=

λAV
′

d
· DA

V ′d
=

De

Pe

δB =
ζA

ζB
δA

where the Peclet number is V
′

d/DA and is a measure of relative importance
of convection to diffusion of the elastic chains of species A.
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In addition, the total stress tensor is given by

Π = pI − βγ̇ + τ , (20)

where the extra stress arising from the network is

τ = (nA + nB)I − (A + 2B), (21)

and β =
ηs

η0
′
, where ηs is the solvent viscosity, and η0

′ is the dimensional

zero shear rate viscosity.
To solve the system of equations (17) - (20), appropriate boundary and

initial conditions on both stress and velocity need to be specified. In this
paper spatial variations are not considered, thus boundary conditions are not
required at this point. A full discussion of boundary conditions will be given
in Part III [28], where the full inhomogeneous flow is solved numerically.

On the other hand, initial values are found from Equations (15)-(16)
assuming equilibrium conditions. That is, in absence of flow, n0

A = 1 and
Equation (15a) gives

n0
B =

√

2cAeq

cBeq
, (22)

where cAeq, cBeq are the values of the breakage and reformation rates cA, cB

at equilibrium.
Similarly, at equilibrium we obtain

Aeq = I,

Beq =
n0

B

2
I

2.3 Determination of Breakage Rate

So far we have developed a general two species network model for the evo-
lution of stess and number density of elastic segments of length QA, QB .
To complete the model we need to specify appropriate breakage and ref-
ormation rates that describe the evolution of the number density of each
species under both equilibrium and flowing conditions. In principle appro-
priate expressions could be determined by Brownian dynamics calculations
of entangled wormlike micelles in the same manner as the studies of van den
Brule et. al. [18] and Hernandez-Cifre et. al. [16] for associative polymer net-
works. However, such simulations are complicated by the multiple breaking
and reforming events expected for each chain. In the present work we thus
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use simplified analytic expressions for each term. In particular, the depen-
dence of the breakage rate on the flow strength is taken as a term consistent
with the partial retraction term as proposed by Larson [35]. In this work
Larson considered the dynamics of network segments which are convected
by a flow but which do not deform affinely inside their bounding tubes.
The resulting partially-extending convected (PEC) strand model provides
a simple differential analog of Doi-Edwards reptation theory. The longer
elastic segments, species A, in our model will experience similar convection
by the flow and partial retraction following a breakage event before being
reincorporated into the network. We thus write

cA = cA eq +
1

3
ξµ

(

γ̇ :
A

nA

)

, (23a)

cB = cB eq. (23b)

A term with similar functional form to that in our breaking term is used in
the single species differential model of Marrucci et. al. [36] and in Likhtman
and Graham’s non-extendable limit of their Rolie-Poly model [37]. Although
in the latter two cases full retraction of the molecule within the tube is
assumed, in the analogue to the Larson’s form the parameter ξ is allowed
to vary from 0 to 1 to capture the partial retraction of a polymer within
a tube constraint. When ξ = 0 this corresponds to no retraction or ideal
affine neo-Hookean behavior, the resulting constitutive equation is of simple
convected Maxwell form [30]. When 0 < ξ < 1 this corresponds to partial
extension and retraction. Finally, when ξ = 3/5 this corresponds to full
retraction of the chain segment inside the deforming tube, or Doi-Edwards
theory.

Larson’s term, which represents tube breakage after partial retraction,
is used in our case to model micelle breakage. We have introduced this
term as an explicit breakage term in our two species model as opposed to as
a non-affine derivative in a single species model, as introduced by Larson.
Thus the nonaffineness of the motion arises due to the breaking and the
reforming.

The advantage of the Larson-type term, in the single species case, is that
it not only predicts a shear banding situation -provided a solvent viscosity is
added to the model similar to the Johnson-Segalman model- but that also,
unlike the Johnson-Segalman model, it obeys the Lodge-Meissner relation in
step strain and it exhibits a maximum in elongational viscosity as a function
of elongation rate [25]. Larson’s single species model has shown good agree-
ment with shear, extensional, and step strain experimental data of certain
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polymers, although it was noted that different values of the parameter ξ are
needed for each type of deformation [25], [38].

A similar expression to the one in Equation (23a), is also used in the
two species network model of Tripathi et. al. [19] for associative polymer net-
works to describe the creation rate of bridging chains from dangling chains.
The difference between that model and the model presented here is that
our model incorporates inhomogeneities in the flow, and that Tripathi et. al.
explicitly modeled the molecular weight effect of the breaking rate of the
bridging chains, which we have not included. In addition, the creation and
destruction of each species is modeled as a first order reaction in the Tri-
pathi case, where the creation of long chains is quadratic in our model as
it inherently involves the combination of two shorter chains rather than the
reincorporation of a dangling chain into an elastic network.

3 Viscometric Predictions in Homogeneous Flow

Experiments with wormlike micellar solutions carried out in cylindrical Cou-
ette devices show that spatial variations develop in the flow above a critical
shear rate [8] [10], [39], [40], [41]. In the formulation of the present model
diffusion terms are included in order to capture the observed physical inho-
mogeneities such as shear banding. However, to understand the underlying
viscometric behavior we first consider Equations (15)-(16) in the absence of
spatial variation, thus we assume δA = δB = 0 and γ̇(r) constant. Here
we present the formulation and rheological predictions of this two species
model under such assumptions.

3.1 Shear Flow in Circular - Couette Geometry

We employ the following assumptions of a homogeneous unidirectional shear
flow,

v = (0, v(r), 0)

v · ∇(·) = 0

γ̇ = γ̇0 δrδθ + γ̇0 δθδr

γ̇0 = r
∂

∂r

(v

r

)

γ̇ : A = 2 γ̇0 Arθ,
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and equations (15)-(16) to find evolution equations for the number densities
and stress contributions, from species A and B, as functions of γ̇0. We thus
obtain the following expressions for number density’s of each species:

µ
dnA

dt
=

1

2
cB eq n2

B − 2

3
ξ µγ̇0 Arθ − cA eq nA (24a)

µ
dnB

dt
= −cB eq n2

B +
4

3
ξ µγ̇0 Arθ + 2 cA eq nA (24b)

and for the components of the stress tensor A for species A:

µ
dArr

dt
+Arr − nA =

cB eq nB Brr −
2

3
ξ µγ̇0

Arθ

nA
Arr − cA eq Arr (25a)

µ
dArθ

dt
− µγ̇0 Arr + Arθ =

cB eq nB Brθ −
2

3
ξ µγ̇0

Arθ

nA
Arθ − cA eq Arθ (25b)

µ
dAθθ

dt
− 2µγ̇0 Arθ + Aθθ − nA =

cB eq nB Bθθ −
2

3
ξ µγ̇0

Arθ

nA
Aθθ − cA eq Aθθ (25c)

µ
dAzz

dt
+ Azz − nA =

cB eq nB Bzz −
2

3
ξ µγ̇0

Arθ

nA
Azz − cA eq Azz (25d)
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and finally for the stress associated with species B:

ǫµ
dBrr

dt
+Brr − 1

2
nB =

ǫ

[

−2cB eq nB Brr +
4

3
ξ µγ̇0

Arθ

nA
Arr + 2 cA eq Arr

]

(26a)

ǫµ
dBrθ

dt
− ǫµγ̇0 Brr + Brθ =

ǫ

[

−2cB eq nB Brθ +
4

3
ξ µγ̇0

Arθ

nA
Arθ + 2 cA eq Arθ

]

(26b)

ǫµ
dBθθ

dt
− 2 ǫµγ̇0 Brθ + Bθθ − 1

2
nB =

ǫ

[

−2cB eq nB Bθθ +
4

3
ξ µγ̇0

Arθ

nA
Aθθ + 2 cA eq Aθθ

]

(26c)

ǫµ
dBzz

dt
+Bzz − 1

2
nB =

ǫ

[

−2cB eq nBBzz +
4

3
ξ µγ̇0

Arθ

nA
Azz + 2 cA eq Azz

]

(26d)

3.2 Extensional Flow

For homogeneous uniaxial extensional flow with extension rate ε̇0 we have:

v =

(

−1

2
ε̇0 r, 0, ε̇0 z

)

v · ∇(·) = 0

γ̇ = − ε̇0 δrδr − ε̇0 δθδθ + 2 ε̇0 δzδz

γ̇ : A = ε̇0 (2Azz − Arr − Aθθ) = 2 ε̇0 (Azz − Arr)

Equations (15)-(16) give for the number densities of species A and B:

µ
dnA

dt
=

1

2
cB eq n2

B − 2

3
ξ µε̇0 (Azz − Arr) − cA eq nA (27a)

µ
dnB

dt
= −cB eq n2

B +
4

3
ξ µε̇0 (Azz − Arr) + 2 cA eq nA (27b)
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and for the components of the stress tensor A for species A:

µ
dArr

dt
+µε̇0 Arr + Arr − nA =

cB eq nB Brr − 2

3

ξ µε̇0

nA
(Azz − Arr) Arr − cA eq Arr (28a)

µ
dArθ

dt
+Arθ =

cB eq nB Brθ − 2

3

ξ µε̇0

nA
(Azz − Arr) Arθ − cA eq Arθ (28b)

µ
dAzz

dt
−2µε̇0 Azz + Azz − nA =

cB eq nB Bzz −
2

3

ξ µε̇0

nA
(Azz − Arr) Azz − cA eq Azz (28c)

and finally for the stress associated with species B:

ǫµ
dBrr

dt
+ ǫµε̇0 Brr + Brr − 1

2
nB = ǫ

[

− 2cB eq nB Brr +

4

3

ξ µε̇0

nA
(Azz − Arr) Arr + 2cA eq Arr

]

(29a)

ǫµ
dBrθ

dt
+ Brθ = ǫ

[

− 2cB eq nB Brθ+

4

3

ξ µε̇0

nA
(Azz − Arr) Arθ + 2cA eq Arθ

]

(29b)

ǫµ
dBzz

dt
− 2 ǫµε̇0 Bzz + Bzz − 1

2
nB = ǫ

[

− 2cB eq nB Bzz +

4

3

ξ µε̇0

nA
(Azz − Arr) Azz + 2cA eq Azz

]

(29c)

The equations for Aθθ and Bθθ are identical to those for Arr, Brr respectively
with all rr components changes to θθ components. Note that if Arθ, Brθ

are initiatily zero, they stay identically zero. Hence this component of the
stress does not play an important role in extensional flow except in preshear
conditions such that Arθ, Brθ are not zero at the start of the extensional
flow.

4 Linear Viscoelasticity

We now proceed to solve the constitutive equations to evaluate the steady
and transient rheological predictions. We first consider the linearized limit
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of small deformations. In general, as will be seen below, fitting the linearized
equations in shear to linear viscoelastic data only serves to determine λeff =
λA/(1 + cA eq) and λ2n

0
B = λ2

√

2cA eq/cB eq. In order to fully determine
the appropriate parameters, in particular the magnitude of cA eq and cB eq,
nonlinear deformations must be considered such as step strain, steps in shear,
and extension flows.

4.1 Small Amplitude Oscillatory Cylindrical Shear Flow (SAOS).

In this section we develop linear theory in SAOS flow. Assuming that

γrθ = ℜe{γ0 expiωt} and γ0 << 1,

where ω = λeffω′ is the dimensionless oscillation frequency. Inserting this
into Equations (24)-(26), and keeping only linear terms in γ0 we obtain

iµωA1
rθ + (1 + cAeq)A

1
rθ − cB eqn

0
BB1

rθ = iµωγ0A0
rr (30a)

(1 + cAeq)A
0
rr − cB eqn

0
BB0

rr = n0
A = 1 (30b)

iǫµωB1
rθ + B1

rθ(1 + 2ǫcBnB) − 2cAeqǫA
1
rθ = iǫµωγ0B0

rr (30c)

B0
rr(1 + 2ǫcB eqn

0
B) =

1

2
n0

B + 2ǫcAeqA
0
rr (30d)

cB eq n2
B − 2 cAeq = 0 (30e)

Note that in linearized small disturbance theory the number density of each
species, n0

A and n0
B , are constant since variations in these terms are in-

troduced in the full equations (24) by quadratically small terms. In these
linearized equations all quantities are nondimensional as before. Equations
(30b) and (30d) give, after ignoring O(ǫ) terms,

B0
rr =

1

2
n0

B , (31a)

A0
rr = 1. (31b)

Thus, for ǫ small and cAeq, cB eq = O(1) in ǫ, we have

A0
rr = 1, (32a)

B0
rr =

1

2
n0

B, (32b)

A1
rθ = γ0







(

µ
1+cAeq

ω
)2

1 +
(

µ
1+cAeq

ω
)2 +

i µ
1+cAeq

ω

1 +
(

µ
1+cAeq

ω
)2






+ ..., (32c)

B1
rθ = γ0 n0

B

2

(

(ǫµω)2

1 + (ǫµω)2
+

iǫµω

1 + (ǫµω)2

)

+ .... (32d)
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In the limit of small frequencies the system behaves as a single mode
Maxwellian system. Our system of equations has been nondimensionalized
by this mode’s effective time and hence we use Equation (32c) to define the
effective relaxation time, λeff, as

λeff =
λA

1 + cAeq
=

λA

1 + λAc′Aeq

=
1

1
λA

+ c′Aeq

, (33)

which results from µ/(1 + cAeq) = 1 and, λeff has units of seconds.
Equation (33) shows that the overall relaxation time of the network,

λeff, is reduced from the longest relaxation time of the elastic chains, λA,
due to the additional mechanism of breakage. Thus, the stress relaxes ei-
ther through chains of length L relaxing or through the chains of length L
breaking to form chains of length L/2. This scaling of the effective relax-
ation time is a result of the simplification of the continuous Cates’ breaking
dynamics to a two species discrete limit. Recall that in the continuous limit
Cates showed that λeff = (λAλbreak)

1
2 . Finally, for all values of ω the linear

system behaves as the superposition of two Maxwell modes with relaxation
times λeff and λB respectively.

From these results the zero shear rate viscosity is given, to order ǫ, by

η0
′ = n

′0
AkT

λA

1 + λAc′1eq
= G0λeff.

For a fixed relaxation time of the longer species, λA, the dimensional
zero shear rate viscosity of the mixture decreases as the breaking rate at
equilibrium, c′Aeq, increases. That is, the effective relaxation time decreases
as the breakage rate increases. Figure 2a shows η′0 as a function of the
breakage rate c′Aeq, for different values of λA. In Figure 2b, c′Aeq is kept
fixed at different values, and η′0 is plotted against λA. Experiments have
shown that for a given solution the zero shear rate viscosity increases non-
linearly with increasing surfactant concentration [42], [43], [9]. Hence in
our model, c′Aeq and λA play an important role in determining the effect
of concentration and salinity. That is, in order to change c′Aeq or λA one
would need to change the concentration of polymer, the concentration of
salt, and/or change the type of salt counterion.

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

c’
A eq

, [s−1]

η’
0,  

[P
a−

s]

λ
A
 = 1 s

λ
A
 = 5 s

λ
A
 = 20 s

(a)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

λ
A
,  [s]

η’
0,  

[P
a−

s]

c’
A eq

  =  0.1 s−1

c’
A eq

  =  0.42735 s−1

c’
A eq

  =  0.74 s−1

(b)

Figure 2: Variations on the zero shear rate viscosity for: (a) different relax-
ation times of species A, λA, and (b) different breaking rates at equilibrium,
c′1eq. In these figures, G0 = 27 Pa.
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5 Evaluation of Model Parameters

The characteristic stress scale for the micellar network is given by G0 =
n

′0
AkT . Following this nondimensionalization, the response of a particular

micellar solution to nonlinear deformations is described in this model by
three independent parameters. At first glance, the model appears to con-
tain six parameters: λA, λB, cAeq, cBeq, n0

B, and ξ. However, five of the
parameters are related to one another through three independent equations.
In the first of these we see from (15a) that the reaction rates cAeq, cBeq, and
the number density of the second species n0

B are related by

n0
B =

√

2cAeq

cBeq
.

Recall that the number densities were nondimensionalized by n0′
A so that

n0
A = 1. Similarly, when the effective relaxation time of the solution, λeff, is

known, a relation between λA and c′Aeq is established by means of Equation
(33). Finally, in the linear viscoelastic regime the model reduces to a two
mode Maxwell model and the amplitude of the second mode is governed by
the product

λBn0
B = constant,

where the constant is found by fitting to experiments and determines a
relation between n0

B and λB .
Consequently, there are only three parameters to be determined for a

given micellar mixture. One of these is the slippage parameter ξ, which
only appears in non-linear flows, and which determines the magnitude of
the contribution from the stress/strain rate dependent term to the breaking
rate. The other two parameters to be fitted can be chosen arbitrary from
the remaining five. In this study we have chosen these two parameters to
be n0

B and c′Aeq.
From Equations (32c)-(32d) the storage and loss modulus are given by

G′ = G0

{

(λeffω′)2

1 + (λeffω′)2
+ n0

B

(λBω′)2

1 + (λBω′)2

}

(34a)

G′′ = G0

{

λeffω′

1 + (λeffω′)2
+ n0

B

λBω′

1 + (λBω′)2

}

(34b)

In the linear viscoelastic regime provided λeff and λBn0
B are kept con-

stant, the plot of the storage and loss modulus versus frequency remains the
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same, as is shown in Figure 3. Fitting of these curves as predicted by the
model with experimental data [9] are shown there. Figure 4 shows the effect
of changing these parameters. That is, Figure 4a shows the effect of decreas-
ing the effective relaxation time, by either increasing c′Aeq or decreasing λA

according to
1

λeff
=

1

λA
+ c′Aeq,

and Figure 4b shows that if either n0
B or λB is increased, the contribution

from the second mode increases.
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Figure 3: Non-dimensional storage and loss modulus model prediction com-
pared with experimental data from a solution of 100 mM CpyCl [9]. In this
figure λBn0

B = 1 × 10−3 sec., λeff = 1.17 sec., and G0 = 27 Pa.

21



10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

ω’,   [rad/s]

G
’/G

0,  
G

"/
G

0,  
 [−

]

Increasing  c’
A eq

       or

Decreasing λ
A

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

ω λ
eff

,   [−]

G
’/G

0,  
G

"/
G

0,  
 [−

]

Increasing  n0
B

        or

Increasing λ
B

(b)

Figure 4: Variations in the predicted loss and storage moduli: (a) Effect
of decreasing λeff by either increasing the breaking rate c′Aeq or decreasing
the micellar relaxation time λA; (b) Effect of increasing the number density
of species B, n0

B, or λB . Here the solid line corresponds to the parameters
in Figure 3, the dashed line is the result arising from the variation of the
indicated parameter. Other parameter values are kept as in Figure 3.
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Next we examine the model predictions under three different nonlinear
deformations: step strain, steady state shear flow, and steady state uniaxial
elongational flow. First we discuss some general considerations and asymp-
totic behavior of the model for these deformation histories. This is followed
by exploration of model predictions under these deformation histories as the
parameters c′Aeq, n0

B, and ξ are varied.

5.1 Step Strain Calculations

Because the evolution equations for number density and stress are strongly
coupled, it is necessary to integrate them in the beginning from equilibrium
conditions. To simulate step strain experiments, Equations (24) - (26), were
integrated in time with an imposed strain given by

γ′(t′) = γ′

0

(

1 −
(

1 + at′
)

exp(−bt′)
)

. (35)

where the parameters a and b were fitted to the experimental motor response
[13]. For large b this is the achievable experimental approximation to a
Heaviside function in time. For the curves presented in this paper we have
taken b = 64.4 s−1 and a = 143.6 s−1.

Results for the stress relaxation as a function of time for different applied
strains are shown in Figure 5. In the insert the results are graphed with the
y-axis on logarithmic scale and the x-axis on a linear scale. It can be seen,
in the insert, that for every value of γ0 the slope of each of the parallel lines,
after the initial transient is completed, is -1. This indicates that the stress
can be factored as

σ′

rθ(γ, t) = γ G0 g(t)h(γ) = γ G(t)h(γ) (36)

where

G(t) = G0 exp(−t) = G0 exp

(

− t′

λeff

)

(37)

Thus, if the stress is scaled by a factor γ0h(γ0) all the curves will superpose.
This behavior remains unchanged as long as λeff and λBn0

B are kept constant.
Analytic considerations show that the model predicts

h(γ) = e−ξγ2/3 + O(ǫµb). (38)

If cAeq ∼ cBeq ∼ 0, and ǫµb << 1 then to a good approximation

h(γ) = e−ξγ2/3. (39)
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When cAeq, cBeq >> 1, terms of order ǫµb are no longer negligible and
they have an effect on the behavior of h(γ). The numerical best fit for the
damping function suggests

h(γ) =
1

1 + 0.3 (
√

ξγ)3
(40)

as shown in Figure 7a.
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5.2 Homogeneous Shear Flow

Equations (24) - (26) were integrated numerically in time to steady state
subject to a constant dimensionless shear rate γ̇0 = (λeffγ̇′

0). Figure 6 shows
plots of the steady state shear stress and the first normal stress difference as
functions of shear rate. The resulting flow curves are nonmonotonic. Beyond
a critical deformation rage, γ̇′

1, the scission of A network strands overwhelms
the increased stretching that arises from increasing shear. At very high
deformation rates the growth in the stress is again linear with respect to
the shear rate. A possible behavior unde inhomogeneous conditions, which
permit the formation of shear bands, is shown in dashed lines. Recall that

σrθ = Arθ + 2Brθ.

From (24) - (26) it can be seen that for γ̇0 << 1, Brθ ∼ 0 and

σrθ ∼ Arθ ∼ γ̇0.

On the other hand, at large shear rates, γ̇0 >> 1, most of the chains of
length L have been destroyed, hence the flow response is dominated by the
short species which in this limit give rise to a stress of

Brθ ∼
(

1 +
n0

B

2

)

µ ǫ γ̇0,

so that:

σrθ ∼ 2Brθ ∼ λB(2 + n0
B)

λeff
γ̇0.

The non-monotonic behavior at the intermediate rates, where contribu-
tions from both species vary due to breaking and reforming mechanisms, can
be resolved only by performing inhomogeneous flow calculations in which a
plateau is allowed to develop in the the stress/shear rate curve and shear
bands are formed by the selection of different local shear rates. Calculations
with other nonlocal constitutive models show that the precise shape of these
curves depends on the dimensionless diffusivities, δA, δB , the flow loading
history and the geometry [20]. In the present study we do not consider spa-
tial variations. As a consequence the formation of such a plateau, the radial
positions, and the slopes of the shear bands are not studied here; our efforts
in analyzing the non-homogeneous case will be presented in a subsequent
study [28].

25



Additionally the model predicts, under homogeneous flow conditions,
that the maximum in the shear stress is given by

(γ̇0 λeff)max = f(c1eq, c2eq)

√

1

ξ
(41a)

(

σrθ

G0

)

max

=
g(c1eq, c2eq)

ξγ̇0
=

g(c1eq, c2eq)

f(c1eq, c2eq)

√

1

ξ
. (41b)

However, in inhomogenous flow conditions, the plateau it is not realized by
“top jumping” and hence such plateau is expected to be at a value less than
one [28]. Furthermore, as point out by Berret et. al. [44], the non-dimensional
values in Equation (41) are highly dependent on the surfactant concentra-
tion. Then, in our model, such a dependence will be on the parameters c1eq,
c2eq, and n0

B.
The first normal stress difference grows quadratically in the limit of small

deformation rates and asymptotically approaches the limit 2G
′

γ̇2 as γ̇ goes
to zero as expected from simple fluid theory. The homogeneous solution
exhibits a nonmonotonicity similar to that observed in the shear stress at
intermediate rates before increasing quadratically again at high rates due
to the contribution of the short elastic B species. On the other hands,
inspection of Equations (15)-(16) shows that N2 = σrr − σzz = 0.

Although the precise form of the elastic first normal stress difference
in the inhomogeneous shear-banding region can not be determined without
solving the full inhomogeneous equation set, we anticipate a change of slope
but not a plateau, due to the coupling between the shear stress and the
velocity field, which, at least in the case of no scission/reformation, gives
rise to terms of the form 2λeffσrθ(γ̇)γ̇ ∼ γ̇ in the region where σrθ is constant,
that is plateaus, that is in the shear banding region.
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5.3 Elongational Flow

Because of the importance of micellar additives in controlling the extensional
rheology of complex fluids employed in consumer applications (eg. paints,
shampoos) and in oil recovery, we also examine the predictions of the model
in uniaxial elongation.

The steady extensional viscosity is defined as,

ηE(ε̇0) =
σzz − σrr

ε̇0
.

In the limit of small extension, ignoring terms of order ǫ, so that Brr = Bθθ =
Bzz = n0

B/2, and taking n0
B and n0

A at their equilibrium value, Equations
(28)-(29) result in

4

9
ξ2ε̇4

0η
3
E +

2

3
ξε̇2

0(2 − ε̇0)η
2
E + (1 + ε̇0)(1 − 2ε̇0))ηE − 3 + ... = 0. (42)

In linear theory (ξ = 0)

ηE = 3
1

(1 + ε̇0)(1 − 2ε̇0)
(43)

and the long chains behave as a single convected Maxwell mode. When
ε̇0 = 0 we have,

ηE = 3,

or, Trouton Ratio = η′E/η′0 = 3. As we saw before, for large extension rates
the two species scission model predicts

ηE ∼ ε̇−1.5
0 (44)

as compared, for example, to Larson’s model which predicts

ηE ∼ ε̇−1
0 .

The difference arises because of the additional mode of stress reduction
arising from scission of the elongated chains in the two species model.
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5.4 Parameters

Ultimately we wish to quantitatively compare the model predictions with
experimental data. We thus study the effects of varying the equilibrium
breaking rate, c′Aeq; the equilibrium number density of species B, n0

B; or the
parameter ξ; for the three different types of deformations described above.

5.4.1 Variation on the Equilibrium Breaking Rate

From (33) we see that once the value of λeff is set by fitting it to SAOS
experiments and, once a value of c′Aeq has been chosen, λA can be determined
from the relationship

λA =
λeff

1 − λeff c′Aeq

. (45)

Note that for λA to remain positive

0 ≤ c′Aeq ≤ 1

λeff
.

In this section we consider two different limits. In the first limit c′Aeq << 1
λeff

,
hence µ ∼ 1, or λA ∼ λeff since

µ = 1 + cAeq =
λA

λeff
.

So that in this limit λeff = τeff ∼ τbreaking ∼ τreptation. In the second limit,
c′Aeq ∼ 1

λeff
or µ > 1 so that τeff ∼ τbreaking << τreptation.

Figure 7 shows predictions of the damping function for the model in step
strain. It can be seen that in the regime where the breaking and reforming
rates are large, the damping function is softer. The Lodge-Miessner relation
[ref Larson or BB?] asserts that for a step strain γ the first normal stress
difference N1 is related to the shear stress σ by the relationship N1(t, γ) =
γσ(t, γ). In our case, with time-strain factorizability, this becvomes N1(γ) =
γσ(γ). Figure 7 shows that for larger breaking and reforming rates the
Lodge-Meissner relation is broken sooner. Experiments have shown that
the deviation from that relation, at γ ∼ 8, coincides with the onset of
shear banding. In a future paper [13] this phenomenon is studied, and we
determine, for a given solution, which of the two limits better agrees the
experimental results.

Figure 8 shows the steady shear stress and number density of the longer
species as a function of shear rate for different values of the ratio µ =
λA/λeff. In the limit where µ > 1, such that cAeq and cBeq are also large,
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the main relaxation mechanism in the intermediate shear-rate region is the
breaking and reforming, hence the stress is larger compared to the limit
where relaxation is due to both reversible breaking and reptation. Recall
that the maximum in the shear stress is a function of the parameters c1eq

and c2eq as shown in Equation (41). Regardless of the value of µ, the stress
contribution from the short species, Brθ, is the same for large γ̇0.

In Figure 9, predictions of the model in extensional flow for the two
different limiting values of µ are compared with those of Larson’s model
[35]. As shown in Figure 9a, the model first predicts an increase in the
elongational viscosity due to the stretching and alignment of the micellar
network segments. However, after an initial increase, the tensile stress dif-
ference saturates and the steady elongational viscosity at high rates begins
to decrease. Elongational thinning is predicted by our model to be faster
than that of Larson’s model due to the breaking of the longer, A, species.
This decrease in the number of elongated A species at large strains reduces
the total tensile stress difference further. For ξ = 0 the tensile stress reaches
a plateau, corresponding to ηE ∼ (σzz − σrr)/ǫ̇0 ∼ ǫ̇−1

0 , where as for ξ > 0
the dominant term in Equation (42, is changed and the steady elongational
viscosity decreases at high rates as ǫ̇−1.5

0 . Thinning filaments of such fluids
would be expected to be Hadamard unstable due to the rapid growth of high
wavenumbers disturbances beyond a maximum stress.
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Figure 7: Model predictions in step strain with variations in µ. (a) damping
function, for µ ∼ 1 the fit comes from theory and for µ > 1 the fit is
numerical; (b) first normal stress difference divided by shear stress, here
dotted line demonstrates the extent of agreement with the Lodge-Meissner
relation, N1/σrθ = γ0.
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Figure 8: Model prediction in shear flow for different values of µ. (a) steady
shear stress versus shear rate, here the dotted line indicates the contribution
to the stress from the short species at large shear rates; (b) number density
of species A versus shear rate. The large µ corresponds to µ = 3.5.32
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Figure 9: Prediction of the two species model in elongational flow for dif-
ferent values of µ compared to predictions from the single species Larson
model. (a) steady state Trouton ratio versus elongational rate; (b) number
density of species A. In this figure, ξ = 0.3 for all curves.33



5.4.2 Variations of Equilibrium Number Density Species B

In the selection of the parameter n0
B , note that for the continuous length dis-

tribution presented in Cates’ theory [45], at equilibrium the micellar length
obeys an exponential distribution so that,

n0′
B

n0′
A

=
exp

(

−L/2
ℓ̄

)

exp
(

−L
ℓ̄

)

or, with our non-dimensionalization (based on n0′

A) we find,

n0
A = 1, n0

B = exp

(

L/2

ℓ̄

)

(46)

where ℓ̄ is the “average” length of the micelles. If n0
B = eκ, this corresponds

to choosing the length of the short chains to be κ-times the average length as
it is understood in Cates theory. Thus bigger κ implies longer chains relative
to ℓ̄. In this study we have chosen κ = 1, 1/2, 1/8. Figure 10 shows the
damping function plotted for different values of n0

B. It can be seen that if the
length of species A, at equilibrium, is longer than the average length, i. e. κ ∼
1, after a deformation is applied species A will break at smaller strains than
when κ < 1. In shear flow, the maximum in the intermediate shear rate
region of the curve of steady shear stress versus shear rate is higher for
smaller κ because species A break faster. The dependence of the maximum
on the shear stress is given by Equation (41). The curve of steady shear stress
versus shear rate is unaffected in the non-monotonic regions. In extensional
flow, smaller values of κ result in a larger elongational thickening. In this
section, plots of the viscometric properties of shear and elongational flows
are omitted since the variations, as n0

B changes, are qualitatively similar to
that in Figures 8 and 9.
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5.4.3 Variations of the Partially-Extending Strand Parameter ξ

Recall from Section 2.3 that the long species, A, break according to

cA =
1

3
ξµ

(

γ̇ :
A

nA

)

+ cAeq,

hence variations on the parameter ξ directly affect the breaking rate as a
function of the strain, shear rate, and elongational rate. As a consequence,
smaller values of ξ result in a softer damping function, larger steady-state
shear stress, and bigger elongational thickening, as seen in Figures 11, 12.

The value of the parameter ξ necessary to predict experimental responses
of a given solution will be found by fittings to step strain experiments, since
this parameter directly affects the strain hardening.

In Figure 11a, the damping function as predicted by our model is com-
pared to results using Equation (40). Predictions for strains larger than 5
are studied in a future paper [28], since the onset of shear banding has been
observed for strains of this order [13]. In Figure 11b, it is shown that the
model output agrees with the Lodge-Meissner relation up to a strain value
dependent on the value of the parameter ξ, with agreement up to higher
values of γ for smaller ξ as anticipated.

In Figure 12a the dependence of the shear stress as a function of the shear
rate, and in Figure 12b the dependence of the Trouton ration on the exten-
sion rate, as ξ varies, are shown. As anticipated as ξ goes to zero, the shear
stress approaches a monotone (upper convected Maxwell like) dependence
on the shear rate, and the Trouton ration approaches an unbounded curve
at finite extensions rate (again Maxwell like). Once regularized by ξ the
Trouton ration shows a maximum followed by a decreasing curve behaving
like ǫ̇−1.5.
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Figure 11: Model prediction in step strain for different values of ξ. (a)
Damping function versus applied strain; (b) Lodge-Meissner Relation.
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Figure 12: Model predictions in shear and elongational flow for different
values of the parameter ξ. (a) steady state shear stress versus shear rate;
(b) steady state Trouton ratio versus elongational rate.
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6 Transient Response

As discussed before, predictions from the model under homogenous flow are
only valid in regions where the spatial variation of the number densities
of the species are not important, that is regions where there is not shear
banding. Experiments with a 100nM CpyCl solution have shown that, for
this solution, shear banding begins at a strain of about 8 [13], hence predic-
tions assuming homogenous flow are only valid up to strains of this order.
Figure 13 shows the model predictions in transient shear flow for variations
of the parameter ξ at a constant shear rate γ̇0 = γ̇′

0 λeff = 1, the insert
shows the variations of the number density of species A. Figure 14 shows
the transient predictions of the model for different shear rates, the stress
are plotted up to strains of 8. Continuation of such curves to steady state,
that will correspond to experimental results, need to be done after diffusion
is reincorporated into the equations.

10
−1

10
0

10
1

10
−1

10
0

t’ /λ
eff

,  [−]

σ’
rθ

/G
0,  

[−
]

10
−1

10
0

10
1

0.92

0.94

0.96

0.98

1

N
um

be
r 

D
en

si
ty

 s
pe

ci
es

 A
, [

−
]

ξ = 0.1
ξ = 0.3
ξ = 0.6

γ̇ ′

0 λeff = 1

Figure 13: Model predictions in transient shear flow for different values of
the parameter ξ. Insert: Variationof the number density of species A in
time. Here λeff = 1.17 s and G0 = 27 Pa.
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Figure 14: Model predictions in shear in transient shear flow for different
shear rates. Here λeff = 1.17 s and G0 = 27 Pa. (a) shear stress versus time;
(b) first normal stress difference versus time.
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7 Conclusion

We have presented a model for wormlike micellar solutions involving scis-
sion and reforming of chains based on non-affine network theory and a dis-
crete version of Cates theory. Specifically, we consider two elastically active
species long chains which are convected by the flow and undergo rupture
at a rate that depends on the deformation rate and on the local elonga-
tion rate. Following rupture the new shorter elastic chains partially retract
before being reconnected to the network. This partially-extended and con-
vected (PEC) response is captured by a single nonlinear model parameter ξ
which controls the level of extension thickening in elongation and of strain
softening in step strain displacements. To date we have only considered
Hookean elastic segments, however it is straightforward to consider numer-
ically the role of nonlinear (FENE) springs [19]. We anticipate that this
will result in strain-hardening at intermediate shear strains, as observed by
Brown et. al. [12], and a further enhancement in the extension thickening ex-
pected in uniaxial elongation. The model, which allows for inhomogeneities
in the flow, was examined in various flow situations, steady state circular
Couette shear flow, step strain, extension, and linear small angle oscillatory
flow. The effects the parameters of the model have on the flow are shown.
In future papers [13] the model predictions will be compared directly with
experiment and in [28] the full inhomogeneous flows are computed.

The authors thank N. J. Kim, C. Pipe, J. Rothstein, E.Miller and L.
Zhou for many helpful discussions.
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