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We consider the inhomogeneous extensional response of a new constitutive model, the VCM model
[Vasquez, et al., 2007. A network scission model for wormlike micellar solutions I: model formulation
and homogeneous flow predictions. J. Non-Newt. Fluid Mech. 144, 122–139] that has been developed to
describe concentrated solutions of wormlike micelles. The time dependent numerical analysis is carried
out in a simplified slender filament formulation appropriate for transient elongational flows of complex
fluids. The simulations show that, beyond a critical extension rate, elongating filaments of a micellar fluid
described by the VCM model exhibit a dramatic and sudden rupture event as a result of the scission of
the entangled wormlike chains. The computations capture many of the features of the high-speed rup-
ture process observed experimentally [Bhardwaj, et al., 2007. Filament stretching and capillary breakup
extensional rheometry measurements of viscoelastic wormlike micelle solutions. J. Rheol. 51, 693–719] in
filament stretching experiments with wormlike micelle solutions. The highly localized rupture predicted
by the VCM model and the corresponding evolution in the tensile force within the filament is contrasted
with the familiar and more gradual necking responses predicted by the upper convected Maxwell and
Giesekus models under equivalent kinematic boundary conditions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Entangled solutions of wormlike micelles differ in a fundamen-
tal way from conventional polymer solutions because the entangled
and reptating wormlike chains can break and reform, adding another
independent relaxation mechanism to that of an entangled polymer
network. This additional relaxation process can become highly lo-
calized under externally imposed shearing conditions leading to the
formation of structures generically referred to as `shear-bands'. The
dynamics of these shear-banding events have been investigated ex-
tensively from both the experimental viewpoint (Hu and Lips, 2005;
Miller and Rothstein, 2007; Boukany and Wang, 2008; Callaghan,
2008) and a theoretical context (Cates, 1987, 1996; Olmsted et al.,
2000; Vasquez et al., 2007; Zhou et al., 2008b). Comprehensive re-
cent reviews on the topic are provided by Cates and Fielding (2006),
Fielding (2007) and Olmsted (2008).

The vast majority of these earlier investigations have focused on
shearing flows in which the localization associated with microstruc-
tural disentanglement leads to a macroscopic kinematic domain or
`shear-band' over which the fluid rheology and the local velocity
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field vary rapidly. In the present paper we focus on strong
extensional flows in which the macroscopic consequences of the
local microstructural changes are less well documented, and harder
to decipher because of the difficulty of isolating additional factors,
such as surface tension, which affect the elastocapillary thinning
of complex fluids such as entangled wormlike micelles. Rothstein
(2008) recently reviewed what is known experimentally about ex-
tensional flows of these micellar systems. Early experiments by
Yesilata et al. (2006) showed that the relaxation time of a micel-
lar network inferred from capillary thinning experiments may be
substantially different from that measured in shear. Bhardwaj et al.
(2007) have shown experimentally, using an entangled system of
150/75mM CPyCl/NaSal in brine (100mM NaCl in distilled water),
that the breakage event in filament stretching tests with wormlike
micellar filaments can be quite different from that observed in other
viscoelastic fluids. Instead of a smooth and global necking phe-
nomenon, such as that seen in polymer solutions and melts (as well
as in simulations with Newtonian fluids, and several viscoelastic
constitutive equations such as the Giesekus model), the authors ob-
served that beyond a critical strain a sudden and dramatic localized
rupture took place in the micellar filaments. They attributed this be-
havior to a complete failure of the micellar network above a critical
value of the local axial stress in the fluid column. A similar localized
rupturing event was observed in filament stretching experiments
with associative polymer solutions (Tripathi et al., 2006). The latter
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class of complex fluids also shows an elastic network connectivity
that is very sensitive to the total stress placed on it. The constitutive
model developed by Tripathi et al. (2006) for this telechelic network
reflects this sensitivity by exhibiting a local maximum in the ex-
tensional viscosity at a finite extension rate. Although the majority
of the constitutive models that have been proposed for describing
wormlike micellar solutions have not been studied in strong exten-
sional flows, it may be anticipated that if they show similar non-
monotonicity in the predicted constitutive response then they may
also be able to capture the localized rupturing that has been ob-
served during filament stretching experiments.

The specific constitutive model considered in this paper is the
scission/reforming model developed in Vasquez et al. (2007). This
model, derived from transient network theory, describes an entan-
gled fluid in which long wormlike micelles, denoted species A (of
length L), can break in half to form a second B species comprising two
shorter (L/2) worms, which themselves can recombine to form one A
chain. The model thus incorporates a highly simplified discrete ver-
sion of the Cates (1987) `living polymer' model for wormlikemicelles.
The breakage rate of the long entangled wormlike chains depends on
the local stress and strain rate, and this leads to a coupling between
the fluid microstructure and the global kinematics of the imposed
flow. The model has been analyzed extensively in steady and tran-
sient inhomogeneous shearing flows (including steady shear, step
strain and LAOS) by Zhou et al. (2008a, b) but the extensional rhe-
ology has not been considered to date.

In this article we investigate the response of the VCM model in
filament stretching type experiments. In a filament stretching ex-
tensional rheometer (or `FiSER') a small cylindrical fluid sample (of
height L0 and radius R0) is constrained between two circular end-
plates which are then continuously separated at a prescribed rate.
The evolution in the tensile force Fz(t) exerted on the stationary end-
plate and the filament radius at the axial midplane Rmid(t) are mea-
sured experimentally and used to evaluate the transient extensional
viscosity of the fluid (see McKinley and Sridhar (2002) for details).
In an ideal FiSER experiment, the plate separation is exponential in
time, and we impose a displacement of the form L(t) = L0 e�̇0t

′
at

the upper endplate, where �̇0 is the (constant) elongation rate. If
the sample is initially cylindrical and the role of the endplates con-
straining the sample is initially neglected, then the boundary condi-
tions are consistent with a homogeneous uniaxial extensional flow.
In dimensional coordinates the velocity field is v′ = (v′

r′ ,v
′
�′ ,v′

z′ ) =
(−�̇0r′/2, 0, �̇0z′) and the filament radius decreases uniformly in the
axial direction as r′ =R0 e−(�̇0t′/2). The effective strain experienced by
the filament, � = �̇0t′, is known as the Hencky strain.

The kinematics of this ideal experiment correspond to a homo-
geneous irrotational flow and direct integration of the constitutive
relations describing the evolution of the stresses in the fluid leads
to a steady state extensional viscosity, �E(�̇0) = (�′

zz − �′
rr)/�̇0, which

depends only on the imposed strain rate. However, in an actual fil-
ament stretching experiment, the evolution in the stresses and the
kinematics within the elongating fluid thread are coupled. The rigid
confining endplates and the possibility of hydrodynamic instability
in the flow lead to a spatially and temporally inhomogeneous flow in
which the net tensile stress, �′

E=�′
zz−�′

rr , depends on the local strain
and strain rate. These flow inhomogeneities may decay or grow in
time and can ultimately lead to filament breakup.

Our simulations with the VCMmodel are contrasted with those of
other simple single species viscoelastic models which have been well
studied under equivalent flow conditions such as the quasi-linear
UCM (upper convected Maxwell) model and the nonlinear Giesekus
model.

Recent analytical and numerical work on transient extensional
flows of nonlinear viscoelastic models has concentrated especially
on those fluids for which threads/jets break up due to elastic effects

even in the absence of surface tension. Renardy (2000) has shown
that in the absence of surface tension a fluid thread characterized
by the Giesekus model will never break up in a strict mathematical
sense when undergoing filament stretching; however, this asymp-
totic analysis shows that the radius of the thread decreases as an
exponential of an exponential! From a pragmatic experimental
point of view, the radius of the filament rapidly thins to submicron
levels and for all practical purposes the elongating sample breaks
in a smooth and slender manner. Hassager et al. (1998) examined
the corresponding behavior of the Papanastasiou–Scriven–Macosko
(PSM) model and showed numerically that, in contrast to the
smooth but very rapid thinning predicted for the Giesekus model,
the PSM model exhibited a failure in finite time. The simulations
predicted an abrupt and almost `instantaneous' decrease in the
filament radius and corresponding tensile force which is coupled
to elastic recoil at the ends of the elongating thread. Very recently
Bhat et al. (2008) examined the coupled effects of elasticity and cap-
illarity in filament stretching rheometry using the Giesekus, FENE-P
and FENE-CR constitutive models. The computations reaffirmed ear-
lier results of Yao et al. (1998) that the rate of necking in a Giesekus
fluid is faster than that for a Newtonian fluid, despite the strain-
hardening extensional response, and also showed that filament
failure occurs increasingly rapidly as the effects of surface tension
increase. As the magnitude of the elastic stresses was increased (by
increasing the stretching rate and the Deborah number De = ��̇0)
the strain to failure, �f = �̇0tf was found to decrease and ultimately
reach a limiting value (Bhat et al., 2008). In this `rapid stretching
limit', relaxation processes in the necking fluid filament become
negligible and the material response becomes dominated by the
nonlinear elastic stresses (McKinley and Hassager, 1999). Filament
failure can then be directly described by the Considère criterion and
corresponds to the strain at which there is a local maximum in the
tensile force in the filament (Malkin and Petrie, 1997). Malkin and
Petrie (1997) also considered the case of sudden `cohesive failure' in
elongating filaments, which typically occurs above a critical stress
corresponding to the cohesive strength of the material undergoing
deformation. Cohesive failure is typically only observed in rubbers
and entangled melts at tensile stresses of order MPa or higher, far
larger than the values achieved in filament stretching of relatively
low-viscosity fluids such as micellar fluids. We thus do not consider
cohesive failure further in this work. Finally, we note that if viscous
stresses dominate the material response at high deformation rates,
then the material response close to breakup is not well described
by the Considère criterion, as discussed elsewhere in this Special
Issue (Petrie, 2009).

The marked difference between the response predicted by
different viscoelastic constitutive models during rapid stretching at
De�0.25 must be intimately connected to differences in the rheolog-
ical material response predicted by the models in a simple homoge-
neous elongational flow. Renardy (2004) explored theoretically the
sensitive connection between extensional rheology and dynamics of
filament thinning by considering the capillary thinning of fluid jets
using a generalized Phan-Thien–Tanner (GPTT) model. In this family
of models, a numerical exponent a characterizes the highest order
nonlinear term in the constitutive equation and can be systemati-
cally varied. For exponents in the range a>2, a finite time elastocap-
illary breakup process was documented. More specifically, for values
2<a� 7

3 the effects of surface tension impact (but do not drive) the
elastic breakup process (because the capillary stresses are of com-
parable order to the elastic stresses in the thinning filament). For
fluids with 7

3 <a<3 self-similar solutions were found to exist that
correspond to a purely elastic rupture process in which surface ten-
sion effects are unimportant. For the wormlike micellar constitutive
model considered in the present work, the nonlinear terms result in
a stress nonlinearity stronger than that in the original Giesekus or
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PTT models (i.e. the highest order elastic stress terms correspond to
a>2). The quadratic stress terms are augmented in the VCM model
by the rate- and stress-dependent scission of the long species. It may
thus be anticipated that filament stretching simulations will show
an elastically driven rupture process at high De even in the absence
of surface tension.

This paper builds on numerous seminal contributions to rheology
and non-Newtonian fluid dynamics that have been made by Denn
et al. (1975). Free-surface simulations that incorporate the inter-
actions of nonlinear fluid elasticity and capillarity were first per-
formed by Bousfield et al. (1986). The filament stretching apparatus
of specific interest in the present work was first simulated in de-
tail by Shipman et al. (1991). To simplify the dynamics of the long
thin filaments generated during the stretching process and incorpo-
rate the key role of the elastic tensile force in the elongating thread
we utilize a general one-dimensional formulation of the same ba-
sic form pioneered by Matovich and Pearson (1969) for Newtonian
and Coleman–Noll second order fluids and by Denn et al. (1975) for
the upper-convected Maxwell fluid. For the constitutive model we
utilize a recently developed transient network model of the same
general class as those considered by Mewis and Denn (1983), with
a nonlinear model parameter that must be determined either from
a nonlinear shearing or from an extensional deformation. The im-
portance of understanding extensional flows of complex fluids was
highlighted by Denn (1990) in an early review. We also consider the
linear stability of the resulting flow and its connection to the rhe-
ological predictions of the constitutive model in a manner similar
to the work of Ho and Denn (1977). Finally, beyond a critical strain,
the forces acting on the chains in the transient elastic network lead
to a localized failure event that is broadly similar to the rupture be-
yond a critical stress studied by Joshi and Denn (2003). However, in
contrast to the latter work, the availability of a full frame-invariant
constitutive model for the entangled micellar fluid of interest allows
us to follow the dynamical process of localized necking in the fluid
filament.

2. Model/equations

As discussed above, the VCM model developed by Vasquez et al.
(2007) is a two species model. The total number density of `short'
segments available is denoted nT ; and under equilibrium conditions
some of these join to form a longer entangled species A (of length
L). Thus nT =2nA +nB where nA,nB are the local number densities of
species A,B, respectively, at a particular position and time.

The (nondimensional) constitutive equations (Vasquez et al.,
2007) are

DeA
DnA
Dt

= 1
2
cBeqn

2
B − cAnA (1)

DeA
DnB
Dt

= −cBeqn2B + 2cAnA (2)

DeAA(1) + A − nAI = cBeqnBB − cAA (3)

∈BDeAB(1) + B − nB
2
I = ∈B[−2cBnBB + 2cAA] (4)

where A,B are the second moments of the configuration distribution
function for species A,B, respectively. Here the recombination rate
cBeq of the short unentangled chains is taken to be constant, whereas
the breakage rate of the long entangled micelles depends on the
strength of the flow as cA = cAeq + DeA(�/3)(	̇ : (A/nA)), where cAeq is
the rate of micellar scission at equilibrium and 	̇ = ∇v + ∇vt is the
rate of deformation tensor. The total stress in the entangled fluid is
given by (in the absence of solvent)

P= pI + (nA + nB)I − A − 2B

These constitutive equations must be coupled to the equations of
conservation of mass

∇ · v = 0 (5)

and that of conservation of momentum

∇ ·P= 0 (6)

where we assume that the fluid is sufficiently viscous that inertial
effects are negligible throughout the flow.

Appropriate boundary conditions correspond to no-slip at the
endplates, the kinematic condition for the free surface and a balance
of normal and of tangential stresses at the free surface. In what
follows we scale spatial coordinates by the initial dimensional radius
R0, time by �̇−1

0 (where �̇0 is the extension rate), velocity by R0�̇0
and stress by the plateau modulus G0. For this paper we take the
initial aspect ratio of the cylindrical sample in the filament stretching
rheometer to be L0/R0=1. The relaxation of the A species is governed
by a Deborah number DeA = �A�̇0 and the parameter ∈B = �B/�A is
the ratio of the relaxation time of the short, B, worms to that of
the longer, A, worms. The characteristic effective relaxation time of
the network resulting from the combined effects of reptation and
scission is �eff = �A/(1 + cAeq�A). The effective Deborah number in
a filament stretching test is thus De = �eff �̇0. The effects of surface
tension in a filament stretching test are commonly parameterized
by an elastocapillary number Ec = G0R0/�. The model parameters
used in the present work were selected from fitting the rheological
properties of a 100mM CPyCl/NaSal solution (in a 2:1 brine mixture)
and are cAeq = 0.9, cBeq = 1.4, ∈B = 6 × 10−4,� = 0.3,�A/�eff = 1.9,

Ec−1=0.3,nT =2+
√
2cAeq/cBeq (Vasquez et al., 2007; Pipe et al., 2008).

3. Viscometric (homogeneous) steady state predictions

We first consider the predictions of the VCM model in a visco-
metric (homogeneous in space and time) extensional flow. In uni-
axial elongation, with the scalings given above, the velocity field
is v = (vr ,v�,vz) = (−r/2, 0, z) and the corresponding locus of a La-
grangian label `X' follows the equations rX = e−t/2, zX = et . In biaxial
extension (or uniaxial compression) the sign of the deformation rate
changes so that v = (r/2, 0,−z) and rX = et/2, zX = e−t . Since there is
no spatial variation in the kinematics, the individual axial and radial
components of the constitutive equations can be solved as coupled
ODEs in time until the solutions reach a steady state. Alternatively
the time derivative terms can be set to zero and the resulting set of
coupled nonlinear algebraic equations solved.

The homogeneous steady state solution for the tensile stress �E as
a function of De in uniaxial extension is shown in Fig. 1a and is con-
trasted with the corresponding solutions for the Giesekus (
 = 1/2)
and UCM (
 = 0) models. It can be seen that the tensile stress �E
increases monotonically with De for the UCM and Giesekus mod-
els whereas the dependence is nonmonotonic for the VCM model.
The tensile stress �E in the VCM model first increases with De due
to extension of the wormlike micelles but then abruptly decreases
at higher De due to the stress-enhanced rate of micellar rupture. In
Fig. 1b we show the model predictions expressed in terms of the
steady uniaxial and biaxial extensional viscosities �E = �E/De. In the
inset we reproduce the experimental measurements of Walker et al.
(1996) in an opposed jet apparatus also for a CPyCl/NaSal solution.
Similar observations (in uniaxial extension only) have been reported
for a TTaBr (tetradecyl trimethylammonium bromide)/NaSal worm-
like micelle by Prud'homme and Warr (1994). Both the VCM model
and the experimental results in uniaxial extension exhibit the ex-
pected Trouton viscosity, �E = 3�0, at low De, which then increases
(extension thickening) before decreasing (extension thinning) at high
De. By contrast, the predicted and measured biaxial viscosities show
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Fig. 1. Predictions of the VCM model in homogeneous steady-state extensional flow
for the tensile stress as a function of extension rate: (a) the steady-state tensile
stress �E(De) in uniaxial extension compared to the UCM and Giesekus (
 = 1

2 )
models, (b) predicted variation in the steady-state uniaxial extensional viscosity
(blue, dash dot) and biaxial extensional viscosity (red, solid) compared with the
experimental results of Walker et al. (1996) obtained with concentrated wormlike
micellar solutions of CPyCl/NaSal in brine. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

an initial plateau followed directly by a monotonic decrease (exten-
sion thinning) due to the kinematic differences of the biaxial exten-
sional field.

In Fig. 2a we show the transient response of the homogeneous
tensile stress growth function �+

E (t) in start-up of steady elongational
flow for several De. For small Deborah numbers the stress difference
rises monotonically to its steady state value. However, as the Debo-
rah number is increased further to De = 2, the tensile stress growth
function �+

E (t) overshoots its steady state, and eventually this is
followed at higher De by an undershoot. As the Deborah number
increases further, the magnitude of both the overshoot and the sub-
sequent undershoot becomes more pronounced. By contrast, for the
UCM and Giesekus models, the tensile stress in homogeneous flow
always increases monotonically with the deformation rate. The vari-
ation in the tensile stress with both dimensionless time (or strain)
�̇0t′ and dimensionless strain rate (or De) can be represented in the
form of a contour plot as shown in Fig. 2b.
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Fig. 2. Predictions of the VCM model in transient homogeneous uniaxial extension:
(a) �E for several values of De as indicated; (b) contour plot showing the tensile
stress �E(De, �) and the location of the maximal value �E,max (thick line).

Transient experiments corresponding to the start-up of steady
extensional flow correspond to horizontal trajectories across this
surface at a constant value of De. For each Deborah number beyond
a critical threshold De � 0.9 there is a maximum in the tensile stress
at a specific value of the strain. The location of this ridge in De, t (or
De, �) space can be well approximated for De>1 by the expression
tmax = 1.25 + 2.5 × 10−3De + (0.35/(De − 0.9)). This is shown by the
thick line in the figure, which asymptotes to De=0.9 for large strains.

Following Olagunju (1999), who examined the linear stability
of transient uniaxial elongation of an Oldroyd-B fluid, we analyze
the linear stability of this homogeneous elongational flow for the
VCM fluid. Perturbations from the axially uniform base state within
the one-dimensional, inertialess (thin filament) approximation were
considered. Fig. 3 shows the fastest growing mode, �M , of the per-
turbation vz = z+ �e�t sin(2n
(z e−t − 1

2 )) as a function of De for the
VCM model. For De�0.25 (corresponding approximately to the lin-
ear viscoelastic regime), the largest (real) eigenvalue is roughly con-
stant and reduces to that of the UCM model, as reported in Olagunju
(1999). Thus the flow is unstable (i.e. the elongating filament does
not remain a perfect cylinder of exponentially decreasing radius, but
in fact slowly necks); however, the perturbations grow slowly. As De
increases, the UCM model predicts a progressive stabilization of the
rate of filament thinning due to the exponential growth in the tensile
stresses in the filament (Olagunju, 1999). By contrast, for the VCM
model, there is a rapid increase in the growth rate of the instability
for intermediate values of De where the homogeneous steady state
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Fig. 3. Plot of the eigenvalue of the fastest growing mode, �M , of the perturbation
to the transient homogeneous profile as a function of De for the VCM model (red
solid line), along with the corresponding curves for �E and �E . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

curve �E(De) has multiple values of De for a given �E. At high Deb-
orah numbers (De>2) the growth rate of the instability decreases
once more due to the increasingly important viscous contribution to
the tensile stress difference arising from the short B species.

4. 1 + 1 Lagrangian model and predictions

In order to further investigate this instability in transient exten-
sional flow and to capture the evolution of the axial inhomogeneities,
we consider a slender filament approximation for the elongating
fluid thread in a Lagrangian reference frame, analogous to the anal-
ysis of Renardy (1994). In this approximation, it is assumed that the
dependent variables do not vary appreciably over any radial cross
section of the long thin elongating filament; so that all properties
depend on only the axial position, z, along the filament length and
on the elapsed time (or total strain accumulated by each local ma-
terial element).

In the Lagrangian formulation, following Renardy (1994, 2004),
we denote the axial stretch by s = (�z(X, t))/�X where X is the ini-
tial (reference) location of the particle and z(X, t) is its current po-
sition. Conservation of mass then gives a relationship between the
radius and the axial stretch s= 1/r2. Conservation of linear momen-
tum together with the free surface boundary conditions reduces (in
dimensionless form) to

�E

s
+ Ec−1

√
s

= f (t) (7)

where the dimensionless force f (t) = Fz(t)/(
G0R20) must be deter-
mined as part of the solution. Physically, f (t) is the total axial force
in the filament which must be balanced by the tensile stresses car-
ried at each axial location; namely the local axial stress multiplied by
the local area plus the surface tension force multiplied by the local
circumference. Since we are considering a slender filament approx-
imation, the radial boundary condition can be used to replace the
unknown pressure contribution to the total axial stress Tzz =−p+�zz
by the radial extra stress �rr . The local strain rate at each axial slice is
given by u,z = s,t/s. Smoothness of the solutions requires equivalence
of the cross-derivatives, thus for consistency s,t = u,X . The evolution

equation for the number density of long and short micellar chains
becomes

DeAnA,t = 1
2
cBeqn2B − cAeqnA − � (8)

and

nB = nT − 2nA (9)

where�=(2�/3)DeA(s,t/s)(Azz−Arr) and nT is the (fixed) total number
of chain segments.

The individual components of the constitutive equations become

DeA

(
Azz,t − 2

s,t
s
Azz

)
+ Azz − nA = cBeqnBBzz − cAeqAzz − �

Azz

nA
(10)

DeA

(
Arr,t + s,t

s
Arr

)
+ Arr − nA = cBeqnBBrr − cAeqArr − �

Arr

nA
(11)

∈BDeA

(
Bzz,t − 2

s,t
s
Bzz

)
+ Bzz − nB

2

= −2∈B

[
cBeqnBBzz − cAeqAzz − �

Azz

nA

]
(12)

∈BDeA

(
Brr,t + s,t

s
Brr

)
+ Brr − nB

2

= −2∈B

[
cBeqnBBrr − cAeqArr − �

Arr

nA

]
(13)

These constitutive relations, coupled to the momentum equation
(7), represent coupled ordinary differential equations. The equation
set is closed by recognizing that in a filament stretching rheometer
(where we continuously pull the ends of the filament) the evolution
in total sample length is given by

∫ 1

0
s(X, t)dX = et (14)

Finally, we note that in this one-dimensional slender filament ap-
proximation it is not possible to satisfy the no-slip boundary condi-
tion at the rigid endplates exactly (Yao et al., 1998; Olagunju, 1999)
and consequently the radius of the filament at each endmay increase
or decrease slowly during the course of the simulation.

The initial profile is s(X, 0) = 1 − � cos(2
X), 0�X�1, and we
choose the magnitude of the defect to be � = 0.01. For larger �, the
results are similar but occur at earlier times. All results presented
are for Ec−1 =0 since we are particularly interested in the possibility
of elastic rupture/breakage due to micellar breakage in the absence
of capillary effects. As discussed in the introduction, Renardy (2004)
found that elongating filaments described by the upper convected
Maxwell model or by the Giesekus model do not break in finite
time in the absence of surface tension effects. Additional exploratory
calculations (not presented here) using the VCM model with a finite
value of the elastocapillary number (i.e. nonzero surface tension)
show that capillarity does not change the mechanism of rupture, but
rather only affects the time at which events occur.

5. Results

The solutions of Eqs. (8)–(14) were found using finite differences
in time at each Lagrangian position X coupled with an iteration on
the momentum equation to find s and f such that Eq. (14) is satis-
fied. The scheme used has optimal time steps of size 10−4 and spatial
steps of size 10−2; decreasing either step size did not affect the re-
sults except to give better resolution in figures. In order to compare
and contrast the predictions of the VCM model with other famil-
iar constitutive models (Giesekus, UCM), solutions for these models
were also computed under the same conditions.
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Fig. 4. Evolution of the axial midplane radius for the Giesekus model in the slender
filament approximation at De=2 for 
=0.1, 0.5, 1 (respectively, dashed (blue), solid
(green) and dash/dot (red) line). The results are plotted as a function of Hencky
strain � or nondimensional time and compared to Renardy's asymptotic solution
near breakup (dotted lines). Parameters for the fits for Eq. (15) are: for 
 = 0.1;
c0 =0.07, c1 =1/61; for 
=0.5; c0 =0.17, c1 =1/15; for 
=1; c0 =0.65, c1 =1/4.5. The
upper dashed line shows the evolution in the midpoint radius for a homogeneous
uniaxial extensional flow; R= e−(t/2). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

The theoretical analysis of Renardy (2000) found that the rate of
radial thinning at the midaxial plane for the Giesekus model has the
asymptotic form

Rmid = c0
√


c−(1/4)
1 e−(t/2) e−((
c1/8
2) e2t) (15)

where c0, c1 are constants of integration. Fig. 4 shows the agreement
between the limiting behavior of the variation in Rmid computed for
the Giesekusmodel and the asymptotic solution of Renardy forDe=2,
and for several values of the nonlinear constitutive parameter 
 in
the Giesekus model. The filament radius clearly evolves smoothly
toward zero at long times.

By contrast, simulations with the VCM model exhibit a much
more rapid necking failure at a critical strain. The temporal evolu-
tion in the axial midplane radius Rmid(t) (corresponding to a fixed
Lagrangian label X = 0.5) and in the tensile force f (t) is shown in
Fig. 5 for several different values of De. The radius of the neck initially
follows ideal homogeneous uniaxial extension with Rmid ∼ e−(t/2)

(broken line). For small Deborah numbers, De�0.25 (corresponding
to the single valued portion of the steady state homogeneous flow
curve), the radius continues to decrease smoothly in time, albeit at
a rate that is slightly faster than the affine limit. This behavior is a
reflection of the fact that the homogeneous solution is weakly un-
stable at all De (see Fig. 3). As De increases (to values that correspond
to deformation rates for which the uniaxial homogeneous curve has
multiple values of De for a given �E) the radius and the tensile force
in the thread abruptly drop beyond a critical strain, denoted �f , cor-
responding to a finite-time rupture of the elongating filament. As De
is further increased, the time at which this failure occurs decreases
until it reaches a lower limiting value, and thereafter the time be-
gins to slowly increase again at very high De. This can be seen quite
clearly in a plot of the strain to failure (Fig. 6). The minimum strain
to failure correlates well with the point of fastest instability growth
rate shown in Fig. 3. The slow increase in �f at very high De corre-
sponds to the weakly stabilizing effects of the viscous tensile stress
originating from the short B species. There is a close connection be-

0 1 2 3 4 5

10−1

100

0 1 2 3 4 5
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Fig. 5. Evolution in (a) axial midplane radius and (b) tensile force in an elongating
filament as a function of Hencky strain for the VCM model at several De (Ec−1 = 0).
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Fig. 6. Hencky strain at failure, �f , for the VCM model at each extension rate (Ec−1=0).
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Fig. 7. Contour plots showing the evolution in the axial profile and the tensile
stress �E(z, t) in a VCM filament as a function of imposed Hencky strain. The scale
is such that the darkest color indicates �E = 0, the lightest color that �E = 12. Note
that the strain increments are not uniform, the strains at which the figures are
shown correspond to 0.1, 1.2, 1.24 and 1.2433, the last being just before failure
(De = 2, Ec−1 = 0).
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Fig. 8. nA(z) at the same Hencky strains as shown in Fig. 7 (�=0.1, 1.2, 1.24, 1.2433)
showing the spatial depletion (breakage) of species A in the highly thinned region
under the extensional forcing (here nB = nT − 2nA where nT = 2 + √

2cAeq/cBeq (see
Section 2)). Note that at � = 0.1, nA ∼ 1, the right-hand boundary. In the region
0.4�z/L�0.6, nA ∼ O(10−3) for � = 1.2433 (De = 2, Ec−1 = 0).

tween the calculated strain to failure shown in Fig. 6 and the location
of the ridge shown in Fig. 2b.

In Fig. 7 a sequence of snapshots shows the temporal evolution in
the axial profile and the development of the tensile stress �E(z, t) in
the filament. During the initial stages of stretching, the deformation
is close to ideal homogeneous extension; however, closer to the
breakup time, the stress localizes and grows rapidly in the neck that
begins to develop at the midaxial plane while relaxing to zero at the
endplates. In Fig. 8 we show the evolution in the number density of
the A species, nA, along the filament for times corresponding to those
in Fig. 7. Starting from a single equilibrium mixture of long, A, and
short, B, chains (where nT = nB + 2nA is constant) the flow evolves,
under large extensional forcing, into two spatially distinct phases.
A comparison of the time evolution in Rmid(t) for several different
viscoelastic models at a fixed value of De = 2 is shown in Fig. 9a.
The initial deviation from ideal uniaxial extension is similar for both
the Giesekus and the VCM models; however, the deviation becomes
far more drastic for the VCM model than for the Giesekus model. In
Fig. 9b we show the corresponding evolution in the dimensionless
tensile force f (t) in the filament. The hollow circles correspond to the

0 1 2 3 4 5 6
10−2

10−1

100
Newtonian
VCM
UCM
Giesekus

0 1 2 3 4 5 6
10−3

10−2

10−1

100

101

102

Newtonian

VCM

UCM

Giesekus

Fig. 9. Evolution in (a) the axial midplane radius and (b) the tensile force as functions
of Hencky strain for the VCM, UCM and Giesekus (
=1/2) models at De=2. Circles
along the VCM curve in (a) and (b) correspond to the strains/times for which the
filament is shown in Fig. 7. (Ec−1 = 0 and no solvent contribution).

times at which the contour plots shown in Fig. 7 are presented. We
emphasize that the trajectories for the VCM model are not truncated
due to numerical resolution issues but because the one-dimensional
slender filament formulation does not appear to admit a physical
solution beyond this critical strain.

To further explore the dynamics of rupture at the midaxial plane
we show in Fig. 10a the spatial variation in extension rate along the
filament just before failure for the VCM model and for a Giesekus
model. Although the evolution in the necking rate for the Giesekus
model at the midplane is itself rapid, with s ∼ et e((c1/16


2) e2t) so
that s,t/s ∼ O(e2t), for 
 = 1

2 (Renardy, 2000), the rupture is even
more rapid and much more localized for the VCM model. In Fig.
10b we use the measure proposed by Bhat et al. (2008) to show
the rate of viscoelastic energy storage/release along the filament for
both models. In the VCM model the rate of work is negative close
to the endplates corresponding to elastic unloading and recoil in
the micellar fluid. This unloading is coupled to the extreme rate-
dependent thinning in the extensional viscosity of fluid elements
near the axial midplane and the rapid decrease in the tensile force
in the filament.
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Fig. 10. (a) Comparison of the local extension rate in the filament as a function of
scaled axial location z/L(t) just before failure (�=1.2433 for the VCM filament, �=4
for the Giesekus filament (
=1/2) showing the sharply localized rate of thinning of
the VCM filament close to rupture; (b) a measure of the energy storage or release
rate showing the strongly enhanced elastic unloading (recoil) at the ends of the
VCM filament as compared to the Giesekus filament (Ec−1 = 0).

6. Summary

In conclusion, we have considered the steady and transient elon-
gational response of a nonlinear elastic network model developed
for concentrated wormlike micellar solutions. In steady homoge-
neous flows the model appears to capture the differences in the
rate-dependent uniaxial and biaxial extensional viscosities that has
been measured in experiments. The model contains a single non-
linear constitutive parameter which controls the magnitude of the
extensional thickening in the viscosity and which can, in principle,
be determined by regression to corresponding experimental mea-
surements. In the start-up of uniaxial elongation, the model pre-
dicts a maximum in the tensile stress difference at a critical strain
due to the stress-enhanced rupture in the number of long entangled
wormlike chains. The non-monotonic variation in the tensile stress
resulting from a local increase in the deformation rate leads to the
homogeneous uniaxial flow becoming increasingly unstable at mod-
erate Deborah numbers. Transient simulations of the resulting inho-
mogeneous flow using a slender filament formulation show the for-
mation of a localized neck in the filament at a finite Hencky strain.

This necking event occurs even in the absence of capillarity and is a
consequence solely of the nonlinear elastic response of the micellar
network. This local elastic rupture event may be loosely considered
the extensional analog of the well-documented shear bands that de-
velop in steady and transient shearing flows of entangled micellar
solutions (in which a non-monotonic variation in shear stress with
shear rate results in the homogeneous flow becoming unstable and
rapidly evolving to develop a spatially localized `band' over which
the rheological properties of the fluid rapidly vary). The general fea-
tures of the VCM model predictions are consistent with the recent
experimental observations of Bhardwaj et al. (2007), and result in a
very rapid decrease in the filament radius near themidplane (see, e.g.
Figs. 7 and 9a) at a value of the tensile force which is approximately
constant (Fig. 5b) over a broad intermediate range of De. Future work
will focus on quantitative comparison between experimental mea-
surements and the VCM model, together with more detailed eluci-
dation of the asymptotic behavior in the necking region—in order to
understand how such rupture events can be directly connected to
the precise functional form of the elongational viscosity of entangled
fluids.
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