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The Dynamic Compressive
Response of Open-Cell Foam
Impregnated With a Newtonian
Fluid
This analysis considers the flow of a highly viscous Newtonian fluid in a reticulated,
elastomeric foam undergoing dynamic compression. A comprehensive model for the ad-
ditional contribution of viscous Newtonian flow to the dynamic response of a reticulated,
fluid-filled, elastomeric foam under dynamic loading is developed. For highly viscous
Newtonian fluids, the flow in the reticulated foam is assumed to be dominated by viscous
forces for nearly all achievable strain rates; Darcy’s law is assumed to govern the flow.
The model is applicable for strains up to the densified strain for all grades of low-density,
open-cell, elastomeric foam. Low-density, reticulated foam is known to deform linear
elastically and uniformly up to the elastic buckling strain. For strains greater than the
elastic buckling strain but less than the densified strain, the foam exhibits bimodal be-
havior with both linear-elastic and densified regimes. The model presented in this analy-
sis is applicable for all strains up to the densified strain. In the bimodal regime, the
model is developed by formulating a boundary value problem for the appropriate Laplace
problem that is obtained directly from Darcy’s law. The resulting analytical model is more
tractable than previous models. The model is compared with experimental results for the
stress-strain response of low-density polyurethane foam filled with glycerol under dy-
namic compression. The model describes the data for foam grades varying from
70 ppi to 90 ppi and strain rates varying from 2.5�10�3 to 101 s�1 well. The full model
can also be well approximated by a simpler model, based on the lubrication approxima-
tion, which is applicable to analyses where the dimension of the foam in the direction of
fluid flow (radial) is much greater than the dimension of the foam in the direction of
loading (axial). The boundary value model is found to rapidly converge to the lubrication
model in the limit of increasing aspect ratio given by the ratio of the radius R, to the
height h, of the foam specimen with negligible error for aspect ratios greater than R /h
�4. �DOI: 10.1115/1.2912940�

Keywords: boundary value problem, fluid-structure interaction, foam, lubrication
approximation, porous media
Introduction

Over the past century, much of the research in developing ar-
or has focused on providing protection against ballistics. This

esearch has culminated in highly advanced armor for defending
gainst projectiles �1�; however, existing armor is inefficient at
rotecting against the enormous pressure gradients generated by
xplosive devices. These blast waves can cause severe damage to
he human body as well as vehicles and structures. Recently, a
ovel reactive armor design to mitigate the effects of blast waves
as been explored �2�. This design incorporates open-cell �reticu-
ated� foams filled with shear thickening, non-Newtonian liquids
nto existing composite armor. Open-cell foams filled with non-
ewtonian liquids have the potential to absorb energy and impede

hock waves, which decrease the resulting pressure gradient ex-
erienced by underlying media �e.g., tissue�. As a first step in
odeling this nonlinear phenomenon, we analyze the flow of a
ewtonian fluid through an open-cell, elastomeric foam. The flow
f fluids through open-cell foams has been investigated exten-
ively for a variety of engineering applications, but characterizing
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the contribution of the fluid to energy absorption under dynamic
loading is still a critical area of research. Previous research has
resulted in the development of complex models to describe the
contribution of Newtonian fluids in an open-cell foam under im-
pact loading. Hilyard �3� provided one of the first and only in-
depth analytical and experimental analyses of the contribution of
fluid flow to the impact behavior of open-cell foams, developing a
third order, nonlinear equation of motion. Rehkopf, et al. �4�,
Mills and Lyn �5�, and Schraad and Harlow �6� all developed
finite difference and finite volume techniques to analyze the con-
tribution of the fluid flow in an open-cell foam under dynamic
loading. However, the inherent complexity of these models has
limited their use.

In this paper, we develop a tractable but comprehensive analyti-
cal model for the additional contribution of viscous Newtonian
flow to the stress-strain response of low-density, reticulated, fluid-
filled, elastomeric foams under dynamic loading. Elastomeric
foams deform in a linear-elastic manner, primarily by cell wall
bending at strains below the elastic buckling strain. At strains
between the elastic buckling strain and the densified strain, local
bands of cells collapse, so that the foam has both a linear-elastic
regime and a densified regime. As the overall strain increases, the
densified regime expands at the expense of the linear-elastic re-
gime �7�. We consider a model, which governs both the single

regime and the bimodal regime of the fluid-filled foam. The prob-
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em considers the axial compression of a cylindrical specimen of
ow-density, elastomeric foam filled with a highly viscous New-
onian fluid between a fixed plate and a moving plate �Figs. 1 and
�. Based on the low values of the characteristic Reynolds number
n the pores, the flow of viscous Newtonian fluids in porous media
s dominated by viscous forces for nearly all achievable strain
ates; therefore, Darcy’s law is assumed to govern the flow. Dar-
y’s law is selected instead of the slightly more complicated
rinkman–Darcy model, which incorporates both a viscous con-

ribution and an additional term, attributed primarily to the inertial
orces dominant in the high Reynold’s number regime �Dawson et
l. �7��. For the more complex bimodal regime problem, Darcy’s
aw is used to formulate a boundary value problem with Laplace’s
quation as the governing differential equation. The solution to
aplace’s equation in cylindrical coordinates for the pressure dis-

ribution in the fluid is formulated in terms of an infinite series of
essel functions. The solution rapidly converges within the first

ew terms and is readily evaluated numerically. The pressure dis-
ribution is used to find a model for the contribution of the fluid to
he stress-strain response of the fluid-filled foam.

ig. 1 One-regime model of fluid-filled cylindrical foam with
train less than the elastic buckling strain, �<�

el
* . Velocity of

uid „solid arrow…. Relative velocity of fluid with respect to the
elocity of foam „dotted arrow….

(a)

(b)

ig. 2 „a… Bimodal regime model of fluid-filled cylindrical foam
ompressed beyond elastic buckling strain, �

el
* <�<�d. Velocity

f fluid. „solid arrow… „b…. Top symmetric half of bimodal regime
odel of fluid-filled cylindrical foam compressed beyond elas-

ic buckling strain, �
el
* <�<�d, in the reference frame of the den-

ified regime. Relative velocity of fluid with respect to the ve-

ocity of foam „dotted arrow….
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The model is analytically tractable and applicable for strains up
to the densified strain for all grades of low-density, flexible, open-
cell foam. We also develop a more simple model based on the
lubrication approximation to approximate the more comprehen-
sive boundary value model in the limit where the characteristic
dimension in the direction of fluid flow �radial� is assumed to be
much greater than that in the direction of loading �axial�. The
rapid convergence of the boundary value model toward the lubri-
cation, as the aspect ratio is increased, is discussed. The model is
also compared with experimental results of the stress-strain re-
sponse of low-density polyurethane foam filled with glycerol un-
der dynamic loading. The model gives a good description of the
experimental results for foam grades varying from 70 ppi
to 90 ppi and for strain rates varying from 2.5�10−3 to 101 s−1.
The model in this paper is not compared to previous models found
in literature because comparable models with the ability to char-
acterize the stress response necessitate extensive computational
effort and would require dedicating a large portion of the paper to
simply review the models and their applicability.

2 Literature Review

2.1 Stress-Strain Response of Foam. Gibson and Ashby �8�
previously developed a model for the compressive stress-strain
response of reticulated foam, neglecting any contribution of a vis-
cous fluid. The governing equations are given by �8�

�* = �E*, 0 � � � �
el
* �1�

�* = �
el
*, �

el
* � � � �D�1 −

1

D
� + �

el
* �2�

�* =
�

el
*

D
� �D

�D − �
�m

, � � �D�1 −
1

D
� + �

el
* �3�

where �� is the average, uniform stress response of the foam or
the axial compressive force divided by the cross-sectional area of
the foam, E� is the effective modulus of the foam, � is the strain,
taken to be positive in compression and given by the compression
deformation of the foam over the initial height of the foam, �

el
* is

the elastic buckling strain, �
el
* is the elastic buckling stress, and m

and D are constants associated with the microstructure of the
foam. For polyurethane foams, Gibson and Ashby �8� gave the
constant m as unity. The fully densified strain �D is the strain at
which point the cells have collapsed sufficiently that opposing cell
walls touch and further deformation compresses the cell wall ma-
terial itself. The densified strain is given by

�D = 1 − 1.4��
0
*

�s

� �4�

where �
0
* is the initial density of the foam at zero strain, and �s is

the density of the solid from which the foam is made. The con-
stant D is given by

D =
�D

�D − �
p
* �5�

where the strain �
p
* corresponds to the strain at which the stress at

the end of the plateau region begins to exceed the elastic buckling
stress.

2.2 Microstructural Behavior of Foam Under
Deformation. We utilize the model for the microstructural behav-
ior of low-density, reticulated foam under compressive strain pre-
sented by Dawson et al. �7�. The cells of the foam under compres-
sive strain remain elastic up to the linear-elastic buckling strain

�Fig. 1�. As the foam is compressed beyond the elastic buckling
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train, cells buckle and collapse without laterally expanding so
hat Poisson’s ratio in this regime is approximately zero. These
ollapsed regions generate local bands of large deformation in
hich the average diameter of the cells is reduced substantially.
he strain of the collapsed cells in these densified bands is as-
umed to be uniform and given by the densified strain �d, while
he cells outside the densified bands remain in the linear elastic
egime, at strains given by the elastic buckling strain �Fig. 2�.
herefore, for strains less than the elastic buckling strain, the en-

ire specimen is assumed to be uniform and completely within the
inear-elastic regime, which results in a single regime problem.
or strains greater than the elastic buckling strain but less than the
ensified strain, the foam is assumed to be a two-regime problem
ith both a linear-elastic region and a densified region �Fig. 2�.
awson et al. �7� used visual imaging to establish the value of the
ensified strain �d=0.6, for low-density, reticulated polyurethane
oam. It is important to distinguish the densified strain �d from the
ully densified strain �D given by Eq. �4�, where the former effec-
ively represents the onset of the densification regime, and the
atter effectively represents the end of the densification regime.

At any given strain, the volume fractions of the cells remaining
n the linear-elastic regime �

el
* and the densified regime �d are

iven by �7�

�
el
* =

��d − ���1 + �
el
*�

�1 + ����d − �
el
*�

�6�

�d =
�� − �

el
*��1 + �d�

�1 + ����d − �
el
*�

�7�

fter the densified strain is exceeded, cells begin to densify fur-
her, and this model is no longer applicable. Based on this model,
awson et al. developed equations for the local permeability of
pen-cell foams in the linear-elastic regime, ke, at the elastic buck-
ing strain, k

el
*, and at the densified strain, kd, which are given by

7�

ke = Ad0
2�1 − ���1 −

�
0
*

�s

1

�1 − ���
3

for 0 	 � 	 �
el
* �8�

k
el
* = Ad0

2�1 − �
el
*��1 −

�
0
*

�s

1

�1 − �
el
*��3

for � = �
el
* �9�

kd = Ad0
2�1 − �d�2a�1 −

�
0
*

�s

1

�1 − �d��
3

for � = �d �10�

here d0 is the average pore diameter at zero strain, and A is an
mpirical constant given by Brace �9� as 0.025 for a porous mi-
rostructure consisting of tubes with circular cross sections. The
aterial properties of the foam, �

0
*, �s, and d0, are readily avail-

ble and typically specified by the manufacturer. Dawson et al. �7�
lso found that these models are independent of the fluid flow
irection with respect to the compression direction of the foam.

2.3 Flow in Porous Media. The flow of highly viscous New-
onian fluids in low-density, open-cell foam with small cell sizes
typically less than 500 
m� is dominated by viscous forces for
early all achievable strain rates. Therefore, the model presented
n this paper only considers flows in which the viscous effects
ominate the inertial effects. The Reynolds number Re, a measure
f the inertial forces to the viscous forces, can be used to deter-
ine where this model is applicable. A characteristic pore Rey-

olds number based on the average diameter of a pore, d, and

verage velocity through that pore, v, is given by
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Re =
��d



�11�

where � is the density of the fluid and 
 is the viscosity of the
fluid. Based on an analytical study, Comiti et al. �10� proposed a
transition from the viscous dominated regime to the inertial domi-
nated regime at a critical pore Reynolds number of Re*=0.83 for
flow through low-density, porous media. This corresponds well
with the experimental findings of Gent and Rusch �11� for flow
through reticulated foam, Tek �12� for flow through porous rock,
and Dybbs and Edwards �13� for flow through fixed beds of
spheres and cylinders. Therefore, the model presented in this
analysis is taken to be applicable for Re�1 when viscous forces
dominate. Based on a transition number of Re�1, the maximum
strain rate for which this analysis accurately models the flow of a
highly viscous fluid in an open-cell foam can be determined. The
experimental results presented below consist of a dynamic com-
pression glycerol-filled, reticulated foam with an approximate ra-
dius and average cell diameter of 12.7 mm and 235 
m, respec-
tively. At 23°C, the density and viscosity of glycerol are taken to
be �=1260 kg /m3 and 
=1.1 Pa s, respectively. The maximum
strain rate for which the flow will remain in the viscous regime is
found to be approximately 600 s−1. The maximum strain rate of
the foam specimens in the experiments presented is 10 s−1, which
thus lies well within the viscous dominated regime.

3 Analysis

3.1 Fluid Contribution to the Stress-Strain Response. A
comprehensive model for the contribution of the fluid to the
stress-strain response of fluid-filled, elastomeric foam under dy-
namic compression can be developed by extending the model pre-
sented by Dawson et al. �7�. We consider the case of axial com-
pression of a cylindrical foam specimen where the lower plate is
fixed and the upper plate is moving with the magnitude of the

velocity given by 	ḣ	, or the time rate of change of the height of
the foam specimen, as shown in Figs. 1 and 2�a�. The initial
height and radius of the specimen are taken to be h0 and R. As the
foam undergoes compression, the radius of the specimen remains
unchanged while the current height is given as h�t�. This analysis
considers both the response at strains less than the elastic buckling
strain and the response at strains greater than the elastic buckling
strain but less than the densified strain. For strains less than the
elastic buckling strain, the entire specimen is assumed to be uni-
form and completely within the linear-elastic regime, which re-
sults in a single regime problem �Fig. 1�. For strains greater than
the elastic buckling strain but less than the densified strain, the
foam is assumed to coexist in two states with both a linear-elastic
regime and a densified regime �Figs. 2�a� and 2�b��.

3.2 Single Regime Model ���
el
*. We first consider the single

regime problem with strain less than the elastic buckling strain. As
the upper plate compresses the foam, the foam is assumed to
deform uniformly. The relative velocity of the fluid with respect to
the foam in the compression direction �z-direction� is taken to be
zero throughout the foam. Any nonzero relative velocity in the
z-direction would require flow up a pressure gradient in the radial
direction, which violates Darcy’s law. Therefore, neglecting gravi-
tational effects, the pressure gradient throughout the foam in the
z-direction is taken to be zero. Thus, the radial velocity of the fluid
in the linear-elastic regime Ve is uniform in the z-direction and
given as �after Gibson and Ashby �8��

Ve =
− ḣr

2h

, 0 	 � 	 �

el
* �12�

where 
 is the porosity of the foam, r is the radial distance, and h
is the current height of the foam specimen, given by h�t�=h0�1

−��. According to Darcy’s law, the gradient of the pressure across
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he specimen �P /�r for viscous Newtonian flow in the r-direction
s given as �14�

�P

�r
=

− 
Ve

ke
, 0 	 � 	 �

el
* �13�

here 
 is the dynamic viscosity of the fluid and the linear-elastic
ermeability ke is taken to be isotropic. Combining Eqs. �12� and
13� and integrating give

P* =

ḣ

4
hke
�r2 − R2�, 0 	 � 	 �

el
* �14�

here P* is the local pressure minus the atmospheric pressure at
he free surface of the foam. Neglecting inertial effects, a force
alance can be used to find an equivalent average uniform stress
istribution � f applied by the fluid to the top compression plate by
ntegrating the pressure field over the radius giving

� f�R2 =

0

R

	P*	h2�rdr, 0 	 � 	 �
el
* �15a�

� f =
− 
ḣR2

8
hke
, 0 	 � 	 �

el
* �15b�

3.3 Bimodal Regime Model �
el
* ����d. For strains beyond

he elastic buckling strain but less than the densified strain, the
ells of the foam are assumed to be either at the elastic buckling
train or at the densified strain, corresponding to the bimodal re-
ime model previously discussed. The resulting pressure distribu-
ion in both regimes is more complex than in the single regime
roblem and can be solved by means of coupling two boundary
alue problems. In formulating the boundary conditions for this
roblem, a model for the behavior of the foam must be developed.
nder axial compression, densified bands are commonly observed

o initiate in the center of the sample. Our model assumes that the
ensified regime initiates in the center of the foam and symmetri-
ally propagates toward the plates through the elastic buckling of
ne layer of foam �of roughly one cell thickness� at a time, as
hown in Fig. 2�a�. The foam in the elastic regime below the
ensified regime �Region 1� is stationary while the foam in the
lastic regime above the densified regime �Region 3� is moving

ownward with the upper plate at velocity 	ḣ	, as shown in Fig.
�a�. Therefore, the densified regime �Region 2� is moving down-

ard at velocity 1
2 	ḣ	. In the reference frame of the densified

egime of the foam, the problem can be viewed as a completely
ymmetric problem with the elastic regimes �Regions 1 and 3� of
he foam moving toward the densified regime, in opposite direc-

ions, at a speed of 1
2 	ḣ	. Since there is no flow across the center

f the densified regime by symmetry, we analyze only the top half
f the foam in the reference frame of the densified regime, as
hown in Fig. 2�b�. The problem is analyzed as two one-regime
odels with local reference heights 1

2 he and 1
2 hd for the elastic

nd densified regimes, respectively, given as �Fig. 2�

he = �
el
*h �16�

hd = �dh �17�
The boundary conditions at the foam-plate interfaces are no

ux conditions since the relative velocity of the fluid with respect
o the foam is zero. Therefore, according to Darcy’s law, the cor-
esponding pressure gradients in the z-direction are zero at both
oam-plate interfaces. Boundary conditions applied at the inter-
ace between the two regimes are given. The pressure field is
aken to be continuous between the two regimes with a disconti-
uity in the pressure gradient, corresponding to the change in the
ermeability. In addition, a mass flux corresponding to the fluid

xiting the layer undergoing elastic buckling enters both the

41015-4 / Vol. 75, JULY 2008
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linear-elastic and the densified regimes at the interface between
the two regimes. Since the surface area between the layer under-
going elastic buckling and the linear-elastic and densified regimes
is much greater than the surface area of the buckling layer at the
free surface of the foam, we assume all of the fluid exiting the
layer undergoing elastic buckling flows vertically into either the
elastic or the densified regimes and neglect the radial flow in the
buckling layer out of the foam. The boundary conditions for the
two-regime problem are given as

P
d
* = P

e
* = 0 on r = R �18a�

�P
d
*

�z
= 0 on z = 0 �18b�

�P
e
*

�z
= 0 on z = 1

2h �18c�

�P
d
*

�z
=

− �1 − ��
ḣ

2kd
on z = 1

2hd �18d�

�P
e
*

�z
=

�
ḣ

2k
el
* on z = 1

2hd �18e�

P
d
* = P

e
* on z = 1

2hd �18f�

where �, determined below, is a constant representing the fraction
of the flux into the linear-elastic regime, P

e
* is the pressure in the

linear-elastic regime, and P
d
* is the pressure in the densified

regime.
As before, Darcy’s law is assumed to govern the flow of a

viscous Newtonian fluid throughout each regime of the foam and
is given as �14�

�P* =
− 
V

k
�19�

where V is the relative velocity of the fluid with respect to the
foam, and k is the local permeability, which is assumed to be
isotropic. Taking the gradient of both sides of Eq. �19�, applying
continuity for an incompressible Newtonian fluid, and considering
there is no variation in the velocity of the foam within each region
give Laplace’s equation

�2P* =
�2P*

�r2
+

1

r

�P*

�r
+

1

r2

�2P*

��2
+

�2P*

�z2
=

− 
 � · V

k
= 0

�20�
A well known method of solving Laplace’s equation in cylin-

drical coordinates is separation of variables. We assume the pres-
sure is not a function of the circumferential direction ��-direction�
and propose a solution in the form

P* = R�r�Z�z� �21�
Substituting Eq. �21� into Eq. �20� and dividing through by

R�r�Z�z� give

1

R�r�
�2R�r�

�r2 +
1

rR�r�
�R�r�

�r
+

1

Z�z�
�2Z�z�

�z2 = 0 �22�

Since the first two terms are functions of r only and the last term
is a function of z only, Eq. �22� can be broken up into the follow-
ing two equations:

1 d2Z�z�
2 = − � �23�
Z�z� dz
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1

R�r�
d2R�r�

dr2 +
1

rR�r�
dR�r�

dr
= � �24�

here � is a constant. Equation �23� is a standard second order
ifferential equation, which is readily solved. Equation �24� is one
orm of Bessel’s equation and solutions can be expressed in terms
f Bessel functions. Combining these solutions, the solution to
aplace’s equation for the pressure distribution in either regime of

he foam is given as

P
i
* = �

n=1

�

�Anie
knz + Bnie

−knz�J0�knr� �25�

here the index i represents either the elastic regime or the den-
ified regime with indices e and d, respectively, Ani, Bni, and kn
re constants, and J0 is a zero order Bessel function of the first
ind.

Applying both the Neumann and Dirichlet boundary conditions
n Eqs. �18a�–�18f� to the solution to Laplace’s equation given in
q. �25�, the pressure distribution throughout the foam can be
etermined. It is recognized that each term in Eq. �25� will satisfy
he free surface boundary condition given by Eq. �18a� if

J0�knR� = 0 �26�

Equation �26� therefore gives the values of kn, corresponding to
he zeros of the zero order Bessel function. The values can be
etermined from a table of Bessel functions. Typically, these so-
utions converge very quickly, so we assume that only the first five
erms of the infinite series are necessary for most values of h /R.
he corresponding values of kn are given as

k1 =
2.405

R
, k2 =

5.520

R
, k3 =

8.645

R
, k4 =

11.792

R
, �27�

k5 =
14.931

R

To solve for the unknowns Ani and Bni, the following orthogo-
ality principle of zero order Bessel functions is utilized:



0

R

rJ0�knr�J0�kmr�dr = 0 for n � m �28�

here J0�knr� is orthogonal to J0�kmr�. Applying the boundary
onditions given by Eqs. �18b�–�18e� to Eq. �25�, multiplying
ach side by r times a zero order Bessel function, and integrating
llow for each coefficients Ani and Bni to be determined by the
ollowing set of equations:

�Andkn − Bndkn�

0

R

rJ0
2�knr�dr = 0 �29�

�Anekne�1/2�knh − Bnekne−�1/2�knh�

0

R

rJ0
2�knr�dr = 0 �30�

�Andkne�1/2�knhd − Bndkne−�1/2�knhd�

0

R

rJ0
2�knr�dr

=
− �1 − ��
ḣ

2kd

R

rJ0�knr�dr �31�

0
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�Anekne�1/2�knhd − Bnekne−�1/2�knhd�

0

R

rJ0
2�knr�dr

=
�
ḣ

2k
el
* 


0

R

rJ0�knr�dr �32�

Solving Eqs. �29�–�32� gives the coefficients Ani and Bni as

And =
− �1 − ��
ḣRJ1�knR�

2kd�knR�2 sinh� 1
2knhd��J0

2�knR� + J1
2�knR��

�33�

Ane =
�
ḣRJ1�knR�

k
el
*�knR�2�1 − eknhe��J0

2�knR� + J1
2�knR��

�34�

Bnd =
− �1 − ��
ḣRJ1�knR�

2kd�knR�2 sinh� 1
2knhd��J0

2�knR� + J1
2�knR��

�35�

Bne =
�
ḣRJ1�knR�eknhe

k
el
*�knR�2�1 − eknhe��J0

2�knR� + J1
2�knR��

�36�

where J1�knR� is a first order Bessel function. Substituting Eqs.
�33�–�36� into Eq. �25� and applying Eq. �26� give the adjusted
pressure distribution in both the densified regime and the elastic
regime as

P
d
* = �

n=1

�
− �1 − ��
ḣR cosh�knz�J0�knr�
kd�knR�2 sinh� 1

2knhd�J1�knR�
, �37�

�
el
* � � � �d, 0 � z �

1
2hd

P
e
* = �

n=1

�
�
ḣR�ekn�z−�1/2�hd� + ekn�he−z+�1/2�hd��J0�knr�

k
el
*�knR�2�1 − eknhe�J1�knR�

, �38�

�
el
* � � � �d, 1

2hd � z �
1
2h

Applying the remaining boundary condition in Eq. �18f�, the
constant � can be determined numerically. Since the terms of the
pressure distribution given in Eqs. �37� and Eq. �38� decay rap-
idly, a good approximation to � can be given using only the first
term in the series

� =
k

el
* tanh� 1

2k1he�
k

el
* tanh� 1

2k1he� + kd tanh� 1
2k1hd�

�39�

The fraction of the flux into the linear-elastic regime �, as a
function of strain, is given in Fig. 3. A force balance can be used
to find an equivalent uniform stress distribution � f, applied to the
top compression plate by integrating the pressure field in the elas-
tic regime at z= 1

2h over the radius as follows:

� f�R2 =

0

R

	P
e
*	h/22�rdr, �

el
* � � � �d �40a�

� f�R2 = ��
n=1

�
2��
ḣR�2ekn��1/2�he��

k
el
*�knR�2�1 − eknhe�J1�knR���


0

R

rJ0�knr�dr� ,

�40b�

�* � � � �d
el
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� fR
2 = �

n=1

� � 4�
ḣR

k
el
*�knR�2�e−kn��1/2�he� − ekn��1/2�he��J1�knR��

��R2J1�knR�
�knR�

�, �
el
* � � � �d �40c�

� f =
− 2�
ḣR

k
el
* �

n=1

�
1

�knR�3 sinh� 1
2knhe�

, �
el
* � � � �d

�40d�
quation �40d� is taken to be the contribution of the fluid to the
tress-strain response of foam filled with a Newtonian fluid under
ynamic compression in the two-regime model. The dependence
f the response given by Eq. �40d� on strain is built in through the
erms � and he, which are functions of the volume fraction of the
ells remaining in the linear-elastic and densified regimes, and
herefore, are functions of the strain.

3.4 Effect of Tortuous and Anisotropic Foam
icrostructure. A discrepancy is typically found between ana-

ytical models for flow through porous media and experimental
easurements. Models are often adjusted by an empirical con-

tant, which accounts for the tortuous shape of the foam micro-
tructure �15�. Similarly, empirical constants are also used to ac-
ount for the tortuous microstructure of foam in studies of heat
ransfer through porous media. Glicksman �16� determined an ef-
ciency factor of 2 /3 accounted for the effective loss in the ther-
al conductivity of porous media. Furthermore, it is known that

he permeability of low-density, open-cell foam is slightly aniso-
ropic, which may also lead to deviations of the model presented
n this analysis from experimental data. The combination of these
ffects necessitates the addition of empirical constant C to the
odel. Therefore, we propose that the stress contribution of a
ewtonian fluid to the response of a fluid-filled foam under dy-
amic loading is given by

� f =
− C
ḣR2

8
hke
, 0 � � � �

el
* �41�

� f =
− 2C�
ḣR

k
el
* �

n=1

�
1

�knR�3 sinh� 1
2knhe�

, �
el
* � � � �d �42�

here C is a single constant to be determined by regression from
xperiments.

3.5 Squeezing Flow Between Parallel Plates. We now pro-

ig. 3 The fraction of the flux into the linear-elastic regime „�…
s a function of strain in the bimodal model
eed to develop a more tractable model for the dynamic response
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of fluid-filled foam, which can be used to approximate the bound-
ary value model in the lubrication limit where the aspect ratio of
the foam is much greater than unity. We first consider a model for
squeezing flow between two parallel plates in the absence of an
open-cell foam where the lower plate is fixed and the upper plate
is moving similar to Fig. 1. The flow is assumed to be incompress-
ible and locally fully developed with no variation in the circum-
ferential direction ��-direction�. The gravitational effects are as-
sumed to be negligible. Since the flow is assumed to be dominated
by viscous forces, inertial effects can also be neglected. The fol-
lowing velocity profiles are assumed:

Vr = Vr�r,z�, Vz = Vz�z�, V� = 0 �43�

where Vr, Vz, and V� are the velocity components in the radial �r�,
axial �z�, and circumferential ��� directions, respectively. Cou-
pling the equation of continuity with the full Navier–Stokes equa-
tions of motion, this problem is readily solved. The equation of
continuity and the Navier–Stokes equations of motion in the radial
and axial directions reduce to

1

r

��rVr�
�r

+
�Vz

�z
= 0 �44�


� �

�r

1

r

�

�r
�rVr� +

�2Vr

�z2 � −
�P

�r
= 0 �r-direction� �45�


�1

r

�

�r
r
�Vz

�r
+

�2Vz

�z2 � −
�P

�z
= 0 �z-direction� �46�

where P is the local pressure within the fluid. To solve Eqs.
�44�–�46�, we initially impose a lubrication approximation in
which the square of the ratio of the characteristic dimension in the
radial flow direction �R� to that in the axial compression direction
�h� is assumed to be much greater than unity, �R /h�2�1. The
resulting equations of motion are given as


� �2Vr

�z2 � −
�P

�r
= 0 �r-direction� �47�

�P

�z
= 0 �z-direction� �48�

The corresponding boundary conditions are

	Vr	z=h = 0, � �Vr

�z
�

z=h/2
= 0, 	Vz	z=0 = 0, 	Vz	z=h = ḣ ,

�49�

	P	r=R = Pa

where R is the radius of the plates, h is given as the current
distance between the bottom plate and the top plate, Pa is the
atmospheric pressure on the free surface, and the magnitude of the

velocity of the top plate is given by 	ḣ	, where ḣ is the time rate of
change of the distance between the two plates. Solving Eqs. �47�
and �48� gives the pressure profile as

P − Pa =
3
ḣ

h3 �r2 − R2� �50�

The pressure distribution is found to be independent of the z- and
�-directions. We propose that the pressure field given by Eq. �50�
for squeezing, viscous flow is similar to the pressure field for
squeezing flow in a low-density foam. Therefore, in the lubrica-
tion limit, the pressure field for an incompressible, viscous New-
tonian flow through a low-density foam is assumed to be indepen-
dent of the z- and �-directions.

3.6 Stress-Strain Response in the Lubrication Limit. The

model of viscous squeezing flow between two parallel plates de-
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cribed above does not accurately describe the flow field for axial
ompression of a low-density, reticulated foam filled with a New-
onian fluid because of the nonlinear behavior of the foam under
eformation; however, we assume that the pressure field of the
arallel plate model is representative of that found in a lubrication
odel of a fluid-filled foam, such that the pressure field is inde-

endent of the z- and �-directions.
Using this assumption, we extend the model presented by Daw-

on et al. �7� for reticulated foam under compressive strain. We
onsider the case of axial compression of a cylindrical foam speci-
en where the characteristic radius is much greater than the char-

cteristic height. The initial radius and height of the specimen are
aken to be R and h0. As the foam undergoes compression, the
adius of the specimen remains unchanged while the instantaneous
eight is given as h�t�. Compression occurs between two plates
here the lower plate is assumed to be fixed and the magnitude of

he velocity of the upper plate is 	ḣ	, where ḣ is the time rate of
hange of the height of the foam, as shown in Figs. 1 and 2. This
nalysis considers both the response at strains less than the elastic
uckling strain and the response at strains greater than the elastic
uckling strain but less than the densified strain. We first consider
he single regime problem with strain less than the elastic buck-
ing strain. Following the same methodology as used in Eqs.
12�–�14�, the average radial velocity of the fluid, Ve, and the local
ressure, P, in the elastic regime can be determined. As before,
eglecting inertial effects, a force balance can be used to find an
quivalent uniform stress distribution � f, applied to the top com-
ression plate by integrating the pressure field given in Eq. �14�
ver the radius giving

� f =
− 
ḣR2

8
hke
, 0 	 � 	 �

el
* �51�

For strains beyond the elastic buckling strain but less than the
ensified strain, the model is taken to be a two-regime model, as
hown in Fig. 2. Based on the previous assumptions regarding no
xial variations in the pressure field, the pressure drop from the
ny radius r to the outer radius R is assumed to be the same in
oth the elastic region and the densified region. Coupling this
elation between the pressure drops in each region with Eq. �13�
ives

Ve

k
el
* =

Vd

kd
, �

el
* 	 � 	 �d �52�

here Vd is the velocity of the fluid at any radius r in the densified
egion. Using Eq. �52�, mass conservation about a cylindrical vol-
me at any given r gives

Ve =
− ḣk

el
*r

2h
��
el
*k

el
* + �dkd�

, �
el
* 	 � 	 �d �53�

oupling Darcy’s law with Eq. �53� gives the pressure gradient
cross the specimen �P /�r for viscous Newtonian flow �14� as
ollows:

�P

�r
=


ḣr

2h
��
el
*k

el
* + �dkd�

, �
el
* 	 � 	 �d �54�

ntegrating Eq. �54� and applying the atmospheric pressure bound-
ry condition at the free surface give

P − Pa =

ḣ

4h
��
el
*k

el
* + �dkd�

�r2 − R2�, �
el
* 	 � 	 �d �55�

As before, neglecting inertial effects, a force balance can be
sed to find an equivalent uniform stress distribution � f, applied
o the top compression plate by integrating the pressure field over

he radius giving
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� f�R2 =

0

R

	�P − Pa�	h2�rdr, �
el
* 	 � 	 �d �56a�

� f =
− 
ḣR2

8h
��
el
*k

el
* + �dkd�

, �
el
* 	 � 	 �d �56b�

3.7 Convergence of the Boundary Value Model to the
Lubrication Model. In this analysis, we consider the convergence
of the boundary value model to the lubrication model in the limit
of large R /h. A parametric study is used to compare the model
given by Eqs. �41� and �42� for varying ratios of R /h to the lubri-
cation model given by Eqs. �51�, �56a�, and �56b�. The models can
be readily compared if each model is rewritten in the following
form:

� f = − C1�
ḣR2

hke
�, 0 	 � 	 �

el
* �57�

� f = − C1�
ḣR2

hk
el
* �, �

el
* 	 � 	 �d �58�

where C1 is the dimensionless coefficient corresponding to the
numerically evaluated portion of each model, including the em-
pirically derived coefficient C, which will be determined in Sec. 4.
For strains less than the elastic buckling strain, the coefficient C1
for the model presented in this paper is independent of the aspect
ratio of the specimen. Therefore, for strains less than the elastic
buckling strain, the model presented in this analysis is identical to
that presented in the lubrication analysis for all aspect ratios of the
foam, so there is no difference in the coefficients C1, for the
lubrication and boundary value models in this regime. However,
for strains less than the densified strain but greater than the elastic
buckling strain, the coefficient C1 for the model presented in this
paper is a function of the aspect ratio of the foam and the strain
while that for the lubrication model is only a function of strain.
Therefore, the convergence of this bimodal model toward the lu-
brication model with increasing aspect ratio is presented for three
different strains in Table 1. To determine the coefficient C1 for
both the bimodal model presented in this analysis and the lubri-
cation model, the necessary parameters are numerically evaluated
based on the data presented in this analysis. The permeability of
the foam at the densified strain is taken to be 20% of that of the
foam at the elastic buckling strain, kd=0.20k

el
*, the elastic buckling

strain is taken to be �
el
* =0.05, the densified strain is taken to be

�d=0.60, and the porosity is taken to be 
=0.97 �after Dawson et
al. �7��.

4 Experiments

4.1 Materials. Specimens of open-cell, flexible, polyester-
based polyurethane foams �New Dimension Industries, Moon-

Table 1 Table of coefficients for the bimodal model as a func-
tion of the aspect ratio of the foam and for the lubrication
model, corresponding to Eqs. „57… and „58….

R /h C1 ��=0.05� C1 ��=0.30� C1 ��=0.60�

1
2

0.031 0.111 0.827
1 0.057 0.127 0.501
2 0.069 0.132 0.404
4 0.072 0.133 0.378
8 0.073 0.133 0.371

16 0.074 0.133 0.369
32 0.074 0.133 0.368

Lubrication 0.076 0.137 0.380
achie, NJ�, with nominal cell diameters of 175 
m, 210 
m, and
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35 
m based on manufacturers’ specifications �corresponding to
rades of 90 ppi, 80 ppi, and 70 ppi, respectively, were used in
he tests. The densities of the foams ranged from
.0318 g /cm3 to 0.0322 g /cm3. Based on the manufacturer’s
alue of the density of the solid polyurethane ��s=1.078 g /cm3�
he relative density of the foams was taken to be �

0
* /�s
0.03.

sing Eq. �4�, the corresponding fully densified strain is deter-
ined to be �D=0.958. The foam was cut into uniform cylindrical

pecimens with diameter and height, D=25.4 mm and h
12.8 mm, respectively. The dimensions of each sample were
easured using a digital caliper accurate to within 0.01 mm. The
ewtonian fluid used in these experiments is glycerol where the
ensity and viscosity are measured to be �=1260 kg /m3 and 

1.1 Pa /s at 23°C.

4.2 Experimental Procedure. Prior to testing, each sample
as saturated with glycerol. Since the viscosity of glycerol is a

trong function of temperature, it was heated to 40°C before satu-
ation to aid in the saturation process. Samples were compressed
y machine, submerged in glycerol, and uncompressed at
mm /s. Hager and Craig �17� demonstrated that the indentation

orce deflection loss �a measure of the load bearing capability of
exible polyurethane foam� of polyurethane foam compressed to
.75 strain for a short duration of time is almost completely re-
overable. Therefore, a compressive strain of 0.75 was selected
or saturating the sample to minimize the microstructural damage
aused by the filling process. After saturation, the fluid-filled foam
as brought to a steady temperature of 23°C and allowed to

ecover. Based on the data for the recovery of low-density poly-
rethane foam after 0.75 compression presented by Hager and
raig �17�, a recovery time of 2 h was selected.
The compressive stress-strain response of each glycerol-filled

pecimen was measured with the rise direction of the foam paral-
el to the direction of loading, from 0 to 0.60 strain over a range of
train rates from �̇=2.5�10−3 s−1 to 101 s−1. For strain rates of

˙ =1 s−1 or less, a texture analyzer �TA XT Plus, Stable Microsys-
ems, Hamilton, MA� was used at a constant strain rate; for strain
ates greater than �̇=1 s−1, an Instron testing machine �Instron

odel 1321, Instron Corp., Canton, MA� was used at constant
elocity. During testing, the temperature was maintained at
3.0�0.1°C to ensure that the glycerol retains a constant viscos-
ty. Since the flow is assumed to be instantaneously fully devel-
ped, the model presented in this paper is applicable to both con-
tant velocity and constant strain rate loading.

4.3 Experimental Results. A typical plot of the stress-strain
esponse of the 90 ppi foam filled with glycerol loaded at a con-
tant strain rate of �̇=0.01 s−1 is shown in Fig. 4. This strain rate
s assumed to most accurately represent quasistatic loading where
he loading is slow enough that the fluid is not expected to sig-
ificantly contribute to the response of the specimen yet fast
nough that viscoelastic effects in the foam are negligible. Using
ig. 4, the parameters and constants governing the response of the
oam structure, given by Eqs. �1�–�5�, can be determined. A de-
ailed discussion of the microstructural behavior of open-cell foam
nder compressive loading in the direction of the rise direction of
he foam is given by Gong and Kyriakides �18�. They discussed
he complex local and global buckling behavior of low-density,
pen-cell foam. We consider a simplified model for the elastic
uckling strain �

el
*, taken to be the average value of the strain at

hich the behavior of the foam begins to deviate from the linear-
lastic regime and the strain corresponding to the peak stress prior
o the plateau region, as shown in Fig. 4. The elastic buckling
tress �

el
* is taken to be the stress at the elastic buckling strain �

el
*.

s previously discussed, �
p
* corresponds to the strain at which the

tress at the end of the plateau region is equal to the elastic buck-
ing stress, as shown in Fig. 4. The values for the elastic buckling
train �

el
*, the strain at which the stress at the end of the plateau
tress is equal to the elastic buckling stress, and the corresponding
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constant are provided for grades of 70 ppi, 80 ppi, and 90 ppi
foams in Table 2. The final unknown parameter in the model for
the response of the foam structure given by Eqs. �1�–�5� is the
effective modulus. The effective modulus of the foam is found to
depend strongly on the strain rate due to viscoelastic effects in the
quasistatic loading regime and microinertial effects and localiza-
tion phenomenon in the high rate loading regime. The effective
modulus used in Eq. �1� for each grade of foam is found to be well
approximated by E*=X ln��̇ / �̇0�+Y over the strain rates presented
in this analysis where �̇ is taken to be �̇=1 s−1 and the constants X
and Y are provided in Table 2. The elastic buckling strains corre-
spond well with previous literature on low-density foams �8�. To
plot the fluid model, the permeabilities at the elastic buckling
strain and at the densified strain are required. These values are
obtained using the equations for the local permeability and the
corresponding intrinsic permeability at zero strain k0. It has been
observed that large strain compression causes microstructural
damage to low-density foam, altering the permeability at zero
strain �19�. Therefore, the permeability at zero strain for each
specimen was measured after the specimens were subjected to the
compressive filling technique used for saturating the foam with
glycerol. The permeability was measured using the technique
given by Dawson et al. �7�. Table 3 provides the measured per-
meability at zero strain and the corresponding permeabilities uti-
lized in modeling the stress-strain response.

A typical plot of the stress-strain response for the 70 ppi foam
filled with glycerol loaded at a constant strain rate of �̇=1.0 s−1 is
given in Fig. 5. The actual response of the fluid-filled foam is
plotted along with the model for the total contribution to the
stress-strain response, which results from the combination of the
solid contribution given by Eqs. �1�–�3� and the fluid contribution
given by Eqs. �41� and �42�. The solid and fluid contributions are
also given separately to demonstrate their relative contributions.

To fit the constant C given in Eqs. �41� and �42�, a measure of

Fig. 4 Stress-strain response of the 90 ppi foam under a qua-
sistatic load rate of �̇=1Ã10−2 s−1. „i… Strain corresponding to
deviation from linear-elastic regime. „ii… Strain corresponding
to peak stress before the plateau region.

Table 2 Static parameters and constants. The elastic buckling
strain �

el
* , the strain at which the stress begins to exceed the

plateau stress �
p
*, and the constants X, Y, and D „Eq. „5……

Foam grade
�ppi� �

el
* �

p
*

X
�Pa�

Y
�Pa� D

70 0.058 0.55 1.07E+04 1.35E+05 2.3
80 0.049 0.54 1.28E+04 1.70E+05 2.3
90 0.057 0.55 1.09E+04 1.42E+05 2.3
Transactions of the ASME
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he goodness of fit is established. The measure for the goodness of
t R2 is taken to be the sum of the squares of the difference
etween the experimental values and the average experimental
alue divided by the sum of the squares of the difference between
he experimental values and the predicted values. This measure of
he goodness of fit was maximized, over the sample of experimen-
al data discussed in the following sections, to establish the em-
irical constant.

In Fig. 6, we show the stress response of the 70 ppi foam filled
ith glycerol at �=0.60 strain, corresponding to an aspect ratio of
.5, plotted against the strain rate. Each data point is the average

able 3 Permeability data for precompressed foam. The per-
eability at zero strain k0, for each grade of foam, is given after

eing subjected to the saturation process. The permeabilities
t the elastic buckling strain and densified strain are deter-
ined using the equations supplied in Eqs. „8…–„10…

Foam grade
�ppi�

k0
�1�10−9 m2�

k
el
*

�1�10−9 m2�
kd

�1�10−9 m2�

70 5.82 5.45 1.28
80 5.21 4.93 1.04
90 4.68 4.39 0.85

ig. 5 Stress plotted against strain for 70 ppi foam. Experi-
ental data „�…. Contribution to the stress response of fluid
odel given by Eqs. „41… and „42… „---…, the solid model given by
qs. „1… and „3… „–·–…, and the total model „––….

ig. 6 Stress plotted against strain rate for 70 ppi foam at �
0.60. Experimental data „�…, the contribution to the stress re-
ponse of fluid model given by Eqs. „41… and „42… „—… and solid

odel given by Eqs. „1… and „3… „---….
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of three experiments with error bars corresponding to 1 standard
deviation. The error bars for most data points are not apparent
since they are smaller than the size of the data points. The fluid
and solid contributions of the stress, given by Eqs. �2�, �3�, and
�42�, respectively, are plotted separately showing their relative
contributions. In Fig. 7, we show the stress at �=0.30 strain and
�=0.60 strain, corresponding to aspect ratios of 1.4 and 2.5, re-
spectively, for all three grades of reticulated foam filled with glyc-
erol plotted against the strain rate. Each data point is again the
average of three experiments with error bars corresponding to 1
standard deviation. The total contribution to the stress-strain re-
sponse, which results from the combination of the solid contribu-
tion given by Eqs. �2� and �3� and the fluid contribution given by
Eq. �42�, is also shown in Fig. 7.

All of the data used to generate the plots in Fig. 7 are used to
determine the empirical constant C. Using each data point along
the 0.3 and 0.6 strain curves, which consist of the average of three
experimental points, for all three foam grades, the empirical con-
stant is determined to be C=0.59. Based on the data in Fig. 7, the
R2 values for each grade of foam at both �=0.30 and �=0.60 are
given in Table 4; it is clear that the model describes the data well
up to the densified strain for a range of foam grades and strain
rates, as shown in Fig. 7. The empirical constant C, which prima-
rily accounts for the tortuous and anisotropic microstructure of the
foam, is independent of all of the parameters considered in this
analysis. Figure 7 supports this initial assumption, demonstrating
that C is independent of the cell size of low-density foam, the
aspect ratio of the foam, the strain imposed on the foam, and the
strain rate applied to the foam. Additional experimental studies,
not presented here, that vary the aspect ratio of the foam also
support this proposal. Using C=0.59, the model given by Eq. �42�
accurately describes the data for fluid-filled foam samples over
several orders of magnitude of strain rate with an aspect ratio of
approximately 10 at �=0.60.

5 Discussion
A boundary value model for the contribution of viscous New-

tonian fluid flow to the stress-strain response of a fluid-filled foam
under dynamic compression is given by Eqs. �41� and �42�. The
model governing viscous flow in the bimodal regime of the foam
is given in the form of an infinite series of Bessel functions. As
expected, this solution converges rapidly with an increasing num-
ber of terms, such that the boundary value model is readily evalu-
ated numerically with only the first few terms. Based on the per-
meability studies of Dawson et al. �7�, the models presented in
this analysis are taken to be applicable for all grades of low-
density foam and independent of whether the orientation of the
rise direction of the foam is perpendicular or parallel to the direc-
tion of fluid flow. As previously discussed, the models in this
analysis assume that the flow is dominated by viscous forces,
which is shown to be the case for nearly all achievable strain
rates. The boundary value model further assumes an instantaneous
change in the velocity field of the foam at the elastic buckling
strain �

el
*, which is the strain at which the model transitions from

the single regime to the bimodal regime. The transition behavior
between these two regimes is neglected, which results in a small
discontinuity in the stress response of the boundary value model.
However, as the aspect ratio of the foam R /h is increased, the
effect of the assumed velocity field of the foam becomes negli-
gible, and the boundary value model rapidly approaches a con-
tinuous solution. In addition, with increasing R /h, the bimodal
model becomes independent of the location of the densified bands
of the foam.

The boundary value model presented in this analysis is found to
describe the experimental results presented in this paper for foam
grades varying from 70 ppi to 90 ppi and strain rates varying
from �̇=2.5�10−3 s−1 to 101 s−1 well. All of the strain rates in

these experiments satisfy the viscous flow requirements of the
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models with Re�1. The maximum Reynolds number in the ex-
periments was found to be Re=0.017, which corresponds to strain
rate of �̇=10 s−1 in a 70 ppi foam with an average cell diameter of
235 
m.

Figure 5 shows the individual contributions of both the solid
model and the boundary value fluid model to the model of the
total stress-strain response of the 70 ppi fluid-filled foam. The
total model fits the data well over the entire range of interest,
slightly overestimating the response at low strains. The previously
discussed discontinuity in the models near the buckling strain is
evident but shown to be negligible. Furthermore, Figs. 6 and 7
demonstrate that the boundary value model is representative of the
actual response of the fluid-filled foam at both �=0.30 and �
=0.60 for a range of foam grades and strain rates. The standard
deviations of nearly all of the data are observed to be very small,
on the order of the size of the data point. Overall, the goodness of
fit measure given in Table 4 demonstrates that the boundary value
model fits the data well for all grades of foam at both �=0.30 and
�=0.60 for the range of strain rates considered. The boundary
value model also fits the data well over all strains less than the
densified strain, but the strains of �=0.30 and �=0.60 were se-
lected as representative strains. The empirical constant C=0.59
primarily accounts for the tortuous and anisotropic microstructure
of the foam and is found to be similar to the efficiency factor of
2 /3 found by Glicksman �16� in his study of the thermal conduc-
tivity of porous media. Furthermore, the empirical constant is pro-
posed to be independent of all of the parameters considered in this
analysis. Figure 7 supports this proposal demonstrating that C is
independent of the cell size of low-density foam, the aspect ratio
of the foam, the strain of the foam, and the strain rate of the foam.

While the boundary value model is readily evaluated and com-
pared with experimental results, extending it to a more advanced
study of dynamic loading of non-Newtonian fluid-filled foam is
challenging. However, this model is useful in validating the appli-
cability of the more tractable lubrication model, which assumes
the radius of the foam is much greater than the height of the foam.
The boundary value model is found to converge rapidly to within
5% of the lubrication model for aspect ratios greater than 4
�R /h�4�. The small discrepancy between the coefficient for the
lubrication model and that for the boundary value model may be
attributed to the fact that the lubrication model assumes a uniform
radial flow, neglects pressure gradients in the z-direction, and ne-
glects the flow in the z-direction; whereas the boundary value
model does not make these assumptions.

Table 1 demonstrates that as R /h is increased, the numerical
coefficients at �=0.05 and �=0.30 strain increase asymptotically
while the coefficient at �=0.60 strain decreases asymptotically. At
any given strain, the coefficient C1 is governed primarily by the
following two factors: the aspect ratio of the foam sample and the
distance between the collapsing band and the compression plate.
For all strains as R /h is decreased, the dependence of the stress,
given by Eq. �58�, on R /h also decreases. In the limit of very
small R /h, the stress contribution of the fluid becomes completely
independent of R /h.

At �=0.60 strain, the stress is independent of the distance be-
tween the collapsing band and the compression plate �1 /2he�

Table 4 The measure for the goodness of fit of the boundary
value model at 0.30 and 0.60 strains for each grade of foam

Foam grade
�ppi�

R2

0.30 strain 0.60 strain

70 0.97 0.99
80 0.99 0.99
90 0.95 0.99
ig. 7 „a… Stress plotted against strain rate for 70 ppi foam.
xperimental data at 0.60 strain „�…, and 0.30 strain „�…, re-
pectively. Model given by combining Eqs. „2… and „3… with Eq.
42… at �=0.30 „—… and �=0.60 „---…. „b… Stress plotted against
train rate for 80 ppi foam. Experimental data at 0.60 strain „�…,
nd 0.30 strain „�…, respectively. Model given by combining
qs. „2… and „3… with Eq. „42… at �=0.30 „—… and �=0.60 „---…. „c…
tress plotted against strain rate for 90 ppi foam. Experimental
ata at 0.60 strain „�…, and 0.30 strain „�…, respectively. Model
iven by combining Eqs. „2… and „3… with Eq. „42… at �=0.30 „—…

nd �=0.60 „---….
since the collapsing band is effectively always at the interface
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etween the compression plate and the foam. Therefore, it is ex-
ected that as R /h decreases, the coefficient C1 would increase
roportionally, such that the stress is independent of R /h in the
imit of very small R /h. However, at 0.05 and 0.30 strains, the
istance between the collapsing band and the compression plate
1 /2he� is also an important factor, which strongly influences the
oefficient C1. As R /h is decreased, the relative distance between
he fluid in the collapsing band and the compression plate �1 /2he�
o that of the fluid in the collapsing band and the free surface
�R� increases; therefore, it is expected that the overall stress on
he compression plate would decrease. For lower strains, this ef-
ect is more pronounced since the band is effectively farther from
he compression plate, explaining the phenomenon observed in
able 1.
In the limit that R /h�1, the effect of the distance between the

ollapsing bands and the compression plate is found to be incon-
equential for all strains, and the stress becomes independent of
he vertical location of the collapsing bands. Table 1 demonstrates
hat the model presented in this analysis becomes approximately
ndependent of the aspect ratio of the foam for R /h�4. As ex-
ected, this indicates that the lubrication model provides a good
pproximation to the flow for a large range of R /h values. Over-
ll, the convergence of the more comprehensive boundary value
odel toward the lubrication model strongly supports the lubrica-

ion analysis. This is an important finding since the lubrication
odel is readily extended to more complex analyses, such as the

tudy of the stress-strain response and energy absorption capabili-
ies of a foam filled with a rate-dependent non-Newtonian fluid
nder dynamic loading.

Conclusion
In this paper, a comprehensive boundary value model for the

ontribution of viscous Newtonian fluid flow to the stress-strain
esponse of a fluid-filled, elastomeric foam under dynamic com-
ression is presented. Experimental results strongly support this
odel for a variety of foam grades over several orders of magni-

ude of strain rate. A simple explicit analytic solution based on a
ubrication approximation is also presented. The robust boundary
alue model is found to converge rapidly toward the lubrication
odel as the aspect ratio of the foam is increased. This validation

f the lubrication model is important since it is more readily ex-
ended to more complex analyses, such as the dynamic response
f foam filled with a non-Newtonian fluid. Furthermore, using a
ubrication model, both the Newtonian and non-Newtonian mod-
ls can be extended to determine the energy absorption capabili-
ies of a fluid-filled foam under dynamic loading, which is critical
o the development of composite armor capable of absorbing en-
rgy and impeding shock waves.
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Appendix
The velocity profiles in the absence of foam for the analysis in

Sec. 3.5 are given as

Vr�r,z� =
3Ḣr

H
�� z

H
�2

−
z

H
� �A1�

Vz�r,z� = 6Ḣ�1

2
� z

H
�2

−
1

3
� z

H
�3� �A2�
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