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Abstract

Recent experiments have shown that it is possible to self-assemble very uniform polymeric microfibers

and nanofibers by exploiting elasto-capillary thinning of macroscopic liquid bridges (Harfenist et al.,

Nano Lett., 4(10), 2004). We develop a model of this process that describes the simultaneous visco-

elasto-capillary thinning and drying of polymeric liquid filaments. A one-dimensional formulation is

developed using a slender body approximation to the inertialess equations of motion. The evolution

in the kinematics, stress and composition of differential material elements are computed by numerical

simulation on a fixed mesh using an explicit Eulerian scheme. The polymer rheology is described by

a single-mode Giesekus model with an experimentally-determined concentration-dependent shift factor

that accounts for compositional dependence of the zero shear rate viscosity and the relaxation time of the

fluid. The numerical simulations are compared to capillary break-up extensional rheometer (CABER)

experiments using high molecular weight poly(methyl methacrylate) solutions in chlorobenzene with a

range of mass fractions in the concentrated regime. Very large reductions in the radius of the thinning

thread - spanning two to three orders of magnitude - are attainable by careful control of the mass

transfer rate, the molecular extensibility of the dissolved polymer and the dynamics of the elasto-capillary

thinning process. Simulations show that the fiber formation process can be conveniently parameterized

by two dimensionless parameters which compare, respectively, the rate of capillary thinning with the

rate of elastic stress relaxation and with the rate of solvent evaporation.
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1. Introduction

The fabrication of microscale and nanoscale polymer fibers has gained considerable interest because

of its potential applications in nano-electronics [1], nano-sensors [2], low-loss optical wave guides [3].

Other applications in fields such as filtration and biotechnology have been summarized in the review

by Huang et al. [4]. Common fiber-forming processes do not allow precise, controlled placement of

individual submicron fibers on a substrate. In melt spinning, dry spinning or wet spinning [5], the

extrusion of the polymer melt or solution is unidirectional and leads typically to fibers with diameter

ranging from tens of microns to millimeters. Only electrospinning readily produces submicron diameter

fibers, which are generally collected as non-woven mats and thus cannot be arranged in controlled

patterns. Recently, various microfabrication techniques for producing controlled networks of fibers have

been reported by Harfenist et al. [6], Berry et al. [7] and Nain et al. [8, 9]. Exploiting capillary

thinning of macroscopic liquid threads, they managed to place individual microfibers and nanofibers

in a controlled way on a substrate. In this study, we focus on the “Brush-On” fabrication method,

presented in Fig. 1, which can be used to form suspended structure-spanning fiber bridges on MEMS

devices. In Fig. 1(a), an applicator spreads a large sheet of polymer solution over an array of micropillars

by a smooth unidirectional brushing motion. In Fig. 1(b), this sheet breaks up into individual threads

that bridge neighboring pillars, in the direction of brushing. Based on the observed uniformity of arrays

of fibers it appears that similar amounts of liquid wet each pair of pillars. The resulting liquid bridges,

suspended between two micropillars, undergo simultaneous capillary thinning and evaporation of the

solvent, forming fibers much thinner than the dimensions of the micropillars, as shown in Fig. 1(c). The

present paper focuses on this later stage of capillary thinning between two micropillars, which appears

to be the critical feature in the formation of nanoscale air-suspended fiber bridges. We do not attempt

to describe the initial stages of brushing that leads to the breakup of the sheet and formation of an

array of liquid bridges.

The action of capillary forces on the liquid bridge results in an extensional flow between two fixed

plates. The fluid dynamics of those extensional flows has been studied extensively utilizing the Capillary

Breakup Extensional Rheometer (CABER), introduced in 1990 by Bazilevsky et al. [10]. In a filament
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thinning device, a liquid bridge is formed between two circular plates, which are rapidly separated and

then held at a fixed axial separation. The evolution of the midfilament diameter is monitored with a

laser micrometer during the process of necking until a final equilibrium thread radius is achieved or the

filament breaks.

Simultaneous elasto-capillary thinning and mass transfer has been studied by Tripathi et al. [11] to

characterize the processability of adhesives and other non-Newtonian fluids. The effects of combined

heat and mass transfer in extensional flows has also been studied extensively during the dry spinning

process [12, 13]. In the present work, we develop a model that describes the simultaneous visco-elasto-

capillary thinning and drying of cylindrical filaments of polymer solutions. Our goal is to understand how

the balance of forces evolves during the thinning process in order to obtain the thinnest and most uniform

fibers possible. Very large radius reductions, spanning two to three orders of magnitude, are attainable

by careful control of the mass transfer rate and the elasto-capillary thinning dynamics. The model,

based on a one-dimensional slender body theory is presented in Section 2. In Section 3, rheological and

physical characterization of PMMA in chlorobenzene solutions at different concentrations are presented.

Section 4 presents the methods used in the numerical simulations. The last section explains the dynamics

of capillary thinning with drying, then compares simulation and experiments at the macroscopic scale

using CABER experiments. Finally, we use our model to predict the possible outcome of “Brush-On”

experiments at the nano and micro scale and we provide guidelines to “design” polymer solutions leading

to controlled radius reduction in the thinning thread.

2. Model

2.1. Problem statement

In a “Brush-On” experiment, the liquid bridge is suspended between the top of two micropillars. For

the sake of simplicity, we assume that at this contact point the “foot” of the thread is cylindrical due

to capillarity. The model system presented in Fig. 2 shows an axisymmetric liquid bridge of a polymer

solution of constant density ρ constrained between two circular disks of radii R0 and initial separation

Li. The initial aspect ratio of the liquid bridge is then defined as Λi = Li/R0. It is surrounded by

ambient air at rest at 23◦C and the flow is assumed to remain isothermal throughout. The surface

3



tension σ of the liquid-air interface is spatially uniform and, for simplicity, is assumed to be independent

of the mass fraction of the binary mixture. It is certainly straightforward to incorporate a concentration

dependent surface tension, however such effects are small compared to the large (exponential) changes in

the bulk rheology, and inhibit our understanding of the basic physics. The solvent Newtonian viscosity

is noted ηs. The zero shear rate viscosity of the polymer ηp0(x), the relaxation time λ(x), the total zero

shear rate viscosity η0(x) = ηs + ηp0(x), are strong functions of the mass fraction x of the high molec-

ular weight polymer in solution. The zero shear rate viscosity and relaxation time at the initial mass

fraction x0 are respectively noted η00 = η0(x = x0) and λ0 = λ(x = x0). The “Brush-On” process is

modeled by giving the top plate a fast vertical displacement, illustrated schematically in Fig. 2(b) until

the final length L0 (corresponding to the aspect ratio Λ0). This step strain is modeled in Section 2.4

using a lubrication approximation. Our model and numerical simulation are valid after this step strain

and describe the self-thinning of the liquid bridge between two fixed plates, illustrated in Fig. 2(c) and

Fig. 2(d). The parameter Rmid represents the radius at the midfilament z = Λ0/2. The fluid column is

assumed to remain axi-symmetric. Shearing forces are caused at the beginning of the deformation by

the no-slip boundary condition along the upper and lower solid surfaces. As the filament becomes long

and slender, the flow tends toward an ideal uniaxial elongational deformation and shearing effects are

negligible. The shear thinning behavior of the working fluid is thus neglected.

In this study, the small size of the initial sample and the large viscous and elastic contributions to the

total force ensure that gravitational body forces and inertia are negligible at all strains. This inertialess

regime leads to an axially symmetric profile about the midplane of the filament. The physical problem

is formulated in a cylindrical coordinate system with its origin located at the center of the bottom disk.

For the axisymmetric situations of interest in this work, the problem does not depend on the azimuthal

coordinate. The aspect ratio Λ0 = L0/R0 being a large parameter, a slender body approximation is

used to reduce by one the spatial order of the 2-D mathematical problem [14, 15]. The kinematics of

the motion is therefore essentially one-dimensional, and all variables can be averaged on a cross section

and regarded as functions of the position z and the time t. The limits of this approximation compared

to a full two-dimensional axisymmetric description of the capillary thinning process in non-Newtonian

fluids has been studied by Yildrim et al. [16] and Yao et al. [17].
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2.2. Governing equations

Under the assumption of a slender inertialess jet, the mass and the momentum conservation laws

can be considerably simplified [18, 19]. To non-dimensionalize the governing equations, we select the

radius of the end-plates R0 as a characteristic length, and the visco-capillary time scale tcap0 = η00R0/σ

as a characteristic time for evolution of the thread. This leads to the following dimensionless variables:

z∗ = z/R0, v∗ = v/(R0/tcap0), t∗ = t/tcap0, Π∗ = Π/(σ/R0), where Π is the stress in the fluid.

Four dimensionless groups can be identified in this problem; one describing the initial geometry of the

thread, one comparing the solvent viscosity to the total viscosity of the solution, and two describing the

fluid dynamics of the process itself:

Aspect ratio of the liquid bridge: Λ0 = L0/R0

Initial solvent viscosity ratio: βs = tcapS/tcap0 = ηs/η00

Elasto-capillary number: Ec0 = λ0/tcap0 = λ0σ/η00R0

Processability number: P0 = tcap0/tevap0 = hmη00/σ

The elasto-capillary number compares the relaxation time of the polymer solution λ0 at the initial mass

fraction x0 to the visco-capillary time scale tcap0. It can thus also be understood as a Deborah number,

in which the extension rate of the self-thinning scales like the inverse of the visco-capillary time. The

parameter βs compares the visco-capillary time scale of the solvent tcapS = ηsR0/σ to that of the polymer

solution tcap0 = η00R0/σ. A more extensive discussion of these two dimensionless groups can be found

in the review by McKinley [20]. The processability number, defined by Tripathi et al. [11], compares

the evaporation time scale tevap0 = R0/hm, where hm is a mass transfer coefficient (with S.I. units of

m/s), to the visco-capillary time scale of the polymer solution, tcap0. These variables along with the

dimensionless parameters are used in developing the non-dimensional governing equations and boundary

conditions given in the next section. For convenience, we drop the asterisk notation in the remainder

of the paper and do not explicitly identify variables as dimensionless. We denote the dimensionless
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spatially and temporally evolving radius as h(z, t) = R(z, t)/R0.

2.2.1. Continuity equations

During the filament thinning process the volatile solvent component evaporates from the solution

and we thus need to distinguish between the two species in the continuity equations. The mass balance

for the polymer on a control volume delimited by the cross sections between z and z + dz gives:

∂(h2x)

∂t
+

∂(vh2x)

∂z
= 0 (1)

where v(z, t) is the axial velocity and x(z, t) is the mass fraction of polymer in each slice.

For the evaporating solvent, an additional term describing mass transfer at the air-liquid interface

appears in the continuity equation. The thinning process occurs under ambient condition and does

not involve forced convection (e.g. by blowing air over the filament). Convective mass transfer is thus

negligible and it is assumed that the process is controlled by diffusion of the solvent in both the viscous

liquid phase and the gas phase. Fig. 3 shows a schematic of the transient diffusion problem in the

cylinder. We denote by xs(r, z, t) the local mass fraction of solvent in the system. The parameter x,

introduced earlier, is the average mass fraction of polymer over a cross section. In the liquid phase,

the diffusion coefficient Dsl(xs) is a strong function of the remaining mass fraction of solvent xs in

the increasingly viscous polymer solution. The driving force for radial diffusion is xl
s,0 − xl

s,i, i.e. the

difference between the mass fraction of solvent at the centerline and at the interface. In the gas phase,

the diffusion coefficient Dsg is taken to be independent of the mass fraction of solvent and the driving

force is xg
s,i − xg

s,∞, i.e. the difference between mass fraction of solvent at the interface and in the

ambient air far from the filament. In our study, non aqueous solvents are used and xg
s,∞ = 0. Assuming

thermodynamic equilibrium at the interface liquid-air, we can relate the mass fraction of solvent at the

interface in the liquid and gas phase using Raoult’s law (polymer-solvent interactions were found to

have little effect on the system). When combined with Dalton’s law this gives:

xl
s,i =

ps0

p
xg

s,i = αpx
g
s,i (2)

where ps0 is the vapor pressure of solvent at 23◦C and p is the atmospheric pressure. The dimensionless

parameter αp = ps0

p is the partition coefficient. To describe the mass transfer process of the evaporating
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solvent, we use the two-film resistance theory proposed by Lewis and Whitman in 1924 [21]. We can

define a mass transfer coefficient for the liquid phase hl and for the gas phase hg so that the mass flux

of solvent ṁs is:

ṁs = ρhl(x
l
s,0 − xl

s,i) (3)

ṁs = ρhgx
g
s,i (4)

Calling δl and δg respectively the boundary layer in the liquid and the gas, and noting that when

diffusion in the liquid is fully developed δl = R, the mass transfer coefficients scale as:

hl ≈ max

(

Dsl(xs)

δl
,
Dsl(xs)

R

)

≈ max

(
√

Dsl(xs)

t
,
Dsl(xs)

R

)

(5)

hg ≈
Dsg

δg
≈

√

Dsg

t
(6)

We can compute an average mass transfer coefficient hm based on the driving force xl
s,0−αpx

g
s,∞ (which

simplifies to xl
s,0 since xg

s,∞ = 0). This gives:

1

hm
=

1

αphg
+

1

hl
(7)

Depending on the length scale and the value of the diffusion coefficient, the resistance in the liquid or

the gas may dominate, but this theory covers both limiting cases. The mass transfer coefficient hm

depends on time as the filament shrinks and the solvent evaporates.

Finally, the total evaporative flux per unit length of a slice of filament with radius R(t) can be written

ṁ = 2πρRhm(1 − x). In dimensionless form, the continuity equation for the solvent gives:

∂(h2(1 − x))

∂t
+

∂(vh2(1 − x))

∂z
+ 2hP0(1 − x) = 0 (8)

where P0 = tcap0/tevap0 = hmη00/σ is the processability number, which compares the rate of evaporation

to the rate of visco-capillary thinning in the filament. The mass transfer theory we developed will be

used in Section 5.1 to predict the order of magnitude of the average mass transfer coefficient hm.
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2.2.2. Equation of motion

The axial force balance integrated over the control volume delimited by the cross sections between

z and z + dz gives:

∂

∂z

{

h2

[

1

h(1 + h2
,z)

1
2

+
h,zz

(1 + h2
,z)

3
2

]

+ h2(Tzz − Trr)

}

= 0 (9)

where κ = 1

h(1+h2
,z)

1
2

+
h,zz

(1+h2
,z)

3
2

is the dimensionless mean curvature of the interface (h,z and h,zz denote

respectively the first and second partial derivative of the radius with respect to the axial coordinate).

The first term represents the capillary force at the liquid interface while the second represents the

force contribution from the solvent and the polymer. Here Tzz(z, t) and Trr(z, t) denote respectively

the average axial and radial component of the extra stress tensor in each slice. A detailed derivation of

Eq. (9) can be found in the review by Eggers [22]. The capillary term includes the full mean curvature κ.

As shown by Papageorgiou [15], keeping the full curvature term in Eq. (9) is not formally asymptotically

correct. However, several authors [16, 18] have also adopted this approach. The main reason for retaining

the full curvature term is that the resulting set of 1-D equations then predicts the equilibrium shapes

of static bridges exactly.

We separate the solvent contribution T
s and the polymer contribution T

p in the extra stress tensor:

T = T
s + T

p (10)

The Newtonian solvent stress difference for an extensional flow can be expressed as:

T s
zz − T s

rr = 3ηs
∂v

∂z
(11)

where 3ηs is the extensional viscosity or Trouton viscosity of the Newtonian solvent.

The final expression of Eq. (9) can then be written:

∂

∂z

[

3βsh
2 ∂v

∂z
+

h

(1 + h2
,z)

1
2

+
h2h,zz

(1 + h2
,z)

3
2

+ h2(T p
zz − T p

rr)

]

= 0 (12)

The sum of the terms in the square brackets can be identified as the tensile force in the filament. In the

inertialess regime, this tensile force is uniform along the axial coordinate and depends only on time. It
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has three contributions, a Newtonian solvent stress, a capillary stress and a non-Newtonian polymeric

stress difference arising from the stretching of the polymeric chains.

The boundary conditions for this problem are two fixed plates imposing v = 0 at z = 0 and at z = Λ0.

Because of the slender body approximation, the radial no-slip condition cannot be satisfied exactly

at the end plates. However, numerical studies show this does not affect the determination of the

thinning dynamics in the central portion of the filament significantly [16, 17]. The initial conditions

are T p
zz = T p

rr = 0, x = x0 at t = 0. The computation of the initial profile is described in Section 2.4.

The initial velocity profile is computed by solving Eq. (12), in conjunction with the initial shape of the

filament.

2.3. Constitutive equations

To describe the viscoelastic contribution to the stress in concentrated polymer solutions, we use a

single-mode Giesekus model [23], in which the relaxation time and viscosity are allowed to depend on

concentration. We choose a single relaxation time for simplicity; a detailed comparison of the dynamics

with a spectrum of relaxation times in the absence of solvent evaporation has been provided by Yao et

al. [17]. The elastic stresses are governed by the following partial differential equations (in dimensionless

form):

T p
zz + Ec0

λ(x)

λ0

(

∂T p
zz

∂t
+ v

∂T p
zz

∂z
− 2

∂v

∂z
T p

zz

)

+
λ(x)

λ0

η00

ηp0(x)
β−1αEc0(T

p
zz)

2 = 2β
ηp0(x)

η00

∂v

∂z
(13)

T p
rr + Ec0

λ(x)

λ0

(

∂T p
rr

∂t
+ v

∂T p
rr

∂z
+

∂v

∂z
T p

rr

)

+
λ(x)

λ0

η00

ηp0(x)
β−1αEc0(T

p
rr)

2 = −β
ηp0(x)

η00

∂v

∂z
(14)

where the parameter β is defined by β = 1 − βs. The positive dimensionless parameter α is called

the mobility factor and is associated with the anisotropy of the hydrodynamic drag on the constituent

polymer molecules. The initial elasto-capillary number is defined by Ec0 = λ0σ/η00R0, where λ0 =

λ(x = x0), η00 = η0(x = x0). In the case of very low solvent viscosity compared to polymer viscosity

(βs << 1), we can approximate the polymer viscosity with the solution viscosity ηp0(x) ≈ η0(x) in

the constitutive equations. For α = 0, we recover the quasi-linear Oldroyd-B model. The non-linear
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quadratic term in stress introduced by the Giesekus model is necessary to describe finite time break-up

of liquid bridges between two plates. As shown by Entov & Hinch [24] elasto-capillary thinning in the

Oldroyd-B model leads to an exponential decrease of the radius with time, but cannot capture break-up.

2.4. Modeling of the initial filament

We model the initial displacement of the fluid drop to form a liquid bridge by a lubrication analysis

based on the reversed squeeze flow problem for a Newtonian fluid. This problem has already been used

in extensional rheometry by Spiegelberg et al. [25] and Bach et al. [26] and is a good approximation

for small deformations, even for non-Newtonian fluids. We choose a reference set of Lagragian points

Z0, initially located on a cylindrical free surface of dimensionless radius h(t = 0, z) = 1. The initial

aspect ratio is Λi. The particle coordinates (Rlub, Zlub) at the final aspect ratio Λ0 can be computed

using most readily a Lagrangian formulation, giving the following dimensionless expressions for the

coordinates locations in the lower half of the fiber (Z0 ∈
[

0, 1
2

]

):

Zlub =
Λi

2

[

1 −

(

(2Z0 − 1)2

(2Z0 − 1)2 + 4Z0(1 − Z0)e−ǫ

)

1
2

]

eǫ (15)

Rlub =
[

(2Z0 − 1)2 − 4Z0(Z0 − 1)e−ǫ
]

3
4 (16)

The shape of the upper half of the fiber is given by symmetry. In this expression ǫ represents the Hencky

strain. To compute the profile obtained for an imposed aspect ratio Λ0 we have to choose ǫ = ln(Λ0/Λi).

To compute the profile on the Eulerian mesh described in Section 4, Eq. (15) is inverted analytically

and substituted into Eq. (16) to obtain a function of the form Rlub = f(Zlub).

3. Fluid characterization

3.1. Concentrated solutions of PMMA in chlorobenzene

Poly(methyl methacrylate) (PMMA), an amorphous thermoplastic polymer is used in all the exper-

iments (Sigma-Aldrich, CAS number 9011-14-7). The average molecular weight is Mw = 996 kg/mol.

A polydispersity index of Mw/Mn = 2.5 is determined with a Waters Gel Permeation Chromatograph.

The polymer is dissolved in chlorobenzene, a good solvent, and solutions with initial polymer mass
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fractions 0.1 < x0 < 0.35 are prepared. The intrinsic viscosity [η] can be related to the molecular weight

Mw of a linear polymer by the Mark-Houwink equation [η] = KM
a

w, where the constants K and a

depend on the polymer, solvent and temperature. In the literature [27], data is available for PMMA

in benzene at 25◦C: K = 5.2 × 10−6 m3/kg and a = 0.76 (corresponding to good solvent conditions).

We assume that the same parameters can be used for our chlorobenzene based system. This leads to

[η] = 0.188 m3/kg for our molecular weight. We define the concentration of polymer as c = ρx, where

ρ is the density of the polymer solution (which is taken to be independent of concentration). The criti-

cal chain overlap concentration c∗ is the crossover concentration between the dilute and the semidilute

concentration regimes. Physically, the critical chain overlap concentration is the point at which the

self-concentration inside a single macromolecular chain equals the solution concentration and can be

expressed as [28]:

c∗ = 0.77/[η] = 4.1 × 10−3 g/cm3 (17)

This corresponds to an overlap mass fraction x∗ = 0.004. If the concentration is further in-

creased, we reach the semidilute entangled regime. The crossover of concentration from the semidi-

lute unentangled to semidilute entangled regime is referred to as the critical entanglement concentra-

tion, ce. In other words, ce marks the distinct onset of significant chain entanglements in solution.

Graessley [29] reports that the entanglement mass fraction is defined by xe =
(

Mw/(Me)melt

)−1/1.3
,

where (Me)melt = 7000 g/mol is the entanglement molecular weight of a PMMA melt, which leads

to xe = 2.2 wt.% for our system. The lowest initial mass fraction of x0 = 0.1 used in this study is

more than twenty times the overlap concentration and five times the entanglement concentration, which

means that all solutions studied are fully in the concentrated regime. In these concentrated solutions,

the entanglement network steadily evolves over the course of solvent evaporation. At early times the

solution has a moderate viscosity and low elasticity because the density of entanglements is small at high

solvent concentrations. As the solvent evaporates, the viscosity and relaxation time increase, according

to an exponential law that is determined in Section 3.2. At a critical concentration, the random diffusive

motion of the chains is dramatically decreased and the material undergoes a glass transition. The final

state of the system is a glassy solid.
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The surface tension of the solutions was measured using the Wilhelmy technique. An average surface

tension over all mass fractions of σ = 0.04 N/m was determined.

3.2. Shear rheology

The rheology of the test fluids in both steady and dynamic shear flow was investigated at 23◦C using

an ARG2 rheometer from TA Instruments. 20 mm and 60 mm cone-and-plate fixtures were used at

mass fractions x0 > 0.18; a double concentric gap Couette geometry was used at lower concentrations.

Since chlorobenzene is a volatile solvent with low viscosity, a solvent trap was used to avoid drying.

3.2.1. Steady shear

In Fig. 4(a), we present the steady shear viscosity η(γ̇) versus shear rate for solutions of PMMA

in chlorobenzene with initial mass fractions in the range 0.1 < x0 < 0.35. At all concentrations, shear

thinning behavior is observed. This is initially weak at low concentrations and becomes stronger as

concentration increases. In Fig. 3(b), the steady shear data is collapsed on a master curve using time-

concentration superposition [29], with a common shift factor ac for vertical and horizontal shifting. The

reference state for shifting is the experiment at x0 = 0.2. In the inset of Fig. 4(b), the zero shear rate

viscosity η0(x) is plotted against mass fraction. The data is well fitted by an exponential relationship

ac = η0(x)/η00 = e36(x−x0). A similar scaling was found by Bornside et al. [30]. The zero shear rate

viscosity increases dramatically with concentration and spans about four order of magnitude from x0 =

0.1 to x0 = 0.35. The viscosity of pure chlorobenzene was found to have the value ηs = 0.8× 10−3 Pa s.

In dilute or semidilute solutions, the anistropic drag coefficient α appearing in the Giesekus model is a

strong function of mass fraction. For the concentrated solutions used in this study, the parameter α is

determined by fitting the transition to shear-thinning in the steady shear viscosity data [31]. A weak

dependence on mass fraction is found and an averaged coefficient over all concentrations of α = 10−4 is

computed. The steady shear viscosity predicted by the Giesekus model with α = 10−4 is represented

with a black line in Fig. 4(b) and provides a good description of the fluid rheology for 0.1 ≤ x0 ≤ 0.35.

The more gradual transition to shear-thinning observed in the experiments is a reflection of the relaxation

time spectrum in the fluid. This is further discussed in the next section.
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3.2.2. Small Amplitude Oscillatory Shear

In order to independently determine the relaxation time scaling with concentration, Small Amplitude

Oscillatory Shear (SAOS) tests were also performed at 23◦C. The storage modulus G′(ω) and the

relaxation modulus G′′(ω) data are reported respectively in Fig. 5(a) and Fig. 5(b). The data is collapsed

on a master curve in Fig. 5(c) and Fig. 5(d) using time-concentration superposition and a reference

concentration of x0 = 0.2. The data is fitted to a generalized Maxwell model with 6 modes and an

average relaxation time is then calculated for each concentration as following (see reference [32] for

more details):

λ(x) =

∑

k Gk(x)λ2
k(x)

∑

k Gk(x)λk(x)
(18)

where Gk is the shear modulus of the kth mode and λk the relaxation time of the kth mode. The

relaxation time as a function of mass fraction is presented in Fig. 6. The data can be fitted to the

exponential law λ(x)/λ0 = e31(x−x0) with λ0 = 15 ms at x0 = 0.2. This means that the fluid relaxation

time increases by several orders of magnitude during the evaporation of the solvent. The shear modulus

G
G0

= η0

η00

λ0

λ = e5(x−x0) is found to increase exponentially with concentration. Kinetic theory predicts

that for concentrated solutions, G
G0

=
(

x
x0

)2

[29]. We compared those two scalings and we observed

that they have numerical values of the same order of magnitude at mass fractions x ≤ 0.8, which is the

range of concentrations relevant for our study.

3.3. Mass transfer

We can compare the relative resistance of the liquid phase and the gas phase during the diffusion

process of chlorobenzene using the theory developed in Section 2.2. The diffusion coefficient for PMMA

in chlorobenzene as a function of the polymer mass fraction x is reported in a paper by Bornside et al.

[30]:

Dsl = (7.24 × 10−11 m2/s) exp

(

−
0.240

0.0277 + (1 − x)2.19

)

(19)

In Section 5.4 we show that the thinning dynamics do not vary strongly at polymer mass fractions

x > 0.5 because the flow is arrested and dominated solely by the diffusive mass transfer. All the scalings
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derived in this section thus focus on the regime x < 0.5. Within this range of mass fractions, the

diffusion coefficient in the liquid phase Dsl given by Eq. 19 shows a plateau and we pick an average

value Dsl ≈ 5 × 10−11 m2/s. Both the liquid side and the vapor side of the interface may exhibit

significant resistance to mass transfer depending on the length scale and time scale of the capillary

thinning process. Their resistance varies with time as the solvent evaporates and the filament thins.

Transient diffusion of solvent through the liquid phase dominates at short times t ≤ R2/Dsl, which is of

the order of 200 s for R ≈ 100 µm and of 2 s for R ≈ 10 µm. For the PMMA/chlorobenzene system, the

relative resistance of the liquid phase compared to the gas phase during the transient diffusion process

can be evaluated from Eq. 7 and Table 1 to be αphg/hl ≈ αp

√

Dsg/Dsl ≈ 6. Thus the resistance

dominates on the liquid side. Neglecting the gas resistance, from Eq. 5 a mass transfer coefficient

hm ≈

√

Dsl

t is a good approximation at times t ≤ R2/Dsl and this value does not change much over

the typical time scale of the experiments. Exploratory calculations show that at later times the mass

transfer coefficient is also only a weak function of time. For the sake of simplicity and to enable us to

focus more on the fluid dynamics of the process rather than mass transfer dynamics, we pick an average

value hm independent of time, which is determined by matching experimental results from capillary

thinning with numerical simulations (Section 5.1).

3.4. Glass transition of the PMMA/chlorobenzene solution

Using the Kelley–Bueche equation [33], we can estimate the mass fraction xg at which the glass

transition occurs at 23◦C:

Tg =
RKxgTg2 + (1 − xg)Tg1

RKxg + (1 − xg)
= 23◦C ⇒ xg = 0.85 (20)

where Tg1 and Tg2 are respectively the glass transition temperature of PMMA and chlorobenzene (re-

ported in Table 1), and RK = α2/α1, where αi is the difference in thermal expansivity between liquid

and glass for each component. A value of RK = 2.5 is calculated for the PMMA/chlorobenzene system.

Our rheological characterizations show that in the range of polymer mass fractions 0.1 ≤ x ≤ 0.35, the

correlations for viscosity and relaxation time with concentration are well described using exponential

laws. However, close to the glass transition, both the viscosity and the molecular relaxation time are
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expected to begin to diverge. This effect can be attributed to a decrease in free volume described by

the generalized Doolittle equation [34, 35]. Accurate description of this (super-exponential) increase

in these viscometric properties requires careful rheological measurements near Tg. As we describe in

Section 5.4, the convective axial flow and drainage of fluid becomes negligible compared to the volume

decrease by solvent evaporation for x > 0.5. Thus the dynamics of the elasto-capillary thinning are not

strongly affected by the specific correlations chosen for viscosities and relaxation times at mass fractions

in the range 0.5 ≤ x ≤ 0.85. In the present study, we therefore simply extrapolate the exponential

correlations in λ(x) and η0(x) at all concentrations, which underestimates the viscoelastic properties of

the solution close to the glass transition.

4. Numerical simulation

We use a fixed mesh of 400 points distributed over half of the symmetric fiber and solve the equations

in an Eulerian frame using finite differences. The other half of the fiber is given by symmetry. The

mesh size resolution is denoted ∆z and the time-step ∆t. For the time discretization, our strategy is

to advance Eq. (1), Eq. (8), Eq. (13) and Eq. (14) by convex combination of Euler steps, defined in

[36] to obtain a 3rd order Runge-Kutta TVD (total-variation-diminishing) update. Then the elliptic

constraint of Eq. (12) is solved to extract the velocity. For the spatial discretization, we use a centered

difference scheme for the elliptic constraint in Eq. (12). With Dirichlet boundary conditions v(z = 0) = 0

and symmetry at z = Λ0/2, this discretization give rise to a tri-diagonal system of equations that can

be inverted using standard Gaussian elimination. The convective derivatives are evaluated using a

WENO [37] scheme, and all other spatial derivatives are discretized using a standard centered difference

scheme. The numerical procedure is second order accurate in space, and stable for ∆t ≤ Cβs∆z2, for

some constant C. In the present study, βs = ηs/η00 ranges from 10−2 to 10−6 over the mass fractions

used experimentally. This imposes very small time-steps conditions to satisfy numerical stability. From

a physical point of view, the solvent viscosity is so low compared to the total solution viscosity that it

has a negligible contribution in the force balance, as demonstrated in Section 5.3. As long as we keep the

relative contribution of the solvent stress negligible, we can choose an arbitrary value of βs to decrease

the computational time. A value of βs = 5 × 10−2 is chosen and is used in all numerical simulations.
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The slender body approximation prevents us from imposing directly the no-slip boundary condition at

the endplates. Several methods are reported in the literature to reduce the resulting apparent slip at

the endplates while keeping the same thinning dynamics. Tuck et al. [38] defined an increased viscosity

at the boundary to match the lubrication solution of the reversed squeeze flow. In the present study,

we impose a zero strain rate at the endplates (∂v/∂z = 0 at z = 0). This results in a local jump in

strain rate at the first mesh points in the filament close to the endplates but reduces significantly the

slip velocity while not appreciably affecting the dynamics at the midfilament (see reference [32] for more

details).

5. Results and discussion

5.1. Experimental determination of the average mass transfer coefficient

Capillary thinning experiments for various mass fractions of PMMA in chlorobenzene were performed

using a CABER instrument (Cambridge Polymer Group). The diameter at the midfilament 2Rmid(t) is

tracked using a laser micrometer which measures the size of an object in its path based on the intensity

of light entering the sensing element. The initial length of the liquid bridge (see Fig. 2) is Li = 2 mm

and the radius of the plates R0 = 3 mm. The final length of the liquid bridge following stretching

is L0 = 10 mm corresponding to an aspect ratio of Λ0 = 3.3. Quantitative comparisons between the

CABER experiments and numerical simulations are presented in Fig. 7 and the simulation parameters

are reported in Table 2. An average mass transfer coefficient hm = 6.5 × 10−6 m/s independent of

concentration and time is determined by fitting the numerical simulations to the experimental data. This

value is consistent with the model presented in Section 3.3. On the length scales and time scales of the

CABER experiment, the diffusive boundary layer is never fully developed and hm ≈ hl ≈
√

Dsl

texp
, where

texp is the typical time scale of the experiment. For 1 < texp < 10 s we find that 10−6 < hm < 10−5 m/s.

At high mass fractions, for 0.24 < x0 < 0.28, the experimental data cannot be plotted over the whole

time of the experiment because the long drainage time (tcap0
≈ 3 s) leads to gravitational sagging and

loss of top/bottom symmetry, before equilibrium is reached. At the initial mass fraction x0 = 0.22,

the behavior at early times is well described by our model. A fast drying is observed experimentally

at intermediate times, which does not change quite as abruptly for the simulation. This is due to the
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simplicity of our mass transfer model. A complete description of the mass and heat transfer dynamics in

two dimensions would be required for a fully quantitative comparison. At mass fraction x0 = 0.22, the

laser micrometer data from CABER does not show the formation of a fiber. Videomicroscopy images

of the experiment reveal that a very thin fiber is formed but is rapidly broken at the junction of the

upper quiescent reservoir by air perturbation. A sequence of shapes of the filament during a CABER

experiment is compared to numerical simulation results in Fig. 8 for an initial mass fraction x0 = 0.24.

Very good qualitative agreement of the evolution in the axial filament profile a function of time is

observed.

5.2. Kinematics

In Fig. 9 we show a range of numerical simulations of the CABER experiment for a fixed aspect ratio

Λ0 = 3.3 and fixed solvent viscosity ratio βs = 0.05. A sequence of profiles is represented as a function

of dimensionless time. In the case of a Newtonian fluid with no drying (Ec0 = 0, P0 = 0), capillary

thinning leads to a rapid breakup at time t ≈ 4.7. The numerical simulation resolves a radius reduction

of h ≈ 10−3 before becoming numerically unstable. For PMMA/chlorobenzene solutions of initial mass

fractions x0 = 0.26 or x0 = 0.22 (with simulation parameters as reported in Table 2), we see that a new

equilibrium configuration is reached before breakup. At high mass fractions, the filament remains quite

thick (the final dimensionless radius at the midfilament is hf = 0.08) and has poor axial uniformity. At

lower mass fractions, the processability number P0 decreases and the diameter of the filament can be

reduced by several orders of magnitude (hf = 0.003). The filament has much larger axial uniformity.

In Fig. 10, we focus on the dynamics of the CABER experiment with x0 = 0.22. Fig. 10(a) shows the

shape of the liquid bridge going under capillary thinning and drying at times t = 0, t = 5 and t = 10.

In Fig. 10(b) we plot the midfilament dimensionless radius hmid(t) as a function of dimensionless time.

Keeping all the other simulation parameters equal, we also contrast this with the computation with no

evaporative mass transfer (P0 = 0), which shows a linear decrease of the radius at low strains because

of the low initial value of the elasto-capillary number (Ec0 = 0.043). At high strains, a transition to an

elasto-capillary balance is observed and the radius of the filament decreases exponentially as predicted

by theory [24]. In Fig. 10(c) we show the axial velocity profile at times t = {1, 4, 7, 10}. The mass
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fraction of polymer at the midfilament is plotted in Fig. 10(d) as a function of time. At early times, we

notice that the radius decreases almost linearly with time and the velocity profile shows capillary-driven

drainage flow towards each quiescent region near the plates. However, at a dimensionless time t ≈ 4

the solvent starts to evaporate at a faster rate and the dynamics of filament thinning are dramatically

retarded (compared to the case P0 = 0) because of increased viscoelasticity in the fluid. At time t = 10,

the axial velocity profile is close to zero along the length of the filament, which means that drainage by

convection stopped. However, the mass fraction of polymer keeps increasing even for t ≥ 10 and the

filament radius now decreases slowly, as a result solely of evaporation of the solvent.

5.3. Visco-capillary equilibrium and elasto-capillary equilibrium

The force balance during self-thinning of viscoelastic liquid bridges was investigated by Entov &

Hinch [24] for P0 = 0 (no evaporation) and Ec0 > 1 using the FENE model. In Fig. 11(a), we show

the evolution in time of the three terms appearing in the tensile force in Eq. (12): the solvent stress

3βs
∂v
∂z , the capillary stress κ and the polymeric stress difference T p

zz − T p
rr. They are all evaluated

at the midfilament (z = Λ0/2). Because of the low value of the solvent viscosity compared to the

solution viscosity (βs << 1), we notice that the solvent stress does not enter the dominant balance at

any time. This means that the parameter βs does not play any physical role in the evolution of the

filament profile; hence we can increase the value of βs to improve numerical stability without affecting

the dynamics of the filament evolution. At high mass fractions of polymer, the capillary stress and

polymeric stress difference saturate and approach a plateau value. This means that a strong residual

tensile stress remains in the fiber: the glass transition freezes the motion in the polymer network and

the entangled polymer chains, stretched by the extensional flow, carry a residual tensile stress. In

Fig. 11(c) and Fig. 11(d), we plot the absolute value of the various contributions at the midfilament of

the axial and radial stress balances in Eq. (13) and Eq. (14). As v = 0 at z = Λ0/2 (in the absence

of inertia), the terms v ∂T p

∂z are equal to zero at the midfilament and are not plotted. At early times,

the axial stress (1) and the Newtonian term (5) form the dominant balance, and the other terms can

be neglected. The filament is in visco-capillary equilibrium, which can be rationalized by the low initial

value of the elasto-capillary number (Ec0 = 0.043). At t ≈ 5, the elastic terms (2) and (3) cross the
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Newtonian term (5), which represents a transition from a visco-capillary balance to an elasto-capillary

balance. For times 5 ≤ t ≤ 7, the stresses grow approximately exponentially (Fig. 11(c,d)) and the mid

point radius decreases approximately exponentially (Fig. 10(b)) as expected for a thinning filament in

elasto-capillary equilibrium. At all times, the non-linear quadratic term (4), specific to the Giesekus

equation can be neglected: this means that the system can also be well described by an Oldroyd-B

fluid. However, retaining this term is essential at lower polymeric mass fractions to enable the model

to describe break-up in finite time [39]. At very long times it is clear that the stresses saturate and

the thinning process is arrested. In this region it becomes important to consider the role of solvent

evaporation in more detail.

5.4. “Capillary arrest”

To obtain the overall continuity equation for the polymer solution, we sum up Eq. (1) and Eq. (8):

∂h2

∂t
+

∂(vh2)

∂z
+ 2hP0(1 − x) = 0 (21)

In this equation, ∂(vh2)/∂z represents the mass flux by axial capillary drainage towards the endplates,

and 2P0h(1 − x) is the radial mass flux across the boundary from evaporation of the solvent. A com-

parison of the evolution of those two terms is shown in Fig. 11(b). Convection by capillary drainage

is dominant up to t = 7 but its contribution to the total mass flux of solvent decreases as evaporation

leads to an increase of the viscoelastic properties of the solution. After t = 7, the evaporation term is

dominant and the radius of the thread at each axial location decreases primarily by pure solvent loss.

We call this process “capillary arrest”, when the first crossing point between convection and evaporation

term is encountered. The second crossing point at t ≈ 12 is not physical but depends highly on the

compositional dependence close to the glass transition, which is not accurately accounted for in our

model due to the paucity of data for x ≥ 0.35.

5.5. “State space” for visco-elasto capillary thinning with drying

In order to understand the complex dynamics more completely, it is helpful to develop a framework

for visualizing the different stages in the thinning and drying process. We define the instantaneous elasto-

capillary number at time t Ect = λ(t)σ/η0(t)Rmid(t) evaluated at the midfilament, comparing the actual
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visco-capillary time scale tcap(z = Λ0/2) = η0(t)Rmid(t)/σ and the actual relaxation time λ(t). The

transition from visco-capillary equilibrium to elasto-capillary equilibrium is thus expected to occur at

Ect = 1. We also define the instantaneous processability number Pt = η0(t)hm/σ at time t comparing the

actual visco-capillary time scale to the actual evaporation time scale tevap(z = Λ0/2) = Rmid(t)/hm. The

transition from visco-capillary regime to “capillary arrest” is materialized by Pt = 1. For the transition

from elasto-capillary equilibrium to “capillary arrest”, we have to compare the actual evaporation time

scale tevap to the actual relaxation time λ. This transition happens when the product EctPt = 1.

Using instantaneous values of these dimensionless groups based on the output of the numerical simulation

provides a useful tool to determine the balance of forces at time t. In Fig. 12, the output of the numerical

simulation for a CABER experiment with x0 = 0.22 is used to define a trajectory of the system in the

“state space” defined by Ect-Pt. Each point is separated by a fixed dimensionless time step ∆t = 0.5.

The trajectory starts in the region of visco-capillary equilibrium, crosses the border Ect = 1 at t = 5,

which is confirmed by Fig. 11(c) and crosses the “capillary arrest” border Pt = 1 at t = 7, in agreement

with Fig. 11(b).

Drainage of fluid by capillary thinning is negligible for Pt >> 1; the viscosity is so large that axial

transport is prevented and only evaporation is important. In Fig. 12, we notice that Pt ≈ 102 at t = 8.

At that time, we can read in Fig. 10(d) that xmid ≈ 0.5. We can conclude that convection by drainage

can be neglected after x = 0.5, and that the exact correlations of viscosity and relaxation time close

to glass transition do not have additional impact on the dynamics, which are driven solely by solvent

loss. This justifies our simplification of using the extrapolation of the exponential laws determined

experimentally for the viscoelastic properties of the polymer solution at moderate concentrations. We

also notice that the trajectory through the “state space” approaches an asymptote as Pt → ∞. This

asymptote depends on the correlations chosen for the viscosity and relaxation time dependence on mass

fraction. In the present compositional model, we have:

Ect

Ec0
=

λ0

λ

η0

η00

1

h
=

e−5(x−x0)

h

Pt

P0
=

η0

η00
= e36(x−x0) (22)

Eliminating the mass fraction from the second expression, we find:
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lim
Pt→∞

Ect =
1

hf
Ec0

(

Pt

P0

)

−
5
36

(23)

where hf = Rf/R0 is the final equilibrium radius of the filament. Alternatively, if the shear modulus

G = η0/λ is assumed independent of mass fraction, then Eq. 23 simplifies to the horizontal asymptote

lim
Pt→∞

Ect = Ec0/hf .

5.6. Axial uniformity

In Fig. 13, we plot the axial curvature
h,zz

(1+h2
,z)

3
2

at the midfilament, for a filament with x0 = 0.22

modeled with a Giesekus model (Ec0 = 0.043) or a Newtonian constitutive equation (Ec0 = 0). We

also report the axial uniformity for x0 = 0.24 with a Giesekus model and for a Newtonian fluid with no

drying (P0 = 0, Ec0 = 0). The degree of axial uniformity is controlled by two independent contributions:

firstly strain hardening and secondly what we call “differential drying”. The effect of strain hardening

on uniformity of extensional flows was explained by Chang & Lodge [40], and is linked to axial variations

of the extensional viscosity based on the degree of deformation or Hencky strain of a material element.

A strong strain-hardening component requires Ect > 1 so that elasto-capillary equilibrium is reached

before the fast drying process occurs. The x0 = 0.24 has a lower axial uniformity because it starts from

approximately the same initial value of Ec0 but dries faster, thus it experiences a lower Hencky strain

and smaller amount of strain hardening before solidifying. Moreover, there is a significant axial gradient

of viscosity because fluid particles have different mass fractions along the fiber. The midfilament region

dries faster because of the higher surface to volume ratio, and also has a higher viscosity than the

neighboring fluid particles. We call this mechanism “differential drying”. If we look at the Newtonian

simulation for x0 = 0.22, the fiber attains some level of uniformity by “differential drying”. This axial

uniformity is greatly enhanced by the strain hardening elastic response given by the Giesekus model.

5.7. Predicting the behavior of nanofibers

We used the macroscopic experiments performed with CABER to validate our model and determine

the average mass transfer coefficient hm. We can now proceed to simulate the behavior of drying liquid

filaments on the microscopic scale. We consider the “Brush-On” process on a micropatterned surface

with 200 × 200 µm posts separated by L0 = 330 µm. This means that R0 = 100 µm and Λ0 = 3.3. We
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assume that the initial shape of the liquid bridge between two micropillars, resulting from the brushing

motion, can be evaluated using the reversed squeeze flow. The simulation parameters are reported in

Table 3. The evolution of the radius at the midfilament as a function of time is reported in Fig. 14.

Because of the reduction in the plate radius, the initial value of the elasto-capillary number Ec0 in the

microfilament experiments is increased, while the value of P0 remains constant as compared to CABER

experiments. The numerical simulations show that this results in proportionally thicker fibers than the

CABER experiments (Fig. 7) for the same initial mass fractions.

5.8. Designing polymer solutions for controlled radius reduction

We seek to exploit the useful tool of “state space” presented in Section 5.5 to “design” spinnable

polymer solutions that enable user-selectable orders of magnitude reduction in the final filament radius.

In order to achieve sufficient data density, numerical simulations in this section are implemented using

a simpler (0 + 1)D (space+time) approximation (i.e. no axial curvature) of the form described in the

paper by Entov & Hinch [24], coupled with our mass transfer model to account for solvent evaporation

and the material parameters determined for the Giesekus model. Fig. 15 shows a map of the trajectories

of the system in the “state space” of the Pt − Ect diagram. Two different types of trajectories can be

identified: when the initial processability number P0 < 10−2, the filament evolution starts with a vertical

line corresponding to capillary thinning with almost no drying. The processability number remains small

and constant in this regime. The importance of elastic effects grows as the radius decreases and the

deformation rate steadily increases. When Ect > 1, elastic stresses begin to dominate the dynamics and

the balance of forces in the thread cross over to elasto-capillary equilibrium. The radius of the thread

still decreases until a sharp turning point occurs, corresponding to “capillary arrest” and a fast drying

process. For P0 << 1, it is clear from the figure that this turning point is independent of the initial

elasto-capillary number Ec0 for a given P0. What does change is the time required to reach this point and

the corresponding axial uniformity of the filament. By contrast, when the initial processability number

P0 > 10−2, drying and capillary thinning occur simultaneously and at all times. This corresponds to

small decreases in the total reduction in the radius and very low axial uniformity. The initial value of

the processability number P0 = hmη00/σ controls the amount of drainage possible by capillary thinning
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before drying becomes dominant. In order to quantify those observations we have to determine when

the turning point occurs in the Ect − Pt “state space”. This is the point at which a significant fraction

of solvent has evaporated during the characteristic evolution time of the filament. This time scale can

be the actual visco-capillary time scale tcap or may be the fluid relaxation time λ depending on the force

balance at time t. To develop an appropriate cross-over criterion, we can scale the dimensional version

of the continuity equation for the polymer solution (Eq. 21) to reveal when the ratio of evaporative mass

flux to the change in volume at the midfilament is equal an appropriately small value; here we select

1%. If the turning point happens during visco-capillary equilibrium, then we have at the turning point:

Rhm

∂R2

∂t

≈ 10−2 ⇔
tcapRhm

R2
≈ 10−2 ⇔ P(TP ) ≈ 10−2 (24)

where tcap = η0R/σ is the visco-capillary time scale based on the actual value of the variables and the

subscript (TP ) denotes turning point.

If the turning point happens during elasto-capillary equilibrium, this criterion translates into:

Rhm

∂R2

∂t

≈ 10−2 ⇔
Rhmλ

R2
≈ 10−2 ⇔ P(TP )Ec(TP ) ≈ 10−2 (25)

The instantaneous processability number Pt remains almost constant at the initial value if P0 < 10−2,

because the drainage by capillary thinning dominates the evaporative mass flux. However, the ratio of

the mass flux of solvent compared to the mass flux from drainage increases (as shown in Fig. 11(b)),

which will lead to a turning point. Eq. (25) then becomes P0Ec(TP ) ≈ 10−2. The elasto-capillary number

at the turning point Ec(TP ) can be related to the total radius reduction hf by hf ≈ R(TP )/R0 ≈ Ec0

Ec(T P )
.

Thus we can use these scalings to select the desired level of capillary thinning: if we want X orders of

magnitude of radius reduction then hf = Rf/R0 = 10−X and Eq. (25) becomes:

P0Ec0 ≈ 10−2−X ⇔
λ0hm

R0
≈ 10−2−X (26)

This analysis provides useful guidelines for rheological design of suitable polymer solutions for micro

or nano fiber fabrication processes. First, the initial processability number must satisfy P0 < 10−2,

otherwise, drainage by capillary thinning is prevented by significant evaporation, leading to thick fibers
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and low axial uniformity. When P0 < 10−2 is satisfied, then we have the simple criterion λ0hm

R0
≈ 10−2−X

to predict how many orders of magnitude X the polymeric fiber will thin before solidifying due to

“capillary arrest”. A remarkable result is that this criterion does not depend on the viscosity of the

solution. The viscosity only determines how fast the processes of capillary thinning and drying occur.

Another useful design tool is represented in Fig. 16, which maps the final equilibrium radius hf = Rf/R0

as a function of Ec0 and P0. At large values of each of those parameters, microfibers will be obtained. As

Ec0 and P0 are decreased, radius reductions of two to three orders of magnitude can be obtained. The

numerical criterion for break-up is arbitrarily chosen here at h = 10−4. For the CABER experiments,

this corresponds to Rf = 0.3 µm. It is found experimentally that the failure of the filament often

happens on larger lengths scales. In these solidifying filaments, failure is not related to pinch-off at the

middle of the filament but is often triggered by air perturbations breaking the thread at the point of

connection to the quasi-static liquid droplet at the end-plate. For “Brush-On” type experiments with

R0 = 100 µm, a value of hf = 10−4 corresponds to a final radius Rf = 10 nm, which is a reasonable

criterion for breakup. Axial uniformity of the fibers will be higher if high strains are achieved in the

elasto-capillary region before the fast drying process (from Fig. 15, it is clear that this corresponds to

P0 < 10−2 and Ec0 > 10−2).

6. Conclusion

We have developed a self-consistent, one-dimensional model describing the simultaneous capillary

thinning and drying of viscoelastic threads. Rheological characterization showed that the dependence of

the material functions on concentration can be really described by exponential laws over a wide range

of concentrations. A simple binary mass transfer model allowed us to justify the choice of a constant

mass transfer coefficient over the time scale of the experiment. The capillary thinning and drying prob-

lem can then be compactly represented using two dimensionless groups: the elasto-capillary number

comparing visco-capillary thinning and elasticity in the fluid, and the processability number comparing

the evaporation time scale to the visco-capillary time scale. As the thread undergoes capillary drainage

calculations show that the balance of forces evolves, depending on the local concentration of the polymer

and the rate of mass transfer across the surface. Analysis shows that the dynamics may involve either an
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initial visco-capillary equilibrium or an elasto-capillary equilibrium, followed by a period of “capillary

arrest”, during which the axial convective motion (drainage induced by surface tension) is negligible

compared to the process of solvent evaporation. The trajectory of the thinning thread and the final

equilibrium radius can be mapped as a function of these two relevant dimensionless groups, providing

useful rheological design for fabrication of micro and nano fibers.

The modeling and analysis presented in this paper can be applied to any free-surface process involving

transient evolution in fluid viscosity and elasticity: for instance simultaneous polymerization and capil-

lary thinning; or cooling, vitrefication and capillary thinning. Active stretching of the filament is also of

interest to model new processes for “Direct-Write” fabrication of polymer fibers, investigated by Berry

[41]. This can readily be included by modifying the velocity boundary conditions at the endplates. The

present work can be extended with a two-dimensional analysis, accounting more accurately for concen-

tration gradients and radial diffusion within the fluid. Additional improvements are also possible for

the mass transfer model as well as coupling of evaporative cooling to the mass transfer. Although these

additional complexities may change some of the quantitative features of the processes, the basic physics

will still be governed by the “state space” shown in Fig. 15 and Fig. 16.
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Physical properties of PMMA/chlorobenzene Value

Glass transition temperature of PMMA (Tg1) (from Aldrich) 398◦K

Glass transition temperature of chlorobenzene (Tg2)[42] 128◦K

Diffusion coefficient of PMMA 7.24 × 10−11×

in chlorobenzene (Dsl)[30] exp
(

− 0.240
0.0277+(1−x)2.19

)

m2/s

Diffusion coefficient of chlorobenzene in air (Dsg) at 25◦C 7.3 × 10−6 m2/s

Surface tension of concentrated solutions (σ) 0.04 N/m

Viscosity of chlorobenzene at 20◦C (ηs) 0.8 × 10−3 Pa s

Atmospheric pressure (p) 1.013 × 105 Pa

Vapor pressure of chlorobenzene at 25◦C (ps0) (from MSDS) 1580 Pa

Mark-Houwink coefficients for PMMA a = 0.76

and benzene at 30◦C [27] K = 5.2 × 10−6 m3/kg

Table 1: Physical and rheological properties of PMMA and chlorobenzene solutions

x0(%) Ec0 × 10−2 P0 × 10−3 tcap0(s)

20 4.7 0.68 0.32

22 4.3 1.5 0.69

24 4.0 3.1 1.4

26 4.3 6.0 2.8

28 3.2 9.8 4.5

Table 2: Parameters of CABER numerical simulation for various mass fractions. α = 10−4, βs = 5× 10−2 (for numerical

stability), Λ0 = 3.3 are constant parameters over all concentrations.
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x0(%) Ec0 P0 × 10−3 tcap0(s)

20 0.71 0.68 0.021

22 0.65 1.5 0.046

24 0.61 3.1 0.097

26 0.65 6.0 0.19

28 0.49 9.8 0.30

Table 3: Parameters for numerical simulation at a microscale geometry with R0 = 100 µm and L0 = 330 µm for various

mass fractions. The Giesekus model parameters are held fixed at α = 10−4, βs = 5 × 10−2 (for numerical stability) and

the aspect ratio Λ0 = 3.3 is constant over all concentrations.

Figure 1: “Brush-On” process. (a) a polymer solution is spread on the edge of an applicator. (b) the applicator is moved

horizontally at constant speed over a micropatterned surface, leaving a sheet of polymer solution that breaks into several

liquid bridges between the top of two pillars. (c) after capillary thinning and drying, an array of aligned microfibers of

average diameter 2 µm is obtained. SEM picture of fibers drawn on 10× 10 µm pillars spaced by 20 µm with initial mass

fraction x0 = 0.23 PMMA (Mw = 996 kg/mol) solution in chlorobenzene.

Figure 2: Definition of the geometry and coordinate system. (a) Initial configuration of the cylindrical filament. (b) Step

strain modeled by a reversed squeeze flow. (c) Fixed length liquid bridge, numerical simulation begins. (d) Capillary

thinning and drying between fixed plates leading to filament break-up or fiber formation.
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Figure 3: Schematic diagram of the diffusive mass transfer problem for an axial slice of the filament. Transient diffusion in

the liquid phase has a driving force xl
s,0−xl

s,i, i.e. the difference between the solvent fraction in the liquid at the centerline

and at the interface. Transient diffusion in the gas phase has a driving force xg
s,i − xg

s,∞ corresponding to the difference

between the solvent fraction in the gas at the centerline and far away from the filament. Dsl(xs) is the diffusion coefficient

of solvent in liquid, Dsg the diffusion coefficient of solvent vapor in the gas phase and αp is the partition coefficient of the

gas/liquid interface.
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Figure 4: (a) Steady shear viscosity as a function of shear rate of PMMA (Mw = 996 kg/mol) in chlorobenzene for

mass fractions ranging from x0 = 0.1 to x0 = 0.35. The data is collected at 23◦C using cone and plate geometries

from x0 = 0.18 to x0 = 0.35 and a double gap Couette geometry at lower concentrations. (b) Master curve using

time-concentration superposition with a reference at x0 = 0.2. The shift factor ac = η0/η00 is the same for horizontal

and vertical shifting. The inset shows the zero shear rate viscosity as a function of mass fraction, which is fitted to an

exponential law. The black line is the steady shear flow Giesekus material function with α = 10−4.
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Figure 5: Small amplitude oscillatory shear as a function of frequency of PMMA (Mw = 996 kg/mol) in chlorobenzene for

mass fractions ranging from x0 = 0.1 to x0 = 0.3. The data is collected at 23◦C. (a) and (b) correspond respectively to

G′ and G′′. The data is collapsed on a master curve in (c) and (d) using time-concentration superposition with a reference

at x0 = 0.2. The shift factor a′

c is the same for both horizontal and vertical shifting in both G′ and G′′.
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Figure 6: Average relaxation time as a function of mass fraction for PMMA (Mw = 996 kg/mol) in chlorobenzene. The

data is fitted to an exponential law, represented by the black line.
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Figure 7: Dimensionless radius at the midfilament as a function of dimensionless time for initial mass fractions between

0.2 ≤ x0 ≤ 0.28. The symbols correspond to CABER experimental data and the continuous lines to numerical simulation.

Parameters for numerical simulation are reported in Table 2. The experimental data for x0 = 0.26 and x0 = 0.28 is

truncated because of gravitational sagging. At x0 = 0.2 and x0 = 0.22, air perturbation rapidly breaks the junction

between the thin fiber and the polymer droplet.

Figure 8: Comparison of the shape of the filament between CABER experiment and numerical simulation for x0 = 24%,

Ec0 = 0.040, P0 = 3.1 × 10−3. The images are separated by a constant dimensionless time interval ∆t = 2.
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Figure 9: Comparison of the shape of the filament for a viscous Newtonian fluid Ec0 = 0 with no drying P0 = 0(top),

for a PMMA/chlorobenzene solution with initial mass fractions x0 = 0.26 (middle) and x0 = 0.22 (bottom). The solvent

viscosity ratio is βs = 0.05 and the aspect ratio Λ0 = 3.3 in all simulations. Time is scaled with the visco-capillary

timescale tcap0 = η00R0/σ.
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Figure 10: Simulation of the CABER experiment for x0 = 0.22, Ec0 = 0.043, P0 = 1.5 × 10−3. (a) Shape of the filament

at t = 0, t = 5, t = 10. (b) Evolution of the radius at the midfilament with time. (−): simulation with evaporation, (- -):

simulation with no evaporation (P0 = 0, Ec0 = 0.043). (c) Velocity profile at t = 1, 4, 7, 10. (d) Mass fraction of polymer

at the midfilament as a function of dimensionless time.
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Figure 11: Stress and mass flux evolution at the midfilament for a CABER experiment with x0 = 0.22 (a) Contri-

bution of the three components of the tensile stress in Eq. (12) as a function of time. (b) Evolution of the drainage

mass flux
∂(vh2)

∂z
along the filament and the evaporative mass flux 2P0h(1 − x) across the boundary in Eq. (21). (c)
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Figure 12: “State space” for x0 = 0.22, Ec0 = 0.043, P0 = 0.0015. Ect is the instantaneous elasto-capillary number at the

midfilament, Pt is the instantaneous processability number at the midfilament. The black dots materialize the trajectory

computed by numerical simulation at fixed time intervals of ∆t = 0.5.
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Figure 13: Comparison of the axial curvature h,zz/(1 + h2
,z)

3
2 evaluated at the midfilament as a function of dimensionless

time for Giesekus or Newtonian fluids with various processabilities. Axial uniformity has a differential drying component

(x0 = 0.22, Ec0 = 0.043, P0 = 0, shown by the dashed line) and a strain hardening component, which is the extra gain of

uniformity for viscoelastic fluids (x0 = 0.22, Ec0 = 0.043, P0 = 0.0015).
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Figure 14: Prediction of thinning dynamics for a geometry with initial conditions R0 = 100 µm, L0 = 330 µm. The

relevant values of the parameters for numerical simulation are reported in Table 3.
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Figure 15: “State space”, mapping the trajectories in the Ect − Pt plane, with 10−2 < Ec0 < 1 and 10−5 < P0 < 1. For

computational convenience, the simulations are run with a (0 + 1)D (space+time) model neglecting axial curvature.
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Figure 16: Map of the equilibrium radius as a function of Ec0 and P0 with x0 = 0.22. The shading represents the radius

reduction on a logarithmic scale, log10(hf ). The simulations are run with a (0 + 1)D (space+time) model neglecting axial

curvature, and assuming a constant mass transfer coefficient. Simulations are stopped at h = 10−4 (corresponding to

fibers below 10 nm assuming R0 = 100 µm), which is considered as a numerical criterion for breakup of the fiber, or failure

of the continuum description of the material properties.
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