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SYNOPSIS

Many complex fluids exhibit power-law responses in their relaxation modulus;
examples include foods, soft solids, fractal gels and other polydisperse systems.
In the present study we investigate the rheological characteristics of such
materials beyond the linear regime using a gluten-water gel as a prototypical
system. The material functions of gluten dough under finite strains can be
described by combining the linear viscoelastic response of a critical gel
(Chambon and Winter 1987) with a Lodge rubber-like network to develop a
frame invariant constitutive equation (Winter and Mours 1997). This generalized
gel equation is a simple but accurate description of the material functions in the
linear regime and also at large strains, using only two parameters. We compare
the model predictions with experimental measurements in transient shear and
elongational flows of gluten gels over a wide range of deformation rates. An
essential feature of both the experimental data and the generalized gel model is a
strain/rate separability in the system response. Further modifications to the
generalized gel equation can be made by incorporating a damping function to
include non-linear strain softening effects seen in more complex gels such as
wheat flour doughs. From the rheological data, we find compelling evidence that
indicates gluten to be a polymeric network consisting of flexible or semi-flexible
chains between junction points and has a typical mesh size of approximately

20 nm.



INTRODUCTION

Materials showing power-law relaxation behavior are often encountered in
rheology. Examples include many foodstuffs (Rao 1999; Gallegos et al. 2004),
biopolymer networks (Gittes and MacKintosh 1998), nanocomposites
(Krishnamoorti and Giannelis 1997, Hoffmann et al. 2000) and some liquid
crystals (Kundu 2006). Frequently these systems involve interacting
microstructural features over multiple length scales. In terms of soft glassy
dynamics, power-law material functions are predicted for certain effective
temperatures (Sollich et al. 1997; Sollich 1998), while in the field of cellular
mechanics, the term power-law rheology is often used to describe the frequency
response of protein networks (Fabry et al. 2001; Chaudhuri et al. 2007). As
another example, both the Rouse (Rouse 1953) and Zimm (Zimm 1956) models
will show power-law behavior under time scales that are longer than the

segmental relaxation time but shorter than the longest relaxation time

(4

« St<2;). In general, polymeric systems with a large degree of polydispersity
or an extremely broad relaxation spectrum will also exhibit power law relaxation
over a significant span of time scales. One subset of materials that falls under the
broad umbrella of power-law rheology and which has been studied relatively

well is the critical gel first described by Winter and Chambon (Winter and

Chambon 1986; Chambon and Winter 1987). Linear viscoelastic measurements
show that in critical gels both the storage and the loss moduli scale as G',G" ~ »"

and the loss tangent is constant over a wide range of frequencies. Theoretical

models show that this power law scaling can arise from the fractal nature of a



flocculated gel (Muthukumar 1985; Muthukumar 1989). At the critical gel point,
the material forms a percolated, sample-spanning structure that exhibits power-

law frequency dependence in the dynamic moduli.

The linear viscoelastic functions of a critical gel have been discussed in detail by
Chambon and Winter (Winter and Chambon 1986; Chambon and Winter 1987)
and by Larson (Larson 1999). Winter provides an excellent review of these
systems that are near the liquid-solid transition (Winter and Mours 1997).
However, there have been very few systematic investigation of such materials
under finite strain deformations. Venkataraman and Winter (Venkataraman and
Winter 1990) adopted the Lodge rubber-like liquid formulation originally
suggested by Chambon and Winter (Chambon and Winter 1987) to analyze the
non-linear large strain behavior of PDMS gels during start-up of steady shear

%

and creep experiments. They noticed a stress overshoot at shear strains of y" ~ 2

and a subsequent yield at y” ~4. Watanabe et al also studied the non-linear

rheology of a polyvinyl chloride critical gel. To the best of the present authors’

knowledge, no such study exists for critical gels under uniaxial extension.

Finding a suitable material is not easy. Firstly, critical gels are hard to formulate.
One needs a reliable and reproducible method to bring the material to the critical
gel point and then quench it to prevent additional percolation. Secondly, the
percolated structure of gels can collapse under large deformations which will be
manifested as strain-softening in rheometric tests. The specific form of the non-
linear material response exhibited by a particular critical gel (for example strain-
softening or stiffening) provides an additional rheological signature about the

microstructure beyond the simple linear response (Phan-Thien et al. 1997; Ng et
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al. 2006b; Tanner et al. 2007). We first begin by identifying a suitable candidate
material to serve as a model critical gel system that shows relatively simple non-

linear behavior.

Curiously, many foodstuffs show power-law/critical gel like behavior (Hossain
et al. 2001; Cordobés et al. 2004; Muliawan and Hatzikiriakos 2006). Of particular
interest here, are wheat flour-water doughs. Despite these numerous early
observations of power-law like frequency response in the linear viscoelastic
moduli (Hibberd 1970a; Smith et al. 1970; Berland and Launay 1995; Phan-Thien
and Safari-Ardi 1998), Gabriele and co-workers (Gabriele et al. 2001) were the
first to use the concept of a critical gel and a power-law relaxation modulus to
describe the rheological behavior of dough. This descriptive framework has also
been used recently (Gabriele et al. 2006; Ng et al. 2006a) to explore other types of
deformation including creep relaxation, uniaxial and biaxial extension. This so-
called ‘weak gel model’ (Gabriele et al. 2001) is extremely attractive because of its
relative functional simplicity. Material functions in the linear viscoelastic regime

can be well described by only two parameters.

In simple terms, dough may be described in the following way: a viscoelastic
matrix of gluten (a branched polymer) filled with hydrated starch particles. In
many aspects, the resulting composite is analogous to a carbon-black filled
elastomer. The interactions between the polymeric and filler constituents lead to
severe non-linearities and complex response (Hibberd 1970b; Edwards et al.
2002). The precise microstructure of the gluten forming the matrix is still poorly
understood due to its high molecular weight and the high degree of chain

branching, both of which result in poor solubility characteristics. Opinions can be
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broadly classified into two schools of thought. One school maintains that gluten,
though a high molecular weight compound, takes the shape of a tight globule -
neighboring protein molecules aggregate to form a network through hydrogen
bonds and hydrophobic interactions (Don et al. 2003b; Don et al. 2003a; Domenek
et al. 2004; Hamer et al. 2005). In this article, we refer to this idea as the
particulate gel model. The other school believes that the gluten molecule is
sufficiently swollen that it forms an entangled matrix or polymeric network with
flexible chains spanning between junction points (Belton 1999; Singh and
MacRitchie 2001; Belton and Dobraszczyk 2006); we refer to this picture as the

polymeric gel model.

Despite the ease of formulating flour-water doughs, obtaining repeatable
measurements and understanding the material rheology is difficult due to the
strong time-dependent and non-linear softening effects observed in doughs
(Bagley et al. 1998). Comprehensive studies on these systems, which can lead to
insight into the microstructure, are hampered by the difficulty in collecting
reproducible data. In our laboratory, we observe day-to-day variations of up to

150% in modulus just by simply varying the mixing and testing schedule.

Eliminating the starch fillers to focus exclusively on the rubbery gluten network
removes at least one level of complexity. The rheology of gluten doughs had
been investigated by various workers (Wang and Kokini 1995; Redl et al. 1999;
Uthayakumaran et al. 2002; Don et al. 2003a; Domenek et al. 2004).
Uthayakumaran et al reported shear and extension data for gluten gels that has
been mixed with different amount of starch (0-100% starch weight content) and

contrasted these results with tests performed on wheat flour doughs. They



observed an exponential decrease in the limiting strain of linear viscoelastic
behavior with increasing starch content; Lefebvre and co-workers investigated
the linear viscoelastic behavior in the long time-scale terminal regime (Lefebvre
et al. 2003). Critical-gel-like behavior in gluten doughs has also been observed:
Letang et al (Letang et al. 1999) showed that the dynamic moduli both follow a
power-law behavior with n=0.3 (see equation (12) in section IIIC), they also
noted that gluten doughs possess a larger linear range when compared to wheat

flour doughs.

To prepare critical gels with a well-defined and reproducible power-law linear
viscoelastic response, we follow these earlier studies and isolate the viscoelastic
response of the biopolymeric matrix forming the dough. In addition to being a
‘model’ system with a power-law relaxation spectrum, developing a quantitative
understanding of the rheology of gluten is also of great practical interest. Despite
the relatively small weight proportion of gluten in a typical flour (5-20%), the
viscoelasticity of a wheat flour-water dough is largely determined by this protein
phase (Uthayakumaran et al. 2000) and it is widely believed that the bread-
making qualities of a wheat flour dough are strongly linked to its mechanical
properties (Bloksma 1990b; Bloksma 1990a). In particular, the large strain
rheology of the dough has an impact on the texture and distribution of gas cells
in the bread (Ewart 1989; van Vliet et al. 1992; van Vliet and Kokelaar 1994). The
most commonly-cited relationships are those between final loaf volume, dough
extensibility and gluten quantity: beginning from the work of Bailey and others
in the first half of the 20" century (Bailey 1913; Shollenberger 1923; Aitken and

Geddes 1939) to more recent studies such as those by Sliwinski et al (Sliwinski et



al. 2004a; Sliwinski et al. 2004c), Weegels et al (Weegels et al. 1996) and
Dobraszcyk et al (Dobraszczyk and Roberts 1994; Dobraszczyk and Morgenstern
2003; Dobraszczyk 2004). An accurate constitutive and microstructural model
will aid in documenting differences between wheat-flour doughs of different
gluten content and ‘functionality’ — which are the key mechanical properties
relevant to breadmaking. A robust rheological equation of state is also a good
starting point for cereal scientists who would like to investigate systematically
the effects of other components (e.g. starch, water content etc...), with the aim of

increasing the complexity level until ultimately arriving at a real dough system.

There are three primary objectives of this paper. The first is to demonstrate that a
gluten dough exhibits the rheological characteristics of a critical gel with
relatively-well controlled material properties (i.e. a variability in modulus of less
than 10%). We report rheological data for gluten doughs using both shear and
extensional deformations that span the linear to non-linear regimes. The second
objective is to identify a constitutive model that can provide a description of the
stresses arising in non-linear deformations in terms of well-defined material
functions which can be measured directly in the linear viscoelastic range. Finally,
using the rheological evidence collected, we infer certain aspects regarding the

microstructure of the gluten gel.

| GLUTEN DOUGH PREPARATION

Gluten dough was prepared by placing 10g of vital gluten (Arrowhead Mills - ~
12% moisture content) in a mixograph bowl with 14g of water (total dough

moisture content = 63% by weight). The mixture is then stirred, stretched and



folded through the action of the mixograph pins for 12 minutes (Gras et al. 2000).
Mixing over this length of time allows the dough to become ‘fully developed’,
the appearance of the dough changes from dry and lumpy to a smooth, sticky
and elastic paste. No significant changes to the dough properties could be
observed when the mixing time was increased. We use a customized mixograph
which has been digitally instrumented to record both the rapid temporal
fluctuations and longer time variations in the mixograph torque output.
Representative data for mixing of a vital gluten gel are shown in Figure 11. The
torque signal shows a rise towards a steady plateau after approximately 11
minutes. The magnitude of the short time scale fluctuations (corresponding to
stretching of material elements between interacting pairs of pins in the bowl) also
remains constant. The dough is removed from the mixing bowl after 12 minutes

(720s) of mixing and then allowed to rest for 1 hour at 22° C, before testing.

The window of practical moisture content for preparing a homogeneous gluten
gel sample is surprisingly small as compared to a wheat flour dough. At
moisture contents of less than 60%, the dough appears to be too dry and some
gluten powder around the edge of the mixing bowl remains unincorporated. By
contrast if the moisture content exceeds 65%, the dough appears wet, with

unincorporated water pooled at the bottom of the bowl.

Il RHEOMETRY

Shear rheometry are performed under controlled strain mode on the ARES
rheometer and under controlled stress mode on the AR-G2 rheometer (TA

instruments). A Peltier plate and a 25mm parallel plate fixture at Imm separation



were used. Approximately 2 g of gluten dough was placed on the Peltier plate,
and the upper plate was then brought down to compress the sample to the
specified thickness. Excess dough was trimmed with a razor blade. The Peltier
plate was held at a fixed temperature of 22°C, to approximate typical room
temperature. Slip was eliminated by applying adhesive-backed sandpaper (600
grit McMaster Carr 47185A51) to the surfaces of both the Peltier plate and the
parallel plate tool. Drying of the sample was minimized by painting the exposed

surface of the dough with a low-viscosity silicone oil.

Measurements of the transient extensional stress growth were made on a wind-
up drum type rheometer (the Sentmanat Extensional Rheometer or SER fixture)
which was used in conjunction with the ARES rheometer (Sentmanat et al. 2005).
Samples of 2 x 25mm were formed by pressing the gluten dough to a thickness of
2 mm, then cutting to shape using a Guillotine cutter. A thin film of silicone oil
was painted onto the sample before mounting on the SER fixture to minimize

drying.

Il LINEAR VISCOELASTICITY

We first investigate the linear viscoelastic response of the gluten gel. This enables
us to compare and contrast our measurements with previously published data
on gluten gels (Letang et al. 1999; Uthayakumaran et al. 2002; Lefebvre et al.
2003) and other critical gels (Winter and Chambon 1986; Chambon and Winter
1987; Venkataraman and Winter 1990; Winter and Mours 1997, Watanabe et al.
1998). From these experiments, we extract two key constitutive parameters; the

power-law exponent 1 and the gel strength S of the critical gel.



A. Step Strain Relaxation

Under linear viscoelastic conditions a critical gel will exhibit a power-law

behavior in its material functions (Winter and Chambon 1986; Chambon and
Winter 1987). For example, following an infinitesimal step strain of amplitudey,

at time t =0, the modulus decays like:

(03
Y =G _(t)=St™" (1)

T gel
Yo

In Figure 2 we show the extent of power-law relaxation for a typical gluten-water

dough. We find that the relaxation can be well described by equation (1) with
S=1260+£50 Pas", n=0.175+0.005 for approximately three decades of elapsed
time 0.2 <t<100s. At short times (+ < 0.05 s), an additional Rouse-like response

can also be observed. The overall response of the system can be accurately
described by the following expression:

G(t) =G (1) + Gpy, () =St + GRiexp(—tkz/itR) )

k=1

Where G, =803 Pa and A, =0.05s are the modulus and relaxation time of the

Rouse modes. The existence of this short time scale regime is consistent with the
generic rheology of polymeric gels described by Winter (Winter and Mours
1997): the Rouse modes characterize the “molecular building blocks” of the
critical gel, i.e. they represent the response of the segmental structure size within

the gluten network. This segment length scale estimated from network theory

1/3

€~(kBT/GR) ~20nm is close to the typical structural sizes observed with
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transmission electron microscope (Amend and Belitz 1991), but is far smaller
than the diameter of gluten gel particles (D ~10um) seen through confocal

microscope observations of gluten dispersed with SDS (Don et al. 2003a).

Departure from the power-law regime at long times (t > 100s) has often been
attributed to a long time terminal relaxation and appears to be sensitive to the
amount of rest time the sample is allowed before testing (Cunningham and
Hlynka 1954; Rao et al. 2000). The fact that dough properties appear to change if
left to rest is also well-known to bakers, they refer to this effect as “slackening”
(Cunningham and Hlynka 1954). We find that it is in fact related to residual
relaxation from the initial mounting and compression of the sample in the test
geometry. This particular sample was rested for 1 hour before testing. It was
found that by increasing the rest time, the upper temporal limit of the power-law
relaxation could be extended; however it is difficult to extract a simple
relationship between rest time and onset of this residual relaxation, in part

because the specific material history of the loading deformation is unknown.

To help comprehend this behavior, we consider the characteristic or ‘mean’
relaxation time of a viscoelastic material. A power law relaxation modulus with

0 <n <1 will imply a characteristic relaxation time that diverges:

TrG(r)dr TSr’”“dr

2’chtzr = Ooo = Ooo —> (3)
JG(r)dr ISr‘”dr
0 0

where r=t—1" is the elapsed time.
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Material functions at fully equilibrated initial conditions are therefore difficult to
obtain for such systems with power-law relaxation. Unless the material sample
was constituted on the rheometer plates, any residual stress from loading will

require an infinite amount of time to relax away.

When a sample is first loaded onto the rheometer, the gluten gel is typically
compressed from an irregular shape to a flat disc, then cut to shape. Of course,
the deformations accumulated in this process are far from simple shear, and will
most likely be unevenly distributed throughout the sample. During a typical

loading event the compression process in which the sample is squeezed from a
thickness of #,=20mm to h =1mm, we find y, ~In(h,/h, )~ 3. This strain is

significantly larger than the typical step shear strains applied in the stress
relaxation tests, therefore residual stress relaxation will be significant. As an

illustration, we consider experimentally the situation depicted in the inset of

Figure 3. We impose a large uniform torsional shearing strain y, on the sample
in the 6-direction at t=—t, to emulate the effects of sample compression. The
material is then allowed to relax for a waiting time f, before the actual stress
relaxation test in which a step strain of y, is applied in the same direction
at t=0. Assuming that the material response is linear in strain, the stress
response measured from t =0, will consist of a superposition of relaxation due to

both the initial ‘loading’ strain y, and the subsequent ‘test’ strainy:

0, =S[vt " +7,(t+t,)"] fort=0 (4)
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For many conventional rheometers, such as the ARES used in these experiments,
any residual stress values are automatically “zeroed out” at the beginning of the

experiment: as a result, the apparent modulus will be smaller than the true value

by an offset G, =5t." 7, /v, . The apparent or measured response is thus:

o_ |\t
uPPﬂl‘ent(t) =— ( )
71

A I
{t +yﬂ{(t+tw) t)'}

-G

offset

(5)

The resulting decay in the apparent modulus of a critical gel is plotted in Figure
3 for y,=3, 7,=0.1 using a range of values for t,. We also compare the
predictions of the gel equation with measured data obtained in gluten samples
with various waiting times (f, =10,100,1000s). A rapid decay in the apparent
modulus occurs at time ¢~ O(f ) due to the subtraction of the residual relaxing
stresses and this is captured qualitatively by equation (5).

Very long time scale processes such as the power-law stress relaxation in Figure

2 are therefore difficult to probe because the relative contribution of residual

relaxation from initial loading histories will always become significant at long
timest >t . From an experimentalist’s point of view, this means that in systems

showing power-law relaxation, one can only access time scales that are

significantly shorter than the amount of rest time provided to the sample.
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B. Continuous and discrete relaxation spectrum

For materials with relaxation processes spanning a wide range of time scales,
such as the critical gel, it is sometimes more convenient to express the material
properties as a continuous relaxation spectrum over a logarithmic time scale

(Ferry 1980; Winter and Mours 1997):

(6)

Where H(A) is the continuous relaxation spectrum of a critical gel and 1 is the

range of relaxation time scales. Alternatively, it is common for numerical
y

simulations to seek a suitable description of the relaxation modulus in terms of a

set of discrete Maxwell relaxation modes with moduli G, and relaxation times

A, (Phan-Thien et al. 1997; Charalambides et al. 2006; Dealy 2007). As Dealy

(2007) notes, this decomposition is, in general, ad hoc and non-unique; in the case
of power-law relaxation, there exists a very elegant relationship between each
successive relaxation mode which can be written in the following way (Spriggs

1965):

(7)
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Where G, = G sets the scale of the modulus for each mode and « characterizes

the rate of relaxation. Relaxation spectra of the form in equation (7) can be

converted into an integral form through the Euler Maclaurin series:

3 (K- j F(e)as+ LA+ £(O)] - ®

Where K is the desired range of the summation. Substituting equation (7) into
equation (8) gives:

— th* T ts” G
;Gexp(—l—J:JGOeXp{—l—st+?° 9)

0 0 0

After performing the integral and rearranging we obtain:

Goy'”
(04

(1)t :&+iG0 exp(—ﬁj (10)
2 O A

0

Comparing the final result to equation (1), it is clear that the power law
relaxation modulus of a critical gel can be approximated by a series of discrete

relaxation modes in the form of equation (10) with

a=1/n
A, = Ak (11)
S
G, =——+—
0 nF(n)/lg

A relationship of this form for the single specific case n=1/2 was first noted by

Winter et al (Winter and Chambon 1986).

This discrete relaxation spectrum starts from an arbitrary or user-specified
maximum time scale A, (which we may expect from Section A to scale
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as A, ~O(t,)). Although an infinite summation is indicated in (10), in practice
only a finite series of terms 0 <k <K need be considered. Since n<1 and a>1,
the series converges smoothly.

In Figure 4, we compare the predicted relaxation modulus of a critical gel (with
properties close to that of gluten) as computed with a range of discrete Maxwell

modes to the true power-law response. The discrete spectrum of relaxation

modes accurately describes the relaxation modulus over a finite time span from a
minimum time A_. =4 /K”" to a maximum time A _=1,. Beyond this range
the relaxation modulus given by (7) rolls off to asymptotic values of G_, =G,/2

and G, =(K+1/2)G, respectively. Reconsidering the experimental data in

Figure 2, it is clear that we would need at least K=(4,, /A...) =(t./A4) =7
discrete relaxation modes (14 model parameters) to approximately describe the
relaxation modulus of a gluten gel. The economy of the two parameter

description in equation (1) for timescales greater than the Rouse time 4, and less

than the rest time ¢t is apparent.

Conceptually, expressing the relaxation spectrum in the forms described in this
section reconciles the observed power-law relaxation with the traditional view of
exponential stress decay. These spectra represent the range of length-scales
present in a fractal network: successive exponential relaxation processes at
longer times occur revealing the contributions from progressively longer length

scales.
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C. Small Amplitude Oscillatory Shear Flow

For a critical gel undergoing small amplitude oscillatory shear flow, the storage
and loss moduli will also show power-law behavior. The dynamic moduli can be
evaluated by Fourier-transforming equation (1) to obtain (Winter and Chambon
1986):

_ G"gel (0))

. e nre
G gel(a))—m—r(l n)cos[ > jSa) (12)

In addition to having dynamic moduli that follow the same power-law exponent
n, another distinguishing feature of the critical gel model is the relationship

between the loss tangent tan$ and n:

Gl
tand = ’—’gez = tan(ﬂj (13)
G" 2

This ratio is unique and independent of @ and S, in contrast to some other
power-law models and takes on a different value to that of the SGR model

(Fielding et al. 2000).

Of course, the relaxation processes in the Rouse regime can be similarly

transformed:
(14)

where 4, = 4, /k2 .

The dynamic moduli obtained from small amplitude controlled stress
experiments at a stress amplitude of o,=50Pa are plotted in Figure 5. The
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experimental data are in excellent agreement with predictions from the Fourier
transformation of the step-strain relaxation response
( Gl — Gl

wtG'y,G"=G" ,+G"yindicated by solid lines). The Rouse-like regime

dominates at high frequencies (@ >1/4,), while at low frequencies some small

deviation from a perfect power-law response can be detected, and we attribute

this to the residual relaxation described in section A.

We return here briefly to consider the relevance of using doughs formulated
from vital gluten powder. The production of vital gluten involves drying and
milling which may irreversibly damage or alter the ‘functionality” of the network
that is formed upon hydration. Ideally, the rheology of a gluten network directly
washed-out from wheat flour doughs should be investigated. Unfortunately, the
mechanical properties of native gluten networks are difficult to control: the
washing process involves gently massaging the dough under running water; it is
difficult to maintain consistent mechanical work input and ultimate water
content. In Figure 5b, we compare the dynamic moduli of the vital gluten dough
with those measured in a gluten network that has been washed out from a
freshly mixed wheat flour. Both doughs show viscoelastic moduli of similar
magnitudes and the segmental relaxation at high frequencies can also be

observed in the native gluten dough. This regime transitions smoothly at
o~ A, =20s" to gel-like behavior at low frequencies in the same manner as the

vital gluten dough. Similarities in the low frequency power-law regime are
partially masked by the greater variability in the native dough. However the

close correspondence between the two sets of linear viscoelastic material
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functions are sufficient to validate the use of vital gluten doughs as a basis for

discussing the role of gluten rheology to realistic breadmaking processes.

D. Creep

Measuring the creep compliance of soft solids and weak gels has certain
advantages, and some of the difficulties encountered in directly measuring the
relaxation modulus can be bypassed. Most significantly, while the measured
forces decays to diminishingly small values at long times in a relaxation test and
become obscured by residual relaxation processes (discussed in section A), the
applied stress is constant in a creep test and the resulting strain grows in time.
Consequently, long time scale processes are often better characterized through

creep (Lefebvre et al. 2003).

Creep experiments are performed by incrementing the shear stress from zero to

o, such that o, = o, H (t), where H (t) is the Heaviside step function. From the

resulting increase in strain with time ny(t)r we define the creep compliance in

the following manner:

J(t)== (15)

We can also consider the theoretical predictions of creep compliance for a critical
gel. The compliance must satisfy the well known relationship given by Ferry

(Ferry 1980):
t

t=[G(t—t)] () (16)

0
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Thus with the relaxation modulus of equation (1) we can calculate the theoretical

compliance (Venkataraman and Winter 1990) through the following expression:

1

M= e a

Once again, the material function predicted shows a power-law dependence:
strain and compliance grow without bound in time as t", and no steady state

flow viscosity can be measured even as t — co.

In Figure 6, we compare the measured creep compliance of a gluten gel
evaluated using equation (15) with the response of an ideal critical gel given by

equation (17). The values of the gel strength S=1280Pa and gel exponent

n=0.175 used in equation (17) are obtained independently from step strain

relaxation experiments.

One cycle of “damped oscillation” in strain is observed at short times (t <0.1s).
This is a consequence of the coupling between instrument inertia and sample
elasticity (Ewoldt and McKinley 2007), therefore only data from t>0.1s are

included in the analysis.

For an applied stress below 3000 Pa, the gluten gel exhibits a linear behavior, i.e.
the compliance is independent of applied stress. The qualitative and quantitative
agreement with the critical gel model is excellent: the compliance grows as a
power-law with exponent n=0.175 over four orders of magnitude in time

(0.1 <t<2000s).
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For the case in which a shear stress of ¢, =3000Pa is applied, the material shows

an initial power-law increase. This continues up to a shear strain of y =5

(t=12s) when the gluten gel yields abruptly, and this is manifested as a rapid
increase in strain and compliance. This is followed by an instability at large strain
y ~10 of the same form depicted in Figure 9. The nature of this “yield” event
and progression into non-linearity is explored in greater detail in section IV

using controlled strain experiments.

Over the duration of the experiments, no steady state was observed for any of
the shear stresses tested, this feature of gluten and dough rheology has also been
discussed in detail by Lefebvre and co-workers (Lefebvre et al. 2003; Lefebvre

2006).

E. General Linear Viscoelastic Response

We have demonstrated through small amplitude oscillations, stress relaxation
and creep measurements that gluten doughs exhibit a linear viscoelastic response
that is strongly reminiscent of a polymeric critical gel. We now conclude this
section by considering the linear viscoelastic stress response to an arbitrary
deformation together with a brief summary of the historical development of the

gel equations.

Using the Boltzmann superposition principle, we can write an integral

constitutive equation for an arbitrary deformation history:
t

o(t)=[S(t—t) "y (¢t (18)

0
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where }'/(t) = Vv+(Vv)T is the infinitesimal strain rate tensor (Bird et al. 1987).

However, it must be stressed that this equation is only valid for infinitesimally
small deformations. The response under finite strains is the subject of the

following section.

The relaxation function of a critical gel (equation (1)) is also known as the
Nutting’s equation (Nutting 1921) and has long been used as an empirical
approximation of material functions. Well before the concept of a critical gel was
proposed, Scott Blair (Scott Blair et al. 1947) generalized Nutting’s equation by
adopting the framework of fractional calculus (Oldham and Spanier 1974) and

arrived at the differential form of equation (18) given in the following expression:

o(t)= ﬁ%'y(t) (19)
Equation (19) can be considered to be a generalization of the mechanical analogs
of springs (n = 0) dashpots (n = 1) and is often referred to as a Scott Blair element
(Mainardi 1997). Scott Blair himself described the material parameters S and n as
quasi-properties (Scott Blair et al. 1947), he suggested that the non-integer
exponents are a consequence of a “non-Newtonian equilibrium” and are closely
correlated with perceptions of texture and firmness. Friedrich and Heymann
(Friedrich and Heymann 1988) recognized this link between fractional calculus
models and the critical gel, they generalized the stress relaxation function to

include the post- and pre-gel states that exists near the solid-liquid transition.

Despite the sharp conceptual difference with traditional models that show

exponentially decaying stress, these fractional calculus models have proven to be
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of great practical utility because they allow engineers to accurately model
damping properties for many viscoelastic polymers with a minimum number of
parameters. Winter and Mours noted that the damping properties (characterized
by the loss tangent) is independent of temperature and frequency (Winter and
Mours 1997); however, a critical gel can still undergo dynamic oscillations at a
characteristic frequency when coupled with a free mass. A convenient example is
the viscoelastic ringing already encountered during the initial transient response
of creep experiments depicted in Figure 6. We can write the equation of angular

motion for the instrument coupled with the viscoelasticity of the sample as:

. S 9"
Ip+ bF(l Vo P(t) (20)

Where [ is the instrument moment of inertia, b is the geometry factor, ¢[rad] is

the angle of plate rotation and P (Ewoldt and McKinley 2007) is the instrument-

applied torque. For our experiments shown in Figure 6 we have:

I =21.04 x 10° Nms~
b=nR*/(2h)=3.9%10"m’

R = plate radius = 12.5x10°m

h = sample thickness = 1x10°m

(21)

The ringing frequency is given by the minima of the (complex) characteristic

equation:

~’I+b (iw) =0 (22)

S
F(l—n)

This frequency can be evaluated numerically and is found to be 68.5 rad s’

(t"=0.09s) which is in good agreement with the heavily damped ringing
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frequency observed in creep experiments. Such excellent agreement is perhaps

surprising, since the fixture response during the initial transients should also be

influenced by the Rouse modes of the system (¢t ~ A, =0.05s).

IV CRITICAL GEL RESPONSE UNDER FINITE STRAIN

We have examined the linear viscoelasticity of a critical gel and showed that for
time-scales greater than the segmental relaxation time A, the rheology can be

economically described by two parameters, the gel strength S, and the gel
exponent n. As mentioned in the introduction, characterizing the non-linear
deformation of a critical gel is essential in many applications. For example, in
adhesives applications (Winter and Mours 1997), information on the strain to
failure can be useful. In bread and gluten dough, researchers have found little or
no correlation between linear viscoelastic material functions and baking
qualities. This of course should not be surprising, because non-linear
deformation (kneading, proofing, baking etc...) feature prominently in the
process of breadmaking (Bloksma 1990b; Dobraszczyk and Roberts 1994;

Dobraszczyk and Morgenstern 2003; Sliwinski et al. 2004¢; Sliwinski et al. 2004b).

A. Large Step Strain Relaxation

We begin probing the non-linear deformation of the gluten gels by simply
increasing the amplitude y, of the step strain relaxation tests discussed in section

IITA. The results are plotted in Figure 7a.

Qualitatively, the relaxation modulus at large strain amplitude is observed to be

a function of both time and strain G:G(t,yo). Both the Rouse segmental
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relaxation and power-law gel regimes are still clearly visible. Since it is the
power-law / critical gel region that we are most interested, we can gain insight
into this non-linear behavior by seeking a function that will collapse the data in
this regime onto a single curve. The power-law exponent of the relaxation
remains approximately constant despite the increase in strain, therefore a simple
vertical shift factor — or damping function — suffices to collapse the data. In other

words, the data can be taken to be time-strain separable in the power-law regime:

G(t,1,) = G(1)h(r,) =St "h(r,) @

The resulting damping function is plotted in Figure 7b. The strain softening
effect in the gluten gel is relatively weak, especially when compared to the
highly-filled wheat flour systems, in which non-linearity begins at extremely
small strains (Sofou et al. 2007). To quantitatively compare the two sets of data,
they are fitted to a simple algebraic function that is motivated by the form

commonly used to describe strain-softening in entangled melts
h(y)= 1/(1 + (qy)Zk) (Ng et al. 2006b). The rate of softening k = 0.4 is the same for

both systems; the onset of non-linear behavior corresponding to a critical strain
¥y ~q " occurs at y; ~0.04 for wheat flour dough but not until y; ~5 for gluten
systems.

The weak damping characteristic of gluten dough is consistent with critical gels
that are formed from randomly cross-linked networks of flexible polymeric
strands. Even though particulate gels can also form self-similar fractal structures

that exhibit power-law rheology in their linear viscoelastic material functions,

they are typically “brittle”. Non-linear behavior of particulate gels are commonly
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characterized by rapid softening or yielding at strains that are seldom greater

than unity i.e. ¥,,,.... <1(Buscall et al. 1988; Larson 1999).

In fact, the behavior seen here is very similar to the damping function for critical
gels polyvinylchloride in dioctyl phthlate (PVC-DOP) reported by Watanabe et al
(Watanabe et al. 1998). They argue that in contrast to highly entangled systems
which show reptation dynamics, the recovery of polymer chains to their
equilibrium length occurs at the same rate as orientation rearrangements in
fractal networks; thus resulting in a damping function that is close to unity. The
similar lack of reptation dynamics or a distinct yielding process observed in the
present work strongly suggests that gluten gels should also be viewed as a

polymeric network rather than a particulate gel or highly entangled melt.

The large range of linear response also suggests that gluten doughs can be
treated up to moderately large strains approximately as a quasi-linear elastic
material (Bird et al. 1987). If we are to express the constitutive equation for the
gluten gel as an integral model of the factorized Rivlin-Sawyer form, a
simplification to the strain-dependent function can be made, such that h(}/) =1;
the non-linearity in the constitutive equation associated with large strains is then
contained exclusively in the deformation tensors. This leads to greatly simplified
constitutive equations and analytical solutions are possible for a wide variety of

flow conditions. The construction of such a constitutive model will be the subject

of the following section.
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B. Transient Experiments

For quasi-linear models under finite deformation, the infinitesimal strain rate

tensor y in equation (18) must be replaced by a finite strain rate

tensor %C‘l (t,t') to preserve frame invariance (Bird et al. 1987). C'(t,t')is the

Finger strain tensor. We can write a frame invariant constitutive equation

(Winter and Mours 1997) by considering a linear superposition of stress

. . . e .0
relaxation modes associated with this finite rate of strain JC ! (t, t') :

t
o(1)==-[G(t-1)2C7 (11) dr
; (24)
= —IS(t —t)" %Cl (t,¢')dt" for the gel equation
0

This form of constitutive equation (with an unspecified form of G(t—t')) is

generically referred to as a Lodge rubber-like network model (Lodge 1964). We
refer to the particular constitutive model in equation (24) with a power-law

relaxation modulus as the generalized gel model.

By analogy to the discussion in section IIIE, equation (24) can also be expressed

in a differential form:

O'(t)=—1_(1_n)D"[C1(t,t')] (25)

where the fractional differential operator denoted D" is the convected fractional

derivative which satisfies material objectivity (Drozdov 1997).
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In the limits of infinitesimal strains, equations (24) and (25) reduce to (18) and

(19) respectively. To explore the constitutive response of gluten gels at large

strains, we now consider the form of C™ (t,t') and %C‘l (t,t') for specific modes

of deformation commonly used in rheometric testing and the resulting form of

the stress tensor.

C. Start-up of Steady Shear

In a step shear rate experiment, in which the rate of shearing strain is
incremented from zero to ¥,, such that y,, (t) = )'/Oﬁ (t), the finite strain and rate

tensor takes the form:

1475 (t=t) R(t-t) 0
C'=| 7y,(t-t) 1 0|forO<t <t
0 0 1
- (26)
Yot Yot O
=yt 0 Offort'<0
0 0 0
275 (t=t) =7, 0
aat, = —7, 1 0ffor0<t' <t 27)
0 0 1
= 0 fort'<0

Inserting the respective components into equations (24) or (25) gives an

expression for the transient growth in the shear stress:
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t

o, =—|S(t—t)"[-7,dt
' (28)

Substituting » =t—t' and integrating, we find:

1-n t

+ . ‘ —-n . r S/}/O 1-n
O'Xy:Sy()_([r dr:SyoL_n Ozl—nt (29)

So that the shear stress in a critical gel grows in time without bound as a power-
t
law with #'™". The total strain imposed is y = JO ¥, dt'=y,t. We also note that the

response (28) is factorizable into shear-strain and shear-rate contributions:

. S .
+ , - n n f 20
oo V)= V'y " fory (30)

=5 f(j/o)q)xy (J/)
Where f(7,)=7; and @, (7,)=7""/(1-n).

In Figure 8 we demonstrate the ability of this generalized gel equation to predict
the growth in the shear stress of gluten gels during the start-up of steady shear
flow. After an initial short time response (t<0.1s) which is governed by the
Rouse modes convoluted with the finite response function of the rheometer, the

material functions increase as power laws (i.e. straight lines on a log-log scale).

The shear stress increases with shear strain as y'™" (equation (30)) and the data

can be collapsed onto a single power law strain function @ (}/) by factoring out
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the rate-dependent component, f(7,)=7¥; . All of the samples show slip and/or

fracture at large strains y ~ 10 despite our efforts to prevent slip (Section I).

At the highest strains and shear rates tested (y >5,7, >0.1s7"), the gluten gels

exhibit a stress overshoot, in contrast to the softening observed in the previous
section for step strain relaxation. The rheological significance of this overshoot
remains unclear. Phan-Thien and coworkers (Phan-Thien et al. 1997) attempted
to model the overshoot behavior through the use of a highly non-linear strain

function that incorporates both strain stiffening and softening of the form:

0o (7)=G¥,py (7)(C_1 - aC)
1
\PPT ('Y) = (1 + 1_‘27/2)(1—m)/2 exp(—FéJ/l)
1

(31)

Where I', I',, a and m are material constants, Cis also known as the left-

Cauchy-Green tensor. However in our experiments, we observed this
phenomenon to be closely associated with a torsional elastic instability as
depicted in Figure 9. This instability occurred shortly after the transient shear
stress deviated from the predicted power-law form and becomes extremely
severe at the point of stress softening: the sample rolls up and is ejected from the
geometry gap. The flow is no longer viscometric at the onset of this instability

and therefore we have made no attempts to model it constitutively.

Nevertheless, the fact that linear deformation persists without yield up to large
strains is once again a strong indication that gluten doughs are polymeric gel
networks consisting of flexible or semi-flexible filaments. This class of systems

include many biopolymer gels that often exhibit extremely large linear range and
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has non-linear regimes that are typified by a stiffening behavior before yield
(Storm et al. 2005; Chaudhuri et al. 2007), in a manner very similar to the

behavior of the gluten gel.

In fact the behavior of these gluten gels also bears a strong resemblance to the
data reported by Venkataraman and Winter (Venkataraman and Winter 1990) on
a synthetic critical gel. The PDMS they studied also forms a cross-linked
polymeric network with flexible chains between junction points; they observed a
relatively large linear range during start-up of steady shear flow (y" ~2) and a
mild stress overshoot at large strains. However, the separability of the measured
material response into rate-dependent and strain dependent functions cannot be

checked in this previous study because data at only a single shear rate

(y,=0.5s") was presented.

In these start-up experiments, we can also follow the evolution in the first normal

stress difference of the gluten gels. From equation (24) we find:

t

= 2572 [—%ﬂ(t - t')“} (32)

Notably, this result is again strain/strain-rate separable and can be written in the

form:
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o.(B)-0,t)=Sf(7)Py(7) (33)

Where, as in equation (30), the function f (j/o) =7y, and the strain function for the

normal stress difference is @, =2y*™" / (2—n).
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In Figure 10 we show that the first normal stress difference measured in a gluten
water dough system can also be described quite well by equation (32). The data

shows a positive power-law increase in the normal stress difference with strain

(typical of polymer networks) corresponding to an exponent of y*™". The values

of $=1280 Pas" and n=0.175 are consistent with those obtained from linear
viscoelastic measurements. These curves can also be approximately collapsed
onto a single curve by factoring out the rate-dependent component f(y)=7y,".
The normal force data show less perfect superposition when compared with the
measured shear stress response. When the plates are brought together during
loading and the sample is squeezed into a disc shape, the axial compressive
strain can result in substantial normal forces even when slow compression rates
and long waiting times are employed, and this contributes to the observed
variability at low deformation rates. The effect of this residual stress relaxation is
analogous to that described in section IIIA. Nonetheless, the power-law growth
in N, at large shear rates is very clear across several decades in stress. It is
interesting to note that in the generalized gel equation, the ratio between

transient shear stress and normal stress difference is  given
by N, / o,=2y (1-n)/(2-n). For an ideal critical gel, this relationship is valid
even in the limit of infinitely rapid deformations. This modified elastic response
can be contrasted with that expected of typical viscoelastic materials which show

purely elastic behavior at time shorter than the most rapid relaxation time: the

Lodge-Meissner relationship (Larson 1988) shows that the stress ratio

approaches N, /ny =vy. The modified elastic behavior noted above is a
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distinguishing feature of a critical gel but might not be of practical utility in
determining the gel point, especially for materials with small values of n.

Furthermore, for gluten gels, the presence of a cut-off at the segmental relaxation

time scale A, reported in section IIIA will obscure the observation of this

relationship at very high shear rates when Wi, = 1,7, >1.

D. Start-up of Uniaxial Extensional Flow

Elongational deformations provide a litmus test for the robustness of the
generalized gel equation. The applicability of a rheological constitutive equation
such as the critical gel model is greatly increased if material parameters obtained
from small amplitude shear experiments can be used to predict the rheological
behavior under vastly different flow conditions such as those observed under

large extensional strains.

In strong flows such as uniaxial elongation, the integral expression to be
evaluated for the stress becomes slightly more involved because the components
of the finite strain-rate tensor increase exponentially with strain rather than

polynomially. For extensional stress growth following inception of a uniaxial

extensional flow at a finite constant strain rate, the Finger strain tensor C'(t,1)

. %)
and finite rate of strain tensor ¥C‘1(t,t') are:
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ol =_eXp[_é°(t_t')] ’ forO<t' <t
i 0 exp[2é0(t—t')]
[ewla()] 0 for <0
i 0 exp[ZéO(t)]
(34)
ic-l _ éoexp[—éo(t—t')] 0 for0<f <t
ot' I 0 —28, exp| 26, (t—t') ] o
=0fort'<0

The normal stress difference predicted by the generalized gel equation in steady

uniaxial extension is then:
t

o.(t)-0,(t)=[S(t-t)"¢,{2exp(2¢,[t—t]) +exp(-,[t-+])}dt'  (35)

0

We first perform a change of variable to recast the solution into a separable form

composed of a rate-dependent term and a strain-dependent integral. Substituting

for the Hencky strain &(t)=¢,t and the strain difference r = ¢,(t—t'), we obtain:

Ao (e)= Ségjr‘”{2exp(2r)+exp(—r)}dr (36)
0
The extensional stress growth in a critical gel can once again be written in terms
of rate- and strain-dependent components by factorizing equation (36) to give:

AG(¢,,€) = Sf(&,)®,.,(€) (37)

where

f(éo):é

(I)Ext = j”_n {2€Xp(2r) + exp(—r)}dr (38)

35



The integral for the strain dependent function can be integrated repeatedly by
parts to yield a solution in the form of a summation. However, this approach is
rather cumbersome and the result converges slowly. It is more convenient to

consider approximations to the expression at large and small strain limits.

For small strains (i.e.£ < 1), equation (37) approaches the linear viscoelastic limit:

Ao(é,,€)— gégsl‘”, ase—0
1-n - (39)
3¢
®Exf = 1 -n
The corresponding Trouton ratio approaches:
+ O-E t(SO’g)
Tri=—20"""_33 forex1 (40)

0., (7, 7)

where 7, = \/§é0 and y =+/3¢ is used in evaluating the ratio.

At large strains (i.e.€ > 1), an asymptotic approximation can be made such that:
Ao = S¢)e " exp(2¢)
D, =& " exp(2e) (41)

Tr" =(1-n)e " exp(2¢)

An approximation is made to equation (38) by considering a function that

smoothly connects the two limits (equation (39) and (41):

+ oy (1+2n)
Aoy, =S&je" | exp(2¢)+ e-1
1-n
. (1+2n)
O =" exp(2¢)+ - e-1 (42)

Tr' = ¢ ;n) [exp(2e) - 1]+ (1+2n)
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Equations in (42) are a surprisingly accurate approximation and is barely
distinguishable from the true solution over the range of strains discussed in this

article.

We examine the response of gluten gels experimentally under uniaxial extension
using a wind-up drum type rheometer. The geometry is shown in Figure 11. A
Sentmanat Extensional Rheometer (SER) fixture (Sentmanat 2004) is mounted
onto the ARES rheometer. Samples of gluten gel (L, =12.5mm, H, = W, = 2mm )
are held in place between two cylinders by clamps and then stretched uniaxially
as the cylinders are rotated by the drive system of the rheometer. The resulting
torque and sample deformation are measured independently through the ARES
torque transducer and digital video imaging respectively. Figure 12 illustrates

the measurements obtained during a typical experiment.

The counter rotating cylinders apply a nominal strain rate of:

E=—" (43)

However, the true strain rate in the sample is also independently measured from
video images. A thin film of oil is painted onto the surface of the sample to
eliminate evaporation and sample drying, this film can also inadvertently lead to
slip in the contact area with the rotating cylinders (Ng et al. 2006b).

Measurements with polyisoprene have shown that if the sample aspect ratio is

small, i.e.A:H/ W <« 1, the deformation will deviate from uniform uniaxial

stretching (Nielsen et al. 2006) and approaches the planar limit instead asA — 0.

In the present experiments, the aspect ratio is close to unity (A ~ 1), therefore the
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actual deformation can be well approximated by homogeneous uniaxial
stretching. Video imaging at 100 frames/sec. confirms the assumptions of

uniform uniaxial deformation and no-slip at the cylinder-sample interface. The

strain rate calculated from lateral contraction of the sample s(t) is identical to

the imposed longitudinal strain E(t), and the width W(t) of the sample thus

decays as a simple exponential:

_LdW(t)~

W(t) dt (44)
W(t) =W, exp(—Et/Z)

From the torque P(t) and sample width W(t) measurements collected, it is
straight forward to calculate the true evolution in the normal stress difference
during uniaxial elongation:

P(t)

RH W, exp(+£(t)) (45)

O-zz(t) - o-xx(t) =

The results from three different strain rates £,=0.03,0.3,3.0 s are plotted in

Figure 13a. The experiments for each strain rate were repeated to confirm their
reproducibility; because of sample-to-sample variability such reproducibility is
not often achieved in typical dough systems (Bagley et al. 1998; Ng et al. 2006b).
Deviations between individual experiments at the same strain rate are only
discernible at small strains. These differences can be attributed to slightly
different preloads associated with the backlash inherent to the SER gearing
system, and the torque signal for data collected at strains £<0.1 have been

omitted for analysis purposes. The samples were stretched at constant strain
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rates till they ruptured, usually around total Hencky strains of €~2-3,

corresponding to the point when the torque measurement drops rapidly. Some

fluctuations are apparent at low stresses, however these only occur below the
stated resolution of the torque transducer; Ao, = (Pmin )/ (ZRHOWO). For typical

values of sample dimensions H;=2mm, W,=2mm and cylinder

radiusR=5.25mm, we find the minimum resolvable stress to be

approximately Ao, =5x10° Pa.

Once again we can separate the rate- and strain-dependent contributions by
using equation (37). The tensile stress growth data can be collapsed onto a single

master curve of the strain function by dividing the tensile stress difference by
f(&,)=¢, as shown in Figure 13b. The strain function ®, (¢) is well described

by equation (38), and the gel parameters used to collapse the data at different

rates are obtained through the linear viscoelastic step-strain relaxation
experiments discussed in section IIIA (S=1260 Pas"andn =0.175) i.e. we do not

refit the material properties and there are no adjustable parameters.

As we also noted in equation (3), the effective characteristic time constant for a

critical gel diverges (A4, —> o), therefore the effective Deborah number in a

char

critical gel also approaches infinity and nonlinear elastic effects always become

important. As a result, the tensile stress growth measured at all strain rates will
deviate from the linear viscoelastic power-law response ®,, 2381_”/ (1-n) at
moderate strainse >1. At large Hencky strains, the stress response approaches

the asymptotic approximation of the form Aoy, = St "exp(2¢). This large strain
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behavior highlights the fact that a critical gel does indeed lie on the point of

solid-liquid transition: the material exhibits both neo-Hookean-like affine

network deformation Aoy, ~ f(x,)=exp(2¢)=x> (where x, =(W/ WO)_2 is the

principal stretch in the SER device) as well as fading memory dependence in

time, Aoy, o<t™".

We observe no need to incorporate additional strain-dependent damping in the
gluten gel which would lead to non-affine deformation in Figure 13b. This is in
contrast to analogous measurements with wheat flour doughs which show
exponential, but sub-affine, stress growth at large strains (Ng et al. 2006b). These
differences are consistent with our step shear strain measurements in Figure 7.
The gluten gels rupture at Hencky strains of &~ 3 before such non-linearities

would become important.

As a final confirmation that gluten gels should be considered as flexible elastic

networks, we note that few (if any) particulate gels can withstand such large

stretch ratios (x, =(W/ V\/O)_2 =20) without yield or rupture. by contrast such

behavior is rather common for crosslinked polymeric networks such as rubber

elastomers, collagen etc...

V CONCLUSIONS

In this paper we have demonstrated that a vital gluten dough exhibits a power-
law relaxation modulus characteristic of that observed in polymeric networks at
the liquid-solid transition i.e. the response of a critical gel. We applied the

generalized gel equation by incorporating the well-known relaxation modulus for a
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critical gel into the Lodge rubber-like-liquid formulation. We performed a
comprehensive set of experiments on a gluten dough and showed that the
generalized gel equation provides an accurate description of the rheological
response in flow situations ranging from linear to non-linear deformations in
both shear and extension. We also demonstrated the implications for these

slowly-relaxing systems of residual stress relaxation from deformation incurred

during sample loading. The power-law decay in relaxation modulus G(t)=St""

at long times was found to be substantially affected by the waiting time ¢ .

The linear viscoelasticity of gluten doughs can be well-characterized by the two-
parameter critical gel model over a wide range of timescales and this is an
indication of the self similarity in the polymeric network comprising the gluten

gel. At very short length scales! ~ 20 nm, this self similarity breaks down as the
structure of individual strands in the network become important and is reflected

by the Rouse regime observed at short time scalest ~ A, =0.05s.

At large strains, the gluten gel only shows a very weak damping behavior which
is consistent with the idea of strong physical crosslinks in a fractal polymeric
network. We contrast this observation with examples of entangled and
particulate gel systems that have strong damping functions due, respectively, to
either the mismatch in the rotation/stretch relaxation times or to plastic yielding

events between neighboring particles.

In start-up of steady shear flow, power-law growth in both the shear stress and

the normal stress difference are observed, and these are in good agreement with

the generalized gel equation up to " ~5. Beyond this critical strain, the shear
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stress exhibits an overshoot and attains a peak value at y” ~12. Just before the
point of peak stress, the gluten gel undergoes an edge instability that eventually
leads to the sample being ejected from the geometry at y* ~30. In uniaxial

extension, the transient response of the tensile stress difference progressively
changes from power-law growth in the linear viscoelastic regime to an
exponential increase in agreement with the constitutive prediction of the

generalized gel equation. This exponential growth can be observed for a wide

range of deformation rates (0.03 < ¢, <3s™) up to the point of rupture at Hencky

strains of € ~3.

rupture

We can compare these observations with earlier experiments performed on
critical gels of cross-linked polydimethylsiloxane. In start-up of steady shear

flow, Venkataraman and Winter (Venkataraman and Winter 1990) observed a

similar departure from linearity at y* ~ 2 followed shortly by an overshoot and a

peak in shear stress at ¥y’ ~4. The rheological signatures of the PDMS and

gluten gels are qualitatively similar; but evidently, the gluten system has a
significantly larger range of quasi-linearity. The percolated gel structure of the
gluten remains intact even under large deformations pointing to significant
tensile strength of the gluten backbone and strong interchain binding at network

junctions.

The strain/rate factorization observed in the present experiments (in both
shearing and extensional flow) strongly supports the extension of the simple
linear viscoelastic gel model to large strains by application of the Lodge rubber-
like network formulation. Finally, we note that because of the power-law
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dependence of the relaxation modulus, critical gels exhibit a special form of

viscoelastic behavior: They will show characteristics akin to those of ideal elastic
networks, with increasingly affine deformation of the form Ao}, ~ exp(2£)

observed up to large Hencky strains € ~ 3 in uniaxial elongation; however, at the

same time, they also exhibit nonlinear viscous characteristics with a fading
power-law dependence in time Ao}, e<t". In addition to the measurements

presented here, we have also performed large amplitude oscillatory shear
(LAOS) tests to further assess the predictions of the proposed rheological

equation of state, these results will be discussed in a later publication.

To summarize, the rheological evidence provides a compelling indication that
the gluten gel is a polymeric network consisting of flexible or semi-flexible
filaments between network junctions. This is not necessarily incompatible with
the particulate microgel structure sometimes observed under confocal
microscopy (Peighambardoust 2006). These observable length scales might lie
beyond those that can be practically probed by rheological measurements within
a reasonable time window. Exactly what individual roles di—sulphide bonds,
hydrogen bonds and physical entanglements play in the resulting gel structure is
still hotly debated (Ewart 1989; Belton 1999; Letang et al. 1999; Singh and
MacRitchie 2001; Don et al. 2003a; Domenek et al. 2004). Future rheological tests
to progressively large strains may be able to shed light on the individual
contributions of each type of crosslink; preliminary experiments on disrupting
the network structure by dissolving the gluten gels in sodium dodecyl sulphate
(SDS) or in concentrated urea solution indicate that hydrogen bonding plays a

central role in the formation of networks structure.
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The ability of such a simple two parameter constitutive model to predict
quantitatively the material functions for vital gluten doughs over several orders
of magnitude in stress and time scales is both surprising and encouraging. Food
stuffs are notorious for being “hopelessly non-model” (Fischer et al. 2006); and
soft solids or wheat flour doughs are considered one of the worst offenders
(Bagley et al. 1998). The model behavior of gluten gels may prove to be
invaluable in providing a framework or foundation from which more complex
models that fully capture the functionality of a realistic flour-water dough
formulation can be constructed. For example, it provides a natural framework for
incorporating a damping function to capture more complex non-linear behavior

(Ng et al. 2006b; Tanner et al. 2007).

Moving forward, the logical step to take next is to reintroduce these additional
non-linear effects through the addition of a well-characterized filler. Obviously
in real bread doughs the filler of interest consists of the starch particles.
Unfortunately, simply mixing wheat starch, vital gluten powder and water
already reintroduces excessive complexity. The rheology of the resulting dough
changes significantly with time and it is challenging to obtain reproducible data
(Ng and McKinley 2006); this is due to the gradual swelling and strong
interactions between starch particles. An alternative route may be to separate the
effects of the filler; for example, by first asking what is the effect of filling the
gluten gel with non-reactive hard spheres such as glass beads (Edwards et al.
2002)? Preliminary rheological data collected on such a system in our laboratory
(Ng and McKinley 2006) suggests that many of the characteristic differences

between a critical gluten gel and real dough systems, e.g. non-linear strain
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softening, can indeed be explained by the interactions of the elastic network with

these hard particles and this will form the subject of future work.
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Figure Captions

Figure 1 Mixograph output for 24g of gluten dough at 63% moisture content by
weight. After the gluten dough has been fully developed, it is removed from the
mixograph at 720s.

Figure 2 Stress relaxation behavior of a gluten gel. The relaxation modulus
approaches a power-law as expected for a critical gel with

§=1260+50 Pas", n=0.175+£0.005 over a wide range of time 0.2<t<100s. At
short times, an additional Rouse relaxation regime can be observed,
with G, =803 Paand A1, =0.05s.

Figure 3 Deviations from power-law relaxation due to the effects of loading
history for various values of sample rest time. Dashed lines represent predictions
from the critical gel equation for the apparent modulus (equation (5)) with ¢, =

0.1, 1, 10 ,100, 1000, 10000 s and t,6— e (dotted line). Open symbols are

measured data for gluten gels with f, = 10,100, 1000 s. Inset illustrates the strain
protocol imposed on the sample during the experiment. Note that the rheometer
resets or ‘zeroes’ the stress at t = 0.

Figure 4. Expressing the power-law relaxation of a critical gel as a series of
Maxwell modes. Deviations can be seen at either end of the spectrum

corresponding to the longest A, and shortest A, =4 K"/" time scales of the
summation.

Figure 5 a) Storage and loss moduli measured in small amplitude oscillation.
Solid lines represent predictions from equation (12) and incorporating Rouse

modes: S=1260 Pas", n=0.17, G, =803Pa, 1, =0.05s. These parameters were
obtained from independent measurements of the relaxation modulusG(t). b)

Comparison between dynamic moduli of vital gluten and native (i.e. “washed’)
gluten doughs, showing strong qualitative similarities in the frequency response.

Figure 6 Creep compliance of a gluten gel. Dashed line represents predictions of

the critical gel model from equation (17) with gel strength S=1280 Pas" and gel
exponent n=0.175: these parameters are obtained independently from step

strain relaxation experiments. Data at t<0.1s for o,=30Pa are included to
illustrate the observed “creep ringing”.
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Figure 7 a) Stress relaxation function G(t) of gluten dough for a range of finite

step shear strains with magnitudey,. b) Damping function for finite strain
amplitude stress relaxation experiments. Lines correspond to algebraic fit to the

data set, h(y)= 1/(1 +(q7, )Zk). Unfilled gluten dough (4=0.2,k=0.4) shows

substantially reduced damping compared to highly-filled wheat flour-water
dough systems (g =25,k=0.4).

Figure 8 a) Transient shear stress during start-up of shear flow as a function of
time measured for shear rates0.003 <y, <3.0s™. The calculated response from

the critical gel component and Rouse modes for y,=0.03s" are plotted as
dashed lines. Deviation from equation (28) at £ <0.05 s is a result of the finite rise
time (~50 ms) of the motor. b) All curves can be collapsed onto a master strain

function CI)xy(]/)zylf” /1—n (solid line) by factoring out the rate
dependence f(7,) =7, .

Figure 9 Torsional elastic instability at y, =1 s?. a. Initial conditions, b. Onset of

instability; Initially vertical lines drawn on the sample with ink indicate uniform
deformation up to this point; c. Sample becomes asymmetric and is retracted
away from point of view while being ejected from the other side of the geometry,
d. Sample rolls up and is ejected from rheometer.

Figure 10. a) Power-law growth in the first normal stress difference as a function
of time measured for shear rates 0.003<y <3.0s™. b) All curves can be collapsed

onto a master strain function ®&,(y) by factoring out the rate
dependence f(y,)=7;. The solid line is the strain function ®,=2y*"/(2-n)

given in equation (33) with 7=0.175 determined from linear viscoelastic
measurements.

Figure 11 Schematic of the Sentmanat Extensional Rheometer (SER). The sample
of initial cross-section area W, x H and gage length L, is stretched between two
counter-rotating cylindrical drums.

Figure 12 Wind-up drum rheometry of a gluten gel using the SER fixture.
Deformation and torque measurements were provided by the host ARES
rheometer while true strain measurements were made by studying images
collected with high-speed digital videography (at 100 frames/sec). Initial width

of sample is W, =2 mm. Solid line is the calculated variation in width under
ideal uniaxial elongation given by equation (44)

53



Figure 13 a) Tensile stress difference in gluten gels during transient uniaxial
elongation at rates of £,=0.03,0.3, 3.0 s?. At least two runs were performed at

each strain rate to ensure reproducibility. b) Scaled stress function plotted
against Hencky strain showing power-law growth at small strains and
exponential growth at large strains.
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Figure 1 Mixograph output for 24g of gluten dough at 63% moisture content by

weight. After the gluten dough has been fully developed, it is removed from the

mixograph at 720s.
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Figure 2 Stress relaxation behavior of a gluten gel. The relaxation modulus
approaches a power-law as expected for a critical gel with

§=1260+50 Pas", n=0.175+£0.005 over a wide range of time 0.2<t<100s. At
short times, an additional Rouse relaxation regime can be observed,
with G, =803 Pa and A1, =0.05s.
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Figure 3 Deviations from power-law relaxation due to the effects of loading
history for various values of sample rest time. Dashed lines represent predictions
from the critical gel equation for the apparent modulus (equation (5)) with ¢, =
0.1, 1, 10 ,100, 1000, 10000 s and t,6— e (dotted line). Open symbols are

measured data for gluten gels with f, = 10,100, 1000 s. Inset illustrates the strain
protocol imposed on the sample during the experiment. Note that the rheometer
resets or ‘zeroes’ the stress at t = 0.
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Figure 4. Expressing the power-law relaxation of a critical gel as a series of
Maxwell modes. Deviations can be seen at either end of the spectrum

corresponding to the longest A, and shortest A, =4 K" time scales of the

summation.
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Figure 5 a) Storage and loss moduli measured in small amplitude oscillation.
Solid lines represent predictions from equation (12) and incorporating Rouse

modes: S=1260 Pas", n=0.17, G, =803Pa, 1, =0.05s. These parameters were
obtained from independent measurements of the relaxation modulusG(t). b)

Comparison between dynamic moduli of vital gluten and native (i.e. “washed’)
gluten doughs, showing strong qualitative similarities in the frequency response.
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Figure 6 Creep compliance of a gluten gel. Dashed line represents predictions of

the critical gel model from equation (17) with gel strength S=1280 Pas" and gel
exponent n=0.175: these parameters are obtained independently from step

strain relaxation experiments. Data at t<0.1s for o,=30Pa are included to
illustrate the observed “creep ringing”.
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Figure 7 a) Stress relaxation function G(t) of gluten dough for a range of finite

step shear strains with magnitudey,. b) Damping function for finite strain
amplitude stress relaxation experiments. Lines correspond to algebraic fit to the

data set, h(y)= 1/(1 +(q7, )Zk) . Unfilled gluten dough (4=02,k=0.4) shows

substantially reduced damping compared to highly-filled wheat flour-water
dough systems (q=25,k=0.4).
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Figure 8 a) Transient shear stress during start-up of shear flow as a function of
time measured for shear rates0.003 <y, <3.0s™. The calculated response from

the critical gel component and Rouse modes for y,=0.03s" are plotted as

dashed lines. Deviation from equation (28) at £ <0.05 s is a result of the finite rise
time (~50 ms) of the motor. b) All curves can be collapsed onto a master strain

function CI)xy(j/)zylf” /1—n (solid line) by factoring out the rate
dependence f(7,) =7, .
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Figure 9 Torsional elastic instability at y, =1 s?. a. Initial conditions, b. Onset of
instability; Initially vertical lines drawn on the sample with ink indicate uniform
deformation up to this point; c. Sample becomes asymmetric and is retracted
away from point of view while being ejected from the other side of the geometry,
d. Sample rolls up and is ejected from rheometer.
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Figure 10. a) Power-law growth in the first normal stress difference as a function
of time measured for shear rates 0.003<y <3.0s™. b) All curves can be collapsed
D, (7) the
dependence f(y,) =7, . The solid line is the strain function @, =2y>"/(2-n)

given in equation (33) with n=0.175 determined from linear viscoelastic
measurements.

onto a master strain function by factoring out rate
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Figure 11 Schematic of the Sentmanat Extensional Rheometer (SER). The sample
of initial cross-section area W, x H and gage length L, is stretched between two
counter-rotating cylindrical drums.
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Figure 12 Wind-up drum rheometry of a gluten gel using the SER fixture.
Deformation and torque measurements were provided by the host ARES
rheometer while true strain measurements were made by studying images
collected with high-speed digital videography (at 100 frames/sec). Initial width
of sample is W, =2 mm. Solid line is the calculated variation in width under

ideal uniaxial elongation given by equation (44)
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Figure 13 a) Tensile stress difference in gluten gels during transient uniaxial
elongation at rates of £,=0.03,0.3, 3.0 s'. At least two runs were performed at

each strain rate to ensure reproducibility. b) Scaled stress function plotted
against Hencky strain showing power-law growth at small strains and
exponential growth at large strains.
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