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Abstract

We examine the linear stability of the one dimensional inhomogeneous (shear
banded) pressure-driven flow through a rectilinear microchannel predicted
by the VCM model (Vasquez et al., A network scission model for wormlike
micellar solutions I: model formulation and homogeneous flow predictions.
J. Non-Newtonian Fluid Mech. 144:122-139, 2007). The VCM model is a
microstructural network model that incorporates the breakage and reforming
of two elastically-active species (a long species ‘A’ and a shorter species
‘B’). The model consists of a set of coupled nonlinear partial differential
equations describing the two micellar species, which relax due to reptative
and Rousian stress-relaxation mechanisms as well as breakage events. The
model includes nonlocal effects arising from stress-microstructure diffusion
and we investigate the effect of these nonlocal terms on the linear stability
of the pressure-driven flow. Calculation of the full eigenspectrum shows that
the mode of instability is a sinuous (odd) interfacial mode, in agreement
with previous calculations for the shear-banded Johnson-Segalman model
(Fielding and Wilson, Shear banding and interfacial instability in planar
Poiseuille flow. J. Non-Newtonian Fluid Mech. 165:196-202, 2010). Increased
diffusion, or smaller characteristic channel dimensions, smoothes the kink
in the velocity profile that develops at the shear band and progressively
reduces spectrum of unstable modes. For sufficiently large diffusion this
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smoothing effect eliminates the instability entirely and restabilizes the base
(shear-banded) velocity profile.

Keywords: Viscoelasticity, Non-Newtonian Fluids, Rheology, Constitutive
Modeling, Wormlike Micelles, Linear Stability

1. Introduction

Micelles are formed by the aggregation of surfactant molecules in solution.
Depending upon the surfactant concentration, ionic strength and tempera-
ture, they can form a variety of morphologies such as spheres, ellipsoids, and,
of interest for this paper, long flexible cylindrical structures, commonly re-
ferred to as wormlike micelles. Above an overlap concentration, these worm-
like micelles (worms) are long enough to entangle and form a physical network
reminiscent of entangled polymer solutions. Consequently, wormlike micellar
solutions relax through the same processes as polymers including reptation
and Rouse-like segmental diffusion. In addition, thermal fluctuations result
in dynamic chain rupture and reforming events, hence they are referred to as
‘living polymers’ [1]. These micellar solutions have many industrial uses, for
instance they are used as thickeners in many consumer products and have
applications as fracturing agents in enhanced oil recovery.

Experiments on wormlike micellar solutions in a cylindrical Couette de-
vice [2, 3, 4, 5] show that even in this simple flow, in which the shear stress
is nominally constant across the gap, inhomogeneous features can develop.
Specifically, the flow splits into two ‘bands’; a region of high shear rate adja-
cent to the inner rotating wall connected to a low shear rate domain adjacent
to the outer fixed wall. This phenomenon is commonly referred to as shear
banding. Numerous studies on the modeling of shear banding in a steady
flow have been reported [1, 6, 7, 8, 9] and there are comprehensive reviews
on the subject in [10, 11, 12, 13].

A variety of nonlinear, viscoelastic constitutive models have been devel-
oped that can capture the shear banding phenomenon observed for worm-
like micellar solutions in cylindrical Couette flow. Examples of viscoelastic
constitutive models that have been used to describe banding include the
Johnson-Segalman model [7], the Giesekus model [14], the Rolie-Poly model
[15] and the reptation-reaction model [6]. Unfortunately, these models often
fail in their ability to predict behavior of wormlike micelles in other modes
of deformation. The Johnson-Segalman model predicts unphysical oscilla-



tions in step-strain [16], and an unbounded extensional viscosity in filament
stretching [16]. The steady state extensional viscosity for the Giesekus model
plateaus at high extension rates [16] and thus does not predict the extreme
extensional thinning reported in wormlike micellar solutions [17, 18]. For
these reasons we were lead to consider a two-species model developed in [§],
the VCM (Vasquez, Cook, McKinley) model, to describe entangled wormlike
micellar mixtures.

The VCM model is derived from transient network theory and is based
upon a simplified version of the ‘living polymer’ model [1]. It incorporates
the physics of the worms in that it includes two micellar species: a long
species ‘A’ (of length L), which can break into two shorter species ‘B’, which
themselves can recombine to form one ‘A’ chain. The breakage rate of the
long entangled wormlike chains depends on the local stress and strain rate,
and this, in addition to diffusive effects due to Brownian motion, and con-
sideration of the finite length of the worms, leads to a coupling between the
fluid microstructure and the global kinematics of the flow. The breakage (and
hence disappearance) of the long (‘A’) species worms (similar to the destruc-
tion of tubes due to retraction and reptation in the reptation-reaction model
[6]) is responsible for the downturn (non-monotonicity) in the steady state
constitutive curve. The upturn in the constitutive curve at higher shear rates
in the VCM model is due to the formation of the short (‘B’) species and its
viscoelastic character. This is in contrast to the single species models (for ex-
ample Johnson-Segalman, Giesekus) in which an unphysically large viscosity
of the Newtonian solvent is introduced to describe the upturn at high shear
rates. The VCM model, in addition to being able to capture shear banding
in circular Taylor-Couette flow, has been studied extensively in several other
flows, including large amplitude oscillatory shear (LAOS) [19], uniaxial elon-
gational flows [20], and most recently in pressure-driven channel flow [21].
The predictions of the VCM model in these flows show excellent qualitative
agreement with experimental behavior of wormlike micellar solutions. While
the VCM model does succeed at describing many aspects of the physical re-
sponse of wormlike micelles in these flows, one weakness is that the second
normal stress difference is identically zero.

In a recent study [21], we examined the one-dimensional pressure-driven
channel flow of the VCM model. The model incorporates nonlocal diffusive
effects which are controlled by the magnitude of the dimensionless diffusion
parameter (6 = AD/H?, where D is the diffusivity of the micellar species, A
the relaxation time and H the channel height). These nonlocal effects include
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a decrease in the interfacial shear stress for increasing § (decreasing channel
heights) similar to that seen in experiments [22]. Using singular perturbation
analysis we showed that a weak boundary layer in the velocity and shear
stress exists at the walls whose width depends on the diffusion parameter and
the ratio of the solvent to micellar viscosity. Additionally, above a critical
pressure drop, a time-evolving interior shear layer (corresponding to the onset
of shear banding) develops, splitting the flow into two regions: a high shear
rate region adjacent to the outer walls connected to a low shear rate flow in
the center of the channel. In this paper we investigate the linear stability of
these 1D, steady state solutions to infinitesimal disturbances in the flow /flow-
gradient plane.

Instabilities in shear banding of wormlike micellar solutions have been ob-
served experimentally in various shear flows. Fluctuations of the interface be-
tween the shear bands have been observed in circular Couette flow [23, 24, 25]
and flow in a cone-and-plate rheometer [26]. For example, experiments in
[24] showed the existence of a destabilised interface with velocity rolls in the
vorticity direction. Fielding showed that, for a sufficiently small interfacial
width, the Johnson-Segalman model is able to predict this shear banding
instability on imposition of disturbances in the flow-gradient /vorticity plane
[27]. In subsequent work she further showed that this interfacial instability in
the gradient /vorticity plane in planar geometries is a result of a jump in the
second normal stress difference [28]. This interfacial instability is suppressed
in flows with increasing curvature, for which a bulk Taylor-Couette insta-
bility arises. The dimensionless curvature of the cell used in [24] is small,
approximately 0.08, thus the appearance of an interfacial instability is in
agreement with the predictions of [28]. The analysis of [28] suggests that the
VCM model will not exhibit vortical instabilities in wall-driven flows due to
its lack of a second normal stress difference.

In addition to interfacial instabilities arising in wall-driven flows, an in-
terfacial instability resulting in an undulating interface has been seen in ex-
perimental measurements of the pressure-driven flow of wormlike micelles in
a pipe [29] and along a planar microchannel [30]. In the latter, undulations
along the interface were observed in the gradient/vorticity plane in agree-
ment with the corresponding analysis of [28] for planar geometries. Much of
the theoretical work on unstable shear banded states has been carried out
using the Johnson-Segalman model. In this paper we consider for the first
time stability of the VCM constitutive model.

For simplicity and tractability in the present analysis we only consider
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two-dimensional (2D) disturbances in the flow/flow-gradient plane. We do
not, however, assume that the VCM model obeys Squire’s theorem [31]; that
is, we do not assume that 2D disturbances are more unstable than three-
dimensional (3D) disturbances. The validity of Squire’s theorem, which was
originally proved for Newtonian fluids [31], has been investigated for some
viscoelastic models, namely the upper convected Maxwell, Oldroyd-B and
second-order-fluid models. The upper convected Maxwell and Oldroyd-B
models have been shown to satisfy Squire’s theorem [32]. The application
of the theorem to the second-order fluid model depends solely on the second
normal stress coefficient with invalidity corresponding to a nonzero value [33].
To this end it is worthwhile to note that the second normal stress coefficient
for the VCM model is zero. This is in contrast to the Giesekus model, which
has a nonzero second normal stress difference and for which Squire’s theorem
does not apply [34]. The question of the validity of Squire’s theorem for the
VCM model remains open.

There is extensive literature on the linear stability of planar channel
flow of both Newtonian and viscoelastic models and the viscometric prop-
erties predicted by each model play a major role in governing the stability
characteristics. Several of the non-Newtonian models studied include the
second-order-fluid (SOF) [35], the upper convected Maxwell (UCM) model
(35, 36, 37, 38], the Oldroyd-B (OB) model [36, 37, 38], the Giesekus model
(39, 34, 40], the White-Metzner (WM) model [41], the Phan-Thien Tanner
(PTT) model [40] and the Johnson-Segalman (JS) model [42].

The Reynolds number (Re = pH?/(\ny) where p is the density, H the
channel height, A the relaxation time and 7y the zero shear rate viscos-
ity) scales with the square of the channel height so that for flow of en-
tangled micellar solutions in a microchannel (corresponding experimentally
to lum < H < 100um), Re is negligibly small and we thus assume iner-
tialess flow (Re — 0) and consider only elastic instabilities in the present
study. Under this condition, the flow of a Newtonian fluid is linearly sta-
ble (Newtonian fluids are linearly stable for pressure-driven rectilinear flow
up to Re. = 5772.22 [43]). No purely elastic instabilities have been found
for the UCM and OB (constant viscosity) models in planar Poiseuille flow
(35, 36, 38]. In recent work it has been shown that in wall-driven, plane Cou-
ette flow, the UCM model exhibits a nonlinear, elastic instability (very small
Reynolds number) where the base flow is linearly stable [44]. Additionally,
[37] showed that the addition of stress diffusivity to the OB model does not
result in loss of stability of the inertialess channel flow; in fact, diffusion has
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a stabilizing effect. Using a modified OB model, [45] showed that if there is
a steep gradient in the first normal stress coefficient across the gap then a
purely elastic mode of instability may occur. In order to probe other mecha-
nisms of instability, [41] investigated a shear thinning WM model and showed
that an elastic instability is possible for a sufficient amount of shear thinning
(faster than n = 47%7). In accordance with the observed shear thinning
mechanism [40] found that both the Giesekus and PTT models can exhibit
purely elastic instabilities (the former conclusion having not been found by
previous authors [39, 34]). Because previous studies have focused on param-
eter choices in these models that are appropriate for the moderate levels of
shear thinning observed in polymer melts they have not considered the shear
banding limit of interest in entangled micellar solutions (n ~ 4~1). In addi-
tion these previous analyses do not include diffusion, which as shown in [21]
is important in microchannel flows. The effects of shear banding and diffu-
sion, however, were considered for a Johnson-Segalman model in the work
of [42]. In that work, the authors showed that for this nonlinear viscoelas-
tic model shear banding can be responsible for an elastic instability and the
dominant mode of instability is a sinuous (odd, snake-like) mode as opposed
to a varicose (even, sausage-like) mode. In their work only small diffusivity
parameters were considered with values appropriate for macroscopic pipes
and channels, but orders of magnitude smaller than one would expect for
the flow of wormlike micelles in microchannels; however they do find a linear
relation between the growth rate and diffusion and anticipate linear stability
at a critical interfacial width. In the present paper we investigate the stabil-
ity of a two-species, scission/reforming model, the VCM model, designed for
wormlike micellar solutions and we consider the role of increasing the range
of values of diffusivity consistent with microchannel flow.

Based on the previous work it is reasonable to expect that a shear banded
velocity profile for the VCM model will be linearly unstable to purely elastic
perturbations in the flow direction when the streamwise elastic stress becomes
large enough. This is based on the facts that associated with shear banding
is an extreme shear thinning (due to the shear stress plateau) of the fluid
and that the VCM model predicts a steep gradient in the first normal stress
difference in banded flow [21]. Thus, the goal of this work is to study the
structure and characteristics of purely elastic instabilities that arise for the
rectilinear pressure-driven flow of the VCM model by probing the parameter
space that controls the onset of instability as well as the form of the resulting
perturbed flow field (i.e. the eigenfunctions).
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2. The VCM (scission/reforming) Model

2.1. Equations

The nondimensional VCM model constitutive equations are [§]

D 1
H DntA — 2(5AV2HA +0,VV : A = §CBn2B — CAN A (1)
D’/I,B 2 2
] e 205V npg +205pVV : B = —cgny + 2cang (2)
PA ) + A —nul — SAV2A = cpnpB — c4A (3)
euBg) + B — %BI — €05 V2B = ¢[~2c5nB + 2c4A] (4)

Here ny and np represent the number density of the ‘A’ and ‘B’ species
respectively and A and B are the respective conformation tensors. The
subscript ()(1) denotes the upper-convected derivative and is given by:

A v VO~ (V)0 +0-9v). )

The reforming rate cp of the short ‘B’ species is taken to remain at the
(constant) equilibrium reforming rate (cpe,), and the breakage rate of the
long ‘A’ chains is enhanced by a coupling between the strength of the shear
flow and the stretching of the entangled micellar chains

A
CA = CAeq + N§(7 : a) (6>

where ¢4, is the equilibrium breakage rate.
The constitutive equations are coupled to the inertialess flow equations
of conservation of mass:

V-v=0 (7)

and conservation of momentum:
V- II+f=0 (8)
where IT is the total stress of the wormlike micellar solution and is given by

IT=pI+ (nsa+np)l —A—-2B— 3% 9)



and f is the nondimensional, externally imposed driving force (pressure drop),
which for 1D channel flow in the positive x direction (see Fig.2) is given by
(P — S21,0,0)

The followmg scalings have been adopted to nondimensionalize the VCM
model: the spatial dimension is scaled by the channel height H (x = x'/H);
time is scaled as t =t'/\.pp where A.sp = Hcaﬁ is the effective relaxation

time, which is reduced from the ‘A’ species reptation time (A4) due to the
breakage of the long chains; velocity is scaled as v .= v'A.sr/H; and the
micellar stress is scaled by the plateau modulus Gy (A, B = ()'/Gy).

The dimensionless parameters in the equations above include the viscosity
ratio g = "—S two time ratios, u = /\’\—'Jj‘f and € = :\\i , a dimensionless diffu-
sivity 04 = AAD 4 and a single nonlinear parameter £ that controls the strain
and rate dependence of material properties such as the damping function
and shear thinning viscosity [46]. Values for these parameters, fitted to data
from [47], are: 3 =Tx107° = 1.9, cacg = 0.9, Cpey = 1.4, € = 6.27 x 107*,
¢ = 0.3. The relaxation times A4, Ag, the equilibrium breakage and reforming
rates Caeq, CBeq, and thus the effective relaxation time A.;; were determined
from small amplitude oscillatory shear experiments (see [8]). The solvent vis-
cosity ratio 3 = n,/(AcsrGo) is then determined using the viscosity of water.
The nonlinear parameter £ is determined by fits to step strain experiments
(see [9]). In fact higher values of &, for example of 0.7 may be more realistic
(see [9, 46]). The dimensionless diffusion parameters are then determined if
D4, Dp are known. In this work the diffusivity parameters are taken such
that 64, = 0p and we therefore use the simplified notation ¢. Part of the
goal of microchannel experiments is to determine the physically appropriate
values for the magnitude of 9. The homogeneous non-monotonic constitutive
curve for the VCM model using these parameters is shown in Fig.1. In full
(inhomogeneous) shear flow the flow curve shows a stress plateau at shear
rates corresponding to those for which banding occurs. For a small value of
the diffusivity parameter (6§ = 10™*) the macroscopic flow curve in circular
Taylor-Couette flow is shown in Fig.1.

We impose a no slip boundary condition on the velocity at the solid walls

v = 0. (10)

The inclusion of stress diffusion necessitates the use of boundary conditions
on the stress and number density. As discussed in [21], we assume no flux of
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Figure 1: The homogeneous constitutive curve (solid line) for the VCM model for the
values of the parameters discussed in the text. The apparent flow curve is shown by
the symbols for 6 = 1074, in a circular Taylor-Couette cell with small curvature p =
(R, — R;)/R; = 0.01.

species across solid boundaries
n-js=0an-2Vny —V-A)=0 (11)
n-jg=odgn-(2Vng —2V-B) =0 (12)
and no flux of conformation across the solid walls
n-VA=0 (13)

n-VB =0 (14)

where n is the outward pointing normal to the wall. The no flux of con-
formation boundary condition has been suggested and used by a number of
authors when analyzing models with stress diffusion [7, 48, 49] although other
authors have considered Dirichlet conditions on stress [50], or the effect of
mixed (Robin) boundary conditions on the stress [15].



3. Base state

3.1. Geometry and FEquations

Fig.2 is a schematic diagram of the 2D channel flow neglecting variations
in the transverse direction (= = 0). For the base state it is assumed that
the flow is uniform in the flow direction (-2 = 0).

ox
=0 Tfl
A
o N ek - S
!
=0
e e o H
V"r =10
- T .

Figure 2: Steady pressure-driven flow in a two-dimensional (flow/flow-gradient plane)
channel geometry in dimensional coordinates. At the walls, the no slip boundary condition,
v/ = 0, is imposed. The profile shown is for a pressure forcing for which shear banding
occurs showing the interface, y.,,, between the high shear rate flow adjacent to the walls
and the lower shear rate flow in the center of the channel.

The dimensionless system of equations governing this 1D pressure-driven
flow for the VCM model are:

0="P + B,y +Aryy + 2By, (15)

on 1 _
Na—tA = 04(2nayy — Ayyyy) + §CBeqn2B T CAega — = (16)

on -
’uﬁ—tB = 265(np.yy — Byyyy) — CBegy + 2Cacqna + 25 (17)

= Ay
Ay + Ay =14 = 0aAyyyy + CBegBByy — CaeqAyy — :E (18)
Ay

N(Ary,t — Uy Ayy) + Azy = 0aAuyyy + CBegNBBuy — CaeqAzy — E (19)

na
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A:c:c
M(A:c:c,t_Quay A:cy)_l'A:c:c_nA = 5AAxx,yy+CBeanBxx_CAqu:c:c_En— (20)
A

n 0 _A
epByy 1 + Byy — 73 = 2¢ (gByy,yy — CeqBByy + CacqAyy + :n—iy) (21)

J — Ay
GM(Bmy:t — Uy Byy) + Bmy = 2e¢ (?Bmy,yy - CBeanB:py + CAquxy + :n—Ay)
(22)

EM(Bmm,t_Quuy Bwy)_'_Bmv_?B = 2¢ <7BBmm,yy - CBeanBmv + CAqumm += na )

(23)

= 2
where = = ZFu,, A,y

3.2. Numerical Method

In the stability analysis to be discussed below we make no assumptions
about the symmetry of the perturbed system of equations. Unlike [35, 34] in
which the authors only consider symmetric (even) eigenmodes, we allow the
system to select between even and odd modes. In order to accomplish this the
equations must be solved across the entire channel (—1/2 <y <1/2). The
numerical complications that arise in solving the base state for the VCM
model are discussed in [21] and in the case of the full channel, due to the
symmetry of the zeroth order problem, there are two apparent slip boundary
layers (one at each wall) and, during shear banding, two time-evolving in-
terior layers (interface between the bands), symmetric about the centerline.
The ADDS (adaptive domain decomposition spectral) method described in
[21] to solve the half channel problem is easily adapted to the full channel
by using a domain decomposition with five subdomains; this is done essen-
tially by using the domain decomposition described in [21] reflected about
the center (symmetry) line.

3.3. Results

In [21], the VCM model was investigated in 1D pressure-driven flow
through a rectilinear microchannel. In that work it was shown that stress-
orientation coupling has a nonlocal effect on the velocity profile in the chan-
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nel. Specifically, with the use of no flux boundary conditions on the number
density and stress, a boundary layer in the velocity and shear stress exists at
the solid walls. The boundary layer in the velocity corresponds to an apparent
slip layer and, for pressure driving forces smaller than the critical pressure-
drop at which the onset of shear banding occurs (P..i), the dimensionless
slip velocity is explicitly computed to be u, ~ 22 In Fig.3(a) the steady-
state velocity profiles for a dimensionless pressure gradient P = 1 < P
are shown for 6 = 0 as well as for several nonzero values of the diffusivity
parameter. The effects of diffusion and the resulting apparent slip layer at
the wall are clearly visible for § = 10~!. The increase in the velocity profile
across the channel due to the apparent slip layer adds to the volumetric flow
rate expected in the no slip (6 = 0) case such that Q = Qs_o + 22 + O(6?).
For small diffusion lengths, ¢; << H (that is 6 << 1), the interfacial and
boundary layers are very thin and remain well-separated from each other.
This suggests that the specific boundary conditions applied at the wall have
no effect on the interfacial instability as concluded in [51].

Above the critical pressure gradient, P..;;, shear banding occurs and the
flow develops a high shear rate region adjacent to each wall connected through
a sharp interfacial layer to a low shear rate flow in the center of the channel.
Fig.3(b) shows several shear banded velocity profiles for increasing values of
P > Py with § = 1073,

In Fig.4 the dimensionless volumetric flow rate, Q = f—lﬁz u(y)dy, for
startup of pressure-driven flow is plotted as a function of the dimensionless
pressure gradient, P, for 6 = 1072, For P < P!, and P >> Pl the
VCM model is dominated by a single species (the ‘A’ species for small P and
the short ‘B’ species for large P). The resulting dimensionless volumetric
flow rate can be found explicitly to be Q ~ %73 and Q ~ mP for small
and large pressure-drops respectively [21]. At the onset of shear banding,
corresponding to a value of the pressure gradient P, ~ 2.455 there is a
sudden jump in the volumetric flow rate. This phenomenon is commonly
referred to as spurt and has been documented experimentally in pressure-
driven channel and pipe flows of micellar solutions [29, 52, 53]. In Fig.4 we
also show the volumetric flow rates computed by progressively decreasing
the dimensionless pressure gradient from P = 10 down to 0. A sudden drop
in volumetric flow rate occurs during this ramp down at a critical value of
the pressure gradient, P, ., ~ 1.3485 < PI.. the critical pressure gradient
in startup. The non-uniqueness of the critical pressure gradient is indicative
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Figure 3: (a) Velocity profiles for the VCM model in the linear viscoelastic region
(P=1<Peit). For 6 = 0 the expected parabolic profile develops. The addition of
diffusive effects in both the stress and number density coupled with no flux boundary con-

ditions creates an apparent slip layer at the wall and increases the flow rate through the

channel. This layer corresponds to an apparent slip velocity, us =~ %‘5 [21] and this increase

in the velocity adds to the volumetric flow rate such that, for P = 1, Q = Qs—o + 6/2.
(b) Shear banded velocity profiles of the VCM model for various values of the imposed
pressure gradient, P > P, for § = 1073,

of hysteresis in the pressure-driven flow of the VCM model. We note here
that all results on stability of the VCM model presented in this work are for
steady base states obtained from start-up of pressure-driven flow.

4. Linear Stability Analysis
4.1. Flow/Flow gradient plane

We consider the linear stability of the base state determined above due
to perturbations in the flow/flow gradient plane (x — y plane). In this for-
mulation the velocity field takes the form q = (u°(y) + u*(y)S,v(y)S,0),
where u°(y) denotes the base state found above, and S = se!**=+) where k
is the wavenumber in the flow direction, and w = wg + iw; is the growth rate
(eigenvalue) such that w; > 0 denotes growth of disturbances (instability).
Here s indicates the (infinitesimal) amplitude of the perturbations. Similarly
the number density and stress of each species are expanded as () = ()°+()S.
Conservation of mass for this system states that iku' + v'(y) = 0. To guar-
antee this we introduce a streamfunction ¢ where u!' = v, vt = —iky.
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Figure 4: A comparison of the dimensionless volumetric flow rate down the channel
for the VCM (startup, ¢; ramp down, o) and Oldroyd-B models as the imposed
pressure gradient increases. For the Oldroyd-B model, the flow rate increases
linearly with the pressure gradient (Q = mp) The dashed line corresponds
to the volumetric flow rate pressure drop relationship obtained for flow of the
VCM model dominated by the ‘B’ species and solvent only (Q = mp)
Note that the axes are semilogarithmic to accommodate the sudden spurt in the
VCM model at Pctit ~ 2.455. The sudden drop in volumetric flow rate during the
ramp down occurs at P_ ., ~ 1.3485. The non-uniqueness of the critical pressure
gradient is indicative of hysteresis in the pressure-driven flow of the VCM model.
Here B=7x107%, 1 =1.9, e =6.27 x 107%, np = 3.134 and § = 1072,

Substitution into the full equations and retaining only those terms first or-
der in s, the resulting linear system to be solved for the eigenvalues w(k;y)
is:

Momentum:

Zk(pl + n,l%l + nlB - A}vx - 2B;x - 252k¢7y) - Al - 2B;y,y - ﬁ(w,yyy + k2w,y) = 0(24)

Y,y

ik(=Agy = 2By = By + k*)) +ply + 0y + gy, — Ay — 2By, + 28k, = 0(25)

yy.y yy.y
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Number Density:

(1ku® —iw)pnly — tkpahn® , — da(=2k*n}y + 2n} ) + 0a(
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Stress:

—iwp A — ipkpA® y + ikpu At —nal — pDy — 04(Al, — K2AT)

_ 1,0 1,,0 0,1
—CBeannB_CAnA_CAnA

_ 1,0 1,0 0.1
= _Q(CBeannB —Ccany — Cany)
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2ik Al

2ik B!

—k*AL + A

— k2B + B

(28)

e(—iwpB! — ik B, + ikpuBY) — "21 — euDy — 55(BL | — k*BY)

where

and

= —2¢(cpeg(nyB! + nkBY) — G A — L, A?)

-1, .
pé | 208 AL+ 4 .AO_')/O:AOTL}LX

= HS ey
43 ns () |
Yoo =Yg = U,Oy>%0i =0
7%1 = 7112 = k2¢ + wvyy
7111 = 2”“?4/
7%2 = _Qik@%
DAll = 2(A2:x2k¢7y + Agywyy + Aalcyu,oy)
Dasi = Dars = K A%, + u,OyAzljy + ¢7yyA2y

DA22 - Q(Agxk2lp - Agyllﬁ/}’y)

(29)

(30)
(31)

(32)
(33)
(34)
(35)
(36)
(37)

The terms of the tensor Dpg coupling the base flow and the perturbation are
identical to those of D4 with all A’s replaced by B’s.
This system constitutes 10 linear differential equations for the 10 un-
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so that for each k we can determine the eigenvalues w. We are interested
in the eigenvalue with the largest imaginary part, w* = max(w;), which
represents the most unstable mode.

The boundary conditions of no flux for the first order perturbation to the
conformation and number density of each species at the boundaries, and zero
perturbed velocity at the walls (y = £1/2), are given by:

20n’,

5 —ikAL =0 (38)
Qz%—QMBg:o (39)
%%:o (40)
%?:0 (41)
u' =0t =0. (42)

4.2. Numerical Method

The system of equations (24)-(29) constitute a generalized matrix eigen-
value problem of the form

[A —wB]x =0 (43)

where the (mass) matrix B is singular resulting from the lack of a time deriva-
tive in the inertialess momentum equations and boundary conditions. Due
to the singular nature of B there exist eigenvalues of (43) which are infinite.
These infinite eigenvalues affect the solution of the system by appearing as
large numerical values which one may not be able to distinguish from spurious
modes. To avoid the corruption in the structure of the eigenvalue spectrum,
we use the method described by [54] to map the infinite eigenvalues to one
or more points in the complex plane leaving the true, finite eigenvalues of
the system unperturbed.

We first simplify the equations and introduce boundary conditions for
the eigenvectors. Equations (24) and (25) can be combined to eliminate the
pressure, p, leaving a fourth order differential equation for the stream function
1. The boundary conditions of no-flux for the stresses and number densities
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are given in equations (38)-(41). Given the no-slip boundary condition for
the velocities (42), the resulting boundary conditions for the stream function
are ¢ = 0 and 1,, = 0 at the walls.

As was mentioned in Section 3.2, the 1D base state solution is obtained
through the ADDS method [21] in order to track the time-dependent evo-
lution in the sharp nonlinear interface and ensure that the steady state is
fully resolved. The ADDS method incorporates the domain decomposition
patching method [55] which requires conditions at the intersection of the sub-
domains for which we use the interface continuity conditions [55] (that is the
function and its derivative are equal at the intersection). The use of these
interface conditions, however, produces a repeated condition on the stream-
function at the interface which creates an underdetermined system of equa-
tions. To resolve this matter the steady base state solution is mapped onto
a single Chebyshev domain through barycentric Lagrange interpolation [56]
for use subsequently in the solution of the eigenvalue problem. This method
has been tested against using a single Chebyshev domain to discretize the
steady base state and subsequently in the solution of the eigenvalue problem,
and the results agree to within 0.1%.

To determine the robustness of this scheme, we first test our method
against previous published results for linear stability in planar Poiseuille flow.
First, we solve the eigenvalue problem for the Oldroyd-B model (correspond-
ing to the VCM model with § =0,e =0, 0 =1,{ =0, caeq = cpeg = 0) with
B = 0.2 to be compared with results from [36, 38]. Fig.5(a) shows the com-
puted eigenspectrum for the Oldroyd-B model in the channel flow. For this
model there are exactly two continuous branches to the eigenspectrum, one
corresponding to the upper convected Maxwell model located at Im(w) = —1
(Fig.5(c)) and a second that arises from the introduction of a solvent viscos-
ity located, for our chosen scaling of the stress, at Im(w) = —(1 + 3)/5
(Fig.5(b)). In addition, there are several discrete eigenmodes (these are dis-
cussed in detail in [38]) corresponding to both the upper convected Maxwell
and solvent portions of the problem.

The role of stress diffusion in the Oldroyd-B model has also been consid-
ered [37] and the authors showed that, in the absence of inertia, the model is
still stable, however, both branches of the continuous spectra shown in Fig.5
become highly distorted. As can be seen in the eigenspectrum of this model
shown in Fig.6 there are still remnants of the two distinct continuous spectra
seen in Fig.5 however, the overall structure has been destroyed along with
the addition of many discrete modes along the line Im(w) = —1.
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Figure 5: (a) Eigenspectrum of the Oldroyd-B model (0 = 0,e = 0, = 1,{ = 0,ca¢q =
CBeq = 0) for P =1, 8 = 0.2, k = 1 using N = 128 Chebyshev nodes. (b) Local
enlargement of the contribution to the eigenspectrum corresponding to the addition of
the solvent viscosity in the Oldroyd-B model. (c¢) Local enlargement of the eigenspectrum
branch corresponding to the upper convected Maxwell portion of the Oldroyd-B model.

We also tested the method against results reported in [42] for the Johnson-
Segalman (JS) model. In this work the authors used a full nonlinear calcula-
tion to obtain the most unstable eigenmodes and these were reported in the
dispersion relations. The most unstable mode found by solving the eigen-
value problem for the JS model through our method compare well with the
results from [42]. In addition to obtaining the most unstable mode we are
able to capture the full eigenspectrum of the JS model to ensure that the
most unstable discrete modes are sufficiently resolved and this is shown in
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unstable with the most unstable eigenvalue (circled) at w* = max(wy) = 1.345. Here we
use N = 250 Chebyshev nodes.
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Fig.7 below.

4.3. Results

Below the shear banding threshold, for small pressure driving forces,
P < Perit, the VCM model is well approximated by the quasilinear Oldroyd-
B model which has been shown to be linearly stable in inertialess planar
Poiseuille flow both without diffusion [36, 38] and with diffusion [37], thus
our primary concern is with the linear stability of the shear-banded base
states.

Using the Johnson-Segalman model with diffusion, [42] showed that shear
banded profiles in this pressure-driven channel flow can be linearly unstable.
Using a fully nonlinear code, they tracked the early-time growth and de-
termined the dispersion relation w(k). Using various sizes of the diffusive
interfacial thickness that characterizes the width of the shear band interface
(Lg = VDX so that § = (2/H?), [42] showed that there exists a linear reduc-
tion in growth rate and ¢;. As the width of the interface of the shear band
is increased, the growth rates decreased and the flow becomes increasingly
stable. In the fully nonlinear code, the system selects solutions that exhibit
either even (varicose or sausage-like) or odd (sinuous or snake-like) symme-
try and it was found that the most unstable eigenmode corresponds to the
sinuous mode. The wavelength of the mode corresponding to the peak of the
dispersion relationship was determined as a function of the imposed pressure
gradient. For pressure gradients deep within the shear-banding regime this
wavelength was found to be l,/H = 2r/k ~ O(2), or twice the gap width,
which is consistent with the presence of secondary velocity rolls [57, 58].
However, these authors also point out that the JS model is highly oversim-
plified and that the values used for the interface parameter ¢; were too small
to be considered appropriate for microchannel flows of micellar fluids. To
this end we will investigate the stability of shear-banded base states of the
VCM model with a range of values for § = ¢2/H? that are appropriate for
both microchannels and macrochannels.

Like the Johnson-Segalman model, following the onset of shear band-
ing, the velocity profile predicted by the VCM model can become unstable
to streamwise perturbations. Fig.8 shows the dispersion relation constructed
by plotting the growth rate of the most unstable mode versus wavenumber for
various pressure gradients P with a small diffusivity parameter, § = 1073,
close to the minimum expected for microchannels. At the onset of shear
banding (approximately P = 2.39 for this value of §) the flow spurts and the
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growth rate of one discrete eigenmode becomes positive. As P increases fur-
ther the width of the unstable region and the range of unstable wavenumbers
decreases. Initially the value of the maximum growth rate remains relatively
constant and then decreases as P is increased further. Unlike [42], we find
that the wavelength (l,,/H = 2m/k) of the most unstable disturbance (cor-
responding to the peak of the dispersion relation) is l,,/H ~ O(3), or three
times the gap width. Fielding also determined for the JS model that the
wavelength of instability at the onset of shear banding is very small, con-
sistent with a very thin high shear rate band. In contrast to [42], we find
that the dimensionless wavelength approaches a finite value, [,,/H = 3 in the
limit P — Puis ~ P

crit*

—%—P =2.38
—e—P =239
—*—P =25
—e—P=3
—x—P =4
—*—P=5
—P=6

Figure 8: Dispersion relation for the VCM model (8 = 7 x 107°, u = 1.9, caeq = 0.9,
CBeq = 1.4, € = 6.27 x 107%, ¢ = 0.3) showing the growth rate of the most unstable mode
versus wavenumber for a fixed diffusivity 6 = 1073 for various pressure gradients within
the shear banding regime (see Fig.3(b) for corresponding velocity profiles). Peiz = 2.39
corresponds approximately to the onset of shear banding for this value of the diffusivity
parameter.

As was shown in both [37] and [42], diffusion plays a stabilizing role and
thus one would expect that there is a critical diffusivity parameter § at which
the flow is restabilized. This effect can be seen in Fig.9(b). Here we plot the
dispersion relation for a fixed pressure gradient in the shear banding regime
(P = 2.5) for values of the dimensionless diffusivity § = ¢2/H?. Restabiliza-
tion of the base flow occurs between § = 4.25 x 1072 and § = 4.5 x 1073,
and unlike the sudden transition from stability to instability seen in Fig.8
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as the flow spurts, the restabilization as 0 changes is much smoother. Ex-
tensive calculations show that the most unstable mode, w* = max(wy), for
the VCM model decrease linearly with increasing diffusivity. We have also
computed the next order correction to the fit and find that w* = wj — b+ ad?
(a,b > 0), thus the growth rate decreases more slowly with increasing diffu-
sivity than the linear relationship predicted by [42]. The changes in the base
velocity profile Fig.9(a) as ¢ is incremented from 107 to 1072 are impercep-
tible, except very close to the kink at the shear band (see insert). Clearly
the unstable mode is an interfacial mode arising from the large change in the
effective viscosity and normal stress difference across the interface.
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Figure 9: (a) Velocity profile of the VCM model for P = 2.5 for various values of the
diffusivity parameter, 6. The inset shows an enlargement of the interfacial region between
the high and low shear rate bands showing the dependence of y;,: on § and the sharpness
of the transition region. (b) Dispersion relation showing the variation in the growth rate
and wavenumber of the most unstable mode for a fixed pressure drop P = 2.5 in the shear
banding regime showing the stabilizing effect of increasing diffusion. The same symbols
and line styles are used in both figures.

To ensure that these interfacial modes of instability are sufficiently re-
solved, the eigenspectra are plotted for various numbers of Chebyshev nodes.
In Fig.10 we plot the full eigenspectrum for P = 2.5, § = 1072 and k = 2
and show subsequent enlargements so that the structure of the entire spec-
trum can be resolved. There is exactly one unstable mode (seen in Fig.10(d))
which we have resolved to two decimal places with the number of discretiza-
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tion nodes employed to be w = 85.58 + 3.42¢. This mode is mesh converged
and hence it is a discrete eigenmode that is well separated from the remain-
der of the spectrum. Thus there is no possibility of the mode disappearing
into a continuous branch of the spectrum as was seen in [38] for the UCM
model.
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Figure 10: Enlarged views of the full eigenspectrum of the VCM model for P = 2.5,
§ =103 and & = 2: (a) —7 x 10* < w; < —2000, (b) —2000 < w; < —800, (c)
—800 < wy < =100 and (d) —100 < w; < w* for three different degrees of Chebyshev
discretization (N = 300,350,400). In the final image (d) the unstable mode is clearly
separated from the rest of the stable spectrum and is mesh converged (to 2 decimal places)
with w = 85.58 + 3.42i.

In Fig.11 and Fig.12 we plot the eigenfunctions for this unstable mode
(P =25,5 =102 and k = 2) corresponding to the perturbed velocity (u')
(and streamfunction ¢) and micellar shear stress (A}, + 2B;,) respectively.
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We note that these eigenfunctions break the symmetry of the base state.
These modes are odd (sinuous) as was observed in [42] for the Johnson-
Segalman model. The steep spatial gradients in the eigenfunctions precisely
at the location of the interface connecting the shear bands suggests that
the interface will become locally distorted and wavy in a similar manner to
the full nonlinear calculations presented by Fielding for the JS model [42].
The perturbation to the stress A}cy + QBi,y is symmetric about the midplane,
y = 0, and when added to the antisymmetric base state shown in Fig.12(a)
will break the symmetry of the resulting flow state.

In Fig.9(b) it was shown that the flow is only unstable when the kink
in the velocity profile at the shear band interface is sufficiently sharp, cor-
responding to a critical value of the dimensionless diffusivity § < d..;;. As
§ = Dala/H? increases (for example by shrinking the channel dimension),
the maximum growth rate decreases and the range of wavenumbers for which
instability occurs also decreases. This stabilizing effect of the diffusive cou-
pling between the microstructure and the velocity field can also be seen for
other pressure driving forces within the shear banding regime. A neutral
stability curve for which w;(k;P,d) = 0 for several values of 0 is plotted in
Fig.13(a) determining the range of linear instability as a function of both
P and k. As ¢ increases, both the maximum pressure gradient and range
of wavenumbers for which the base flow is unstable progressively decrease,
collapsing eventually to a single value. This can be further seen in Fig.13(b)
where the neutral stability curve in § — P space is shown. As § increases, the
minimum value of the critical pressure gradient for onset of spurt (and insta-
bility) increases slowly and the maximum pressure gradient decreases steadily
until the curves intersect and the flow becomes globally stable beyond a crit-
ical dimensionless diffusivity 0z >~ 4.51 x 1072, Beyond this point the base
flow still exhibits a spurt transition (see Fig.10 in [21]) but the thickness of
the shear band becomes sufficiently wide and viscous stresses from the sol-
vent and the shorter ‘B’ species become sufficiently large to dampen out the
perturbations induced by the local variations in the viscoelastic stresses of
the ‘A’ species that exist at the interfacial shear band. Due to the hysteretic
nature of the pressure-driven flow of the VCM model the critical value of
the dimensionless pressure gradient, P..; is not unique with P_., < PI..
Exploratory calculations, not presented, show that for P > P_ ., the base
state solutions obtained from ramp down calculations exhibit a window of
linear instability. Thus, we expect the lower branch of the neutral stability
curve in Fig.13(b) to move down increasing the window of instability.
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Figure 11: (a) Base state banded velocity profile of the VCM model for P = 2.5 and
§ = 1073, (b) Eigenfunction of the most unstable mode for k = 2 corresponding to the
perturbed velocity u' = ‘z—’;’ that is superposed on the base state velocity u” in (a). The
eigenfunction breaks the symmetry of the base state and thus produces a sinuous (snake-
like) flow. The sharp localized variation in the perturbed velocity at the interface between
shear bands suggests that the interface becomes locally distorted in this unstable flow and
that the largest variations in the velocty profile are in the shear band and not in the low
shear rate core. (c¢) Corresponding streamfunction, v, of the perturbed flow. The cusps
in the profile are located at interface and indicate steep spatial gradients of i resulting in
the interfacial disturbance in the perturbed velocity seen in (b).
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‘A’ species, Agy, and the (almost) linear variation in the total polymer shear stress, % =

A), + 2BY,, across the channel of the VCM model for P = 2.5 and § = 107%. (b)

my)
Eigenfunction of the most unstable mode for k = 2 corresponding to the perturbation to

the micellar shear stress Aiy + QBiy that is added to the base state micellar shear stress

0 0 : 1 1o : : _
Azy +2B;,. The perturbation A;, + 2B, is symmetric about the midplane y = 0 and

when added to the base state in (a) will break the symmetry of the resulting flow state.

5. Summary

We have investigated the linear stability of steady rectilinear pressure-
driven flow of the VCM model. The VCM model has been developed to
model the flow of entangled fluids such as wormlike micellar solutions that
can exhibit shear-banding transitions above a critical stress. Before the
onset of shear banding the model behaves like an Oldroyd-B model and
plane Poiseuille flow is linearly stable in this regime in the absence of in-
ertial effects. However, at the onset of shear banding, the flow exhibits a
sudden spurt transition and the 1D base state of the VCM model can be-
come unstable depending upon the values of the constitutive model param-
eters. Because of the sharp local variations in the base velocity profile, a
Chebyshev pseudospectral approach with large number of collocation nodes
(N > 128) is required to resolve both the base flow and the eigenspectrum
of the perturbations. The characteristics of the instability observed for the
VCM model are similar to those predicted in [42] for the Johnson-Segalman
model. The mode of instability is an odd (sinuous) eigenmode, however,
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the flow is restabilized is approximately 6..i = 4.51 x 1073 at which the curves intersect
at approximately P = 2.6. The bottom branch of this curve will be lower in ramp down
due to the hysteretic nature of the pressure-driven flow of the VCM model where instead
P <Pl
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the wavelengths of the most unstable mode, ly maz/H = 27/kmaz, for the
two models differ from ly e /H ~ 2 for the JS model to ly mae./H =~ 3 for
the VCM model (i.e. by about a gap width). In particular, sinuous stream-
wise instability is to be expected whenever the velocity variation across the
shear band is sufficiently sharp, corresponding to a dimensionless diffusivity
Serit = Dada/H? < 4.51x1073. As the length scale of the channel is reduced
(e.g. in a microfluidic device), nonlocal effects become progressively more
important and the flow becomes increasingly more stable. For the values of
Da=0.9x10"%m?/s, A4 = 0.0185s reported in [14] for a CTAB micellar so-
lution this corresponds to channels with length scales H < 192um. Sinuous
modes of instability in the flow direction have recently been reported in ex-
periments with wormlike micelles in pressure-driven pipe flows [29]. Sinuous
variations in the interface position in the flow direction were also computed
for planar channel flow [42]. However, very recent experimental observations
of the 3D kinematics in micellar solutions following the onset of instability
in both Taylor-Couette and plane Poiseuille flow show that perturbations
are also observed in the ‘neutral’ or cross-channel (i.e. vorticity) direction
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(30, 25]. The work of [28] on the Johnson-Segalman model suggests that
instabilities in the vorticity direction are driven by a jump in the second
normal stress difference, which is zero for the VCM model. The absence of
a Squire’s theorem for the VCM model means that it cannot be guaranteed
that two-dimensional disturbances are the most unstable, and a logical exten-
sion to the present work is consideration of three-dimensional disturbances
with k = {k,, k.}. Ultimately full nonlinear simulation is necessary to assess
the evolution in the amplitude of the perturbations and the structure of the
saturated three-dimensional and/or time-dependent state.
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