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Abstract

We investigate the stability of steady planar stagnatiowdlof a dilute polyethylene
oxide (PEO) solution using T-shaped microchannels. Theiggeflow rate control and
well-defined geometries achievable with microfluidic fabtion technologies enable us to
make detailed observations of the onset of elasticallyedriflow asymmetries in steady
flows with strong planar elongational characteristics. \Masider two different stagnation
flow geometries; corresponding to T-shaped microchannéts and without, a recircu-
lating cavity region. In the former case, the stagnatiompis located on a free stream-
line, whereas in the absence of a recirculating cavity thgrstion point at the separating
streamline is pinned at the confining wall of the microchanhbe kinematic differences
in these two configurations affect the resulting polymetiiess fields and control the criti-
cal conditions and spatiotemporal dynamics of the regultincoelastic flow instability. In
the free stagnation point flow, a strand of highly-orientedymeric material is formed
in the region of strong planar extensional flow. This leads teymmetry-breaking bi-
furcation at moderate Weissenberg numbers followed by tieetoof three-dimensional
flow at high Weissenberg numbers, which can be visualizedgusireak-imaging and
microparticle image velocimetry. When the stagnation pdnpinned at the wall this
symmetry-breaking transition is suppressed and the flomsitians directly to a three-
dimensional time-dependent flow at an intermediate flow. rEite spatial characteristics
of these purely elastic flow transitions are compared gtaiviely to the predictions of
two-dimensional viscoelastic numerical simulations gsisingle-mode simplified Phan-

Thien-Tanner (SPTT) model.
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1 Introduction

The continuous miniaturization of flow geometries achiésahrough microflu-
idic fabrication techniques has multiple processing ath@es including decreased
manufacturing costs, fast response times, minimal fluidimas, precise control
over multiphase morphology and increased separationestfigi[1, 2]. In particu-
lar, microfluidic technology is very relevant to industréesociated with genomics,
construction of biosensors and lab-on-a-chip diagnostiaddition to ink-jet print-
ing [3-5]. Microfluidic technology has also shown its renable potential in the
field of biochemical analysis and constitutes a valuabléftocseparation or mix-
ing, automation and integration of complex chemical anddgical assays [6, 7].
In these applications, many of the fluids of interest are NemAonian in character
and understanding their flow behavior at the microscale pomant to the design

and optimization of the resulting microfluidic devices.

The wide range of deformation rates that can be attainedugr precise control of
the imposed fluid flow rate and the small characteristic lersgales of the geom-
etry) coupled with the ability to directly image the resuogfiflow field also make
microfluidic devices good platforms for constructing rhexters and flow cham-
bers that enable a systematic investigation of non-Newatoeffects. An overview
of several canonical flow types and the challenges assdaiatk quantitative mi-

crofluidic rheometry can be found in [8]. In the present waokle focus on two

different T-shaped microchannels that are specially coostd to enable an in-
vestigation of viscoelastic effects on the stability ofraelongation flows. The
channels are fabricated in such a way that the characteeat#gnation flow near

the separating streamline is modified by the presence, @nabs of a rectangu-
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lar cavity. The recirculating flow in this cavity is sepahteom the free stream
by a bounding streamline and this changes the local charaictiee flow near the
stagnation point. To illustrate this graphically, we shawHigures 1(a) and 1(b)
computational predictions of the expected streamlinestieady viscous flow of a
Newtonian fluid within a T-shaped microchannel with and witha recirculating
cavity at Re = 2.05x1073. In the absence of the cavity, the stagnation point is lo-
cated along the symmetry line at the intersection point efdiannel sidewall and
the separating streamline. As a consequence of the noalipdary condition and
continuity, the local velocity vector and all velocity gradts are zero at the stag-
nation point. By contrast, the presence of the cavity anditftt®nstrained dividing
streamline leads to a non-zero velocity gradient at thelrorgFig. 1(a) and the
stagnation point is free to move. If we denote the locatiothefpinned stagnation
point as the origin of the laboratory frame (as shown in F{ip))lthen the pres-
ence of a free or “unpinned” stagnation point leads to a sweatical displacement

towards negativg-values inside the cavity.

Both of these flow geometries feature curved streamlinesganérate a (nonho-
mogeneous) planar extensional flow near the stagnatioh gdiese conditions can
promote purely elastic flow instabilities [9, 10]. The T-aina&l geometry has also
been suggested as a suitable geometry for constructingraftuidic rheometer if
the total pressure drop associated with steady symmetwodi@ non-Newtonian
fluid is measured [11]. The presence, or absence, of thecudaiing cavity thus
allows us to focus on the global kinematic consequenceséiatt from fluid vis-
coelasticity and from local changes in the stagnation flayiore Furthermore, the
identical upstream flow conditions in each geometry resnleswell-defined pre-
shearing history which can be important if a viscoelastiiclfisistudied in place of a

simple viscous liquid. Similar elongational flows with “pi@d” and “free” stagna-



tion points arise in the wakes of objects such as cylindehgies and behind rising
bubbles[12, 13]. In the case of arising bubble, fluid eléstleads to the formation
of a cusp and a symmetry-breaking instability that can beesl experimentally
[14] and studied computationally [15]. The unsteady Lagran nature of the flow
near the rising bubble however complicates the systemagpieranental study of

the wake near a free stagnation point.

Creeping flows in, and past, cavities have been studiedextdnat the macroscale.
Pan and Acrivos [16] explored the evolution in the vortexesgths as the cavity
depth was changed and Taneda [17] performed an extensiteguaphic study of
the effects of the cavity breadth to height ratio on the fdramaof vortices inside
a cavity using viscous Newtonian liquids such as siliconeand glycerine. The
work of Perera et al. [18] is an example of early numericalknvam the effect of
elasticity for steady 2D flow in macroscale L-shaped andapsd channels. They
showed that elasticity only leads to slight deviations ia streamline patterns at
low Reynold numbers compared to the Newtonian case. Thg stuNishimura
and coworkers [19] represents an early combined experahamtl numerical study
of 2D viscoelastic flow in T-shaped channels using streakfimaging. They studied
the effects of elasticity by comparing the flow patterns ferszoelastic polyacry-
lamide aqueous solution and a Newtonian dextrose syrupedesidh aluminum
powder. They experimentally observed a lip vortex at themgant channel cor-
ners in the flows of the polyacrylamide solution. Numeridgadidations with the
upper-convected Maxwell model &t: < 0.2 were able to capture qualitatively
the viscoelastic distortion in the streamlines, but notftrenation of a lip vortex.
Binding et al. [20] also investigated viscoelastic cregiow in a T-junction and
past a cavity. They showed that compared to the Newtoniammstric behavior,

the flow of a highly elastic Boger fluid past a cavity clearlgame asymmetric be-



yond a critical flow rate. Using the same flow geometry, th&atad a stagnation
flow by having flow in the two opposing arms of the T-junctiohey observed the
formation of lip vortices in the case of the flow of a sheanthg polymer solu-

tion while such vortices were absent for the Boger fluid. la pnesent study, we
aim to characterize the onset of elastic instabilities imilsir geometries but at the

microscale.

Utilizing microfluidic channels to explore such flows offéhe possibility of ex-
ploring new regimes of parameter space, that are not reaciilgssible in macroscale
experiments [21]. The relevant dimensionless groups usetharacterize a vis-
coelastic stagnation flow are the Reynolds numbgi) (the Weissenberg number
(W+) and an elasticity numberr{l = Wi/Re). An appropriate Reynolds number
can be calculated according fte = (pV' D;,)/(n,), whereD,, represents the hy-
draulic diameter of the flow channel apdandr, represent the fluid density and
zero-shear rate viscosity, respectively. Viscoelasfieots in the geometry can be
characterized using a Weissenberg nunibeér= \y wherey = V' // is an appro-
priate estimate of the characteristic deformation ratetas the average velocity
at the channel inle/, and the relevant lengthscaleontrolling the kinematics of
the stagnation region. The elasticity numi&r= Wi/Re = Ao /(pfD},), defined
as the ratio of the Weissenberg to Reynolds number, is a meeakthe relative im-
portance of elastic to inertial effects, and depends onltherexperimental geome-
try and the material properties of the fluid being studiedhvihe small geometric
length scales characteristic of microfluidic geometriés jfossible to probe strong
elastic effects in the absence of inertial effects; for eglenm the micro-fabricated
planar contractions of Rodd et al. [21, 22], elasticity nemsbas high a%’l = 89

could be achieved.

Because inertial effects are small, microfluidic devices @lrovide good platforms



to study “purely elastic instabilities” that can arise fréime combination of curved
streamlines and large tensile viscoelastic stresses [#3,The time-dependent
three-dimensional flow that sometimes ensues followingbaka purely elastic
flow instability can greatly enhance the mixing efficiencyaahicrofluidic device

at small Reynolds number [25]. There have been few studidattothat have sys-
tematically investigated the dynamics associated witkdreastic nonlinearities
on the microscale [21, 26—30]. With microfluidic computimgnind, Groisman et
al. were the first to exploit elastic instabilities in desigmna nonlinear fluid resistor,
a bistable flip-flop memory element [28] and a flow rectifier][ZReviews of ef-

forts made to develop nonlinear fluidic logic elements udilegvtonian fluids such

as water or air can be found in [31, 32].

The T-channel design considered in the present work is olloclosely con-
nected to the “cross-slot” configuration which has been eseaédnsively in rhe-
ological studies of steady planar elongation flow [8, 33,. 3d]either geometry,
the combination of streamline curvature and large extersideformations near
the stagnation point may be anticipated to result in largeoglastic effects within
the flow. The loss of symmetry in a microfluidic cross-slot flatsigh flow rates
is evident in the micellar experiments of Pathak and HudSd. [Arratia et al.
have documented the existence of a purely elastic indiabifior the case of the
cross-slot flow of a polyacrylamide dilute solution [30].ejhobserved two distinct
flow regimes at very small Reynolds numbers: (< 1072): a symmetry-breaking
bistable bifurcation foili ~ 4.5 followed by broadband temporal fluctuations at
Wi 2 12.5. Very recently these observations of viscoelasticragtny-breaking
have been validated numerically by Poole et al. [35]. By gi$ie upper-convected
Maxwell model they demonstrated the purely elastic nat@ithe flow transition

and reported that inertia had a stabilizing effect, delgyhre onset of the steady



asymmetric flow to highev/i.

In the present work we seek to compare, quantitatively, exy@ntal observations
and numerical computations of this viscoelastic symmbteaking transition. By
selecting T-channels with, and without, recirculatingittes we can explore the
importance of the local planar elongational flow near a “fiea&d “pinned” stagna-
tion point, respectively. The experiments are performeith &@iwell-characterized
dilute aqueous solution of monodisperse PEO and the 2D latiloos are per-
formed using a prototypical nonlinear constitutive modehvparameters selected
to fit the viscometric properties of the test fluid. In Sectiynve describe the fab-
rication of the test geometries, the imaging techniquesth@dharacterization of
the test fluid rheology. In Section 3, we briefly describe thmarical method and
then investigate the magnitude of the “birefringent stiahdt is generated in the
two different planar elongation flows. In Section 4, we comepstreak-imaging
measurements and numerical calculations of the streasrianeeach microfluidic
geometry as the flow rate (and corresponding Weissenbergenin incremented.
In the presence of a recirculating cavity, a symmetry-hrepkkansition is observed
experimentally and predicted computationally at a critWaissenberg number. By
contrast, in the absence of a cavity, the flow near the digidtneamline remains
stable and symmetric to substantially higher flow rates figefosing stability to

three-dimensional and time-dependent perturbations.

2 Experimental

In order to perform quantitative comparisons between expartal measurements
and numerical computations, it is essential to carefulliexdeine all geometri-

cal and rheological parameters as well as clearly defineogpipte dimensionless



measures of elasticity and inertia.

2.1 Microfluidic Stagnation Flows and Dimensionless Groups

The appropriate Reynolds number for this pressure-drivemicel flow is calcu-
lated according tdRe = (pQDy,)/(hdno), where D), represents the hydraulic di-
ameter,D, = 2dh/(d + h), h andd are respectively the channel width and depth
as shown in Fig. 2. The material propertigandrn, represent the solution density
and zero-shear rate viscosity, respectively, and are givéable 1. We character-
ize the elastic effects in the stagnation flow using a Welssennumber defined
asWi = AcaperY = AcaBerV /(7/2) = (2Q\caer)/(dh?), Wherec.per is the
relaxation time determined from CaBER measurements (edti& 2.3),5 is the
shear rate based on the average velocity at the channe,ivilet Q/(dh) and a
representative length scale for the local stagnation flaygssty = //2. The elas-
ticity numberFEI, defined as the ratio of the Weissenberg to Reynolds nunsber, i
measure of the relative importance of elastic to inertida$: £l = Wi/ Re. El
depends only on the experimental geometry and the mateojpépies of the inves-
tigated fluid. In our work, the elasticity numbgii= 8.61x 1(? is very large so that
the elastic stresses dominate compared to inertial effetss, our flow geometries
allow us to probe elastically-driven flow transitions andtabilities that arise due
to the presence of bending streamlines and large tensdeelistic stresses in the

absence of inertia [23, 24].



2.2 Microchannel Geometry and Fabrication

The relevant variables and dimensions of the micro-fabettahannels used in this
study are given in Fig. 2 for the case of the microchannel witbcirculating cavity.
The working fluid is injected at the inlets (A) and (B) and exttie channel through
the outlet (C). The fluid is directed to the entrances of thetre¢ T-junction circled
in the figure by means of two entry channels of lengil=7 mm. It then enters
each side of the T-shaped region and travels a distapeg mm before reaching

the stagnation point (S.P.) region.

The channel widtth and depth/ are both equal to 50m. For the entire range of
Reynolds numbers investigated in this work, this distabices more than 30 times
larger than the entrance length needed to reach fully developed Newtonian flow,
which is given byL. = D,[0.6/(1 4+ 0.035Re) + 0.056Re] = 30um, where the
hydraulic diameteD),, coincides with the channel widthfor our particular geom-
etry [36]. The square cavity has a length equal tand the corners of the outflow
channel are rounded with a radifis= 25,m in order to guarantee a smooth tran-
sition between the inflow and outflow regions. The T-shapedtechannels were
fabricated from polydimethylsiloxane (PDMS) using sativdgraphy techniques
and SU-8 photoresist molds [37—40]. Light micrographs efrtlicrochannels with
and without a cavity are shown in Figs. 3(a) and 3(b), respalgt As discussed in
Section 1, the two channel designs differ in the locatiorhefdtagnation point: in
the presence of the cavity it sits on a “free” streamline wherit is pinned on the

wall of the channel without the recirculating cavity.

A detailed description of the microchannel fabricationgaure is given elsewhere
[41]. The use of a contrast enhancement material (CEM388Bi8;Etsu MicroSi)

allows us to achieve well-defined geometries as shown in Kig) with almost
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perfectly-vertical channel sidewalls (the tapering angleniformly less than Sas

illustrated in Fig. 4(b)).

2.3 Test Fluid Rheological Characterization

The test fluid used in the present experiments is a dilutenpetysolution of a
high molecular weight polyethylene oxide (0.075 wt.%) wathelatively narrow
molecular weight distribution (PEQ\/,, = 2 x 10° g/mol, polydispersity index
M, /M, = 1.13 [22], Aldrich) in a glycerol/water mixture (60/40 wt.%). €lrhe-
ological properties of the PEO solution were characteriredoth steady shear
and transient uniaxial extension. The polymeric solutiod aolvent zero-shear
rate viscosities were obtained from viscometric experitmé@na double gap Cou-
ette geometry using a controlled stress rheometer (AR-@2n$truments). The
steady shear data were measured aC2f®r shear rates in the rande< § <
10,000s~! and are presented in Fig. 5. The PEO solution has a zero-sitearis-
cosityn, = 19.5 mPa's and is weakly shear thinning for shear rated5 s~!. This
gives a coarse estimate of a characteristic relaxation ime 1/15s™! = 67ms
which is in good agreement with the relaxation time deteediftom CaBER mea-
surements in Fig. 6. The zero-shear rate viscosity of theesbisns = 9.8 mPas
resulting in a total polymeric contribution to the zero-aheate viscosity of)p =
9.7 mPas. The predictions of the SPTT model are shown by thelashed and

solid lines, respectively, far = 0 (Oldroyd-B model) and = 7.0 x 107°.

Also represented in Fig. 5 are the lower and upper limits efsthear data based on
the rheometer torque transducer specifications and thé oh$aylor instabilities
as described in [21]. According to a linear stability anady42], the critical Taylor

number at the onset of inertial instabilities for a Newtonfluid in the Couette
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geometry is given by’a.,;; ~ 2Re* ¢ = 3400, whereRe denotes the Reynolds
number and) = d/ R, is the ratio of the gap width and the radius of the inner
cylinder R;,,. The Reynolds number for circular Couette flow is defined?as=
pQin Rind /0 (), whereQ),,, represents the angular velocity of the inner cylindés,

the density and(4) is the (shear-rate-dependent) viscosity of the PEO saoiufior

R, =22 mm (outer radius of the rotog = 0.38 mm, = 1196kg/m?, the criterion

for the onset of Taylor instabilities can be rewritten@s) = 5.5 x 1077 5, where
nisin Pas and in s~!. This equation is represented by the dashed line labeled (ii

in Fig. 5.

The characteristic relaxation time of the solution was wheteed from capillary
breakup extensional rheometry (CaBER) measurementsussrated in Fig. 6.

A thorough description of this technique can be found in g&-—Following the
nomenclature of [45], the CaBER geometrical configuratisaduin the present
study was such that the initial height wag = 2.11 mm (\¢=hq/(2Ry)= 0.35)
and the final aspect ratio was; = 1.57, corresponding to an imposed step strain
of e = In(Ay/Ay) = 1.50. In Fig. 6, the blue (thick) solid line represents the fit
to the measured evolution of the filament diameter using glesiexponential de-
cay and based on the Oldroyd-B model [44]. The resultingkeglan time equals

)\CaBER = 66 =4 ms.

Also shown in Fig. 6 are the results of the 1D calculation$wlie SPTT model.
This model (see Section 3.1 for details) contains a singldimear constitutive
parameterd) which controls the magnitude of strain-hardening in thieesional

viscosity of the fluid {z ~ 2np/c for smalle [46]). As the polymer chains in the
thinning thread approach full extension, the filament radia longer thins expo-
nentially; but instead decreases linearly in time [47].sldeviation from exponen-

tial behavior allows us to determine a bound on the range lokgaofs character-
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izing the 0.075 wt.% PEO solution. From the data and simutatshown in Fig. 6,
it is clear that the PEO molecules are highly extensible with ¢ < 7.0 x 1075,
Any further increase im restricts the region of exponential decay and reduces the

predicted time to breakup to unphysically small values.

As observed in [21, 22, 47] and due to “self-concentratidiféats, the relaxation
time for polymer solutions determined in CaBER measuremensignificantly
greater than the relaxation time determined accordingg@timm theory, which is

expressed by [48]:

[ Muns

A imm = F 5 1
z NoknT 1)

where M,, is the polymer molecular weighty, is Avogadro’s numberky the
Boltzmann constant]" the absolute temperature, afgd is the intrinsic viscos-
ity determined from U-tube capillary viscosimeter expegits in [22]. The pref-
actor F' can be approximated by the Riemann zeta function= ¢~'(3v) =
1/32%2,(1/#), in which v represents the solvent quality exponent and is-

0.55 for PEO in glycerol/water so that~ 0.46 [48].

All of the fluid rheological properties are summarized in [€ab. The density was
determined using calibrated 5 mL density flasks in [22]. Therlap concentration
¢* was calculated according to the expression= 0.77/[n] (see Graessley [49]
for discussion) and is equal t6 ~1300 ppm. On this basis, the 0.075 wt.% PEO
solution can thus be considered as dilute:{ = 0.68). From independent measure-

ments of the shear rheology, we also fimd — ns)/ns = 9.7/9.8 < 1.
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2.4 Flow Visualization

The microparticle image velocimetry experimental setupscsts of a CCD camera
(mvBlueFOX-120a, Matrix Vision GmbH), an inverted micrope (Nikon, Eclipse
TE 2000-S) equipped with a G-2A filter cube (exciter, 535-88@ dichroic, 565
nm; long-pass emitter, 590 nm) and an external continugimr fource (mercury
lamp, illumination wavelength: 532 nm). The solution is tedthe channel inlets
using Tygon tubing by means of two twin syringe pumps (New Bump Sys-
tems, Inc.) and two Hamilton gastight syringes (bRDQdiameter: 3.26 mm). The
PEO solution is seeded with 1. diameter fluorescent tracer particles (Nile Red,
Molecular Probes, Invitrogen; Ex/Em: 520/580 nt;= 0.02 wt.%), which are il-
luminated by the light source and imaged through the miaps®bjective (28,
0.5 N.A.) onto the CCD array of the camera at a frame rate df fp8and exposure

time of about 250 ms.

Sodium dodecyl sulfate (SDS) from Sigma-Aldrich was adaetthé PEO solution
at a concentration afsps = 0.1 wt.% in order to inhibit the fluorescent tracers from
sticking onto the polydimethylsiloxane microchannel wallhe addition of SDS
was shown to have a negligible influence on the value of tlexagion time\c.ger

measured from CaBER experiments as well as on the valuegtofpandng.

All of the streakline images presented in this work were réed at the mid-plane
of the microchannel. The physical location of the mid-plaves determined ex-
perimentally by successively focusing the image of a flumeetstracer adhered to
the top and bottom surfaces of the channel. The depth ovetwhe tracers con-

tribute to the recorded streamlines is actually given byntleasurement depth,,
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[21, 22, 50] given by

371)\0 d
(NA)? an(6)

0Zm = (2)

In EQ. (2), \o represents the wavelength of the emitted lighk4=680 nm),n is
the medium refractive index (waterx=1.33),NA is the numerical aperture of the
objective lensdp is the tracer diameter antlis defined a®) = sin™'(NA/n).
Equation (2) is only valid fordp > e¢/M, wheree andM respectively denote the
minimum resolvable feature size (or the CCD camera pix@:siz4;m) and the
objective magnification. In our worl,/M= 0.37 um, which is very small com-
pared to the diameter of the tracer particles (1m). The depth of measurement
can thus be determined from Eq. (2) andiig,=14.5um, which corresponds to

approximately 29 % of the total channel depth.

3 Numerical Method and Computational Meshes
3.1 Governing Equations and Numerical Method

In addition to the experimental measurements, we perforac@Bulations to sim-
ulate the isothermal flow of the viscoelastic fluid throughhBped microchannels
with and without the recirculating cavity. We use a fullyphit finite-volume
method with a time-marching pressure-correction algorifl, 52] to solve the

equations of conservation of mass and momentum:

V-u=0, 3)

laa—ltl +u- Vu] =—-Vp+nsV- [Vu + (Vu)T] +V.T, 4)
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together with an appropriate constitutive equation forgblmeric component of
the extra-stresg;. The numerical code used here has been applied extensively i
2D calculations [53, 54] and with axisymmetric geometrigS][ Additionally, it
has also been used for full three-dimensional (3D) simaatincluding those of
planar channels in which the depth of the channels is ketaahas is typical of

microfluidic fabrication [50, 56].

Regarding the boundary conditions, we imposed fully-degved! velocity and stress
profiles at the inlets, Neumann boundary conditions at thiegand no-slip con-
ditions at the walls. Details of the implementation of boarydconditions can be
found in Oliveira et al. [51]. For the discretization of thguations, we use central
differences for the diffusive terms and the CUBISTA higketaition scheme [57]

for the convective terms.

In order to simulate a viscoelastic fluid with rheologicabdcteristics matching
those of the experimental fluid, we use the linear form of timp#fied Phan-Thien-
Tanner model (SPTT), for which the polymeric component efdktra-stress tensor
is given by Eq. (5):

[1 + ;tr(‘r)] AT = 2npD, (5)
P

whereT represents the extra-stress tensor afid)trepresents the trace ef the
symbol(v) denotes the upper-convected time derivatiyejs the polymer contri-
bution to the zero-shear rate viscosityis the extensibility parameter ad is
the rate-of-deformation tensor. The SPTT model exhibieasithinning behavior,
elastic normal stresses and a bounded elongational vigcasd has been shown
to be appropriate for modeling both polymeric solutions potymer melts [58].

In addition, we also perform a number of calculations usimg®Idroyd-B model,

16



which is a limiting case of the SPTT model that can be recal/efeen:z = 0.

To enhance numerical stability, we employ the log-confdromatensor approach

[59], as decribed in detail in Afonso et al. [60].

3.2 Computational Meshes and Problem Definition

The geometries for the numerical calculations represesitannels with and with-
out a cavity and are similar to those used experimentally §action 2.2). The
meshes used to map the two domains are block-structuredamdmnmform, with
the size of each cell relating to its neighbors by a geomptaogression within each
direction. A zoomed view of the computational meshes nearicdntral region is
shown in Fig. 7. The total number of cell& (') was adjusted according to the con-
figuration usedNC=12801 andV(C=10251 for the T-channels with and without
cavity, respectively. Additionally, the smallest cellsiwas sei\z,,,;, = AYmin =

0.02h for both configurations.

In the numerical calculations, the characteristics of thelfivere fixed in accor-
dance with the properties of the experimental test fluidgoreedd in Table 1. The
density was fixed at 1196 kgAnthe solvent viscosity rati® = 7s/n, was kept
constant = 0.50) to match the shear rheometry data; the relaxatiomwas taken
as\c.per= 66 ms as measured in CaBER experiments; while the extétyspa-
rameter of the PTT model was varied betweer- 0 ande = 7.0 x 107, ac-
cording to the fits to the CaBER experimental data shown in@igs we demon-
strate in Section 4.1 below, the difference between thautation withe = 0 and
e = 7.0 x 10~% is negligible for the range of Weissenberg numbers explorhads,

the uncertainty in the exact estimation of this parametanfCaBER experiments
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is not critical in the present computations.

4 Results and Discussion

We first examine the influence of the extensibility parameten the streamlines
predicted by the SPTT model and subsequently analyze tessstield obtained
from 2D numerical simulations. We then compare the flow past@btained in
the T-shaped microchannels with and without a recircujatiavity for both the
viscoelastic PEO solution and its glycerol/water solveetMbnian counterpart.
Finally, we characterize the nature of the symmetry-bregkifurcation observed
after a critical Weissenberg number in the T-shaped mi@oohl containing a re-

circulating cavity.

4.1 Extensibility Parametere

The effect of the extensibility parameterin Eg. (5) on the predictions of the
SPTT model was investigated for two different volumetrioMloates as shown
in Figs. 8(a) and 8(b). Far = 0, the Oldroyd-B model is recovered and the re-
sulting streamlines appear as the black dashed lines in &{g¥y and 8(b). Also
plotted as red solid lines in the figures are the streamlinessponding to the
valuee = 7.0 x 10~° that best captures the time evolution of the mid-point diam-
eter of the PEO solution thread in CaBER experiments adnfltedd in Fig. 6. As
shown in both figures, the extensibility parametdras little effect on the SPTT
model predictions and the streamline patterns correspgnai the two different

choices of superpose for both geometries.
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From the CaBER experiments presented in Fig. 6, we couldrdate the range of
the extensibility parameters for which a good agreementédxn the experimen-
tal measurements of capillary thinning and the predictioing single mode con-
stitutive model could be obtained. As the model predictiares not significantly
affected by the choice of in that particular range, we use the maximum value
of e = 7.0 x 107 for all numerical simulations presented in this work. Indlee
this value is shown to cover the entire range of experimesdtd from CaBER

measurements in Fig. 6.

4.2 Stress Field

The contour plots of the normalized first normal stress ciffiee for the T-shaped
microchannel with and without a recirculating cavity ar@wh in Fig. 9(a) and
Fig. 9(b), respectively. Although not shown in the figurd® exit channel length
used in the simulations is 550m in order to guarantee that the stress field is fully
developed in the outlet arm. The normal stress differenseased with the char-
acteristic viscous stresgV//(h/2) and is plotted at a fixed Weissenberg number

W1=0.73.

At this Weissenberg number, the numerical solution is sytrimfor both geome-
tries, which is in agreement with the symmetry of the stréaenimages captured
under these flow conditions (see Sections 4.3.1 and 4.4 lbcahinhomogeneous
planar extensional flow develops where the two streams meet (), which re-
sults in a localized birefringent strand of highly-stretdimaterial [61]. This strand
of oriented material leads to the large normal stress diffee observed along the
channel centerline. The presence of a recirculating flovinéndavity strongly af-

fects the local kinematics near the stagnation point ardsleaa significantly lower
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tensile stress difference along the centerline comparetid@inned stagnation
point flow as shown in Fig. 10. When the stagnation point i;ygdat the no-
slip wall, the dimensionless normal stress differende(is, — 7...)/(2n0V) > 70
whereas it remains under 20 for the case with a recirculatawity. As shown in
the figure, the extensibility parametehas little effect on the numerical predictions
of the first normal stress difference for this Weissenbergloer. This is because of
the limited residence time and moderate total Hencky strexperienced by most
material elements; the polymer molecules thus do not apprtiee finite extensi-
bility limit. In the pinned stagnation point flow, the largeess gradients observed
along the channel centerline are very similar to those emeoed in the down-
stream wake of the flow past a confined cylinder in a channelg8R As will be
discussed in the following section, these stresses cahigalnset of the viscoelas-

tic flow transitions observed experimentally in the two elifint geometries.

4.3 Pinned Stagnation Point Flow

4.3.1 Viscoelastic and Newtonian Flow Comparison

In Fig. 11, we show a comparison of the streamline imagesirddaat different
volumetric flow rates (or equivalently, different Weissergp numbers in case of
the viscoelastic PEO solution) for the aqueous solutionE®Rylycerol/water and
for the corresponding Newtonian solvent. The flow patteonsife Newtonian fluid
and the viscoelastic fluid response at a constant elastiaityberEl = Wi/ Re =
861 are shown in Figs. 11(f)-(j) and 11(a)-(e), respecyivEhe aim of this com-
parison is to demonstrate the effect of elasticity on thgreion flow where the

stagnation point is pinned onto the microchannel confiniall.w
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As can be seenin Figs. 11(a)-(e), we observe a transitiomdreymmetric Newtonian-
like behavior to an unsteady 3D flow for the viscoelastic PB{Dtgon after a crit-
ical Weissenberg numbév’i..;; ~ 3.2. This unstable 3D flow is characterized by
overlapping streaklines within the measurement dépth = 14.5um as shown

in Figs. 11(c)-(e). At higher flow rates (Fig. 11(e)), the flementually becomes

chaotic and is suitable for mixing purposes [65].

The Newtonian flow counterpart remains symmetric and stabléne entire range
of volumetric flow rates tested in this worké¢ < 6.5 x 10~2). The stability of the
symmetric flow is further visually confirmed by the presenta non-moving fluo-
rescent tracer particle at the location of the stagnatiamtpoFigs. 11(f)-(j), which
is not flushed by the inflow over the course of the experimentirary to the other
tracer potentially stuck to the wall on the left hand-sid¢haf stagnation point that
is only visible in Figs. 11 (f)-(h). In the outflow channelse fluorescent particles
stuck onto the surface of the PDMS channel are clearly wasBVven if they do not
perturb the symmetry of the flow profile at the channel midaplahey further mo-
tivate the use of SDS which helps to limit their accumulatbthe channel edges

and in the recirculating cavity during the streakline inmgpexperiments.

Comparing the streamline patterns corresponding to the ®ifi@on and the vis-
cous Newtonian counterpart at low Reynolds numbers, it eacrobcluded that the
transition from a stable 2D flow to an unsteady 3D flow is etadity-driven and

is due to large stress gradients that develop downstreaheatagnation point as
shown in Fig. 9(b). As discussed by Becherer et al. [66],dballplanar extensional
flow in this region is similar to the wake behind a cylinder toed in a channel
for which a number of studies (e.g. [62—64]) report the o$etnsteady flow at
Wi ~ 1. In the present experiments, we find that when the Weissgmhenber

exceeddVi.;; ~ 3.2, the flow becomes clearly time-dependent. Movies of this
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unstable flow regime were also recorded using the mvBlueE@3a CCD camera
(640x 480 pixels) at a frame rate of 3.81 fps with an exposure tim256f ms and
are available as supporting information lattp://web.mit.edu/soulages/www/MIT/

Elastic_ Instabilities.html

4.3.2 Comparison with Results of Numerical Simulation

A comparison between the SPTT model numerical predictindslze experimental
streakline images is shown at different Weissenberg nusibd&iig. 12. The central
difficulty that arises in quantitative comparisons of expental measurements and
single-mode numerical simulations of dilute polymer siolus is the modal distri-
bution of the elastic contribution to the total viscoelasiress. In a multimode
computation with anV bead-spring chain model, each made 1,2,... N (each
with progressively shorter relaxation time > Ay > A3 > ... > \y) makes a con-
tribution G; = nkgT to the total elastic modulus, and a contributignr= nkgT\;

to the total viscosity. Any suitable measure of the mearxetian time, for example

A = (i) /X (m:), is thuslessthan the longest relaxation time. The breadth of
this distribution in the relaxation times is captured in ftersal measures” such as
the ratioU,,, = 3;();)/\; for the Rouse and Zimm models [67]. For a bead-spring
chain in a theta solvent, the Zimm model with dominant hygir@inic interactions
givesU,, ~ 2.39 [67, 68]. By contrast, for any single mode dumbbell model the
universal ratio id/,, = 1 by definition, and all of the fluid elasticity is collapsed

into the single viscoelastic relaxation mode.

This difference between single and multimode models is mamb if one seeks
to compare the predictions of a single mode model with erpenial data on a

guantitative basis. If the relaxation time is measured independently, then a com-
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putation with a single mode model over-estimates the tdfates of viscoelasticity

in a complex flow at moderaté’: (because in reality some of the shorter relaxation
modes are “relaxed out” and should not contribute to thdielssess). The longest
relaxation time\; in a dilute solution can be measured in CaBER experimenis [69
whereas shear flow measurements of the steady shear wsandithe first nor-
mal stress coefficient; (if measurable) can be used to evaluate a mean relaxation
time X\ = ¥, /(2np) [70, 71]. For highly-viscous Boger fluids, it is possible tean
sure independently botli; and\; in a CaBER experiment and thus evaluate the
breadth of the relaxation time spectrum directly; howelggiow viscosity aqueous
polymer solutions, the first normal stress difference is easurably small. When
comparing experimental observations with computatidms choice must then be
made as to whether to perform the calculation at the same wdliVeissenberg
number based o, or the mean relaxation time For a simple Zimm-like bead-
spring model with dominant hydrodynamic interactions, \aeédn; ~ ), /i*? and
Yi(Ni) = M\ 3(1/3%2)) = A\ ¢(3v), where( is the Riemann zeta function ands

the solvent quality = 0.5 for a theta solvent). The universal ratio for this model is
Un >~ ((3v) (=~ 2.16, considering a solvent quality exponentof- 0.55 for PEO

in glycerol/water). The mean relaxation time determinedrfrviscometric proper-
ties would then be\ = X;(m:\:) /2 (1:) ~ M\ (6v)/¢(3v) = A\;/1.88. Quantitative
agreement witlsingle mode computatiosfiould thus only be anticipated to within
a factor of((3v)/((6v) ~ 2. In the following computations we use the valug
because it is directly and independently measured throaghlary thinning ex-
periments (i.eA; = Ac.ser); however we show that closer agreement between the
critical conditions appears to be obtained if we compareergental observations

with a computation performed &i,,..,, = M\ (6v)%/((3v) =~ Acaper?/2.

The results in Fig. 12 are presented for both flow regimesyh@netric Newtonian-
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like behavior (Fig. 12 (a)) and the 3D time-dependent flowg(ER (c)). The SPTT
model qualitatively captures the main differences betvwibese two flows. The ex-
perimental streaklines and computed streamlines in Figajland (b) are symmet-
ric, smooth and monotonically curved near the stagnatiamt péfter incrementing
the flow rate (or the Weissenberg number), the streamlingsrilan the stagnation
region and the experimental flow becomes time-depender8@reyond a critical
Weissenberg numbéi’i..;; ~ 3.2 as shown in Fig. 12 (c). The single mode nu-
merical computations predict a loss of flow stability beyanctitical Weissenberg
number ofWi,.,, ~ 1.5 and the streamlines shown in Fig. 12 (d) are represen-
tative streamlines corresponding to an unsteady flow atmstance in time. This
agreement is good, recognizing the difference and thedimoits of a single mode
simulation. In Fig. 12 (c), the 3D character of the flow at hihissenberg num-
ber is revealed by the crossing of fluid streaklines over #@hdof measurement
(6z,, =14.5um, representing about one third of the total channel depit)ough

it is possible to compute microfluidic flows that capture stiotee-dimensional
features for Newtonian fluids [56], it is not yet viable to qoute accurately three-

dimensional time-dependent viscoelastic flows in reasenaPU times.

In order to quantitatively assess the performance of theTS®del, we super-
pose the numerically computed streamlines and experinginéaklines for sym-
metric flow conditions as shown in Fig. 13, once again usimgdbnversiom\ =
AcaBer( (6v)/C(3v) so thatWV i, = Wi.,,/2. The agreement between the model
and the experimental data is quite satisfactory. It cle@dycates the ability of the
model to accurately describe the global spatial charattesiof the viscoelastic

flow in the T-shaped microchannel in the absence of a reaiticigj cavity.

Under identical experimental conditions (i.e. the sameinvatric flow rates and

sameRe andW: numbers), we show the same comparison for the microchannel
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with a recirculating cavity in Fig. 14. The presence of theitydeads to major dif-
ferences in the kinematics and a loss in symmetry in the floxeihe a critical flow
rate. The stagnation point is not pinned on the microchawa#t anymore but is
free to move. As a result, the dividing streamline-€ 0) is also unconstrained.
The development of large tensile stresses in the regionasfgplextension illus-
trated in Fig. 9(a) together with curved streamlines leads symmetry-breaking
bifurcation as shown in Fig. 14. Both experiments and caloohs at lowenl/q
are symmetric (as detailed below). The flow transition is atoally observed for
Wi =2Wi,.. ~ 2.5, which is in good agreement with the value measured exper
mentally (Vi ~ 2.4). The single mode SPTT model gives a very good quanttati
description of the spatial characteristics of the steadg #treamlines. In particu-
lar, the extent of the recirculating flow in the cavity is wediptured by the model.
Also, the local radius of curvature of the streamlines inreegghborhood of the

cavity is accurately predicted by the numerical simulagion

In the following section, we analyze in more detail the difat elastically-driven
flow transitions observed in the T-shaped microchannel aitbcirculating cavity

and compare them with the predictions of the single-moderSRadel.

4.4 Free Stagnation Point Flow

4.4.1 Viscoelastic and Newtonian Flow Comparison

A comparison of the streak-images obtained at differermatric flow rates (i.e.
different1¥i numbers) for the viscoelastic dilute PEO solution and fentlscous
glycerol/water solvent is shown in Fig. 15. The elasticitynber for the viscoelas-

tic solution isE'l = Wi/Re = 861. In Figs. 15(a)-(e), the Reynolds number is less
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than Re < 3.4 x 1072, so that we can neglect inertia and focus on the effect of
elasticity on the stagnation flow. As we noted in Figs. 9 andtié presence of
a recirculating flow in the cavity affects both the velocitydastress fields in the
region of strong planar extension, which leads to notieedifferences in the fluid
streamline patterns beyond a critical flow rate. The stagngioint is located on a
free streamline, resulting in a non-zero velocity gradadrihe origin of the labora-

tory frame.

By contrast to the flow in the channel without a cavity, we obsdwo distinct
elastically-driven flow transitions in Figs. 15(a)-(e).€rthow first transitions from
a steady symmetric Newtonian-like behavior (Fig. 15(ad)asrsymmetry-breaking
bifurcation to a steady asymmetric flow at a critical flow rate), ~ 8.0 uL/hr
(Fig. 15(b)). At higher flow rates, a second instability lsedd a time-dependent
3D flow (Figs. 15(c)-(e)). These two transitions occur at iioal Weissenberg
numberiVi.,.;;; ~ 2.4 andWi..;;» >~ 5.3, respectively. The second transition from
steady 2D asymmetric flow to unsteady 3D flow occurs at a sotialig-higher
critical Weissenberg number, namélyi.,;» ~ 5.3 compared tolVi..;; ~ 3.2
for the microchannel with pinned stagnation point due toléinge stress gradients

observed in this geometry (cf. Fig. 10).

As in the earlier studies of planar elongational flow in a srekt [30], it ap-

pears that the strand of highly-oriented polymeric makeniahe region of pla-
nar extension leads to a symmetry-breaking bifurcatiomat,;;; ~ 2.4. The

steady character of this first elastic instability was cegdwsing digital video by
imaging over several minutes at a frame rate of 3.81 fps andxaonsure time
of 250 ms. The corresponding movies can be found as supgariaterial at:
http://web.mit.edu/soulages/www/MIT/Elastinstabilities.html This flow asym-

metry is very similar to that observed by Arratia et al. wheestigated the cross-
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slot flow of a polyacrylamide viscoelastic solution [30] their study, the free stag-
nation point coupled to large tensile stresses led to a gtewthmetry-breaking
flow asymmetry forlVi ~ 4.5 and Re < 102, The asymmetric flow shown in
Fig. 15(b) is also bistable [28, 30] and the mirror image @& thcirculating flow
patterns can also be shown experimentally. Small randotanbations in the flow
rate when approaching the critical Weissenberg nuniaeér,.;;; control the final

direction of the flow in the cavity.

At higher flow rates corresponding #&i..;;» >~ 5.3, the flow transitions from a
steady asymmetric bifurcation to a 3D time-dependent floghasvn in Figs. 15(c)-
(e). The 3D nature of the flow instability is again revealedly crossing of the
streaklines. As observed in the geometry without a cauity,flow eventually be-
comes chaotic at high Weissenberg number, which is desifabimixing purposes

[65].

The corresponding Newtonian case shown in Figs. 15(fs§ymmetric and stable
for all the volumetric flow rates tested in this studie(< 6.5 x 10~2). For the high-
est flow ratel) = 100 pL/hr, a slight asymmetry is visible in the streamline patter
as shown in Fig. 15(j). This is due to small imbalances in thlewetric flow rates
at the two channel inlets. Because of the large pressuréegitacexisting at high
flow rates, some leakage between the Tygon tubing and the Ribisidhel can oc-
casionally be seen, which is responsible for the very snteoved asymmetry at
high flow rates. Numerical simulations confirm the negligibffect of inertia, and
the predicted streamlines are symmetric and qualitatisietylar to those predicted

at lower flow rates.

In the next section, predictions of the single-mode SPTT ehwadll be compared

to experimental streak-images before and after the ongbedirst (steady) flow
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transition observed in the free stagnation point floWi(,.;;; ~ 2.4).

4.4.2 Symmetric Flow Numerical Simulation Results

The numerical predictions of the SPTT model and the experiatstreak-images
are shown in Fig. 16 for the symmetric ca$€{ < Wi..;;; ~ 2.4) at two differ-
ent Weissenberg numbers. As in Section 4.3.2, the compeisgeerformed such
that Wiyum = AC(6v)y/Upn ~ Wie,,/2. For both flow rates shown, the fluid
streamlines are symmetric and the general evolution in tve i well-captured
by the SPTT model. When the Weissenberg number is incretéiseanagnitude
of the first normal stress difference becomes larger in th@neof strong planar
extension. This increase iN; is responsible for the differences observed in the
structure of the recirculating flow in the cavity observedrig. 16. It is important
to note that the symmetric recirculating vortices in theitygpredicted in Figs. 16
(b) and (d) are too weak to observe with the exposure time 06fr@5 used for
streakline imaging. Numerically, the recirculating floweaach recirculation only
represents 9.5 10~2 and 1.5x 102 % of the total volumetric flow rate entering
the T-channel through one arm for Figs. 16 (b) and (d), rdspyg. The particles
are displaced only slightly in this time and thus the coroegjing streaklines could
not be experimentally captured. However, the size of thersdary core-vortex
flows (represented by dark regions with no streamlines is.Fi§ (a) and (c)) de-
creases with increasing Weissenberg numbers. As the leedsticity increases,
the tensile stresses in the flow lead to increasing penatrafithe dividing stream-
line into the cavity. This is in good general agreement witimerical predictions

as shown in Fig. 16 (b) and (d).
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4.4.3 Symmetry-Breaking Bifurcation

In Fig. 17, we compare the SPTT model predictions to the exqaartal streakline
patterns observed after the onset of the first symmetrykbrganstability, namely
for Weissenberg numbers betweBh..;;; ~ 2.4 andWi..;o ~ 5.3. The SPTT
model accurately captures the experimental streak-imag#the asymmetric pen-
etration of the primary flow into the cavity. At high Weissendp numbers, the large
tensile stresses in the region of strong planar extensihtte “pull” the dividing
streamline progressively outside of the cavity as obsepatkd experimentally and
numerically in Fig. 17. The small corner vortices prediddydhe model in the qui-
escent (upper) corners of the cavity cannot be resolvedriexpetally due to the

local small velocities with the current imaging system.

The absence of flow asymmetries for the Newtonian case inlBEidg) together
with the very low Reynolds numbers attained in this micraficigeometry Re <
3.4 x 1072) clearly indicates that this flow transition is driven by flglasticity.
The large normal stress gradients in the region of stronggplaxtension shown
in Fig. 9(a) together with curved streamlines are thus nesiate for the observed
symmetry-breaking bifurcation. To further illustrate f{narely elastic character of
this flow instability, corresponding creeping flow numefisianulations have also
been done at nominally zero Reynolds number as shown in8lgylsetting the
inertial terms on the left hand side of Eq. (4) to zero. Therienmeasurable differ-
ence between the two streamline patterns demonstratihgnéréial effects are not

responsible for the observed flow transition.

In order to document the characteristics of this symmeteaking bifurcation, we
have measured the magnitude of the deviations from symuiketw in the channel

outlet, 90um away from the origin as indicated by the horizontal dasliee lme in
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Fig. 19(a). For illustrative purposes, the dividing stréamhas also been colored
in black in the figure. Because of mass conservation, for @@bming stream
entering the microchannel at a volumetric flow rgiethe volumetric flow rate at

the channel outlet is

Q = Vihid = V3hyd, (6)

whered represents the (constant) microchannel depitis the average velocity
for streami (i=1 or 2) andh; is the distance between the dividing streamline and
the microchannel sidewalls measured alongitfais as shown in Fig. 19(ak (=
hi+ ho, Whereh is the total width of the outflow channel). The squared noizedl

velocity deviations from symmetric fIO\@%)2 can thus be written as
A 2 VARV 2 2
(BY) = (B2t _ () )
1% Vi ha

According to Eq. (7),(%)2 = 0 for a symmetric flow an((%f — 1 for a

fully asymmetric flow. Figure 19(b) shows the squared noizedl velocity de-
viations from symmetric flow as a function of the Weissenbaugnhber together
with numerical predictions at a distance of 50, 75 and:80away from the origin
of the laboratory frame. The comparison is performed agaam shatiVi,,,,, =

MC(6v)y/C(3v) ~ Wie,,/2. The results are shown foii < Wi....o and the
maximum Weissenberg number for which convergent numeresallts could be

obtained iV i,q, = 4.4.

For Wi < Wi, the flow remains symmetric ar(o“v‘/)2 ~ 0 (within exper-
imental fluctuations). After the onset of the symmetry-kine@ bifurcation, the
magnitude of the asymmet(y‘ﬁ/—")2 varies approximately linearly witi/i, a typi-

cal behavior of supercritical bifurcations [72]. The 2D qmutations underestimate
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the magnitude of the deviations when the location of thestrarse line is taken as
y = 90 um ory = 75 um. Much better agreement is found at a distance of.50

from the origin of the laboratory frame.

This discrepancy in the strength of the flow asymmetry at argivalue ofiti —
Wi > 0 may be a consequence of the finite depth of the T-channel gepme
(d = 50 um) which gives rise to three-dimensionality in the local exmental flow

that cannot be captured by the 2D simulations.

The observations and calculations strongly suggest tleabliserved bifurcation
is a supercritical steady viscoelastic flow transition vatfong similarities to the
cross-slot observations of Arratia et al. [30] that wereldaped numerically by

Poole and coworkers [35].

5 Conclusion and Outlook

In this study, we have investigated the structure and s#tybil steady planar stag-
nation flows of a dilute viscoelastic PEO solution using twfeedent T-shaped mi-
crochannels, with and without, a recirculating cavity cegirespectively. We have
shown that the kinematic differences near the stagnationt pothese two geome-
tries control the magnitude of the large tensile normaskstdifferences in the vicin-
ity of the stagnation point as well as the critical condii@nd spatiotemporal dy-
namics of the resulting elastically-driven flow asymmetrieor the free stagnation
point flow, a strand of highly-oriented polymeric matergformed in the region of
strong planar extensional flow, which results in an add@i@ymmetry-breaking
transition at intermediate Weissenberg numbers. For gagnation flow, we also

observed a flow transition from a steady to a three-dimeiasibme-dependent
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flow at a critical Weissenberg number. The critical condisiare substantially-

lower for the pinned stagnation point flow.

The spatial characteristics of these purely elastic flowainties were compared
with two-dimensional numerical predictions using a siaglede simplified Phan-
Thien-Tanner (SPTT) model. The calculations were showmnitmtjtatively capture
the evolution in the streamline patterns with increasingséénberg number as well
as predict the onset of a steady 2D asymmetric flow beyondtiaatrflow rate.
Idealized creeping flow calculations with no fluid inertiantEnstrate the purely

elastic nature of the different flow transitions.

Future work will involve a detailed analysis of the localoelty field in the vicinity

of the stagnation point using microparticle image velocm® further document
the nature of the bifurcation. We also hope to make use ofratiseoelastic flu-
ids such as wormlike micellar solutions to investigate tile of the magnitude of
strain-hardening in the extensional viscosity on the |etadsses near the stagna-

tion point and the corresponding flow stability.
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Table 1

Working fluid rheological properties at 2G.

Zero-shear rate viscosity] 7y [mPa$ 19.5
Solvent viscosity ns [mPa$ 9.8
Polymer viscosity np [mPa$ 9.7
Zimm relaxation time AZimm [ms] 2.3
CaBER relaxation time | Acaper [ms] 66
Intrinsic viscosity [n] [mL/g] 582
Density p [keg/m?] 1196
Polymer concentration ¢ [g/mL] | 8.97x10~*
Concentration ratio c/c* 0.68

41



y

(a) Microchannel with cavity.

J
L

(b) Microchannel without cavity.
Fig. 1. Streamline predictions for Newtonian flow within asfaped microchannel with
and without a recirculating cavityy)= 6uL/hr; S.P. denotes the location of the stagnation

point (Re = 2.05 x 1073).
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Fig. 2. Schematic diagram of the T-shaped microchannel avitavity; (A) and (B) are the
channel inlets; (C) is the channel outlé&t; the length of the entry channdl; the entrance
length of the T-channel] the channel depth; the channel height and width of the square

cavity; R the radius of the rounded corners, and S.P. denotes theasitagpoint.
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Pinned é.P:— TR

==

Inflow

Outflow Outflow|

(a) Microchannel with cavity. (b) Microchannel without cavity.
Fig. 3. Optical micrographs of the microchannel (a) with #mdwithout cavity @0x, 0.5
N.A.). The in- and outflow directions are indicated by the whiteas. The anticipated
location of the stagnation point (S.P.) sitting on a freeamline (a) or pinned onto the

confining wall (b) is indicated in the channel.

8705 o < 92°
(a) ‘

Fig. 4. Microchannel SEM image (a) and optical micrograplhef channel cross-section

(b) showing the well-defined geometries achievable withlgbbgraphy.
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10" Frrr——— T — T

1, e PEO solution

4 Solvent (glycerol/water) solution
- - - Oldroyd-B Model (¢ = 0)
—_— - -6
19.5 mPas SPTT Model (e = 7x10™)

)\'CaBER

n [Pas]

Shear rate [s™]

Fig. 5. Steady shear data measured at€2i8 a double gap Couette geometry using a con-
trolled stress rheometer (AR-G2, TA Instruments). In theeaaf the PEO solution, the open
symbols represent repeated experiments. The SPTT modigtjiwas are shown by the red
dashed and solid lines fer= 0 (Oldroyd-B model) and = 7.0 x 107, respectively. (i):
minimum measurable shear viscosity based on 20 times thenonim torque resolvable by
the rheometer) x 10~°Nm); (ii): maximum measurable shear viscosity before thgeon

of Taylor instabilities;\c.grr: relaxation time determined from CaBER measurements as

shown in Fig. 6.
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F A Experiment 1 ]
i 0  Experiment2 | ]
L Oldroyd-B .
= — SPTT
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o f
Y L
10° E
Minimum resolvable radius
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6. Time evolution of the mid-point diameter of the fluimtdéad in a CaBER experiment
at 23C (open symbols). The blue (thick) solid line represents tkgorential fit to the
experimental data (Oldroyd-B model) from which the longetixation time is extracted:
A =66=+4 ms. The horizontal black solid line indicates the minimusoheable radius ratio
based on the CaBER laser micrometer resolution of#5Omron Z4LA). Predictions of
the SPTT model for different values of the extensibilitygraeters are also shown in the

figure (red solid lines).
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(a) Mesh with recirculating cavity.

(b) Mesh without recirculating cavity.

Fig. 7. Zoomed view of the computational meshes near thealeegion for the T-shaped

microchannels (a) with, or (b) without recirculating cguvit
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(a) Q = 2.5 uL/hr (cavity).

(b) @ = 2.5 uL/hr (no cavity).
Fig. 8. Effect of the SPTT model extensibility parameten the streamline patterns for the
T-shaped microchannel with (a) and without (b) recircuigtcavity. The thin red stream-

lines were obtained with = 7.0 x 10~% and the thick dashed black streamlines correspond

to e = 0 (Oldroyd-B model);Re = 8.53 x 1074, Wi = 0.73.
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(@) @ = 2.5 uL/hr (cavity).
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27}[] v

(b) @ = 2.5 uL/hr (no cavity).

Fig. 9. Contour plots of the normalized first normal streéferince (7, —722)/(270V))
for the T-shaped microchannel without (a), and with (b)ircedating cavity (SPTT model,

B=0.50,e="7.0x10"% Re =8.53 x 1074, Wi = 0.73).
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Cavity (SPTT)
o Cavity (Oldroyd-B) ]
No Cavity (SPTT)
® No Cavity (Oldroyd-B) 7

20

Fig. 10. Line plots of normalized first normal stress diffare along the symmetry line
x = 0 from Figs. 9(b) and 9(a). The solid lines correspond to th@ Shodel with
e = 7.0 x 10~ and the open and filled symbols obtained #or= 0 (Oldroyd-B model)
correspond to the microchannel with and without cavitypeesively (for both models:

B =0.50, Re = 8.53 x 1074, Wi = 0.73).
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Fig. 11. Viscoelastic ((a)-(e)) and Newtonian ((f)-(j))vletreamline patterns as a function of the volumetric flowe €at



(b) Winym=1.17

3

(€) Wiegp=4.69 (d) Wipum=2.35

Fig. 12. SPTT model predictions and experimental streaslizs a function of the Weis-

senberg number.
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Fig. 13. Comparison of experimental streamline and SPTT ahgdedictions (blue
solid lines) for the microchannel without cavityy = 10ulL/hr (Wie,, = 2.93;

Re = 3.41 x 1073).

Fig. 14. Experimental streamline and SPTT model predistittue solid lines) for the mi-
crochannel with cavity using the same experimental camustas in Fig. 13 = 10 uL/hr

(Wiezp = 2.93;Re = 3.41 x 1073).
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Fig. 15. Viscoelastic ((a)-(e)) and Newtonian ((f)-(j))Mlstreamline patterns as a function of the volumetric flow €at



(0) Winum=0.59

) (&)

LS

(C) Wiegp=2.05 (d) Winum=1.17

Fig. 16. SPTT model predictions ((b) and (d)) for the visasét evolution in the steady
streamlines and experimental streaklines ((a) and (cyyiormetric flow as the flow rate is

increased.
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(@) Wiegp= 2.64 (0) Winum=1.32

(€) Wiggp,=3.52 (d) Wipum=1.76
Fig. 17. SPTT model predictions ((b) and (d)) for the visest evolution in the steady
streamlines and experimental streaklines ((a) and (c)yteady asymmetric flow as the

flow rate is increased.
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)

Fig. 18. Effect of inertia on the streamline patterns for Trehaped microchannel with re-
circulating cavity ¢ = 7.0 x 1079). The solid red and dashed black streamlines correspond

to finite inertia Re = 2.05 x 10~3) and creepingRe = 0) flow, respectively Vi = 1.76).

57



h=h;+h;

(a) Geometrical details.
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(b) Normalized velocity deviations.
Fig. 19. (a) Geometrical details and (b) normalized vejodieviations from symmetric
flow (filled symbols) in the microchannel outlet (96m away from S.P.) together with
numerical predictions (open symbols) at a distance of 50artb90um away from the
S.P. The critical Weissenberg number at the onset of stesygiyraetric flow is also in-
dicated by a vertical dashed solid line in the figurgi(,.,;1=2.4). The results are shown
for Wi < Wiriro and the maximum Weissenberg number for which numericalteeare

plotted isWi,,q = 4.4.
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