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ABSTRACT 

Dynamic oscillatory shear tests are common in rheology and have been used to investigate a wide 

range of soft matter and complex fluids including polymer melts and solutions, block copolymers, 

biological macromolecules, polyelectrolytes, surfactants, suspensions, emulsions and beyond. More 

specifically, Small Amplitude Oscillatory Shear (SAOS) tests have become the canonical method for 

probing the linear viscoelastic properties of these complex fluids because of the firm theoretical 

background [1-4] and the ease of implementing suitable test protocols. However, in most processing 

operations the deformations can be large and rapid: it is therefore the nonlinear material properties 

that control the system response. A full sample characterization thus requires well-defined nonlinear 

test protocols. Consequently there has been a recent renewal of interest in exploiting Large Amplitude 

Oscillatory Shear (LAOS) tests to investigate and quantify the nonlinear viscoelastic behavior of 

complex fluids. In terms of the experimental input, both LAOS and SAOS require the user to select 

appropriate ranges of strain amplitude (γ0) and frequency (ω). However, there is a distinct difference 

in the analysis of experimental output, i.e. the material response. At sufficiently large strain amplitude, 

the material response will become nonlinear in LAOS tests and the familiar material functions used to 

quantify the linear behavior in SAOS tests are no longer sufficient. For example, the definitions of the 

linear viscoelastic moduli G΄(ω) and G˝(ω) are based inherently on the assumption that the stress 

response is purely sinusoidal (linear). However, a nonlinear stress response is not a perfect sinusoid 

and therefore the viscoelastic moduli are not uniquely defined; other methods are needed for 

quantifying the nonlinear material response under LAOS deformation. In the present review article, 

we first summarize the typical nonlinear responses observed with complex fluids under LAOS 

deformations. We then introduce and critically compare several methods that quantify the nonlinear 

oscillatory stress response. We illustrate the utility and sensitivity of these protocols by investigating 

the nonlinear response of various complex fluids over a wide range of frequency and amplitude of 

deformation, and show that LAOS characterization is a rigorous test for rheological models and 
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advanced quality control.      
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1. Introduction 

1.1. Dynamic oscillatory shear test  

Dynamic oscillatory shear tests are performed by subjecting a material to a sinusoidal 

deformation and measuring the resulting mechanical response as a function of time. Oscillatory shear 

tests can be divided into two regimes. One regime evokes a linear viscoelastic response (small 

amplitude oscillatory shear, SAOS) and the other regime is defined by a measurable nonlinear 

material response (large amplitude oscillatory shear, LAOS). As the applied amplitude (of strain or 

stress) is increased from small to large at a fixed frequency, a transition between the linear and 

nonlinear regimes can appear. Fig. 1 schematically illustrates an oscillatory strain-sweep test in which 

the frequency is fixed and the applied strain amplitude is varied. In Fig. 1 the viscoelastic response is 

quantified by two material measures, namely the elastic storage modulus G΄(ω) and the viscous loss 

modulus G˝(ω). In the linear regime the strain amplitude is sufficiently small that both viscoelastic 

moduli are independent of strain amplitude and the oscillatory stress response is sinusoidal. The strain 

amplitudes used in linear oscillatory shear tests are generally very small, often on the order of γ0 ≈ 10-

2 – 10-1 for homopolymer melts and polymer solutions. For some dispersed systems (emulsions and 

suspensions) [5] or blockcopolymer solutions [6] the linear regime is limited to even smaller strain 

amplitude, γ0 < 10-2. With increasing strain amplitude the nonlinear regime can appear beyond SAOS. 

In the nonlinear regime, the storage or loss moduli are a function of the strain amplitude (G΄(γ0) and 

G˝(γ0)) and the resulting periodic stress waveform becomes distorted and deviates from a sinusoidal 

wave (see Fig. 1). This nonlinear regime becomes apparent at larger strain amplitude, therefore the 

nonlinear dynamic test is typically referred to as large amplitude oscillatory shear (LAOS).  

A SAOS test assumes that the material response is in the linear regime within the accuracy of the 

rheometer and therefore the material functions, e.g. G΄ and G˝ fully describe the material response. 

Since linear viscoelasticity is based on a rigorous theoretical foundation [1-4], SAOS tests provide 

very useful and convenient the rheological characterization of complex fluids or soft materials.  
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Although linear viscoelasticity is useful for understanding the relationship between the 

microstructure and the rheological properties of complex fluids, it is important to bear in mind that 

the linear viscoelasticity theory is only valid when the total deformation is quite small [4]. However, 

in most processing operations the deformation is both large and rapid (therefore in the nonlinear 

region) and consequently linear viscoelastic characterization is not sufficient to fully understand 

practical polymer processing undergoing nonlinear situations. Moreover, since linear viscoelastic 

experiments use small strain amplitude (SAOS test), this measurement has a limited resolution to 

distinguish complex fluids with similar micro- and nano-structure or molecular structures (e.g. linear 

or branched polymer topology). Complex fluids with similar linear viscoelastic properties may show 

different nonlinear viscoelastic properties. This means that even if rheological measurements are only 

being used for material characterization or quality control, the linear viscoelastic properties may often 

be insufficient. It can be anticipated that nonlinear viscoelastic characterization will provide much 

more insight for distinguishing such structural differences. Additionally, the coherence between 

molecular theories, continuum-level constitutive equations and experiments will be improved if 

nonlinear parameters are matched. Thus, for several reasons, it is necessary to study the nonlinear 

viscoelastic responses of complex fluids in depth. Among other nonlinear rheometric tests, the steady 

shear viscosity is often measured as a function of shear rate. The steady-state viscosity can frequently 

provide the key information regarding how fast the material can be processed or shaped into a product, 

and this information is very helpful in polymer processing operations such as injection molding. 

However, when processing at high rates of deformation for short time the material does not reach 

steady state. Steady simple shear rate experiments also have inherent limitations: little information is 

provided about microstructure, information about elastic relaxation time scales is lost since the 

measurement is made at steady state, and several materials cannot be measured including crosslinked 

materials like rubber or structurally-sensitive hydrogen-bonded materials. In contrast, LAOS tests are 

useful for a broad class of complex fluids and soft matter because strain amplitude and frequency can 
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be varied independently allowing a broad spectrum of conditions to be attained [7]. Furthermore, 

LAOS does not involve any sudden imposed jumps in speed or position, and consequently it is a 

relatively easy flow to generate and control [8].  

 
Fig. 1. Schematic illustration of the strain sweep test at a fixed frequency. This sweep test can be used for 

determining the linear and nonlinear viscoelastic region. In the linear region, the storage (G΄) and loss (G˝) 

moduli are independent of the applied strain amplitude at a fixed frequency and the resulting stress is a 

sinusoidal wave. However, in the nonlinear region, the storage and loss moduli become a function of the strain 

amplitude (G΄(γ0) and G˝(γ0)) at a fixed frequency and the resulting stress waveforms are distorted from 

sinusoidal waves. In the linear region, the oscillatory shear test is called SAOS (small amplitude oscillatory 

shear), and the application of LAOS (large amplitude oscillatory shear) results in a nonlinear material response. 

 

1.2. Historical survey of LAOS 

The basic concept of large amplitude oscillatory shear (LAOS) was introduced a number of years 

ago. From the 1960’s to 1970’s, early publications [9-19] investigated nonlinear phenomena for 

various viscoelastic materials under oscillatory shear and proposed the methods of Fourier transform 

analysis and stress waveform analysis. Technical problems severely hindered further progress at that 

time, specifically hardware and software limitations such as torque transducer resolution and 

computational power. Payne [9] observed strain-amplitude dependence of the dynamic moduli for a 
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natural rubber filled with carbon black particles; the nonlinear behavior he reported is often referred 

to generically as the “dynamic stress softening.” This effect is called the “Payne effect” or the 

“Fletcher-Gent” effect [10]. Harris [11] reported the nonlinear stress behavior of suspensions of 

undeformable particles (a clay-water system) at low and high frequency. Philippoff [12] investigated 

the influence of the shear strain amplitude on the nonlinear behavior of polymer solutions up to strain 

amplitude γ0 ≈ 7. He was able to detect the growth of third harmonic contributions, and studied the 

onset of nonlinearity in several polymer solutions. MacDonald et al. [13] studied the dependence of 

the complex viscosity of four viscoelastic fluids (three polymer solutions and one polymer melt) for 

large amplitude oscillatory motion using a Weissenberg Rheogoniometer. Onogi et al. [14] 

investigated the viscoelastic behavior of carbon-black filled solutions of polystyrene in diethyl 

phthalate using a coaxial cylinder viscometer. They observed nonlinear oscillatory response signals 

which included odd harmonics up to the order of 5. Dodge and Krieger [15] investigated polystyrene 

latex and also observed the first five harmonics of shear stress at various frequencies. They concluded 

that oscillatory shear measurements show promise for the investigation of nonlinear fluids. 

Matsumoto et al. [16] calculated the fundamental stress components at the excitation frequency, 1G¢  

and 1G ¢¢ , and the corresponding third harmonic components, 3G¢  and 3G ¢¢ , for particle suspensions 

in polystyrene solution (see Eq. (9), Section 3.1 for variable definitions). They found that the ratios of 

13 / GG ¢¢  and 13 / GG ¢¢¢¢ , respectively, were of the order of 10% at an applied shear strain amplitude γ0 = 

0.26. Komatsu et al. [17] investigated the nonlinear viscoelastic behavior of two kinds of semisolid 

emulsions; one was an oil-in-water type and the other was water-in-oil type (commercial cosmetic 

creams). They compared the stress shape as a function of time including the analysis of higher Fourier 

components as proposed by Onogi et al [14]. Philippoff [13], Onogi et al. [14], Dodge and 

Krieger[15], Matsumoto et al. [16], and Komatsu et al. [17] used Fourier transform analysis of stress 

data. Tee and Dealy [18] investigated the nonlinear viscoelastic properties of three polymer melts 

(HDPE, LDPE, and PS). In order to characterize molten thermoplastics in a simplified way, they used 
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closed loop plots (Lissajous curves) of the measured stress versus strain or stress versus strain-rate. 

They concluded that the stress versus strain-rate loops were more distinctive than the stress-strain 

loops for these materials. They suggested at the time that only the first Fourier component can be 

determined with precision because of experimental difficulties. Furthermore, they emphasized that the 

higher Fourier components have no direct relationship with traditional material functions that are 

commonly measured. Walters and Jones [19] concluded in 1970 that, at that time, harmonic analysis 

was not a useful tool in viscoelasticity studies. Precise and accurate experimental equipment was yet 

to be developed, such as high fidelity monochromatic sinusoidal excitation, drastically improved 

torque transducers, “high performance” ADC cards, and cheap and powerful computers to perform 

advanced signal processing techniques such as data oversampling. Before such developments, the 

stress and strain data were typically detected by a differential transformer and recorded by a two-pen 

recorder [16]. Tee and Dealy [18] obtained the stress versus strain and stress versus strain-rate loops 

by means of a storage oscilloscope, equipped with a Polaroid camera. Experiments were limited by 

the dynamic range of the torque transducer in the rheometers commonly used at this time, nonetheless, 

various analysis methods were already suggested at this early stage, especially stress shape analysis 

and Fourier transform analysis. Pearson and Rocherfort [20] and Helfand and Pearson [21] calculated 

nonlinear parameters under LAOS utilizing the Doi-Edwards model for polymer dynamics. They 

investigated the limits of linear viscoelastic behavior of concentrated polystyrene solutions. 

During the 1990’s, book chapters by Dealy and Wissbrun [4] and Giacomin and Dealy [8] 

described LAOS test protocols and provided rich sources of information on the LAOS experiments 

and analysis at the time. Dealy and Giacomin [4,7,8, 22-27] investigated the LAOS behavior of 

various polymer melts with a unique sliding plate rheometer (SPR, see Fig. 2). Their results under 

LAOS flow were investigated via waveform analysis (closed-loop plots), Fourier transform analysis 

of the stress response, and constitutive equation modeling. In most sliding-plate rheometers, the shear 

stress is inferred from a total force measurement and thus may include error due to flow 
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heterogeneities at the sample edges. To avoid this problem, they invented a shear-stress transducer 

that could be flush-mounted in the stationary plate (see Fig. 2). Hence, the shear stress could be 

measured locally in a region of uniform deformation, away from the free surface boundaries, and they 

were able to conduct LAOS tests of highly viscous polymer melts to strain amplitudes γ0 > 10. With 

such large imposed deformations, very large nonlinearities could be generated that could be easily 

detected with the state-of-the-art software and hardware at that time. This unique custom set-up was 

used for investigating high density polyethylene (HDPE) [22], polyurethane [23], low density poly 

ethylene (LDPE) and HDPE [24], and linear low density poly ethylene (LLDPE) [25]. They also 

studied wall slip of HDPE [23] and determined model parameters for various nonlinear constitutive 

equations under LAOS, including the Liu, Mewis-Denn, Mewis-De Cleyn, and PTT model [26, 27], 

the Wagner integral equation [24], and the revised Berkeley kinetic network model [7]. These 

pioneering studies directly connecting LAOS experiments and simulations were primarily focused on 

polymer melts because the sliding plate rheometer (SPR) is optimized for measuring such highly 

viscous systems. The SPR also has some disadvantages, as it cannot measure low viscosity systems, 

e.g. polymer solutions or dispersed systems, it has a limited signal-to-noise range, and it was never 

widely commercially available. Sliding-plate devices continue to be custom-built and used to study 

complex fluid rheology [28]. 

 
Fig. 2. (a) Cross-section showing the essential elements of a sliding plate rheometer incorporating an elastic 

type shear stress transducer: ① sample ② moving plate ⑦ shear stress transducer. (b) The schematic 

sample shape under LAOS is shown with flow heterogeneity at the sample edge, because the stress transducer is 
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located at the center of the sample, errors induced by edge effects are avoided. Reproduced by permission of 

Hatzikiriakos and Dealy [22], copyright (1991) of the Society of Rheology. 

 

Wilhelm et al. [29-32] developed the methodology for high sensitivity Fourier transform (FT) 

rheology by transferring techniques from NMR spectroscopy to oscillatory rheometery on 

commercial rheometers. Their work is distinguished by the development and use of extremely 

sensitive detection methods, especially the use of “oversampling” with high performance Analog-to-

Digital Converter (ADC) cards, electrical and mechanical shielding, and a special FT algorithm [33]. 

These contributions lead to an improvement of about 2-3 decades in the signal/noise ratio compared 

to former work, with a final signal to noise ratio S/N ≈ 105. Some of these contributions are discussed 

in detail in Section 4.1, “FT-Rheology.” With these developments, it was possible to obtain high 

resolution torque signals from commercial rheometers and to obtain Fourier transform spectra for 

complex fluids with very low viscosities. The simple and easy setup using a commercial rheometer 

was clearly beneficial for broader adoption of the technique.  

FT-Rheology was used for various complex fluids, such as polymer melts [34-42], polymer 

solutions [43,44], polymer blends [45-47], block copolymers [6,48,49] and dispersed systems 

[5,32,45,50]. Leblanc et al. [51-60] systematically investigated various industrial elastomers and 

rubber materials with FT-Rheology, including EPDM rubber(ethylene propylene diene M-class 

rubber) [51-53], poly (vinyl chloride) (PVC)/ green coconut fiber (GCF) composites [54], carbon 

black filled rubber compounds [52,55-58], natural rubber [59], polybutadiene rubber (BR) and 

styrene-butadiene rubber (SBR) [53,56], and thermoplastic vulcanizates (TPVs). TPVs are blends of a 

crystalline thermoplastic polymer (e.g. polypropylene) and a vulcanizable rubber composition. For 

these multiphase and heterogeneous polymer materials Leblanc [60] shows that LAOS experiments 

can be used to elucidate the structure of industrially important polymer blends. Such rubbery samples 

usually display a very high torque value and can exhibit elastic instability under LAOS flow due to 

the polymer network structures. In order to overcome these drawbacks, they used the Rubber Process 
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Analyzer RPA 2000 with a closed cavity geometry, in combination with “high performance” ADC 

cards [61]. The normalized intensity of the third harmonic obtained from FT-Rheology was used to 

investigate systematically the effect of filler and long chain branching in these elastomer materials.       

As already noted, the storage modulus (G΄) and the loss modulus (G˝) at large strain lose their 

precise physical meaning when stress is no longer perfectly sinusoidal. However, useful calculations 

can still be made. Section 4.5 addresses the various options for calculating nonlinear viscoelastic 

moduli and the interpretation associated with each choice. At present the commonly output moduli 

from commercial rheometers are the first-harmonic moduli 1G¢  and 1G¢¢ , see Eq. (9), Section 3.1. 

Ahn et al. [62-64] classified complex fluids according to the strain-amplitude dependence of the first-

harmonic viscoelastic moduli G΄(γ0) and G˝(γ0) for experiments and simulations. (In this article the 

generic notation G΄ and G˝ will refer to the first-harmonic Fourier moduli 1G¢  and 1G¢¢  unless 

otherwise stated). Ahn et al. observed that the LAOS behavior of complex fluids could be classified 

into four primary categories, but acknowledged that other types which look like a variation or 

combination of these four types may also exist as indicated by a literature survey [62]. It was also 

reported that network theory simulations suggest the existence of four generic types of LAOS 

responses [63,64]. The investigation of G΄(γ0) and G˝(γ0) at a fixed frequency under LAOS is the 

simplest method to classify complex fluids without obtaining raw stress data, and is directly available 

on any commercial rheometer.  

For LAOS tests, however, the stress output is not purely sinusoidal and the behavior can no 

longer be fully described in terms of a storage modulus (G΄) and loss modulus (G˝), due to the 

presence of higher harmonic contributions (see Section 3 for more detail). The viscoelastic 

nonlinearity can be quantified in a simple way by using the Fourier transform method [32]. Recently, 

other methods to quantify nonlinearity under LAOS have also been proposed. Cho et al. [65] 

suggested a nonlinear “stress decomposition” (SD) method. The SD method decomposes the generic 

nonlinear stress response into a superposition of “elastic” and “viscous” contributions. The SD 
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method provides a very useful step toward a physical interpretation of nonlinear stress response. 

Klein et al. [5,66] use sets of simplified characteristic functions, specifically sine, rectangular, 

triangular, and saw tooth waves to describe the prototypical nonlinear responses. These selected 

waveforms may be thought of as set of “basis functions” used to represent a superposition of different 

physical phenomena; however they are neither orthogonal (in a mathematical way) nor unique 

selections. Ewoldt et al. [67,68] quantified the nonlinear viscoelastic material functions on the basis 

of the SD method by using a set of orthogonal Chebyshev polynomials of the first kind. They also 

suggested meaningful viscoelastic moduli in the nonlinear regime, e.g. minimum-strain and large-

strain elastic modulus and minimum-rate and large-rate dynamic viscosity. With these concepts, they 

could efficiently and uniquely define strain stiffening/softening and shear thickening/thinning. One of 

the goals of this article is to review and compare these different quantitative methods.  

 

1.3. Scope of the present article 

Oscillatory shear tests investigate and quantify viscoelastic properties of complex fluids or soft 

matter. If the strain amplitude is kept small the results can be discussed within the framework of 

linear viscoelasticity, therefore SAOS (small amplitude oscillatory shear) tests have been extensively 

studied both theoretically and experimentally. However, if the strain amplitude is increased, 

interesting nonlinear effects occur. There have already been extensive articles on specific nonlinear 

oscillatory shear tests [4,8,32]. Since the latest published review article [32], there has been much 

progress on quantitative methods for analyzing and interpreting LAOS tests, and applications of these 

methods. However, until now there has been no systematic review of the recent developments in the 

field of nonlinear oscillatory shear tests. In this article we review and compare several quantitative 

methods which have been proposed for analyzing nonlinear stress responses to deformation-

controlled oscillatory shear. These methods are given in the context through the LAOS 

characterization of several classes of materials.  
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Section 2 introduces the experimental methods used to obtain raw stress data under LAOS 

loading. Section 3 introduces several generic nonlinear behaviors observed in various complex fluids 

under LAOS including the leading order quantitative description using )( 0gG¢ and )( 0gG ¢¢ , and the 

oscillatory waveforms shapes of nonlinear shear stress and the nonlinear normal stress difference. 

Section 4 summarizes and compares several quantitative methods proposed by researchers for 

analyzing non-sinusoidal stress waveforms. In section 5 we introduce several experimental findings 

under LAOS for various complex fluids, e.g. polymer melts, solutions, block copolymers, dispersions 

and others. In section 6 we review experimental configurations which combine rheometry and 

morphology characterization to investigate the influence of LAOS flow on the structural change of 

complex fluids. Finally, Section 7 offers concluding remarks and an outlook on the future use and 

development of LAOS techniques.    
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2. Experimental methods and setup  

Commercially available strain-controlled rheometers are typically used for performing LAOS 

tests. It is most desirable to obtain raw oscillatory waveforms for proper analysis (as reviewed in 

Section 4), which may require modifications to the factory-purchased instrument setup. The most 

common experimental modification is based on a commercial strain-controlled rheometer with 

separated motor and transducer technology, e.g. the RMS 800, ARES, or ARES-G2 instruments from 

TA Instruments, in which raw signals of torque, normal force, and motor displacement are available 

as analog voltage outputs. In order to convert these analog signals into digital signals, shielded BNC-

type cables are connected between the instrument output and an analog-to-digital converter (ADC) 

card. The two important points of selecting the ADC card are the digital input resolution (dynamic 

range) and the maximum sampling rate. Typically a 16-bit (input resolution) analog-to-digital 

converter (ADC) card with sampling rates up to 100-333 kHz for one channel or 50-150 kHz for two 

channels is used. Measurement and on-the-fly boxcar averaging (oversampling) of the raw signals can 

increase the effective dynamic range of the transducer and allow for lower torques to be detected (see 

below). The ADC card (e.g. National Instruments, Austin, TX, USA) can be installed on a stand-

alone PC equipped with home-written LabView software (National Instruments). In this way the 

factory-provided rheometer control software is fully independent. This modified rheometer setup, 

which provides high-resolution raw oscillatory waveform data, is displayed in Fig. 3.  

For rheological measurements – and in general for any spectroscopic technique – there is a clear 

need for the most sensitive detection possible. This can be realized by developing more sensitive 

detection devices, shielding spurious signals, or processing and acquiring data with refined methods. 

Dusschoten and Wilhelm [33] proposed that torque transducer sensitivity could be increased by using 

appropriate data processing techniques. The basic idea is to acquire the oscillatory shear data at the 

highest possible acquisition rate as allowed by a high performance ADC card, i.e. - the raw data is 

oversampled. The sampling rate may exceed 50 kHz with this method even for 1Hz mechanical 
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excitation. In a second step the raw time data is truncated on the fly by means of a so-called boxcar 

average at a fixed time interval, e.g. several hundreds or thousands of raw data points [69] are 

averaged into a single time data point. The application of the boxcar average to the raw time data 

results in a new “down-sampled” time domain data set with a strongly reduced number of data points 

and drastically reduced random noise for each new data point. Here, the oversampling can be 

considered as an adjustable low pass filter in the frequency domain. In Fig. 4, the torque response as a 

function of time is shown for a data set together with the applied oversampling number. 

Oversampling number (No.) means that “No.” data points are averaged and collapsed into a single 

oversampled new data point. As expected, the random noise decreases as the oversampling number 

(No.) increases (Fig. 4), provided that the oversampling number is not so large as to lose information 

from the raw signal (not shown).    

 

 

 

 

Fig. 3. Experimental set up for common LAOS experiments. The strain, torque and normal forces are digitized 

via a stand-alone PC. The rheometer is controlled via a second PC with the standard instrument software. 
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Fig. 4. The torque as a function of time for Xanthan gum 4% aqueous solution at fixed strain amplitude, γ0 = 

0.03 with strain controlled rheometer RMS 800 that can detect a torque within the range 2-2000 mN·m. The 

torque is shifted vertically for ease of comparison. Increasing the oversampling number reduces the noise while 

the absolute torque amplitude remains the same. 
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3. Fundamental LAOS behavior 

In this section we discuss the most basic methods used for interpreting LAOS tests. We begin 

with a review of mathematical descriptions of the LAOS stress responses. The common outputs from 

commercial rheometers are torque (or forces) and displacements. Intrinsic rheological parameters are 

then calculated using geometric parameters and appropriate analysis, e.g. stresses, strains, 

compliances, and viscoelastic moduli. For strain-controlled LAOS tests, the stress response is 

analyzed in terms of strain-dependent viscoelastic moduli, which we discuss in some detail in 

Sections 3.1-3.2. This is followed by visual analysis of nonlinear oscillatory stress waveforms 

(specifically the shear stress in Section 3.3 and the first normal stress difference in Section 3.4). 

Advanced analysis techniques are left to be reviewed in detail in Section 4.  

 

3.1. Basic mathematical descriptions of LAOS 

Applying an oscillatory shear flow, the strain and strain-rate inputs can be described as follows 

tt wgg sin)( 0= , tt wwgg cos)( 0=& .                        (1) 

The stress response to this input deformation can be analytically represented in various ways. In the 

dynamic steady state, the shear stress of viscoelastic materials can be considered as an instantaneous 

function of the input strain and strain-rate. Thus we can expand the shear stress in the nonlinear 

regime by a polynomial or Taylor expansion with respect to the strain and strain-rate: 
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Here, Cij are mathematical constants for the expansion of nonlinear stress as a function of strain and 

strain rate. The values of Cij are related to material functions in the linear and nonlinear regime. A 

similar expansion is used to describe nonlinear optics [70]. The stress response of viscoelastic 

materials is typically independent of the shear direction, and it is assumed that the sign of the shear 

stress changes as the sign of shearing changes, and therefore the shear stress must be an odd function 

with respect to the direction of shearing deformations. Therefore, we can obtain criteria for the 
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symmetry of the shear stress as follows (see Appendix A): 

   )](),([)](),([ tttt ggsggs && -=--                          (3) 

Considering the symmetry criteria of Eq. (3), we can rewrite Eq. (2) as follows: 
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Inserting Eq. (1) into Eq. (4) results in the following expression for the shear stress,  
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Therefore, we may write the shear stress as a function of the odd higher-order terms in the nonlinear 

regime as follows (see Appendix B for more detail):  
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where a11= G΄(ω) and b11= G˝(ω) in the linear regime. With the given assumptions, it is seen that the 

shear stress waveform contains only odd higher harmonic contributions for LAOS deformations. Eq. 

(6) is the same result as obtained by Pearson and Rochefort [20]. The higher order terms in Eq. (6) 

result from the assumption that shear stress must be an odd function of shear deformations (Eq. (3)). 

By contrast, the normal stress differences do not change sign if the shearing direction changes, but 

still independent of shear direction. This means that the normal stress differences must be exclusively 

even functions of shear deformations (i.e. )](),([)](),([ 2,12,1 ttNttN gggg && =-- , where N1,2 denotes 

either the first or second normal stress difference). Thus, the normal stress differences measured 
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under LAOS deformations have only even higher terms [1,42,71] of the excitation frequency.  

The mathematical assumptions above can be violated for several reasons, first, as a result of 

inhomogeneous flow in the measuring geometries, e.g. wall slip [72,73], elastic instability [74,75], 

secondary flows in the parallel plates [76], or shear banding [77], and second, by imperfect 

(anharmonic) mechanical excitation, back-lash in the torsional actuator imposing the deformation and 

so on. It might further be possible to generate even terms of shear stress via microstructural 

anisotropy. Such non-idealized situations may therefore cause the presence of even harmonic terms in 

the shear stress or odd harmonic terms in the normal stress differences, however these features are 

generally of lower intensity. Even harmonic contributions of shear stress will be reviewed in more 

detail in Section 4.1.5.  

Following from Eq. (6), a different notation is also possible for the nonlinear stress, written in 

terms of amplitude and phase [8,32]. The total nonlinear viscoelastic stress can be expanded as a 

linear viscoelastic stress characterized by a stress amplitude and phase shift plus the odd higher 

harmonic contributions (higher stress amplitude and phase shift).  Consequently, the stress can be 

represented as: 

( ) )sin(
,1

å
=

+=
oddn

nn tnt dwss                             (8) 

where the harmonic magnitude ),( 0gws n  and the phase angle ),( 0gwdn  depend on both the strain 

amplitude γ0 and the excitation frequency ω. This Eq. (8) clarifies the starting point of “Fourier 

transform” rheology (FT-Rheology: see also Section 4.1). Note that Eq. (6) and Eq. (8) describe the 

same nonlinear phenomena using different mathematical descriptions. Giacomin and Dealy [8] 

referred to Eq. (6) as a power series and Eq. (8) as a Fourier series. One can re-write each Fourier 

component from Eq. (8) as components which are in-phase and out-of-phase with the strain input, and 

factoring out strain amplitude (γ0) define a set of nonlinear viscoelastic moduli [8]:  
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Eq. (6) can be rewritten as   

( ) [ ])cos()()sin()(
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oddn
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which nicely separates the strain dependence from the frequency dependence, therefore being distinct 

from Eq. (9). Giacomin and Dealy [8] reported that the terms of this power series are not simply 

related to those of the Fourier series. However, either mathematical description can be used to argue 

for a leading order nonlinear coefficient (see Section 4.1.2). The complex mathematics is one of the 

reasons why there are many ways to interpret the complex nonlinear response under dynamic 

oscillatory shear.  

 

3.2. G΄(γ0) and G˝(γ0)  

As mentioned in the introduction, LAOS tests are typically applied as a strain amplitude sweep at 

fixed frequency (see Fig. 1). The storage modulus G΄ and the loss modulus G˝ are strictly defined 

only in the linear viscoelastic regime, and therefore their values at large strain amplitude may have 

ambiguous physical meaning. However, if care is taken, the measurements of G΄ (γ0) and G˝ (γ0) at a 

fixed frequency can provide meaningful information. Section 4.5 addresses the various options for 

calculating nonlinear viscoelastic moduli and the interpretation associated with each choice. We re-

emphasize here that in this review the generic notation G΄ and G˝ will refer to the first-harmonic 

moduli G΄1 and G˝1 (Eq. (9)) which is the most common option for calculating viscoelastic moduli 

from a non-sinusoidal response and is the typical output of commercial rheometer software.  

Before quantifying the non-sinusoidal waveforms of LAOS stress responses, we first discuss the 

interpretation of the amplitude-dependent leading order description of a nonlinear response, i.e. G΄(γ0) 

and G˝(γ0). Typical LAOS studies include the results of G΄(γ0) and G˝(γ0) since this information can 

be obtained from commercial rheometers even when raw oscillatory data is unavailable. The higher 

harmonic contributions describing the extent of distortion away from a linear sinusoidal stress 

response are normally not large if compared with the amplitude of the first harmonic (typically < 
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20%). Therefore, the moduli obtained from the first harmonic via Fourier transform analysis are 

relevant for a leading order description of the viscoelastic properties. Hyun et al. [62] observed that 

the leading order LAOS behavior (G΄(γ0) and G˝ (γ0)) of complex fluids could be classified by at least 

four types of strain-amplitude dependence: type I, strain thinning (G΄ and G˝ decreasing); type II, 

strain hardening (G΄ and G˝ increasing); type III, weak strain overshoot (G΄ decreasing, G˝ increasing 

followed by decreasing); type IV, strong strain overshoot (G΄ and G˝ increasing followed by 

decreasing). The four types of LAOS behavior are schematically shown in Fig. 5 and Hyun et al. [62] 

documented each class of LAOS behavior from different complex fluids with different microstructure.  

Equating the representation of Fourier series (Eq. (9)) and power series (Eq. (10)), the 1st 

harmonic contribution can be calculated as: 
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  (11)                                      

which shows that G1΄ (ω,γ0) and G1˝ (ω,γ0) consist of odd polynomials of the strain amplitude (γ0) 

with nonlinear coefficients of frequency (ω). Therefore, we can observe the LAOS behavior of the 1st 

term as a function of strain amplitude. The nonlinear coefficients from the power series (e.g. G11΄(ω), 

G31΄(ω), … and G11˝(ω), G31˝(ω), …) in Eq. (11) determine the leading-order amplitude dependence 

of G1΄(γ0) and G1˝(γ0). The relaxation processes which represent the viscoelasticity of the materials 

are connected with the nonlinear coefficients that are only a function of frequency for the elastic part 

(G11΄(ω), G31΄(ω), …) and for the viscous part (G11˝(ω), G31˝(ω), …).  
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Fig. 5. The four archetypes of LAOS behavior as outlined by Hyun et al. [62]; (a) strain thinning (b) strain 

hardening (c) weak strain overshoot (d) strong strain overshoot. Reproduced by permission of Hyun et al. [62], 

copyright (2002) of Elsevier. 

 

For example, Heymann et al. [78] investigated the nonlinear behavior of medium- and highly-

concentrated suspensions of spherical and quasimonodisperse particles by analyzing G1΄(γ0) and 

G1˝(γ0) at a fixed frequency. They also investigated the effect of changing the imposed oscillatory 

frequency. From this result, they concluded that concentrated suspension have a Hookean response  

at low strain amplitude, and with increasing strain amplitude go through a nonlinear transition region 

to a Newtonian flow range at high strain amplitude. They also pointed out that G1΄(γ0) and G1˝ (γ0) are 

acceptable measures of the viscoelastic response because the deviation of the response signal from a 

pure harmonic wave does not exceed 15%, in terms of the proportion of higher harmonics. Wyss et al. 

[79] introduced a technique called strain-rate frequency superposition (SRFS) for probing the 

nonlinear structural relaxation of metastable soft materials. For materials exhibiting a relaxation time 

which depends solely on the applied strain-rate amplitude, one may conduct a series of LAOS tests 

which maintain a constant strain-rate amplitude and therefore isolate the structural relaxation 
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dependence. This new experimental technique (SRFS) is different from a typical strain amplitude 

sweep test. Wyss et al. reported values of G1΄(ω ,γ0) and G1˝ (ω, γ0) from a commercial rheometer 

under LAOS flow. Both Heymann et al. [78] and Wyss et al. [79] effectively employ first order 

nonlinear harmonic information, i.e. G1΄(ω, γ0) and G1˝ (ω, γ0) in order to investigate the nonlinear 

rheology of complex fluids.  

Sim et al. [64] investigated possible mechanisms of complex LAOS behavior using a network 

model composed of segments and junctions. A segment is considered a part of a macromolecular 

chain or a microstructure joining two successive junctions, and the junctions are the points where the 

intra- or intermolecular interactions are localized. A junction may be regarded as a crosslinking point, 

but basically it is a phantom element defined in the network model for convenience. Segments are 

lost and created during the flow, and the network consists of junctions with a distribution of ages. 

Although there are many families of network models, they share the common feature that the 

distribution of network junctions is determined by their creation f(t) and loss rates g(t). The main 

difference between models is the functional form of the creation and loss rates of network junctions. 

For the case of a single mode, the evolution of the state of stress in the network model can be written 

in terms of the creation and loss functions as follows [64,80],  
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where σ is the stress scaled by the plateau modulus 0
NG , t is the time scaled by the relaxation time λ0, 

and β = gl &0  is the dimensionless shear rate. Sim et al. [64] used empirical functional relationships 

such that f(t) and g(t) are represented as exponential functions of the shear stress σ12 (t) as follows 
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))(exp()( 12 tatf s=                              (16) 

))(exp()( 12 tbtg s=                              (17) 

where the constants a and b are model parameters defining the creation and loss rates, respectively. 

This approximation is overly simplistic and will not be adequate for a quantitative analysis of real 

material systems. However, it qualitatively predicts the various classes of experimentally observed 

LAOS behaviors of complex fluids determined from G΄(γ0) and G˝ (γ0), and rationalizes the responses 

in terms of the model parameters, i.e. the creation and loss rate of network junctions.  

Based upon both experimental and simulation results [62,64], a broad descriptive overview of the 

four typical LAOS types can be given as follows. 

 

Type I (strain thinning): This type of behavior is the most commonly observed in polymer 

solutions and melts. The origin of strain thinning is similar to that leading to shear thinning in steady 

shear flow. Shear thinning in the viscosity may be the most dominant rheological property of systems 

such as polymer melts, suspensions, solutions, etc., and originates from chain orientation or alignment 

of microstructures along the flow direction, thus reducing the local viscous drag on material elements. 

As the shear rate is further increased, the flow alignment becomes more complete, and the shear 

viscosity decreases further [81]. A recent example of polymer melt flow-alignment in LAOS was 

reported by Höfl et al. [82]. They investigated anionically synthesized 1,4-cis-polyisoprene (PI), a 

monodisperse polymer melt that showed shear thinning behavior. With a sensitive in-situ rheo-

dielectric setup, they observed a decrease in the dielectric strength at large strain amplitude, and 

interpreted this as slight orientation of the end-to-end vector (polymer chain alignment) in the shear 

direction.  

Within the network model, type I behavior results when the creation rate parameter is negative (a 

< 0) and the loss rate parameter is positive (b > 0). With this parameter combination, the LAOS 

behavior shows strain thinning regardless of the excitation frequency. When the strain amplitude is 
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large, the network segments align with the flow field, or the network junctions are easily lost and 

dangling chain segments have little chance to rejoin the network structure. The model parameters 

specify that the creation rate decreases while the loss rate increases with increasing strain amplitude. 

Type II (strain hardening): Strain hardening directly contrasts strain thinning. In this case strong 

interactions exist between some segments of the complex fluid and therefore flow alignment is 

resisted undergoing shearing deformation. It is believed that strain hardening or strain stiffening is 

associated with the formation of complex microstructures and nonlinear elastic network elements. 

PVA (polyvinyl alcohol)/Borax solutions show strain hardening and it is reported that deformation 

leads to formation of a chemical complex between hydroxyl groups and borate anions, which plays a 

role analogous to temporary crosslink among the PVA chains [83]. Many biological gels, e.g. F-actin, 

fibrin, collagen, also show strain hardening behavior [84]. Strain hardening is associated inherently 

with strain-stiffening network components, or shear-induced network formation. From the viewpoint 

of the basic network model, the creation rate of new network junctions should be much larger than the 

loss rate for a shear-induced network. As a result, LAOS type II behavior is found when the creation 

rate parameter is positive (a > 0) and greater than 2b (a > 2b), see Eq. (16) and (17). At large strain 

amplitude, the governing equations of the network model become numerically stiff due to the large 

positive exponents. Experimentally, it is also difficult to obtain rheological properties at very large 

strain amplitude due to the sudden increase in the torque. This effect can also lead to elastic instability 

at large strain amplitude (γ0 > 5).  

Type III (weak strain overshoot): The distinctive feature of type III behavior is a pronounced 

local maximum in the loss modulus. This response is a remarkably robust feature of soft glassy 

materials, e.g. concentrated emulsions [85,86], suspensions [5,87,88], pastes [89], soft hydrogel 

spheres dispersed in water [79], and electrorheological (ER) fluids [90]. It is also obseved in polymer 

solution systems, e.g. blockcopolymer solutions [6,48], associative polymer solutions [91-93], or 

Xanthan gum solutions [62,94]. For the network model (Eqs. (12) - (17)), type III is found when both 
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the creation and loss rate parameters are positive (a > 0, b > 0) but the creation rate parameter is 

smaller than the loss rate parameter (a < b). This range of parameters results in both the creation and 

loss terms increasing with the strain amplitude, with the destruction rate growing faster than that of 

creation. The positive creation rate exponent (a) is sufficient to provide increased connectivity of the 

network (or other microstructure arising from interactions) leading to increased dissipation, while the 

loss term becomes dominant at larger strain amplitude leading to the ultimate overall decrease of both 

G' and G". Thus, the overshoot (i.e. local maximum of G") may be regarded as arising from the 

balance between the formation and the destruction of the network junctions. Specifically, the 

maximum of "G  depends more on the creation rate parameter a than the loss rate parameter b of the 

network model.  

The structural cause of the strain overshoot behavior in G" is not universal. Depending on the 

class of soft material, the explanation for the local maximum of G" is different. Tirtaatmadja et al. 

[91,92] suggested that the overshoot behavior of G" could be attributed to the increase of the effective 

volume of temporal network structures. From the viewpoint of associative polymer solutions, 

Raghavan and Khan [95] explained the strain overshoot in terms of the change of flock size during 

the oscillatory shear deformation. They suggested that the flock size increases when weak strain 

overshoot behavior appears. Parthasarathy et al. [96] reported that the overshoot in G" occurs because 

of viscous dissipation due to slight rearrangement of unstable clusters under shear, and that the 

decrease at large strain is associated with larger scale structural rearrangements. Through structural 

analysis using numerical simulation for ER fluids, Sim et al. [90] explained that the increase of G˝ is 

partly related to the destruction of microstructures developed during the imposed oscillation, and the 

overshoot behavior is due to the reformation process of the clusters. These differing explanations for 

the cause of loss modulus overshoot arise because the specific flow-induced microstructure depends 

on the particular material under investigation. This indicates that the leading-order descriptions of 

nonlinear viscoelasticity (i.e. the first-harmonic viscoelastic moduli) are not sufficient to explain the 
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flow-induced microstructure. It is therefore necessary to investigate the higher harmonic contributions 

to the nonlinear stress response (quantitative methods for analyzing these differences are discussed in 

Section 4). In Fig. 6 below, we will present some examples of complex fluids that display the same 

leading-order LAOS type behavior but involve different distortions (higher harmonics) of the shear 

stress waveform under LAOS.        

Type IV (strong strain overshoot): For some material systems, e.g. associative polymer solutions, 

both 'G  and "G  may exhibit an overshoot at intermediate strain amplitude [92]. For associative 

polymer solutions this LAOS type IV behavior seems to be related to the strength of the 

intermolecular interaction energy which is weaker than the case of type II (strain hardening), but 

stronger than the case of type III in which only "G  shows overshoot. Such interactions may exist 

between hydrophobic groups or large micellar cluster microstructures. This type IV behavior is 

observed when both the creation and loss rate parameter are positive (a > 0, b > 0) and the creation 

rate, a, is limited to values of b < a < 2b. As the nonlinear creation rate parameter a increases, the 

maximum in G΄ and G˝ becomes more pronounced. This type IV response is observed less often than 

type III.  

These four generic types of leading order LAOS behavior have also been suggested by network 

theory [63,64]. We note that other classes of behavior have also been observed which look like a 

variation or combination of these four types, e.g. a local minimum of G' and G" followed by strain 

hardening of both moduli [97-99], or a local minimum of G' and G" followed by a local maximum of 

G' and G" [6,78,100]. Ahn et al. [62-64] concluded that the LAOS behavior of each class of fluid is 

closely related to its microstructure. Factors that influence the nonlinear response include molecular 

interactions and polymer topology. LAOS tests can help classify complex fluids and also provide 

information on the nonlinear evolution of fluid microstructure which may be unavailable with 

conventional rheological measurements. 
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3.3 Nonlinear Shear Stress Waveforms 

The viscoelastic moduli G΄ (γ0) and G˝ (γ0) provide only a leading order characterization of a 

material (i.e. the first harmonic contribution). Higher-order contributions, and nonlinear stress 

waveforms, can be used to further distinguish and investigate viscoelastic materials. Oscillatory stress 

waveforms are often (and in our opinion, should always be) available from commercial rheometers.  

In this section we demonstrate that even qualitative visual comparison of stress waveforms can be 

used to help distinguish materials (Fig.6-7). We also present a survey of various waveform shapes 

which can be observed in LAOS tests (Fig.8-13). The nonlinear waveforms represented visually in 

this section can also be thoroughly quantified with the methods discussed in Section 4.    

Fig. 6 shows an example of how the raw oscillatory stress waveforms can distinguish two 

commercial Polypropylene (PP) melts, one with a linear polymer chain topology and the other 

consisting of branched polymer chains [37]. Both linear and branched PP display strain thinning 

behavior when represented simply in terms of strain-amplitude-dependent moduli G΄(γ0) and G˝ (γ0), 

i.e. LAOS type I (Fig. 6a,b). However, the nonlinear stress waveforms of the molten linear PP and 

branched PP samples are different (Fig. 6c,d). The linear PP melt displays a “forward tilted stress” 

shape whereas the branched PP melt displays a “backward tilted stress” shape [37,94]. The “forward 

tilted stress” shape was observed in the case of polymer melts and solutions with a linear chain 

structure whereas the “backward tilted stress” shape was observed for suspensions and polymer melts 

with branched chains [94]. Future studies of numerical simulations for branched structures (e.g. using 

the pom-pom constitutive model) are needed to fully understand this behavior.   

Consideration of nonlinear stress waveforms can also be used to understand the difference 

between 4 wt% aqueous solution of Xanthan gum (XG) and the hard gel formed by a poly(ethylene 

oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) 20 wt% solution. These 

materials show the same generic LAOS type III behavior of weak strain overshoot (Fig. 7a,b), 

however the stress waveforms take distinctively different shapes (Fig. 7c,d). The molecular structure 
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of Xanthan is based on a linear 1,4 β-D-glucose backbone with charged trisaccharide side chains on 

every second residue [62]. In aqueous solution at 25 oC, the backbone of Xanthan is disordered but 

highly extended, as a result of electrostatic repulsion from the similarly charged groups on the side 

chains. Because of this highly extended structure, the molecules may align even at low concentration 

and associate (partly due to hydrogen bonding and charges) to form a weakly structured gel-like 

material [101]. In contrast, the microdomain of a hard gel for PEO-PPO-PEO is a close-packed 

(cubic) array of micelles. The “rectangular” stress waveform shapes for the PEO-PPO-PEO solution 

(Fig. 7d) can be related to the microstructure reversibly “sticking and slipping” where the “stick” 

comes from the short range interaction potential between hard spheres and “slip” occurs when layers 

slide over one another and destroy the stacking sequence [6]. Even though the two complex fluids 

display the same LAOS type III behavior, i.e. the same leading-order nonlinear features, LAOS 

deformation results in different flow-induced microstructure evolution that can be distinguished by 

the higher-order nonlinearities and different shapes of the nonlinear stress waveforms. 

 

  
Fig. 6. The viscoelastic moduli G΄(γ0) and G˝ (γ0) at ω = 1rad/s and T = 180 oC for two different Polypropylene 
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(PP) samples are shown, (a) linear PP and (b) branched PP. Both linear PP and branched PP display LAOS type 

I behaviour (strain thinning). However the stress waveform shapes of the linear PP and branched PP samples 

are different. (c) The oscillatory stress for linear and branched PP at strain amplitude, γ0 = 7.19. Both stress 

shapes are distorted from a single sinusoidal shape. (d) Magnified view of the stress data: linear PP responds 

with a “forward tilted stress” shape whereas the branched PP displays a “backward tilted stress” shape [94]. 

This difference in the shape of the waveform corresponds to different polymer topology, i.e. linear versus 

branched chain structure [37]. 

 

 
Fig. 7. The viscoelastic moduli G΄(γ0) and G˝ (γ0) for (a) Xanthan gum 4 wt% aqueous solution at ω = 1rad/s 

and T = 25 oC and (b) hard gel of PEO-PPO-PEO triblock 20 wt% aqueous solution at ω = 1rad/s and T = 26 oC 

are shown. Both aqueous solutions display LAOS type III (weak strain overshoot) behavior. However, the 

shapes of the nonlinear stress waveforms are markedly different. The stress data and Lissajous patterns are 

shown in (c) xanthan gum 4% aqueous solution (saw tooth shape) and (d) hard gel of PEO-PPO-PEO triblock 

20% aqueous solution (rectangular shape). The different shape of these stress waveforms originates from 

different microstructures. Reproduced by permission of Hyun et al. [94], copyright (2003) of the Korean 

Society of Rheology and the Australian Society of Rheology. 

 

From these two simple examples, it is clear that analyzing the shape of the nonlinear stress 

response provides more structural insight than simply considering the leading order characterization 

G΄(γ0) and G˝ (γ0). This is because the moduli G΄(γ0) and G˝ (γ0) reflect only the 1st harmonic 

contribution from Eq. (9) and (10). Of course, a wide array of waveform shapes can be observed with 
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LAOS. What follows is a selection of some canonical shapes observed in nonlinear shear stress 

waveforms.   

From the mathematical descriptions of LAOS, e.g. Eq. (8), it is clear that higher harmonic 

contributions induce non-sinusoidal stress waveform shapes.  The 3rd harmonic is the predominant 

determining factor controlling the stress shape, since subsequent higher order terms typically decay 

rapidly. Here we illustrate various distortions of the shear stress signal which result from varying the 

3rd harmonic phase angle, neglecting all higher harmonic contributions (see also Fig. 26 and Section 

4.4 for a related discussion on interpreting the phase angle of the 3rd harmonic, which is enabled by 

the Chebyshev polynomial representation of decomposed stress). 

From Eq. (9), both the intensity and the phase angle of the 3rd harmonic contribution can be 

quantified. Neidhöfer et al. [102] analyzed the stress signal by a shift in time, substituting time t by 

wd /1-¢= tt , so that higher harmonics of stress were referenced to the first-harmonic stress response, 

rather than the input strain. Within this framework Eq. (9) is reformulated as follows, 
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where 1ddd nnn -=¢  is the n-th relative phase angle and δ1 is the 1st phase angle (0o ≤ δ1 ≤ 90o) which 

determines the stress response as elastic (δ1=0o), viscoelastic, or viscous (δ1=90o).  For purposes of 

self-consistent notation, we use a “sine” notation in Eq. (18) rather than the “cosine” notation from 

Neidhöfer et al. [102], however the principle is same. For illustrative purposes let us assume that the 

3rd harmonic contribution is exactly 10% of the 1st harmonic contribution )//( 1313 II=ss  and the 

other harmonics higher than the third are negligible, then Eq. (18) becomes 

)sin()sin(
)3sin(1.0)sin(/)(

100

31

dwgwgg
dwwss

-¢==

¢+¢´+¢=¢

tt
ttt

                       (19) 

By changing the relative third-harmonic phase angle 3d ¢  in Eq. (19) from 0 o to 360 o, we can 

investigate the effect of the 3rd harmonic contribution on the stress signal. The distorted shear stresses 

are plotted as a function of time at four different phase angles ( 3d ¢ =0o, 90 o, 180 o, 270 o) in Fig. 8. 
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Various canonical shapes in the shear stress are observed, including rectangular, “backward” tilted, 

triangular, and “forward” tilted shapes. Leblanc [58,59] suggested a quantifying method for the 

“backward” and “forward” tilted shapes of shear stress by comparing quarter cycle integrations of 

shear stress data as a function of time. The first quarter stress signal integration Q1  (e.g. integration 

from 0s to 1.57s in Fig 6d) is compared to the second quarter stress integration Q2 (e.g. integration 

from 1.57s to 3.14s in Fig 6d).  The ratio Q1/Q2 =1 for the case of no tilting, and allows clear 

distinction between “forward” tilted (Q1/Q2>1) and “backward” tilted (Q1/Q2<1) waveforms. This 

method is used to distinguish unfilled polymer and filled polymer, e.g. carbon black rubber 

compounds [59]. This method will be introduced in more detail in section 5. 

A graphical representation that is more amenable to rapid qualitative evaluation is the use of a 

closed loop plot (Lissajous curve) of stress vs. strain or stress versus rate of strain [4]. For the full 

reconstruction of a Lissajous curve, we also calculated strain using three different 1st harmonic phase 

angle, δ1 = 0o (elastic), 45o (viscoelastic), and 90o (viscous) in Eq. (19). The Lissajous curves are 

plotted in Fig. 9. This is a simple example to visualize how the 3rd harmonic phase angle contributes 

to the shapes of the stress waveforms in either the time domain (stress vs. time) or the deformation 

domain (Lissajous curves of stress vs. strain). Even though these equations (Eq. (18) and (19)) have 

no direct information regarding microstructure in a complex fluid, this plot visually demonstrates how 

higher harmonic contributions, especially the 3rd harmonic, can affect the measured output for a 

nonlinear viscoelastic material. The variety of theoretical stress waveforms shown in Fig. 8 and 9 can 

also be observed in both experimental measurements and simulations of various complex fluids. The 

challenge for the rheologist is to connect such measurements to changes in the material 

microstructure.  
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Fig. 8. The normalized stress data at different values of the phase angle for the third harmonic from Eq. (19) at a 

fixed frequency ω = 1rad/s (a) δ′3 = 0o (b) δ′3 = 90o (c) δ′3 = 180o (d) δ′3 = 270o. There are various shapes of the 

stress curve, including rectangular, triangular, backward tilted, and forward tilted waveforms. Reproduced by 

permission of Hyun et al. [94], copyright (2003) of the Korean Society of Rheology and the Australian Society 

of Rheology. 

 
Fig. 9. The normalized Lissajous curve (stress (y axis) vs. strain (x axis)) at different third relative phase angle 

(a) δ′3 = 0o (b) δ′3 = 90o (c) δ′3 = 180o (d) δ′3 = 270o from Eq. (19) at a fixed frequency ω = 1rad/s with σ3/σ1= 

I3/I1=0.1 in Eq. (19). For calculation of strain, three different 1st phase angles are used, δ1 = 0o (Elastic), 45o 

(Viscoelastic), and 90o (Viscous) in Eq. (19). (See also Section 4.4 and Fig. 26 which describes third-harmonic 

phase angle interpretations via Chebyshev polynomials.) 
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Experimental examples of LAOS shear stress responses are now described, and shown in Fig. 10-

13. Many classes of complex fluids exhibit nonlinear and distorted stress waveforms under LAOS, for 

example: polymer melts [37,61], polymer blends [103], polymer solutions [71,94,104], block 

copolymer solutions [6,48,105], block copolymer melts [106], suspensions [5,12,14,50,107], ER 

materials [90,108], MR (magnetorheological) fluids [109], biological materials [110], wormlike 

micelle solutions [68] and food products [99,111], just to mention some prominent examples. In Fig. 

10, several distorted, non-sinusoidal shear stress waveforms are shown as a function of time for 

different complex fluids under LAOS including polymer and block copolymer solutions and polymer 

melts. The Lissajous curves (stress vs. strain) of various complex fluids subjected to LAOS with a 

range of strain amplitudes are also displayed in Fig. 11. The experimentally measured LAOS 

response of a micellar solution is shown in Fig. 12, in which the Lissajous curves are positioned in a 

Pipkin space defined by the two parameters which define an oscillatory test: the imposed strain 

amplitude 0g  (y-axis) and the frequency w  (x-axis) [68]. For the case of linear viscoelastic 

behavior the parametric loops of stress vs. strain are ellipses, with a minor axis that narrows with 

increasing frequency, i.e. less energy is dissipated in the high-frequency elastic region. Fig. 13 shows 

the experimentally measured LAOS response of a suspension system, in which the Lissajous curves 

are also positioned in a Pipkin space according to the imposed strain amplitude (y-axis) and 

frequency (x-axis). In contrast to the micelle solution (Fig.12), the Lissajous curves for the 

suspension system (Fig.13) do not flatten, and the suspension is dissipative even at the highest 

frequencies shown. The evolution in the shape of the distorted stress waveforms can be related with 

systematic changes in the internal microstructure of the material or the polymer topologies (linear or 

branched chain). While visual investigations such as those presented in Fig.8-13 are helpful to give an 

overview of nonlinear viscoelastic response, quantitative methods are also necessary for analyzing 

these nonlinear shear stress waveforms. Several different quantitative methods will be reviewed in 

Section 4.  
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Fig. 10. Stress curves (●) and applied strain curves (—) as a function of time for various complex fluids at large 

strain amplitude and frequency 1rad/s. (a) Xanthan gum 4 wt% aqueous solution at strain amplitude γ0 = 10 (b) 

Hyaluronic acid 1% aqueous solution at strain amplitude γ0 = 7.2 (c) soft gel of PEO-PPO-PEO triblock 20 wt% 

aqueous solution at strain amplitude γ0 = 10 (d) hard gel of PEO-PPO-PEO triblock 20% aqueous solution at 

strain amplitude γ0 = 4 (e) Polypropylene (PP) melt at strain amplitude γ0 = 10 (f) Polystyrene (PS) melt at strain 

amplitude γ0 = 10. 

 

Fig. 11. The Lissajous curves (stress (y axis) vs. strain (x axis))(●) of various complex fluids, arranged from 

small strain amplitude to large strain amplitude at a fixed frequency, 1rad/s (a) Xanthan gum 4% aqueous 

solution (b) Hyaluronic acid 1% aqueous solution (c) soft gel of PEO-PPO-PEO triblock 20% aqueous solution 

(d) hard gel of PEO-PPO-PEO triblock 20% aqueous solution. 
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Fig. 12. Raw LAOS data for a micellar solution, generated from experimental oscillatory tests, shown as 

normalized elastic Lissajous curves of stress σ(t) vs. strain γ(t). Each trajectory is positioned in a Pipkin space 

according to the imposed values of strain amplitude γ0 and frequency ω. Solid lines are total stress σ(t)/ σmax vs. 

γ(t)/ γ0. The maximum stress σmax is indicated above each curve. Reproduced by permission of Ewoldt et al. [68], 

copyright (2009) of The Society of Rheology. 
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Fig. 13. Raw LAOS data for a highly concentrated suspension system (50wt% PMMA particle (100 nm Radius) 

in paraffin oil), generated from experimental oscillatory tests, shown as normalized elastic Lissajous curves of 

stress σ(t) vs. strain γ(t). Each trajectory is positioned in a Pipkin space according to the imposed values of 

strain amplitude γ0 and frequency ω.  

 

 
3.4. Nonlinear normal stress difference 

In addition to a shear stress, viscoelastic normal stresses can also develop in response to shearing 

deformations of large strain amplitude [1]. In this subsection we consider the fundamental features of 

normal stress waveforms resulting from oscillatory shear. In oscillatory shear flow analysis with 

quasilinear constitutive models such as the Oldroyd-B equation it can be shown that the normal stress 

difference oscillates at twice the imposed frequency (2ω) around a nonzero mean value that varies 

quadratically with strain amplitude 0g  [1,2,4,112]. This result would be expected from symmetry 
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considerations because the normal stress difference is a nonlinear material response that is induced by 

the imposed shear but is independent of the shear direction, [ ( ), ( )] [ ( ), ( )]i iN t t N t tg g g g= - -& & , where Ni 

is either the first (i = 1) or second (i = 2) normal stress difference. The normal stress differences under 

oscillatory shearing conditions can be written as the sum of a constant term and an oscillating term 

with phase angle (δi,2). The oscillatory term can itself be decomposed into two components, by 

analogy with the representation of the storage and loss moduli (G΄, G˝),  

212
2

2

222

222

220220

oritNN
tNN

NNNtNNN

iii

iii

iiiiiii

==¢¢

=¢

¢¢+¢+=++=

),cos(sin
)sin(cos

)sin(

,,,

,,,

,,,,,,

wd

wd

dw
                (20) 

The second normal stress difference (i = 2) in steady shear flow is typically smaller than the first (i = 

1) by roughly an order of magnitude [1] and is difficult to measure. Therefore, we only focus on the 

first normal stress difference in this review. In the SAOS regime, the first normal stress difference can 

be calculated from the shear properties (G΄, G˝) by the phenomenological models as follows 

[1,71,113,114]: 
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However, the physical meaning of the first normal stress difference can be complicated and obscured 

due to the frequency-doubled terms of shear moduli (G΄, G˝). The first normal stress difference can be 

much larger in magnitude than the shear stress at large strain amplitude [71,76]; conversely, it is not 

easy to measure at small and intermediate strain amplitudes because the normal forces are quadratic 

with respect to 0g . Precise measurement of normal stresses in oscillatory shear flow recently became 

feasible and has enabled investigation of nonlinear normal stress responses to LAOS.  

In the LAOS regime, the normal stress differences oscillate with additional higher harmonics. 

These are similar in principle to higher harmonics of the shear stress but instead contain only even 

harmonic contributions, because the normal stress difference has no dependence on the imposed shear 
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direction as mentioned before. This symmetry is in contrast to the shear stress behavior 

( )](),([)](),([ tttt ggsggs && -=-- , i.e. Eq. (3)). The nonlinear normal stress differences also can be 

described using Fourier series, similar to the treatment of shear stress (compare to Eq. (8)):  
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The nonlinear normal stress differences can also be defined as the sum of a constant term and an 

oscillating term like Eq. (20). The contribution at zero frequency (Ni,0, zero harmonic) indicates the 

non-zero mean value, i.e. the bias value. Some care must be taken with the nomenclature and the term 

‘nonlinear.’  Normal stress differences are inherently a nonlinear phenomenon even in the limit of 

small deformations, e.g. the first normal stress difference )(1 g&N  in steady shear flow reaches 

proportionality with 2g&  in the limit of small shear rate.  In this limit so JN 22
1 2/)( hgg =&& , with Js the 

linear recoverable compliance after steady shear flow and η0 the zero shear viscosity at linear region.  

In SAOS (small amplitude oscillatory shear), the appropriately scaled 2
1 0( ) /N t g  is not a function of 

strain amplitude. As strain amplitude increases, the higher harmonics appear in the Normal stress 

differences. Our interest is this deviation from small deformation behavior, therefore we will use the 

term ‘nonlinear’ normal stress difference to refer specifically to the higher harmonic contributions at 

4ω, 6ω, …, in response to LAOS deformation. 

Due to experimental difficulties, nonlinear normal stress differences in LAOS have been studied 

far less than the nonlinear shear stress. As a result, the investigation of a nonlinear (non-sinusoidal) 

first normal stress difference has a shorter history. Vrentas et al. [115] measured the first normal stress 

difference in LAOS at various frequencies for a polystyrene solution and simply compared with 

results obtained in steady shear experiments to check the validity of the K-BKZ constitutive equation. 

Oakley and Giacomin [116] analyzed the higher harmonics of the first normal stress difference, which 

were previously not obtainable, in melt flow using a home built sliding plate rheometer (SPR). Atalık 

and Keunings [76] reported that a few odd harmonics could be introduced in the first normal stress 
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difference by fluid inertia in LAOS. Even harmonic responses of the normal stress differences under 

LAOS were critically discussed using the predictions of a single mode Giesekus model and compared 

to experimental results [71]. Analysis of the normal stress difference in LAOS can lead to rheological 

insight for certain complex fluids or soft matter. For example, the structure of highly elastic materials 

such as gels and foams can be explained by pronounced oscillatory first normal stress differences 

[117,118]. Additionally, the response of the first normal stress difference for polymer solutions in 

LAOS has been compared with transient network theory [119], and the non-sinusoidal form of the 

response in the first normal stress difference has been shown to sensitively reflect the orientation and 

relaxation of fibers in polymer melt flow [120]. 

In Fig. 14 we show the first normal stress difference and shear stress waveforms experimentally 

measured for a Boger fluid undergoing LAOS with increasing strain amplitude at a fixed frequency 1 

rad/s. The first normal stress oscillates with twice the imposed frequency (2ω) about a non-zero mean 

value, whereas the shear stress oscillates with the imposed frequency (ω) about zero mean. A Boger 

fluid is typically composed of a low concentration of high molecular-weight flexible polymer 

dissolved in a very viscous Newtonian liquid, such as a low molecular-weight polymer or oligomer. 

The Boger fluid investigated here is composed of 0.5 wt% of Polyisobutylene (PIB) with a high 

molecular weight of 6×105 g/mol dissolved in Polybutylene (PB) with a low molecular weight of 920 

g/mol. The viscosity is nearly independent of shear rate, therefore elastic effects can be separated 

from viscous effects in viscoelastic flows [121]. Fig. 15 compares the LAOS responses of an elastic 

Boger fluid with constant viscosity and a polymer solution with strong shear-thinning viscosity. 

Different constitutive equations are used for the Boger fluid and the shear-thinning polymer solution 

to compare the two materials. The upper convected Maxwell (UCM) model (see Appendix C) predicts 

a quadratic variation of the first normal stress difference and a constant viscosity, and is thus 

mathematically suitable for displaying the material response of a Boger fluid in LAOS. The Giesekus 

model with a single nonlinear coefficient α is an extension of the UCM model (see Appendix C), and 
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is appropriate for modeling the shear-thinning polymer solutions [122].  

For the Boger fluid (Fig. 15b), no distortion of the shear stress and the normal stress difference is 

observed even at large strain amplitude, because the viscosity of the Boger fluid (BF) is nearly 

independent of shear. The first normal stress difference and the shear stress for the UCM model (Fig. 

15a) also show no distortion behavior at large strain amplitude due to the absence of nonlinear terms 

in the constitutive equation. Because of the quasi linear nature of the UCM model, the oscillatory first 

normal stress difference can be uniquely divided into three terms, given by Eq. (20). On the contrary, 

the simulation results of Giesekus model (Fig. 15c) show highly distorted waveforms for the first and 

second normal stress differences and the shear stress. As the nonlinear parameter α increases, shear 

thinning becomes pronounced. The concentrated polymer solution with strong shear thinning 

behavior also displays distorted, non-sinusoidal behavior for both the first normal stress difference 

and shear stress under LAOS (Fig. 15d). From this comparison of a constant viscosity elastic liquid 

(Boger fluid and UCM model) and a viscoelastic shear-thinning fluid (polymer solution and Giesekus 

model), it can be concluded that a viscoelastic shear-thinning fluid is more likely to show nonlinear 

behavior in the normal stress difference and shear stress at moderate Deborah number De= ω/ωc  (ωc 

is crossover frequency at G΄ = G˝ ) compared to an elastic liquid with constant viscosity. In Fig. 16 we 

show the Lissajous curves of the periodic shear stress and first normal stress as a function of De for 

various entangled polymer solutions. Results for the Giesekus model are also shown as a function of 

De and strain amplitude [123,124].    
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Fig. 14. (a) Raw torque and normal force signal of a Boger Fluid (0.5 wt% of PIB in PB, PIB with a molecular 

weight 6×105 g/mol and PB with a molecular weight 920 g/mol) during the strain sweep test (increasing strain 

amplitude from γ0 = 1.38 - 10) at fixed frequency of 1rad/s, and (b) strain (g ), shear stress ( 12s ) and first 

normal stress difference ( 1N ) at the strain amplitude of γ0 = 10. The rheological measurements were performed 

using a strain-controlled rheometer, ARES (100NFRT) with cone-and-plate (radius: 25mm, angle: ~5°). 

 

Fig. 15. (a) Shear strain (thin solid line) and first normal stress difference (thick solid line) as predicted by the 
UCM model (dimensionless parameters 1f = (frequency), 1G = (modulus), 1l = (relaxation time), 0 4g = ). 

The first normal stress difference is decomposed into three parts; one for the non-zero mean value (dashed dot 

line) and the other two for the in-phase and out of phase oscillating terms (dashed line and dot line). (b) Shear 

strain (solid line), and first normal stress difference (open symbols) of a Boger fluid at the frequency 1rad/s and 

strain amplitude γ0 = 4.5. The first normal stress difference is also decomposed into three parts. (c) Shear strain 

(thin solid line), shear stress (dashed line), first normal stress difference (thick solid line), and second normal 

stress difference (dashed dot line) from the simulation results of a single mode Giesekus model based on the 

work of Nam et al. [71]. The related model parameters are 1f = , 1G = , 1l = , and 0.25a = (nonlinear 

parameter). The shear stress is magnified by a factor of 10. (d) Shear strain (solid line), shear stress (dashed 

line), and first normal stress difference (open symbol) of an aqueous polyethylene oxide (PEO) soulution 

(concentration of 4wt% with a molecular weight 2×106 g/mol) [123]. The strain amplitude is γ0 =10 and 

frequency is 1rad/s. 
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Fig. 16. The experimental Lissajous patterns obtained for various polymer solutions; BF (Boger fluid), PEO 

(Poly ethylene oxide) and PAA (Poly acryl amide) solutions at a range of concentrations (a) The loop for shear 

stress vs. strain, (b) the loop for first normal stress difference vs. strain. The results are arranged in a Pipkin 

space (strain amplitude vs. frequency (De = ω/ωc , ωc is crossover frequency at G΄ = G˝ )). For four aqueous 

polymer solutions, the experimental data (symbols) are compared with model data (lines). For the Boger fluid 

only the experimental data is shown. 

 

From an experimental point of view, the aim of nonlinear oscillatory experiments is to investigate 

the progressive evolution of the non-sinusoidal behavior with increasing deformation, and to quantify 

the nonlinear material coefficients that characterize the material nonlinearity. Furthermore, it is 

desirable to correlate these nonlinear coefficients with physical changes in the microstructure or 

polymer topology. The descriptions of G1΄ (γ0) and G1˝ (γ0) presented so far have focused only on the 

evolution in the 1st harmonic terms and are thus the simplest quantitative method. However, such 

rankings discard information about the nonlinear stress shape which arises from the higher order odd 

harmonic terms (Fig. 8,9), for example the 3rd harmonic contribution. Several quantitative methods 

have been proposed for analyzing non-sinusoidal waveforms of shear and normal stresses. In the next 

section, we will review these techniques and summarize the relationship between different analytical 

methods.  
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4. Quantitative methods for analyzing nonlinear stress waveforms   

Oscillatory stress waveforms can be analyzed from the perspective of two complementary 

coordinate frames. Traditionally, the most common analytical representation is the time-domain 

waveform σ(t) (e.g. Fig. 8,10), which can be transformed into a Fourier series, and is discussed below 

in Sections 4.1 and 4.2. Alternatively, the stress response can be represented as a function of the strain 

γ(t) and strain-rate ( )tg& , written within the deformation-domain as )](),([ tt ggs & (e.g. the Lissajous 

curves in Fig. 11 which are a 2-D projection of σ(t) vs. γ(t)). This alternative representation within the 

deformation-domain is a fundamental aspect of Sections 4.3 – 4.5. After reviewing the current 

analytical methods, Section 4.6 and Table 3 summarize the comparative benefits of these two inter-

related coordinate frame representations. 

 

4.1. Fourier transform (FT)  

A Fourier transformation represents a time dependent signal s(t) with respect to the different 

frequencies w/2p, amplitudes, and phases in a spectrum S(w). This section describes the principles of 

the Fourier transformation needed to implement Fourier Transform Rheology (FT-Rheology). More 

details are provided in references [29,30,32].  

A Fourier transformation represents the inherent periodic contributions to a time dependent signal 

and displays the corresponding amplitudes and phases (or real and imaginary part) as a function of 

frequency. To implement FT-Rheology, a half-sided, discrete, complex Fourier transformation is 

applied to the shear stress signal σ(t). To obtain highly resolved, artifact-free spectra with a low noise 

level, the time signal has to be acquired with sufficient care. In particular, mechanical and electrical 

shielding are typically used in combination with data oversampling techniques [33,125] to increase 

significantly the quality of the raw time data (see Section 2). The Fourier transformation (FT) of any 

real or complex time signal, s(t), and the corresponding inverse transform of a frequency dependent 

spectrum S(w) are usually defined in the following way: 
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 In general the Fourier transformation is an invertible, linear, complex transformation over the 

infinite interval from -¥ to +¥. The FT is a linear mathematical transformation defined on any signal 

s(t) which we use to quantify mechanical nonlinearities. By supplying a “monochromatic” or single 

input frequency, w, we ensure that any output from the system at frequencies other than w is 

associated with nonlinearity in the system response. These two aspects should be clearly separated. 

Any linear superposition of different signals in the time domain will also lead to a linear 

superposition in the frequency domain since a Fourier Transformation is a mathematically linear 

operation.  

The FT is inherently complex; thus even for a real time-domain data set s(t), this transformation 

results in a complex spectrum S(w) with real R(w) and imaginary I(w) components of the spectrum. 

The complex spectra can alternatively be presented as magnitude m(w) and phase f(w) spectra, where 

the inter-relation is given by tan f = I/R and m = (R2 + I2)1/2. Applying the Euler relation (exp(if) = 

cosf + isinf), the basic definition in Eq. (23) can also be separated into a cosine- and sine 

transformation, commonly termed the Fourier cosine and Fourier sine transformation. A half-sided 

Fourier transformation corresponding to the case when the integration in Eq. (23) is only carried out 

in a semi-infinite domain, specifically from t = 0 to t = +¥. This transform is most commonly used 

for experimental data since acquisition begins at a finite time. 

In the case of discrete and digitized sampling, the data is taken point by point with a fixed 

increment tdw (the dwell time, or inverse sampling rate) over a total acquisition time taq = tdw N. Thus, 

both time and amplitude have discrete values. Since the peaks in the FT-Rheology spectrum are in 

principle infinitely narrow, a long acquisition time taq over multiple cycles will decrease the observed 

line width and increases the signal-to-noise (S/N) ratio. The S/N-ratio can be defined as the ratio of 

the amplitude of the highest peak (= "signal") divided by the standard deviation of the noise (= 

"noise"). The noise level is the average value measured in a spectral window where no peak is 
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anticipated. Typically about 5 - 50 cycles of the fundamental deformation frequency are acquired at a 

given strain amplitude, to achieve high S/N~105. This leads to a number of acquired time data points 

N in the range of 1,000 - 10,000. In most experiments, the time data s(t) is not measured continuously 

but discretely after fixed time steps and is then digitized via a k-bit analog-to-digital converter (ADC) 

having 2k discrete values for representing the measured signal. Typically a 100-200 kHz, 16-bit ADC 

prior to oversampling is used for FT-Rheology experiments (see also Sections 2 for details of the 

“oversampling” technique).  

A Fast Fourier Transformation (FFT) is a very common and particularly fast algorithm for discrete 

Fourier transformation (DFT) but is not suitable for FT-Rheology. While the more general discrete 

FT algorithm is formulated for an arbitrary numbers of points N, the simplest and most common FFT 

algorithms, e.g. the butterfly, require N = 2n data points. This restriction leads to fixed discrete values 

for the acquisition time taq and thus for the spectral resolution Dn = 1/taq. As a result, the fundamental 

frequency n1 = w1/2p or the odd multiples at (2k+1)w1/2p are rarely located exclusively at a single 

data point having the precise frequency corresponding to integer multiples of the fundamental 

excitation within the FT-Rheology spectra. The application of a butterfly FFT can therefore introduce 

misleading results for the intensities and phases of the spectral intensities. For example the intensity 

of a higher harmonic cannot be read out at exactly the expected frequency value.  A maximum error 

of up to a factor 2 might be introduced this way. More advanced FFT-algorithms exist that can 

provide an FT for arbitrary number of data points, and the most fundamental discrete Fourier 

transform (DFT) algorithms also allow for arbitrary data points. It is therefore important to report if 

the applied algorithm does simple zero-filling to generate artificially 2n temporal data points prior to 

the transformation into frequency space. 

The experimental set-up for a high performance FT-Rheology experiment is based on the 

modification and extension of a commercial strain controlled rheometer (see Fig. 3). In these parallel 

configurations, the absolute values of the rheometer output signals must be calibrated with respect to 
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the magnitude, phase, and frequency behavior and must also capture the non-linear contributions 

introduced by the instrument itself [32]. To avoid such calibration issues, the signal can be 

normalized to the fundamental frequency, which changes the absolute intensity (an extensive, 

additive quantity) to a relative intensity (an intensive, non-additive quantity). The relative intensity is 

much less vulnerable to non-systematic errors. The reproducibility has been tested [30] and reported 

to be typically in the range of 0.1 % for the intensity of the higher harmonics relative to the intensity 

of the response at the fundamental frequency In/I1. A crucial point is the accuracy of the torque 

transducer at higher frequencies. Torque transducers are typically specified up to 100 or 600 rad/s but 

it is often unknown if internal corrections are applied within this range. Calibration in the literature 

results in 80 % efficiency of the torque transducer at 70 Hz excitation frequency [32]. In this work, an 

entire rheometer was calibrated with respect to the inherent non-linear contributions originating from 

the instrument itself. The applied torque, the excitation frequency and the strain amplitude were 

varied on a logarithmic scale and the non-linear contributions from the instrument itself ranged from 

10-4  to 10-3 at maximum. Obviously the introduction of new instrumentation will further push these 

current hardware limits. 

FT-rheology allows for the averaging of multiple spectra to increase sensitivity, e.g. the 

magnitude spectra I(w) are averaged so that the peaks are all positive and independent of the phase of 

the higher harmonics. The averaging of phase sensitive spectra needs either mechanical triggering or 

phase sensitive averaging. In general, spectral averaging increases the signal to noise (S/N) ratio of 

the acquired data proportional to the square root of the number of spectra captured, i.e. 

spectranNS µ/  provided systematic noise is of minor importance. When all precautions have been 

taken, S/N ratios up to 105 have been achieved for a single scan FT-Rheology experiment. A typical 

FT-Rheology spectrum is shown in Fig. 17 and 18 (nonlinear stress curve and FT-spectrum). With 

such a large signal to noise ratio, FT-Rheology can detect very low levels of nonlinearity in the FT 

spectrum. For example, from Fig. 18b, the time-dependent stress curve at an excitation frequency of 
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ω1=1rad/s and a strain amplitude of 0g =0.37 appears as a single sinusoid. However, a substantial 

peak in the Fourier spectra at 3ω1 can be quantified even at this small intensity (I3/I1 < 10-2). Using a 

high performance ADC card [30], peaks can be quantified down to 10-4 relative intensity. High 

performance FT-rheology setups not only have a high sensitivity with respect to the signal-to-noise 

ratio, but can also quantify the system response up to very high multiples of the input signal. 

Currently spectra have been recorded spanning up to the 151st harmonic for an emulsion system (Fig. 

19). Obviously such a large amount of higher harmonic contributions can lead to a rather complex 

interpretation. Fortunately, among the higher harmonics, the relative intensity of the third harmonic 

(I3/1≡ I(3ω)/I(ω), where ω is the excitation frequency) is generally the most intense. 
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Fig. 17. FT-Rheology spectra of polyvinylalcohol (PVA) solution, at T = 5 oC, γ0 = 20, frequency 1Hz, where a 

S/N ratio of 100,000 : 1 could be achieved. Reproduced by permission of Wilhelm [32], copyright (2003) of 

WILEY-VCH.  
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Fig. 18. The stress curve and FT spectrum of Hyaluronic acid 1% aqueous solution at frequency, ω1 = 1rad/s. (a) 

Normalized stress and FT spectrum at strain amplitude γ0 = 10. A non-sinusoidal shape is observed, and the FT-

method quantifies the extent of the nonlinear response via the magnitude (and phase) of the odd higher 

harmonics. (b) Normalized stress and FT spectrum at a strain amplitude γ0 = 0.37, which corresponds to 

intermediate strain amplitude. To a naked eye, the time-dependent stress is similar to a perfect sinusoid. 

However, the presence of a 3rd harmonic is clearly shown by the Fourier spectra. 
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Fig. 19. FT-Rheology spectra at ω1/2π = 0.1 Hz of an emulsion. Mechanical overtones up to the 151-st order 

could be detected. 
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4.1.1. New nonlinear quantitative coefficient, Q from FT-Rheology 

If a strain sweep is performed at a fixed frequency, two main regimes can generally be observed. 

One is the linear regime at small amplitude (SAOS, small amplitude oscillatory shear) in which the 

rheological properties do not depend on the strain amplitude – at least not in an observable way. This 

is followed by a nonlinear regime in which viscoelastic properties depend systematically on the strain 

amplitude (LAOS, large amplitude oscillatory shear) (see also Fig. 1). Hyun et al. [41] subdivided the 

nonlinear region into two sub-regions, MAOS (medium amplitude oscillatory shear) and LAOS. 

MAOS is defined as an intermediate region (between SAOS and LAOS), where a particular scaling 

behavior is observed for the 3rd harmonic contribution. The strain amplitude for the MAOS regime 

typically ranges from γ0 ≈ 0.1 to γ0 ≈ 1 for most concentrated polymer solutions and polymer melts, 

although this range depends on the excitation frequency and material characteristics. In this 

intermediate region, I3/1 is typically very low, around 3×10-4 < I3/1 < 10-2, as compared to its 

magnitude in the LAOS region which may be as large as 10%.  

Within the framework of linear viscoelasticity theory, I3/1 asymptotically approaches zero because 

there is, by definition, no stress distortion. In the nonlinear regime, however, I3/1 is finite and its 

intensity increases with strain amplitude. From the series expansions discussed in Section 3, the 

Fourier intensities of the n-th harmonics grow with the corresponding odd powers of the strain 

amplitude ( 0
n

nI gµ , n = 1, 3, 5 …) in the small and intermediate strain amplitude range, e.g. Eq. (10) 

(note that each of decomposed sine and cosine components, G'nm and G"nm, also scale according to 

odd powers of the strain amplitude). Therefore, the total intensity of the third harmonic normalized by 

the first harmonic should be expected to initially scale quadratically with the strain amplitude 

( 3 1 2
3/1 3 1 0 0 0/ /I I I g g gº µ = ). At small and medium strain amplitude, one may write this scaling 

relationship as a function of strain amplitude [40-42],  

syIIorsyII 0130013
010 gg =+= /log)/log( .                 (24) 

Hyun et al. [41,42] reported the experimental value of s=2, i.e. a quadratic scaling with strain 
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amplitude 0g (s=2 in Eq. (24)) f, for multiple polymer melts including linear polydisperse 

polypropylene (PP), monodisperse polystyrene (PS), and comb PS. This scaling was reported to be 

independent of molecular weight, molecular weight distribution (MWD) and imposed excitation 

frequency (see also Section 5.1). However, Hyun et al. [40,41] also reported that the polymers which 

show strain hardening behavior, e.g. branched PP, branched HDPE, PLA with epoxy chain extension 

agent, and LDPE exhibit a power-law scaling exponent s < 2. They suggested that this asymptotic 

log-log slope of I3/1(go) is a good measure of the degree of strain hardening or long chain branching. 

Liu et al. [126] also reported that the log-log slope of I3/1(go) for Polyolefin elastomer decreases from 

2 with increased long chain branching (LCB) content.  

The experimental results which give s ¹2 contradict the simulation results of canonical 

constitutive models such as the Giesekus, exponential Phan-Thien Tanner (E-PTT), or pom-pom 

model, which produce s=2. The mathematical power law expansion, Eq. (6), also predicts that the 

leading-order power-law scaling of I3/1(go)  is two, i.e. s=2 in Eq. (24). Discrepancies between 

experimental results and theoretical asymptotic predictions are not unique to the scaling of I3/1(go) , 

and appear also for linear rheological properties. For example, in the linear viscoelastic regime it is 

well known that the storage modulus scales as 2ww µ¢ )(G  in the terminal region for viscoelastic 

liquids. However, blockcopolymer systems show different terminal behavior nG ww µ¢ )(  depending 

on the microdomain shape, e.g disordered structure (n=2), lamellar structure (n=1/2), cylinders 

(n≈1/3), and cubic (n≈0) [127]. As another example, for a PP/Clay nanocomposite it has been 

observed that the slope of )(wG¢  at low frequency approaches zero with increased exfoliation of the 

clay layer [128]. We may therefore expect that some materials may not show the simple theoretical 

prediction that 2
3 /1 0I gµ . Nonetheless, most viscoelastic materials and constitutive models do show 

such asymptotic behavior with s=2 in the medium amplitude oscillatory shear (MAOS) regime.  As 

additional examples, we note that Sim et al. [90] also reported a quadratic power-law scaling of I3/1 

based on molecular dynamics-like simulations of ER fluids, and Yu et al. [131] and Liu et al. [126] 
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reported the same behavior using the coupled double-convection-reptation with chain stretching 

(cDCR-CS) model.  

In Fig. 20, we show the variation in I3/1 as a function of strain amplitude for both simulations 

(Giesekus model and pom-pom model) and experimental observations (monodisperse linear PS).  

From the results, it may be deduced that a normalized third-harmonic nonlinearity can be defined 

which depends quadratically on strain amplitude even if there are some exceptional experimental 

results that need further investigation. Thus Hyun et al. [42] proposed a new nonlinear coefficient Q, 

defined as  

 2
3/1 0/ .Q I gº                                     (25) 

By convention, the absolute strain amplitude value is used in Eq. (25), not the % strain amplitude. 

This new nonlinear coefficient provides insight in how a material response develops and transitions 

from the linear to nonlinear regime. This new nonlinear material coefficient ),( 0gwQ  characterizes 

FT-Rheology and will be a function of both strain amplitude (γ0) and frequency (ω). However, just 

like other rheological properties such as viscosity ( 12 /h s gº & ), first normal stress coefficient 

( 2
1 1 /N gY º & ), and second normal stress coefficient ( 2

2 2 /N gY º & ), these material coefficients are 

expected to approach constant values at low shear rates; these are commonly called the zero-shear 

values, for example 0h , 1,0Y , 2,0Y [130]. We can similarly define the nonlinear zero-strain value, 

Q0, as the asymptotic limiting constant value achieved at low strain amplitude,    

 ).,(lim)( 000
0

gww
g

QQ
®

=                               (26) 

Using this coefficient Q0 we can quantify the intrinsic nonlinearity of complex fluids as a function 

of frequency. In Fig. 20, the coefficient Q is plotted as a function of strain amplitude for simulations 

(Giesekus and pom-pom model) and experimental results (monodisperse linear PS melt).  

The underlying mathematics of oscillatory shear deformation is very similar to dielectric 

spectroscopy in which a sinusoidal electric field is applied and the resulting current is quantified with 
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respect to the dielectric storage e΄ and loss e˝. Increasing the magnitude of the electric field leads to 

detectable optical nonlinearities as quantified via hyperpolarizabilities, e.g. c(2) or c(3). The 

hyperpolarizablity is a material constant independent of the electric field. The rheological nonlinear 

coefficient Q is analogous to the nonlinear optical coefficient c(3) [70]. As is the case for the nonlinear 

optical coefficients, the Q coefficient does not vanish but rather approaches a constant value in the 

limit of zero strain amplitude. Consequently this material coefficient reflects the inherent and 

normalized leading-order nonlinear mechanical properties of the material under investigation. 

 I
3/1

 [-]

10-4

10-3

10-2

10-1

100

strain amplitude [-]
10-1 100 101

Q
 (= I

3/1
/g

02 ) [-]

10-3

10-2

(a) Giesekus model 

Q0

Slope 2

 I
3/1

 [-]

10-3

10-2

10-1

100

strain amplitude [-]
10-1 100 101

Q
 (= I

3/1
/g

02 ) [-]

10-3

10-2

10-1

(b) Pom-Pom model

Slope 2

Q0

 I
3/1

 [-]

10-3

10-2

10-1

strain amplitude [-]
10-1 100 101

Q
 (= I

3/1
/g

02 ) [-]

10-3

10-2

(c) Linear PS 100K

Slope 2

Q0

 
Fig. 20. I3/1 and Q function of strain amplitude from medium strain amplitude (γ0 ≈ 0.1) to large strain amplitude 

(γ0 ≈ 10) (a) Giesekus model with G=1, λ=1, α=0.3, ω/2π = 1Hz, (b) integral pom-pom model with q=5, sa=6 

and sb=20, ω/2π = 0.1 Hz, and (c) monodisperse linear PS (PS 100K) at ω = 4.25 rad/s, T = 160 oC. 

 

The meaning of the nonlinear coefficient Q can be explored mathematically using the Fourier 

series, Eq. (8), and power series, Eq. (10), representations of the nonlinear stress response under 

LAOS flow. As a modification to Eq. (8), the shear stress under nonlinear oscillatory shear from FT-

Rheology can be written as 

1 1 3 3

1 1 1 1 3 3 3 3

( ) sin( ) sin(3 )
cos sin sin cos cos sin3 sin cos3

t t t
t t t t

s s w d s w d
s d w s d w s d w s d w

= + + + +

= + + + +

L

L
     (27) 

From the above equation we can calculate the relative intensity of the third-harmonic from FT-

Rheology as  
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For the power-law representation of the shear stress waveform, we refer to Eq. (10) (see also Pearson 

and Rochefort [20]),  
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These two distinct representations, i.e. Fourier series from Eq. (8) and power series from Eq. (10), 

describe the same nonlinear phenomena, therefore we can obtain the Q coefficient by inserting Eq. 

(29) and (30) into (28), 
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In the limit of the small-strain amplitudes we thus obtain the zero-strain nonlinearity, Q0(ω) 
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From Eq. (32), it can be seen that Q0(ω) is the normalized 3rd nonlinear complex modulus (3rd 

nonlinear term) divided by the linear complex modulus (1st nonlinear term). The magnitude of this 

intrinsic nonlinearity can be evaluated for any complex fluid, as with any other rheological properties; 

for example, Hyun et al. [42] have used the strain and frequency dependence of the Q coefficient, 

Q0(ω) and Q(γ0), to distinguish linear PS and comb PS melts (see Section 5.1.1). Further 

investigations are suggested to more fully explore the scaling behavior of I3/1 as a function of strain 
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amplitude for various complex fluids.  

 

4.1.2. Transition between linear and nonlinear viscoelasticity 

The higher-harmonic contributions in LAOS emerge according to the quadratic scaling behavior 

discussed in the previous section, but eventually deviate from this leading order dependence. As the 

strain amplitude (go) increases, the variation in the higher harmonics, e.g. I3/1(go) is often observed to 

be a sigmoidal function and can empirically be described via [32] 

 ÷÷
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g .     (33) 

In this equation, the parameter A reflects the maximum intensity of I3/1 at high strain amplitudes 

(and is often A = 0.2 – 0.3), B is approximately the point of inflection and the parameter C reflects 

the scaling exponent (e.g. C = 2 from Section 4.1.1). The sigmoidal behavior of I3/1 is reminiscent of 

the empirical equations often used to describe shear-rate dependent viscosity, which also show 

asymptotic limits at low and high shear-rates, e.g. the Carreau-Yasuda or the Cross models [1,2,131]. 

The parameters used in these empirical equations reflect the underlying physics, including 

asymptotes at low and high deformations and the pivot point where nonlinearities appear. Non-

sigmoidal behavior has also been observed for I3/1(go). For example, with dispersed systems the 

sigmoidal behavior of I3/1 has shown a “bump” or “overshoot” at intermediate strain amplitude due to 

the disperse phase [58]. This non-sigmoidal behavior is obtained for systems in which strong 

interactions occur between a viscoelastic matrix and a dispersed phase, e.g. the major volume phase 

and carbon black. Nonlinearity therefore reflects the superposition of two responses: one 

qualitatively common to all “pure” (unfilled) polymers and another related to the “filler” response 

[59]. Leblanc suggested a simple five parameter equation for the behavior of such highly filled 

rubber systems [58] (original equation is modified by this review format; see also Section 5 for more 

detail),  
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The above equation consists of three members: one describing the asymptotic high strain 

behavior 

)( ,/ 01 ag+mnI       (35) 

one describing the matrix response, the so-called polymer component 
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and one describing the filler response, the so-called filler component 
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At low strain amplitude, the nonlinearity is essentially controlled by the filler component (dispersed 

phase) and at higher strain amplitude the influence of the filler vanishes and the nonlinearity is 

controlled by the continuous phase of the polymer component [58]. 

Any suitable functional form of I3/1(go), whether sigmoidal or non-monotonic, must be continuous 

and differentiable. These functions describe an asymptotic transition from the linear (SAOS) to the 

non-linear regimes (MAOS and LAOS) and the deviation from the limiting value is a measure of the 

limit of the linear response. This result is striking, since it suggests that any improvement in 

instrumentation could affect the apparent limit of the linear regime for a specific sample. Within the 

concept of the Q coefficient and the high sensitivity of FT-Rheology a linear regime is only the 

asymptotic approximation for vanishing nonlinearities. Having e.g. Q0 = 0.01 and a strain amplitude 

of g0 = 0.01 the expected non-linearity of the third-harmonic is I3/1 = 10-6. This value is outside the 

detection range of any current commercial rheometer, but is evidently nonzero.  

This whole argument is recognition that the linear response is only achieved for vanishing 

deformations, and therefore never precisely achieved in any real experiment. Nevertheless it is 

commonly accepted that the linear response can accurately describe the limiting mechanical response. 

An alternate definition of the linear viscoelastic regime in oscillatory shear might be the regime in 
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which the experimental response obeys the leading-order nonlinear scaling and can be extrapolated to 

the limit of zero strain amplitude. Additionally, one may define a criteria that the nonlinearity in the 

signal response must be smaller than a critical threshold, e.g. I3/1 < 0.5% (~5×10-3) as determined 

from FT-Rheology, in which case the linear response (i.e. the moduli G΄ or G˝, or the intensity I1) 

would describe the overall response by 99.5%. This new definition of the linear regime under 

oscillatory conditions may be helpful in the unambiguous determination of the limit of a linear 

response in a clear and reproducible way that is independent of the instrumentation. 

 

4.1.3. Even harmonics of the normal stress differences 

In the nonlinear regime, the normal stress differences can also show higher harmonic 

contributions (c.f. Section 3.4). FT-Rheology can also quantify the even higher harmonic intensities 

(N1,0, N1,2, N1,4 …) and phase angles (δ1,2, δ1,4…) from the time-dependent first normal stress 

difference, Eq. (22). To illustrate this, in Fig. 21 we plot the FT intensity spectrum of the normal 

stress difference (in which even higher harmonics dominate) measured experimentally for an 

entangled polymer solution and a multimode Giesekus model simulation [123,124]. The higher order 

even harmonics grow with an even power of the strain amplitude ( L6,4,2,)( 02,1 =µ= nNI n
nn g , I0 is 

the non-zero mean or average normal stress) in the small and intermediate strain amplitude range. It is 

difficult to experimentally observe that the n-th harmonics grow with an even power of strain 

amplitude due to technical limitations (small rectangular box in Fig. 21b). From the multi mode 

Giesekus model, however, this terminal scaling can be directly observed (Fig. 21b). It can be 

observed that the intensity of the 4th harmonic normalized by the 2nd harmonic of first normal stress 

difference scales quadratically with the strain amplitude ( 2
0

2
0

4
0242,14,1 /// ggg =µº IINN ), in the 

same way that the shear stress varied (i.e. 2
0

1
0

3
01313 /// gggss =µº II ) in the region we have defined 

as medium amplitude oscillatory shear (MAOS). We can therefore define once again a nonlinear 
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normal stress coefficient ( 2
02/4 /gIº ), e.g. like Q coefficient ( 2

01/3 /gIº ) for shear stress using the 

quadratic strain amplitude scaling of the normalized harmonic intensity.  

 

Fig. 21. (a) 3D plot for the FT of the oscillating first normal stress difference for a 4wt% PEO solution with a 

molecular weight 2×106 g/mol. There are trace contributions from the odd harmonics for the entire range of 

strain amplitudes tested. (This non-idealized behavior is similar to the even harmonics present in the nonlinear 

shear stress.) (b) FT intensity as a function of strain amplitude. The experimental data are compared with 

simulations using a multi-mode Giesekus model [123]. Experimental measurements of the higher harmonic 
intensities ( 4 6,I I ) have severe errors at low strain amplitude. 

4.1.4. Even harmonics within the shear stress 

 As discussed in Section 3.1, only odd harmonics of shear stress are expected for typical and 

idealized material responses to LAOS. However, even harmonics can be observed experimentally, e.g. 

Fig. 17, 18a, 19 show small peaks in the even higher harmonics of the Fourier transformed shear 

stress. These even harmonics are relatively small compared with the odd higher harmonics. Similarly, 

in Fig. 21a, we can also observe peaks at odd higher harmonics in the first normal stress difference. 

The occurrence of even higher harmonics within the shear stress (or odd higher harmonics of normal 

stress difference) in the response signal is often considered as an experimental artifact and the peaks 

are neglected [14].  

However, even harmonics can be reproducibly generated and quantified using the FT-Rheology 
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technique [5]. Wall slip is expected to be one of the main reasons for the occurrence of even harmonic 

contributions [22,132]. Graham [73] demonstrated the occurrence and growth of even harmonics in a 

dynamic wall slip model. This leads to a break in the symmetry of the shear flow, and the material 

response no longer meets the symmetry of the measuring geometry. These calculations support the 

experimental investigations of Adrian and Giacomin [23]. Yoshimura and Prudhhomme [133] used a 

simple slip model at the bounding surface and demonstrated that, in general, slip at the bounding 

surfaces does not produce even harmonics. Atalik and Keunings [76] have also shown that wall slip is 

not a necessary condition for the occurrence of even harmonics using the Giesekus model (see 

Appendix C) with no-slip boundary conditions. They concluded that a combination of elasticity (i.e. a 

finite Weissenberg number = λγ0ω, where λ is the relaxation time, γ0 is the strain amplitude, ω is 

angular frequency) and shear thinning yields transient even harmonics in shear stress.  The life span 

and intensity of these even harmonics were considerably extended by inertia. Wilhelm et al. [29] have 

also explained the appearance of even harmonics arising from a time-dependent memory effect or a 

nonlinear elastic contribution in the system. These results are in contrast with the results of Yosick et 

al. [134]. Yosick et al. [134] reported that inertia does not create even harmonics using the upper 

convected Maxwell (UCM) model supplemented with a kinetic rate equation. Mas and Magnin [135] 

have argued that a finite yield stress can also be a reason for the occurrence of even harmonics. Yu et 

al. [131] report that the yield stress is not a sufficient condition to cause even harmonics from the 

Bingham model even though they observed some even harmonic contributions at the lower limits of 

their experimental resolution.  

In contrast with the above macroscopic points of view, Sagis et al. [136] explained the possibility 

of even harmonics from a microscopic point of view. They incorporated an orientation tensor which 

represents an anisotropic internal microstructure with constitutive equations for an elastic material 

containing anisotropic rigid particles. They also predicted that the intensity of the even harmonics 

first increases to a maximum as strain amplitude increases, beyond which the intensity decreases 



 61

continuously with strain amplitude. Their experimental data for a 4 wt % Xanthan gel also showed 

significant even harmonic contributions with similar trends as strain amplitude increased. The authors 

concluded that the even harmonics in the stress response arise as a consequence of changes in the 

structure of the material arising from shear-induced alignment of the anisotropic colloidal particles in 

the system. Sim et al. [90] also investigated the appearance of even harmonics of electrorheological 

fluids (ER fluids) using numerical simulation. Sim et al. [90] concluded that the appearance of even 

harmonics arose from the abrupt release of shear stress during the structural reformation process of 

the anisotropic microstructure in an ER fluid. Carotenuto et al. [45] report even harmonics which 

appeared to be material independent for an immiscible polymer blend system. They investigated the 

second harmonic for different samples (pure PIB, pure PDMS, PDMS/PIB-1/9) at different 

temperatures and geometries (cone and plate and plate and plate). They concluded that the second 

harmonics they observed could be attributed to imperfect alignment of the upper and lower plates of 

the rheometer. As we have noted above, it is difficult to accurately measure the relatively small even 

harmonic contributions compared with the high intensity odd harmonic contributions to the shear 

stress. For completeness, we note that the Fourier spectrum of strain (for a strain-controlled test) 

should not show higher harmonic contributions. However, there are always technical limits to 

producing perfect sinusoidal signals [56]. These defects which come from non-sinusoidal strain can 

affect the stress curve itself [94]. Therefore, imperfect excitation can also create even higher 

harmonics.   

As of this writing, we conclude that analysis of even harmonics in the shear stress can give some 

additional information for microstructured materials (e.g. orientation) but care must be taken to avoid 

systematic experimental artifacts (e.g. fluid inertia, imperfect excitation, or misalignment).  

However the origin of even harmonics may not always be clear, therefore additional investigation is 

needed before a definitive conclusion can be reached. Similar comments apply to reports of odd 

harmonics in the first normal stress difference. In Table 1 we summarize the current understanding of 
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the presence of even harmonics in the shear stress. 

Table 1 The summary of research regarding the appearance of even harmonics in shear.  

The Origin of even harmonics Reference Comment 

Even harmonics are within the 

range of experimental error 

Onogi et al. [14] 

· Carbon black dispersed in PS solution 

Even harmonics are 

negligibly small 

Carotenuto et al. [45] 

· Immiscible polymer blends 

Even harmonic is 

attributed to an imperfect 

alignment of geometry 

Macroscopic 

view 

Wall slip 

 

Yoshimura and Prudhomme [133]   
Wall slip is not a 

sufficient condition 

Hatzikiriakos and Dealy [22,132]  

Graham [73] 

· Simulation with dynamic wall slip  

model (memory slip) 

 

Inertia 

Yosick et al. [134] 

· Simulation with the UCM model 

supplemented with a kinetic rate 

equation 

Fluid inertia produces no 

even harmonics 

Atalik and Keunings [76] 

· Simulation with Giesekus model with 

no-slip boundary condition and 

Johnson-Segalman models 

The combined effects of 

inertia, elasticity, and 

shear thinning. Inertia 

increases even 

harmonics. 

Yield stress 

Mas and Magnin [135] Yield stress fluid 

Yu et al. [131] 

· Simulation with Bingham model 

Yield stress is not a 

sufficient condition 

 

Microscopic 

view 

Anisotropic 

microstructure 

-the change of 

microstructure 

Sagis et al. [136] 

· Simulation with Constitutive equation 

for an elastic material with anisotropic 

rigid particle and experimental results of 

Xanthan gel 

The even harmonics are 

the result of a change in 

the structure of the 

material 

Sim et al. [90] 

· Simulation of ER materials 

 

The abrupt change of 

shear stress during 

reformation process 
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4.2. Characteristic functions  

A simple physical interpretation of the oscillatory stress waveforms in terms of the Fourier 

amplitudes and phases is not always possible. In this section we review an interpretive method which 

considers the whole frequency spectrum as a superposition of different overtone sub spectra that 

characterize different non-linear rheological effects. For simplicity, four canonical rheological effects 

are considered: a base linear viscoelastic response, strain hardening, strain softening, and stick-slip 

(e.g. asymmetric shear-banding or wall slip). The waveforms which correspond to these known 

rheological phenomena are referred to as characteristic functions [5]. These four characteristic 

waveforms, and the associated Fourier spectra, are shown in Fig. 22. The total stress response can 

then quantitatively be described by a superposition of these characteristic functions.  

 The relative contributions are based on the magnitude of the normalized higher harmonics (In/I1) 

and the determination of the corresponding phases δn of the higher harmonics. The measured signal 

can be fitted in the time domain or the frequency domain with the four characteristic contributions 

(Fig. 22 on the top). Specifically, these characteristic contributions are a sinusoidal function 

describing the linear response, a rectangular function describing strain softening, a triangular function 

describing strain hardening, and finally a saw tooth function describing shear bands or wall slip (see 

Eq. (38) - (41) below). This final characteristic function is the only one that can represent the even 

harmonics contributions within stress described in the previous section. The strain softening 

contribution (a square wave) and the strain hardening contribution (a triangular wave) only have 

peaks at odd higher harmonics of the excitation frequency. One main distinction between the square 

and triangle functions is the rate of decay in the intensity of the higher harmonics. In the case of strain 

softening (rectangular wave) the intensities of the higher harmonics decay as 1/n (n = 1, 3, 5 …), and 

in the case of strain hardening (triangle wave) they decay as 1/n2 (n = 1, 3, 5 …). In addition to the 

scaling in the rate of decay, the phase of the higher harmonics is also different. For the rectangular 

function the phases of the higher harmonic contributions are the same (for δr = 0), for the triangular 
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function they alternate between 0 and π (for δl = 0). The fourth characteristic function captures the 

influence of shear bands or wall slip contributions. Peaks are present at all multiples of the excitation 

frequency and the intensity decreases progressively by a factor of 1/n (n = 1, 2, 3, …).  

The linear response function is given by: 

)sin()( 1 lll tAt dws +=        (38) 

The periodic rectangular function is given by: 
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The periodic triangular function is given by: 
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The periodic saw tooth is given by: 
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The superimposed total signal is given by: 

)()()()()( ttttt sttrl sssss +++=     (42) 

By superimposing these different contributions in Eq. (42), the measured time domain signal of the 

torque response can be reconstructed. Both the reconstructed time data and the corresponding FT 

representation of the experimental signal are used to determine the different contributions of strain 

softening and hardening. This novel analysis, based on FT-Rheology experiments, gives easy access 

to the quantification of the non-linear mechanical regime with respect to strain hardening, softening 

and shear bands. 
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Fig. 22. The four characteristic functions (from left to right): a sine, a rectangular, a triangular and a saw tooth 

shaped wave, representing viscoelastic, strain softening, strain hardening, and shear bands. The time domain 

data is displayed on the top (a) and the corresponding FT magnitude spectra in the bottom (b). Reproduced by 

permission of Klein et al. [5], copyright (2007) of American Chemical Society. 

 

4.3. Stress Decomposition   

The viscoelastic stress measured in oscillatory shear flow can readily be decomposed into elastic 

and viscous parts in the linear regime (i.e. SAOS), however, it is not easy to unambiguously 

decompose the stress in the nonlinear regime (i.e. LAOS). FT-Rheology does not decompose the 

nonlinear shear stress in terms of the deformation inputs themselves, but rather operates on the time-

domain representation of the stress waveform, σ(t), and quantifies nonlinear viscoelastic responses 

through intensity and phase angle of higher harmonics. The higher harmonics from FT-Rheology are 

used individually to interpret nonlinear behavior, especially the third harmonic contribution (I3/1 or Q 

coefficient). The characteristic functions introduced in the previous section may be thought of as a set 

of “basis functions” used to represent a superposition of different physical phenomena, however in 

contrast to the harmonic series considered from FT-Rheology [68], they are not mutually orthogonal 

(in a mathematical sense) nor is the set of functions a unique basis.  
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Cho et al. [65] used symmetry arguments to propose a method of decomposing the total stress in 

non-linear measurements into a superposition of elastic stress ( )s g¢  (a single-valued function of 

strain) and viscous stress ( )s g¢¢ &  (a single-valued function of strain-rate). This is related to Eq. (4) 

and the corresponding discussion in Section 3, in which the nonlinear shear stress is expanded by a 

polynomial or Taylor expansion as a function of the strain and strain-rate with the assumption that 

shear stress must be a function of the direction of shearing. Eq. (4) can be reformulated as  
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where tx wgg sino=º  and ty wgwg cos/ o=º & .  

From Eq. (43), the relationship ),(),( yxyx --=- ss  can be also confirmed. With this symmetry, 

shear stress can be decomposed as follows: 
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In Eq. (44), the first and the second subscript denote the parities of x and y, respectively. Hence 

),(OE yxs  is an odd function (O) for x and even (E) for y and ),(EO yxs  is an even function for x 

and odd for y. From Eq. (43), we can calculate OEs  and EOs  as follows:  
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Since the stress OEs  exhibits odd symmetry with respect to x and even symmetry with respect to 

y , whereas EOs  exhibits even symmetry with respect to x and odd symmetry with respect to y, it is 

clear that over one cycle we have: 

0OE =ò dxs , 0EO =ò dys      (46) 

Plots of OEs  versus x and EOs  versus y therefore do not enclose any area in contrast to plots of 

σ vs. x or σ vs. y. This implies that OEs  is only a function of x (strain) and OEs  is only a function 

of y (strain-rate), therefore OEs  and EOs  can be referred to as the elastic stress ( )xs ¢  and viscous 

stress ( )ys ¢¢ , respectively. Using the relation 2
o

22 g=+ yx  in Eq. (45), it can be confirmed that the 

elastic stress s ¢ is an odd function of x (strain) and the viscous stress s ¢¢  is an odd function of y 
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(strain-rate). The functional form of each stress contribution depends on the oscillatory inputs of 

strain amplitude γ0 and frequency ω, 

0( ; , )xs s g w¢ ¢= , 0( ; , )ys s g w¢¢ ¢¢=     (47) 

In Fig. 23, decomposition of the total shear stress into s ¢ and s ¢¢  are plotted for a 

polypropylene melt at 170 oC and 1rad/s. These elastic and viscous stresses are also related directly to 

the Fourier series as follows: 
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The work WE done by the elastic stress is stored in the system and completely released during a 

cyclic deformation. In oscillatory shear flow, if s ¢  is truly an elastic stress then the following 

equation should be satisfied: 
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Eq. (49) is easily proved because from Eq. (48) we have 
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It should be noted that ),( o1 gwg¢  and ),( o1 gwg ¢¢  are not, strictly speaking, storage and loss 

moduli associated with nonlinear viscoelasticity, although they do reduce to the familiar linear 

viscoelastic moduli in the limit 0o ®g . This is because the polynomial expansions in Eq. (48) are 

not orthogonal. The principal achievement of stress decomposition (SD) is to decompose the 

nonlinear viscoelastic stress measured in LAOS tests into physically meaningful elastic and viscous 

components. This alternate representation is achieved by considering the stress to be a function of the 

independent deformation inputs of strain and strain-rate, i.e. ( , )s g g& , rather than the initial time-

domain representation σ(t).  
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This original stress decomposition approach suffers from non-orthogonality of polynomial 

regression fitting to calculate nonlinear coefficients in Eq. (48). What is preferable is to use an 

orthogonal polynomial basis such as the Legendre or the Chebyshev polynomials. Use of Chebyshev 

polynomials of the first kind seems to be the best and this approach is discussed in more detail in 

section 4.4. When applying the stress decomposition approach to measurements of the first normal 

stress difference, difficulties are encountered both in the experimental measurement and in the 

theoretical analysis. It is currently not clear whether normal stress differences can usefully be 

decomposed into elastic and viscous parts.  

 
Fig. 23. Decomposition of shear stress into elastic and viscous part for polypropylene melt at 170 oC and 1rad/s. 

The shear stress is normalized by the complex modulus in the linear regime. (a) elastic stress versus strain 

o sinx tg g wº =  (b) viscous stress versus ty wgwg cos/ o=º & . Reproduced by permission of Cho et al. [65], 

copyright (2005) of the Society of Rheology. 

 

4.4. Chebyshev Polynomial Representation  

Although the decomposition of the nonlinear stress response can be carried out for any complex 

material, the challenge is to obtain a physical understanding of the higher harmonic components of 

the stress response. It has recently been demonstrated that a direct physical interpretation can be 

obtained by representing the individual curves of the decomposed elastic stress s ¢  and viscous 

stress s ¢¢  (introduced in Section 4.3, see Fig. 24) with an orthogonal set of polynomial functions, 

such as the Chebyshev polynomials of the first kind [68,137]. These polynomials represent a set of 

basis functions that can describe the measured material stress in the orthogonal space formed from the 
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oscillating strain and strain-rate. This simplifies the description of the material response because it is 

no longer necessary to consider the explicit (and superfluous) temporal dependence in the stress, and 

instead focus on how the material response varies with magnitude and rate of deformation.  

The decomposed stress curves inherently have odd symmetry with respect to either  or 0g g =& . 

The first few Chebyshev functions with odd symmetry are ,)(1 xxT = ,34)( 3
3 xxxT -= and 

xxxxT 52016)( 35
5 +-= . A series of Chebyshev functions, with corresponding weighting coefficients, 

is then used to represent the elastic and viscous stresses according to 
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where 00 // ggg == xx and 00 // ggg &&== yy  represent the instantaneous strain and rate of strain 

suitably normalized with the magnitude of the input values ( tx wg sinoº  and wgwg &=º ty coso  

are defined in Eq. (43), Section 4.3). The Chebyshev weighting coefficients ),( 0gwne  and 

),( 0gwnv , i.e. italic e and v, respectively describe the elastic and viscous contributions and have units 

of modulus and viscosity. The use of an orthogonal polynomial series may be contrasted with the 

alternate option of using a polynomial series of arbitrary order, e.g. 

m
maaaa ggggs ++++=¢ L5

5
3

31)( , in which the coefficients am are fit by the method of least 

squares [65, 138]. Such regressions result in coefficient values am which depend on the highest order 

of the polynomial used for the fit, in contrast to the use of orthogonality relations that enable unique 

determination of the Chebyshev coefficients en and vn [67]. It is important that coefficients at each 

order n can be determined independently of the highest harmonic of interest because improvements in 

the signal/noise ratios of LAOS measurement techniques continue to reveal the presence of ever-

higher harmonics, e.g. harmonics as high as n=151(see Fig. 20) can now be observed. The Chebyshev 

polynomials also represent a near-optimal basis set for capturing the variation in continuous functions 

such as )(gs ¢ , )(gs &¢¢ , and thus enable interpolation of material properties to arbitrary intermediate 

strains. 
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The third-order coefficients determine the concavity of each curve (to leading order), and it is this 

curvature of the measured material response with respect to strain or strain-rate which corresponds to 

a physical interpretation of the nonlinearity within a steady-state oscillatory cycle (intra-cycle 

nonlinearities of a nonlinear waveform). For the following discussion we focus on the positive 

domains ( 0>g , 0>g& ). The curvature (second derivative) of the elastic stress )(gs ¢  with respect 

to input strain amplitude can indicate either strain-stiffening (positive concavity; 0/ 22 >¢ gs dd ), 

strain-softening (negative concavity; 0/ 22 <¢ gs dd ), or linear elastic behavior (zero concavity). 

Similarly, the curvature of the viscous stress )(gs &¢¢  indicates shear-thickening (positive curvature; 

0/ 22 >¢¢ gs dd ) or shear-thinning (negative curvature). The magnitude of each Chebyshev coefficient 

typically decays monotonically with n, therefore to leading order positive curvature results for 

3e , 3v > 0, whereas negative curvature results for 3e , 3v <0.  

The Chebyshev coefficients can be directly related to the more traditional Fourier coefficients 

described in Section 4.1. Although there is no explicit time dependence apparent in Eq. (46), the 

temporal variation in the stress can always be recovered by noting that ty wcos=  and tx wsin= , 

along with the identities )cos()(cos qq nTn = and 2/)1()1)(sin()(sin --= n
n nT qq (n: odd). These 

Chebyshev coefficients are thus directly related to the Fourier coefficients of Section 4.1, Eq. (9), 

33 Ge ¢-=  and w/33 Gv ¢¢= . Similar identities are available for all of the higher Chebyshev 

coefficients [67]. The Fourier coefficients represent a complete mathematical description of the time-

domain response, but the physical interpretation of higher harmonics is only revealed by considering 

the Chebyshev coefficients in the orthogonal space formed by the input strain and shear rate. 

 The utility and interpretation of the Chebyshev coefficients is illustrated by examining a 

prototypical single mode nonlinear viscoelastic constitutive equation, the Giesekus model (see 

Appendix C). For a polymer solution, the Giesekus model captures the independent contributions of 

both a polymer stress (σp) and a Newtonian solvent with viscosity ηs [130], 

Dσ ss h2= .                          (52) 
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The total stress tensor is then  

ps σσσ += .     (53) 

This model (in multi-mode form) has been used by Calin et al. [139] to describe LAOS experiments 

with viscoelastic polymer solutions based on polyacrylamide [5]. Here the stresses predicted by the 

nonlinear Giesekus model are simulated under imposed oscillatory simple shear strain twgg sin0= , 

and analyzed as described previously [67]. For illustrative purposes, the following model parameters 

are used: λ1 = 1 s, ηs = 0.01 Pas, ηp = 10 Pa s, and the nonlinear parameter α = 0.3. These four 

independent parameters result in a retardation time scale λ2= λ1ηs/(ηs+ηp)=0.001s and a polymer shear 

modulus G = ηp/λ1 = 10 Pa. The Giesekus model for polymer solutions reduces to the linear Jeffreys 

model in the linear viscoelastic regime [2]. A frequency sweep in the linear regime (γ0 = 10-3) is 

shown in Fig. 24a. A strain-sweep at fixed frequency (λ1ω = 1) is shown Fig. 24b-f. This strain-sweep 

corresponds to the cross-over frequency at which G'=G" in the linear regime. Fig. 24b shows the first-

harmonic viscoelastic moduli, )( 01 gG¢  and )( 01 gG ¢¢ . Both moduli decrease as the strain amplitude is 

increased, and this is referred to as type I behavior (see Section 3.1). In other words, one observes 

inter-cycle strain-softening of 1G¢  and inter-cycle shear-thinning of 1G ¢¢ . 

 The coarse-level description of the actual material response using the first-harmonic moduli alone is 

insufficient to completely understand the nonlinear LAOS response. The full oscillatory response at 

each imposed strain amplitude is first revealed by presenting the raw steady-state oscillatory data in 

the form of parametric plots, correctly referred to as “Lissajous-Bowditch curves” [68] but for 

convenience we will simply use the term “Lissajous curves.” Elastic Lissajous curves are presented in 

Fig. 24c, and these plots display the total stress ),;( 0 wgs t (hysteretic loops) and the elastic stress 

(single-valued functions ))(( tgs ¢  shown by red dashed lines] as the strain varies. In Fig. 24e we 

show the corresponding viscous Lissajous curves; i.e. parametric plots of stress vs. strain-rate; the 

total stress ),;( 0 wgs t (hysteresis loops) and the corresponding viscous stress ))(( tgs &¢¢  (single-

valued blue dotted lines). The curvature in the decomposed stress contributions (red and blue lines) 
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indicates the nature of the intra-cycle nonlinearities that contribute to the evolution of the polymer 

stress, and lends itself to a physical interpretation in terms of strain-hardening/softening etc.  

Quantitative values of the elastic and viscous Chebyshev coefficients for this simulation are 

shown in Fig. 24d and 24f, normalized by the first-harmonics as en /e1 and vn /v1. From the third-order 

coefficients, it is observed that the initial elastic nonlinearity is strain-softening (e3 < 0), but this is 

followed by strain-stiffening (e3 > 0) at larger imposed strains. The intracycle viscous nonlinearity is 

shear-thickening at this frequency, 1 1l w = , as indicated by the sign of v3 > 0. 

The signs of the third-order Chebyshev coefficients are related to an alternate but equivalent 

representation of the nonlinear stress response in the time-domain.  The stress output can be 

expressed by the magnitude and phase shift (similar to Eq.(8)), so that )sin()( *
0 nn tnGt dwgs += å , 

where the complex modulus at each order n depends on both imposed strain and frequency, and the 

phase shift δn is referenced to the input strain twgg sin0= . Trigonometric expansion of this 

expression gives 3
*
33 cosdGe -=  and 3

*
33 sindw Gv =  for the third-order harmonics; thus the 

magnitude of the single parameter δ3 conflates the nature of both viscous and elastic nonlinearities. 

Physical interpretation of the third-harmonic phase angle (δ3,) as revealed by the signs of the 

Chebyshev coefficients, is sketched diagrammatically in Fig. 25. Note that a given value of δ3 can be 

simultaneously associated with both elastic and viscous nonlinearities, e.g. δ3 = 45º corresponds to 

viscous shear-thickening and also elastic strain-softening. 

As we noted in Section 3.3, consideration of the phase angle δ3 of the third harmonics helps 

understanding of the leading order influence of material nonlinearities on the shape of stress 

waveforms at large strain amplitude (see Fig. 8,9). However care must be taken to know how such 

phase angles are defined; here the phase angle relative to the input strain is used, δ3, in contrast to Fig. 

9 which used the phase angle relative to the fundamental harmonic of the stress output δ3'.  The 

Chebyshev decomposition naturally references the total system output to the input deformation.  
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The utility of the Chebyshev representation was recently demonstrated in the explanation of 

secondary loops (self-intersection) of Lissajous curves, interpreting the behavior with elastic stress 

overshoot [140]. Experimental measurements to demonstrate the advantages of the Chebyshev 

polynomial representation are presented in Section 5.3.3 (application to a biopolymer gel), and 

independent experimental studies are beginning to be published, e.g. [141, 142].
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Fig. 24. Giesekus model simulation, characterized by LAOS. (a) linear viscoelastic frequency sweep for γ0=10-

3, points from numerical simulation of the Giesekus model, lines from analytical solution to Jeffreys model. (b-

f) LAOS strain amplitude sweep at λ1ω=1. (b) Coarse description using first-harmonic viscoelastic moduli 

shows a Type I response with strain thinning in both moduli. A more complete characterization is shown by 

Lissajous curves and Chebyshev coefficients, characterizing the model from the elastic perspective (c,d), and 

the viscous perspective (e,f). In (d,f) the higher harmonic coefficients are represented as n=3 («), n=5(n), and 

n=7(u), where filled symbols are used for elastic coefficients (d) and open symbols for viscous coefficients (f). 
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Fig. 25. Diagram summarizing the interpretation of the third-harmonic phase angle δ3, (c.f. Eq. (8)) as revealed 

by the third-order Chebyshev coefficients (c.f. Eq. (51)). 
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4.5. Viscoelastic moduli in the nonlinear regime  

The familiar viscoelastic moduli G' and G" are clearly and uniquely defined only for the linear 

viscoelastic regime in which the stress response is a single-harmonic sinusoid. In the nonlinear 

regime the definition of viscoelastic moduli is not unique [143]. Here we review various methods of 

determining viscoelastic moduli from oscillatory data and discuss the interpretation in LAOS. 

Methods for calculating viscoelastic moduli can be grouped into two categories: full-cycle 

methods and local methods. Full-cycle methods require at least one entire cycle of oscillatory data (or 

a half-cycle which is then mirrored), and include: (i) first-order Fourier or Chebyshev coefficients, 

which are defined by orthogonality relationships, e.g. ò=¢ dtttG )()()/( 2
01 gspgw , and are the common 

output from commercial rheometers (note that in practice various methods can be used for 

determining G'1, as discussed by Franck et al. [144]); (ii) the so-called generalized elastic modulus 

0max / gs ¢º¢NG  introduced by Cho et al. (2005), in which maxs ¢  may occur at any value of 

instantaneous strain; (iii) a single-harmonic sine wave regression fit to the oscillatory stress curve 

0( ; , )ts g w , with elastic coefficient denoted as G'SR; (iv) a first order polynomial regression fit to the 

elastic stress-strain curve ( )s g¢ , denoted as G'LR for linear regression; and (v) a polynomial 

regression fit of degree M > 1 in which the linear coefficient is denoted as G'PR (for polynomial 

regression). 

In contrast to full-cycle methods, local methods characterize the elastic modulus at a pre-defined 

instantaneous strain on a Lissajous curve and may equate to either a secant modulus or a tangent 

modulus. As described by Ewoldt et al. [67,68], two particularly useful measures of the nonlinear 

elastic modulus of a material can be determined from the raw stress curve of ( )ts  vs. ( )tg .  At 

the minimum imposed strain the tangent modulus, or minimum strain modulus, can be defined as 

/MG d ds g¢ º  at 0g = . At the largest imposed strain the secant modulus, or large strain modulus, is 

defined as /LG s g¢ º  at 0g g= . These measures are both identically equal to the elastic modulus 

G¢  for a linear viscoelastic response. An additional local measure of elastic modulus can be 
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determined from the decomposed elastic stress curve ( )s g¢ . It has been suggested that the 

differential elastic modulus (or tangent modulus) at the largest imposed strain be defined as 

/KG d ds g¢ ¢º  at 0g g=  [68]. All of the methods noted above will accurately determine the elastic 

modulus G' associated with the linear viscoelastic regime, but results may be distinctly different for a 

nonlinear response. Analogous viscous moduli (dynamic viscosities) can also be calculated from each 

methodology described above. 

Table 2 shows the use of these methods to calculate the elastic moduli for the response of the 

Giesekus model at λ1ω=1 and γ0=10-3, 3.16, 10 (using the model parameters described in Section 4.4). 

Each method results in the same value of elastic modulus in the linear regime, γ0=10-3, with some 

small variation due to different susceptibilities to numerical inaccuracy. In the nonlinear regime the 

modulus calculation is not unique, and different methods result in different values of elastic modulus. 

 The local measures have a precisely defined interpretation, since each is associated with a pre-

defined instantaneous strain ( 0g =  or 0g g= ). Full-cycle measures can have various interpretations, 

e.g. as average measures in the cases of G'1, G'SR, and G'LR. These competing definitions may also 

overlap; for example, the generalized modulus G'N is equivalent to the large strain modulus G'L if the 

maximum elastic stress maxs ¢  occurs at maximum strain 0g g= . Another full-cycle measure, G'PR , 

connects with the local measure of minimum strain modulus /MG d ds g¢ º  at 0g = . This 

connection arises because the polynomial regression acts as a Taylor expansion about 0g = , and the 

leading order linear term therefore approximates the slope /d ds g¢  at 0g = . 

Due to these differing and ambiguous interpretations of viscoelastic moduli in the nonlinear 

regime, it is imperative to state the method used for the calculation of such parameters. Each 

definition of viscoelastic modulus discussed here is a correct but non-unique measure of the material 

response in the nonlinear domain.  The authors hope this discussion will emphasize why it is critical 

for researchers and instrument companies to report clearly the methods being used to calculate 

“viscoelastic moduli” from a nonlinear stress response. The proper combination of various methods 
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can result in a more complete description of the complex nonlinear viscoelastic response [68]. 

 

Table 2 Various methods for reporting an elastic modulus from oscillatory shear data (analogous methods exist 

for reporting dynamic viscosity), applied to the Giesekus LAOS response at λ1ω=1 (c.f. Fig. 24). Units of elastic 

modulus are Pa, strain amplitude is unitless. The different definitions are given in the text. 

 Full-cycle methods Local methods 

γ0 G'1 G'N G'SR G'LR (M=1) G'PR (M=9) G'M G'L G'K 

10-3 5.0000 4.9995 5.0013 5.0000 5.0108 5.0108 4.9995 5.0098 

3.16 1.7690 1.8916 1.7918 1.7693 1.1172 1.1180 1.8916 2.4807 

10 0.34760 0.67730 0.34733 0.34760 -0.65214 -0.67280 0.67730 2.3478 

 

4.6. Summary of quantitative methods 

The aim of oscillatory rheological experiments is to systematically investigate nonlinear 

viscoelastic material responses, to connect quantitative nonlinear measures with microstructure or 

polymer topology, and to provide useful information about the behavior of materials during 

processing operations in which large strain are necessarily encountered. To achieve this, several 

different quantitative methods have been proposed. Different nonlinear material coefficients can be 

extracted depending on the method and the chosen frame of reference (i.e. time-domain or 

deformation-domain).  

Within the framework of FT-Rheology [32, Section 4.1], the higher harmonic contributions 

(intensity and phase angle) can be differentially observed and distinguished beyond the 100th 

harmonic contribution (Fig. 19). Of these higher harmonic contributions, the 3rd harmonic 

contribution represents the dominant nonlinear contribution as the leading-order emergence of 

nonlinearity. A new nonlinear coefficient, Q 2
01/3 / gIº , was proposed by focusing on the relationship 

between the 1st and 3rd harmonic contributions (I3/1 = I3/I1) [42, Section 4.1.1]. In the case of polymer 

melts and solutions, the intensity ratio I3/1 ( 0g ) displays a sigmoidal or S-shape behavior [32, Section 
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4.1.2]. By contrast, dispersion systems typically exhibit a nonmonotonic behavior at intermediate 

strain amplitude as a consequence of the two phases present [58, Section 4.1.2]. Klein et al. [5, 

Section 4.2] suggested an alternate method of analysis which integrates the higher harmonic 

contributions that are observed at sufficiently large strain amplitudes. This involves decomposition of 

the nonlinear response into a superposition of several periodic time-dependent basis functions 

representing canonical rheological behavior, e.g. sine (linear response), rectangle (strain softening), 

triangular (strain hardening), and saw tooth shaped waves (wall slip or shear banding). This method 

has the advantage of simplicity but the main disadvantage of this method is that the selected four 

basis functions are neither orthogonal nor unique.  

By viewing the stress as a function of the mechanical input, Cho et al. [65, Section 4.3] 

succeeded in decomposing nonlinear oscillatory stress waveforms (σ) into elastic stress (σ΄) and 

viscous stress (σ˝) components. This perspective has been described as a geometrical interpretation, 

and is also referred to as stress decomposition (SD). Extending the concept of SD, Ewoldt et al. [68, 

Section 4.4] resolved issues of uniqueness and non-orthogonality by using orthogonal Chebyshev 

polynomials of the first kind as basis function. The third-harmonic contributions are still the leading-

order nonlinearity, and in the deformation-domain the sign of the third-order coefficients can be 

physically interpreted in terms of elastic strain-stiffening/softening (for e3 = -G'3) and viscous shear-

thickening/thinning (for v3 = G"3/ω) (cf. Eq. (9) and (51), Fig. 25). Ewoldt et al. [68] also suggested 

local measures of the viscoelastic moduli in the nonlinear regime; the corresponding elastic moduli 

(the minimum-strain modulus G΄M and the large-strain modulus G΄L) and the dynamic viscosity 

(minimum-rate dynamic viscosity η΄M and large-rate dynamic viscosity η΄L), can be related to the 

Fourier coefficients (Eq. (9)) as follows  
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These new nonlinear viscoelastic moduli can also be used to effectively and unambiguously define 

terminology such as strain-stiffening/softening and shear-thinning/thickening (Section 4.5).  

In Table 3 we summarize and categorize these quantitative methods. The methods are grouped 

according to the primary association with either a time-domain representation (Sections 4.1- 4.2) or a 

deformation-domain representation (Sections 4.3 - 4.5). These two representations complement each 

other and are sometimes used interchangeably since the different nonlinear coefficients evaluated 

from each method are interrelated. The relative merits of each approach are typically associated with 

ease of data processing (in the time-domain) compared to the ease of a physical interpretation (in the 

deformation-domain). The goal of any analysis method is to find meaningful nonlinear parameters to 

describe nonlinear data as a result of LAOS excitation. The next section demonstrates the application 

of this array of quantitative methods in rheological tests of various classes of viscoelastic materials. 
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Table 3 Summary of quantitative methods used to analyze higher harmonics under LAOS deformations.*  

 Time domain  Strain & strain-rate domain 

(orthogonal mechanical inputs) 

Visualization Oscillatory time series, ( )ts w  Lissajous curves,  ( ( ), ( ))t ts g w g w&    

Analytical 

representation 

Fourier Transform (FT) method,  

Fourier series 

Stress Decomposition (SD) methoda, 

polynomial series 

Original 

Publications 

Philippoff [13] and Onogi et al. [14] -1960, 1970 Cho and Ahn et al. [65]-2005 

· First meaningful efforts to quantify nonlinear 

stress  

· Suffered from noise problem and the lack of 

technology at that time 

· Physical interpretation of nonlinear 

stress  

· “Elastic” and “Viscous” contributions 

of nonlinear stress 

Subsequent 

Developments 

Giacomin and Dealy [8]-1993 Kim and Cho et al. [138]-2006 

· Solved problem of high torque and edge 

fracture of high viscosity polymer melt system 

by mounting torque transducer at the middle of 

SPR (sliding plate rheometer) and Fourier 

series 

· Least squares fitting of a polynomial 

series suffered from non-orthogonality 

issues during numerical calculation 

Wilhelm et al. [32] - 2002 Ewoldt and McKinley et al. [68]-2008 

· Dramatic increase  of S/N ratio (≈105) and 

coupling of commercial rheometer with “high 

sensitivity oversampling” method using high 

performance ADC card  

· Focus on relative 3rd harmonic contribution, 

e.g. its intensity I3/1 and its phase angle 

· Solved non-orthogonality problem in 

evaluation of material functions by 

using orthogonal Chebyshev 

polynomials of the first kind.  

· Suggested local measures for 

viscoelastic moduli, e.g. minimum-

strain ( MG¢ ) and large-strain ( LG¢ ) 

elastic moduli and minimum-rate 

( Mh¢ ) and large-rate ( Lh¢ ) dynamic 

viscosities 

Klein and Wilhelm et al. [5]-2007 

· Analyzing FT-spectra using superposition of 

various characteristic basis functions 

Leblanc [58]-2008 

· Simple five parameter equation of I3/1 for filled 

compounds (or dispersion system) which show 

“overshooting” or “bump” at intermediate 

strain amplitude in plot of I3/1 vs. 
0g  

Hyun and Wilhelm [42]-2009 Yu et al. [131]-2009 
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· New nonlinear coefficient Q 2
01/3 / gIº ; other 

rheological properties which define scaling 

relationship between stress and amplitude of 

deformation 

· Generalized the stress decomposition 

method for treating both odd and even 

higher harmonics using orthogonal 

Chebyshev polynomials of the first 

and second kind  

Advantage Detects odd, even, and non-integer higher 

harmonic contributions, high sensitivity, and 

traditionally easier to implement  

Tends to enable a physical interpretation 

of the nonlinear viscoelastic response 

Disadvantage Physically-meaningful interpretation can be 

difficult 

Detects only desired response, e.g. integer 

higher harmonics.  

Summary These two representations (time domain vs. deformation domain) complement each other and are 

interrelated. Many material measures can be calculated using either approach.  

* In this table only quantitative methods are summarized, other analysis methods (e.g. visual inspection of Lissajous curve 

and stress shape analysis) are excluded.  
a SD method itself is a stress shape analysis method, but other quantitative methods are based on the SD method.   
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5. Applications 

In this article we have reviewed several methods to analyze the nonlinear response of materials 

undergoing large amplitude oscillatory shear flow. These methods can be applied to a wide range of 

different material systems. Because the nonlinear response of each subclass of complex fluid (e.g. 

polymer solution or melt, dispersed system, blockcopolymer, or biopolymer gel) can be very different, 

each approach has its own merits and disadvantages. Here we survey several recently published 

LAOS investigations of different complex fluids. These examples are not intended to be exhaustive 

but rather to serve as case studies that illustrate the utility of the analysis tools reviewed in the 

previous sections. 

 

5.1. Entangled polymer systems  

5.1.1. Linear and comb polymer PS 

FT-Rheology under LAOS is now recognized as a very sensitive characterization method for 

detecting long chain branching (LCB) – or more generally to distinguish different polymer topologies. 

Experiments have shown that the ratio I3/1 and the phase angle of the third harmonic (Φ3) are sensitive 

to macromolecular architecture, specifically the molecular weight distribution, number of branches, 

and their length [35,36,38,44]. However, these early publications did not systematically explore 

LAOS using a well defined, entangled homopolymer to provide a baseline for our rheological 

understanding of the influence of excitation frequency, temperature, or molecular weight. Hyun et al. 

[42] presented the first systematic investigation of the evolution in the nonlinear ratio (I3/1) obtained 

from FT-Rheology, and proposed a new nonlinear coefficient ),( 0gwQ for quantifying the response 

of monodisperse linear polystyrene and comb polystyrene melts). They also investigated the zero-

strain nonlinearity, Q0 obtained in the limits of small strain amplitude ( 000
lim QQ º®g ) that 

characterizes the onset of nonlinearity of each sample (Section 4.1.1). We provide a review of this 

systematic study here, in which anionically synthesized monodisperse linear and comb polystyrenes 
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(PS) were used (see Table 4). The PS comb series C6 consists of a linear backbone with weight-

average molecular weight of the backbone Mb = 275 kg/mol, and approximately q = 25-30 linear 

branches of varying molecular weight arms with Ma varying from 11.7 to 47 kg/mol. For PS a typical 

literature value of the entanglement molecular weight is Me = 17 kg/mol [42]. The sample C622 

therefore has unentangled arms, whereas sample C632 is expected to have entangled arms. The ratio 

of intensities I3/1 was measured as a function of strain amplitude at various excitation frequencies 

from 0.1 rad/s to 10 rad/s and the corresponding value of the Q coefficient ( 2
01/3 /gI= ) was then 

calculated (Fig. 26). It is clear that the coefficient approaches a constant value (corresponding to a 

‘zero-strain nonlinearity’, Q0) at small strain amplitude (Fig. 26c,d) with residual fluctuations that 

arise from the low magnitudes of the intensity ratio (3×10-4 < I3/1 < 10-2) in the limiting asymptotic 

regime. Because Q0 is evaluated from several data points (typically 5 to 10), very reliable values of 

the asymptotic value obtained in the limit of zero-strain can be determined.   

 

Table 4 Molecular characteristics of the samples used.  

Sample 
Mb (kg/mol) 

Backbone 

Ma (kg/mol) 

branch 

q (branches/ 

backbone) 

Mtotal 

(kg/mol) 

G wt (s)a  

at 190 oC  

Molecular 

structure 

PS 76k 75.9 - - 75.9 0.05 Linear 

PS 100k 100 - - 100 0.14 Linear 

PS 220k 214 - - 214 2.66 Linear 

PS 330k 330 - - 330 12.44 Linear 

C622-PS 275 11.7 30 624 11.63 Comb 

C632-PS 275 25.7 25 913 28.59 Comb 

C642-PS 275 47 29 1630 102.06 Comb 
aThe terminal relaxation time was evaluated from linear moduli data at 190 oC. 
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Fig. 26. The nonlinear intensity ratio (I3/1) as a function of strain amplitude for linear and comb PS at various 

frequencies; (a) linear monodisperse polystyrene (PS 100K) at 160 oC (b) entangled branched melt C642 at 

200 oC. Also shown are the corresponding values of the Q coefficient as a function of strain amplitude evaluated 

from the intensity ratio data for (c) PS 100K at 160 oC and (d) C642 at 200 oC. Reproduced by permission of 

Hyun et al. [42], copyright (2009) of American Chemical Society. 

 

Frequency-Dependence of Q0(ω) in the asymptotic regime: In Fig. 27, the values of Q0 for the 

linear and comb PS samples are plotted at a reference temperature of Tref = 190 oC. The data for the 

monodisperse linear PS as a function of frequency displays a single local peak value and terminal 

quadratic behavior (Q0 µ ω2) at low frequencies (Fig. 27b). The quadratic scaling (Q0 µ ω2) at low-

frequency limit is expected from the analysis for the Doi-Edwards model presented by Pearson and 

Rochefort [20] (see Appendix D). As the molecular weight increases, the transition to terminal 

behavior shifts to lower frequencies (analogous to the familiar frequency shift observed in 

conventional linear viscoelastic properties) and the peak becomes increasingly broad. In the case of 

the comb PS sample with unentangled branch chains (C622), Q0(ω) displays a similar shape as a 
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function of frequency (with one maximum value and a terminal regime (Q0 µ ω2)). In contrast to the 

linear samples, however, the maximum value of Q0 is lower than for the linear monodisperse PS 

melts. The authors conjectured that this might result from the dynamic tube dilution induced by the 

side branches. For the comb PS with entangled side branches (C632 and C642), Q0(ω) has two peak 

values, one corresponding to the branches’ disentanglement at higher frequencies and the second 

arising from backbone relaxation at lower frequencies (see Fig. 27a). As a consequence of having 

entangled branches, the maximum value of Q0 can be associated with the backbone relaxation (Q0,b) 

and is much lower than that of the comb PS with unentangled branches (C622). As the entangled 

branch chain length becomes longer, the value of Q0,b drops progressively and the frequency 

dependence becomes narrower and sharper (see Fig. 27b). In the case of the comb PS series (C622, 

C632 and C642), the volume fraction of the backbone chain decreases as the side branch length 

increases. From the viewpoint of dynamic tube dilution, the fully-relaxed side-branches act as an 

effective solvent for the unrelaxed backbone chain. The increasing length of the side branches has a 

similar effect to decreasing the concentration of the main backbone chain in a viscous solvent. 

Quantitative measurement of Q0(ω) can thus effectively probe frequency dependence in the relaxation 

processes associated with disentanglement for a range of polymer melts.   
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Fig. 27. (a) Frequency dependence of the zero-strain nonlinearity Q0 for linear PS chains (PS 76K, 100K, 220K, 

330K) and PS combs (C622, C632 and C642) at Tref = 190 oC. With increasing molecular weight of the 

branched chain (Ma), the maximum corresponding backbone chain (Q0,b) is decreasing. (b) For clear comparison, 

the coefficient Q0 is plotted against Deborah number (De = aTω<t>) of linear PS 330K and comb PS (C622, 

C632 and C642) at Tref = 190 oC. Reproduced by permission of Hyun et al. [42], copyright (2009) of American 

Chemical Society. 

 

Strain-Dependence of Q(γ0) under LAOS: The behavior of the coefficient Q with increasing strain 

amplitude is investigated at a fixed frequency in Fig. 28. For monodisperse linear PS melts, Q 

decreases as the strain amplitude increases at various frequencies, which is reminiscent of the shear 

thinning observed in the viscosity as a function of shear rate. By contrast, the value of Q(γ0) for the 

comb PS sample with entangled side branches (C642) increases as the strain amplitude increases. The 

normalized variation in the nonlinearity Q/Q0 as a function of strain amplitude can be compared to the 

normalized complex modulus |G*|/|G*0| where |G*0| is the complex modulus measured under SAOS 
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conditions at a fixed frequency, see Fig. 28a). For the linear PS melt, both functions decrease as the 

strain amplitude increases. Similar results are obtained for the comb PS melt with unentangled side 

branches. On the contrary, for the comb sample with entangled side branches (C642), |G*|/|G*0| 

decreases, whereas the ratio Q/Q0 increases with strain amplitude (Fig. 28c) for specific frequencies. 

It is well known that the extent of strain hardening behavior in elongational flow is directly connected 

to branched polymer chains. The increase in the nonlinear coefficient Q also reflects the role of chain 

branching. Although it is clear that chain topology plays a role, the underlying nonlinear physics 

controlling the variation in Q(γ0) with increasing strain amplitude are still not fully understood. The 

strain-dependence observed in Q(γ0) appears to be a promising parameter for detecting long chain 

branching in commercial branched polymers, e.g. LCB-PE, however further theoretical and 

experimental work is required to fully evaluate the sensitivity of such a probe.   
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Fig. 28. The magnitude of the complex modulus |G*| and Q as a function of strain amplitude from medium 

strain amplitude (γ0 ≈ 0.25) to large strain amplitude (γ0 ≈ 7). (a) Monodisperse linear PS (PS 100K) at ω = 4.25 

rad/s, T = 160 oC, (b) comb PS with unentangled side chains (C622) at ω = 1 rad/s, T = 200 oC, and (c) comb PS 

with entangled branches (C642) at ω = 1 rad/s, T = 190 oC. The |G*|(γ0) curves display only strain softening for 

all three samples. In contrast, the curves of Q(γ0) for the linear PS and comb PS with unentangled branches 

(C622) exhibit strain softening with increasing strain amplitude, whereas the corresponding curve for the comb 

PS with entangled branches (C642) displays strain hardening. Reproduced by permission of Hyun et al. [42], 

copyright (2009) of American Chemical Society. 
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5.2. Dispersion systems  

There have been many LAOS investigations of the nonlinear rheology exhibited by dispersed 

systems and these include some of the very first reports of the LAOS protocol. Materials of interest 

have included clay-water systems [12], carbon black in PS solution [14], spherical polymer 

particles in PS solution [16], soft hydrogel microspheres [79], particle suspensions [5], immiscible 

polymer blends [45,147] and others.  

 

5.2.1. Suspensions 

Analysis of the non-linear oscillatory properties of water-based polymer dispersions do not 

always result in a simple physical picture of how the amplitudes and phases of the harmonics evolve. 

As we have noted above, the bulk of previous studies have focused on the magnitude of the third 

harmonic I3/1 and the corresponding phase δ3. In many cases this restricted analysis is justified due to 

the fact that the intensity of the higher harmonics, e.g. 5th, 7th, etc., are negligibly small. However, in 

the hard sphere model systems examined here, a large number of higher harmonics of the excitation 

frequency with high intensity are often detected (possibly up to the 45th harmonic). Moreover, in such 

samples not only odd harmonics, but also even harmonics are observed. In this limit, The 

Characteristic Functions method (see section 4.2) enables convenient analysis of the Fourier spectra 

of the non-linear mechanical behavior of dispersions because each selected characteristic function is 

composed of many higher order contributions [5]. To illustrate this, we use two model hard-sphere 

suspensions with different average particle diameters (Table 5). The measured and reconstructed 

LAOS data for sample 1 and sample 2 is shown in Fig. 29a and 29c. The FT magnitude spectrum for 

each suspension is presented in Fig. 29b and 29d. The measured and reconstructed data superpose 

well near the maxima, but deviations appear close to the turning point of the periodic functions 

(where the torque is zero). The different relative contributions of the four characteristic functions, 
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their amplitudes, phases, and time-lags, are presented in Table 6. The triangular-wave function 

(representing thickening) was not used because the system showed only shear-thinning behavior. The 

time-lag is defined from the phase shift between the linear contribution and the strain softening or 

shear-banding contribution. Note the dramatic differences between both the time and frequency-

domian data for the two samples, this is readily identified as arising from the big difference in the 

saw-tooth contribution for the two suspensions. 

 

Table 5 Characterization of samples using particle dispersity index (PDI), solid content, and particle diameter 

for two monodisperse hard-sphere suspensions (denoted sample 1 and 2). 

 Sample 1 Sample 2 

PDI 1.04 1.01 

Solid  content [%] 35.4 32.7 

Particle diameter [nm] 69.7 133.2 

 

 
Fig. 29. The overlay of the time-dependent torque response and the reconstructed time data and the 

corresponding FT spectra of the experimental data for sample 1 ((a) and (b)) and sample 2 ((c) and (d)). The 
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time domain signals were recorded at 298 K with ω1/2π = 1 Hz, γ0 = 1 for sample 1 and γ0 = 6 for sample 2. 

Reproduced by permission of Klein et al. [5], copyright (2009) of American Chemical Society. 

 

Table 6. Amplitude, phase angle and time lag of the three characteristic functions that generate the 

reconstructed response of sample 1 and sample 2 shown in Fig. 29.  

 Sinusoidal Rectangular Saw tooth 

Sample 1 Sample 2 Sample 1 Sample 2 Sample 1 Sample 2 

Normalized amplitude 1 1 1.47 1.4 < 0.01 0.36 

Phase angle [°] 0 0 35 51 a ~ 0 

time-lag [ms] 0 0 97 142 a ~ 0 

a below accuracy 

Dependence of strain amplitude In a subsequent stage, this decomposition of the mechanical 

response was then applied to a complete data set of oscillatory responses varying only in the applied 

strain amplitudes. In a strain sweep test, both of the samples showed the same LAOS type III 

behavior (see section 3.2). However, the characteristic functions obtained from the reconstructed 

stress data can distinguish the two samples, especially due to the contribution of the saw-tooth 

functions. Because the characteristic functions method incorporates the contributions of many 

higher-order harmonics, it can readily differentiate between the two samples. The amplitude and 

phase angle of each basis function as a function of strain amplitude for two hard sphere model 

systems are represented in Fig. 30. The values of the amplitudes are normalized with respect to the 

amplitude of the pure sinusoidal function. The sinusoidal response was used as reference with the 

amplitude set to Al = 1 and a phase angle δl = 0 (Eq. (38)). The phase values of the rectangular, 

triangular, and saw tooth function are referenced to this sine function phase angle. The three 

characteristic functions that capture the linear response, strain softening, and wall slip are needed to 

obtain a satisfactory match to the experimental data, in particular at high strain amplitudes. With 

increasing strain amplitude γ0, the amplitude of the rectangular function increased until a maximum 

is reached. For sample 1, the amplitude of the saw-tooth function is considerably lower as compared 

with the rectangular function (please note the double logarithmic scale). The phase angles of the two 
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functions increase slowly with increasing γ0, but the difference between them is almost constant. The 

phase angle of the rectangular function is about 360°, and therefore in-phase with the linear 

contribution. About 20 different dispersions were found to respond in a similar way. An exception to 

this finding is the behavior of sample 2. In fact, at small values the saw tooth function is larger in 

amplitude than the rectangular function. At a value of γ0=0.06, both contributions show a strong 

increase and a cross-over in relative amplitude. A large change is also observed in the phase angle of 

both functions.  
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Fig. 30. Dependence of the amplitude and the phase angle on the strain amplitude of the characteristic functions 

for sample 1 ((a) amplitude and (b) phase angle) and sample 2 ((c) amplitude and (d) phase angle). The 

characteristic response contains strain softening (rectangular basis function) and wall slip or shear banding (saw 

tooth wave form). In rare cases, experimental problems such as wall slip appeared. In those cases the data is not 

shown. Reproduced by permission of Klein et al. [5], copyright (2009) of American Chemical Society. 

 

5.2.2. Emulsions 

Small amplitude oscillatory shear tests are a reliable way of extracting a characteristic droplet 
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size for emulsions [147]. Carotenuto et al. [45] proposed using LAOS to determine not only the 

characteristic dimension of an immiscible polymer blends but also to infer the size distribution of the 

drops.  The principal idea is that even an emulsion formed from two immiscible Newtonian fluids 

will exhibit a viscoelastic response due to the interfacial tension, and this response will become 

nonlinear when sufficiently large amplitude shear is applied to the emulsion droplets. Consequently 

the droplet size and the size distribution will drastically affect the intensity and phase of the different 

higher harmonics in the FT-rheology spectra. Conversely, some information about this size 

distribution can be obtained from analysis of the FT-Rheology spectrum as shown in Fig. 31.  

 
Fig. 31. Drop distribution estimated with the regression procedure for blend C (10% PDMS and 90% PIB) 

using the FT-rheology spectra. Reproduced by permission of Carotenuto et al. [45], copyright (2009) of 

American Chemical Society. 

 

5.2.3. Polymer blends 

Filipe et al. [46, 47] investigated the evolution in the morphological and rheological properties 

along the length of a screw extruder for blends of a commercial liquid crystalline polymer (LCP) and 

polypropylene. They collected samples at different locations (labeled v1-v11) along the extruder (Fig. 

32a), and examined the morphology of the samples using SEM and light microscopy. Rheological 

properties of the collected samples were measured using linear oscillatory tests (SAOS) and 

nonlinear oscillatory tests (LAOS). It was concluded that the nonlinear tests, e.g. the nonlinearity 

ratio (I3/1) obtained from FT-Rheology, was more sensitive than linear viscoelastic test (SAOS) for 
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probing the morphology evolution along the extruder length. During the extrusion process, the 

morphology of the LCP dispersed phase can change from spherical to elongated droplets or fibrillar 

structures depending on the position along the extruder, and this is reflected in a progressive change 

in the nonlinear rheology from the beginning to the end of the extrusion process (Fig. 32). It is thus 

possible to extract information about both the average dimension of the dispersed phase structure as 

well as the change in morphology under large amplitude shear. This conclusion is consistent with the 

results of Carotenuto et al. [45] discussed in the previous section. 

 

Fig. 32. (a) Screw and cylinder profile used for the processing of the blends. Here “vi” is i-th valve that allows 

local removal of samples along the extruder length. Morphological evolution along the length for the blend with 

40 wt% LCP processed at 220℃ (SEM) (b) location v5 in the extruder and (c) final extrudate. (d) ratio I3/1 from 

FT-rheology as a function of the applied strain amplitude for the different samples collected along the extruder 

length (blend with 40wt % LCP at 170℃). Reproduced by permission of Filipe et al. [46], copyright (2004) of 

Elsevier Science. 

 

5.2.4. Filled rubber compounds 

Leblanc [51, 54-59] and Leblanc et al. [52,53,60] have investigated many kinds of industrial 

rubber and elastomers both with and without added filler. They observed that the ratio I3/1 of filled 

rubber compounds do not show simple sigmoidal function (see eq. (33)) because of a strain 

overshoot detected at intermediate strains (around »0g  5~6) [58]. Such behavior is obtained using 
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systems in which strong interactions occur between the viscoelastic matrix, i.e. the major volume 

phase, and the dispersed phase, i.e. the carbon black. Therefore, the nonlinearity appears to reflect 

the superposition of two responses: one qualitatively common to all “pure” (unfilled) polymers and a 

separate “filler” response [59, see also Section 4.1.2]. At low strain amplitude, the nonlinearity is 

essentially dominated by the filler component (dispersed phase) and at higher strain amplitude the 

influence of the filler is less pronounced and the nonlinearity arises primarily from the polymer 

component (continuous phase) [58]. A fitting of model parameters provides information on the 

viscoelastic behavior of filled rubber compounds affected by the filler content with little effect of the 

matrix material (typically limited to high cis-1,4 polybutadiene and natural rubber). The type and 

grade of carbon black added to the system is also found to affect the nonlinear shear stress of filled 

rubber compounds, and results, for example, in the “forward” tilted or “backward” tilted stress forms 

discussed in section 3.3. Leblanc suggested quantifying the “backward” and “forward” tilted shapes 

of the shear stress using quarter cycle integration from one cycle of shear stress data as a function of 

time. The ratio of the first quarter stress (Q1) and second quarter stress (Q2) signal integration, i.e., 

Q1/Q2 (=1 in case of no distortion sinusoidal shear stress curve) allows a clear distinction between 

“forward” tilted (Q1/Q2 > 1) and “backward” tilted (Q1/Q2 < 1).  The unfilled material was found 

to exhibit a Q1/Q2 ratio that is always larger than unity and increases with strain amplitude i.e. a 

“forward” tilted stress [58]. In the case of a carbon black filled elastomer, the Q1/Q2 ratio was first 

found to be higher than one at low strain amplitudes, then quickly dropped below one with 

increasing strain amplitude corresponding to a “backward” tilted stress. With these two methods, 

Leblanc [60] investigated thermoplastic vulcanizates (TPV) which are blends of a crystalline 

thermoplastic polymer (polypropylene) and a vulcanizable rubber composition and Leblanc and 

Nijman [148] investigated silica-based rubber compounds. 
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5.3. Block copolymers and gels 

5.3.1. Block copolymer melts 

LAOS has been used to study the orientation/reorientation processes in microphase-separated 

lamellar PS-b-PI diblock copolymers as well as in diblock and triblock copolymers of styrene and 

butadiene (PS-PB; PS-PB-PS) which form lamellar microphases [49,149] at temperatures well above 

the glass transition temperature (Tg) of PS. The alignment kinetics can be studied in detail via online 

monitoring of the degree of mechanical nonlinearity exhibited during the orientation process – as 

determined via the higher harmonics in FT-Rheology – coupled with investigation of the 

orientational distribution by ex-situ two-dimensional Small Angle X-ray Scattering (2D-SAXS). For 

the PS-PI polymer, both methods detected parallel alignment of the lamellae after increasing the 

frequency of shearing as well as spatially heterogeneous alignment via bimodal parallel and 

perpendicular alignment of the lamellae [149].  

The rheological behaviour of both unaligned and aligned diblock and triblock copolymers of 

styrene and butadiene (PS-PB; PS-PB-PS) lamellar phases were studied later in [49]. The evolution 

of the microstructure during the flow alignment process can be easily quantified using the FT-

Rheology technique.  

For di- and triblocks, parallel alignment is achieved at low frequency and temperatures below the 

order/disorder transition temperature TODT. The kinetics of orientation can be quantified by the 

intensity of the third harmonic I3/1(t) as shown in Fig. 33. Specifically I3/1(t) can be described by a 

stretched exponential function with a characteristic relaxation time τ.  

  [ ]bt )/(exp/ tAyI -+= 013      (56) 

For di- and triblock copolymers, the kinetics of orientation strongly depend on the strain amplitude 

and the time constant varies with a scaling exponent: t µ g0
-4 for the diblock and t µ g0

-2.85 for the 

triblock. This scaling exponent greatly exceeds the expected scaling of t µ g0
-1 which corresponds to 

a physical process in which the total applied deformation is responsible for the observed orientation. 
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The larger scaling exponent might be explained by the cooperative nature of the underlying processes. 

Analysis of the time-dependent variation in the phase difference related to the third harmonic (δ3(t)) 

enables further differentiation between the diblock and triblock for the PS-PB and PS-PB-PS model 

systems. The plateau value of δ3 is independent of the strain amplitude and frequency but depends on 

the morphology of the system, at least within the lamella systems investigated to date. For the PS-PB 

diblock, δ3 plateau ≈ 170° and for the PS-PB-PS triblock δ3 plateau ≈ 140°. The reorientation from a 

parallel to a perpendicular orientation is only possible for the diblock copolymer. For the triblock 

samples, the complementary X-ray analysis revealed a time-dependent bimodal orientation 

distribution. This observation suggests a complex mechanism for reorientation from parallel to 

perpendicular alignment, which is the subject of ongoing investigations. In summary, FT Rheology 

offers a new and simple way for online monitoring of complex reorientation kinetics in 

blockcopolymer melts or solutions. 

 
Fig. 33. Variation of the relative intensity of the third harmonic I3/1 (š) during the 10 hours of the macroscopic 

orientation process of a styrene-butadiene (9 kg/mol-9kg/mol) sample. The solid line represents the stretched 

exponential fit. The insert represents the variation of the storage modulus and the loss modulus as a function of 

time. Reproduced by permission of Oelschlaeger et al. [49], copyright (2007) of WILEY-VCH.  
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5.3.2. Block copolymer solutions 

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock 

copolymers, often referred to by their trade names of Pluronic (BASF) or Synperonic (ICI), have 

been widely used in industry as amphiphilic rheology modifiers. Aqueous solutions of 

poly(propylene oxide) (PPO) exhibit a dramatic temperature dependence; below approximately 15 oC, 

water is a good solvent for PPO, whereas PPO aggregates at higher temperature. Poly(ethylene oxide) 

(PEO), on the other hand, is hydrophilic over the whole temperature range from 0 to 100 oC. With a 

block of PPO and two blocks of PEO combined into a single polymer chain, one can expect 

amphiphilic characteristics with interesting aggregation phenomena [150]. Daniel et al. [48] studied 

the nonlinear response of a face-centered cubic (fcc) micellar structure formed by a PEO-PBO 

diblock copolymer in aqueous solution. Hyun et al. [6] investigated a 20wt% aqueous solution of 

PEO-PPO-PEO triblock copolymers subjected to LAOS at different temperature. As the sample 

temperature changes, the transition between a soft gel and a hard gel is revealed by LAOS 

measurements and the material response can be classified with respect to LAOS type according to the 

definitions proposed by Hyun et al. [62]. The sol shows Newtonian behavior (strain-independent G") 

at temperatures below the transition. By increasing the temperature a soft gel forms and type I 

(monotonic strain thinning) appears. As the temperature increases, type IV responses (strong strain 

overshoot; local maxima in G’ and G”) are observed at large strain amplitude. Therefore the LAOS 

signature of a soft gel displays a combination of type I and type IV behaviors (Fig. 34a). However, as 

the temperature is increased further, the type IV response becomes weaker, and finally the strain 

overshoot (characteristic of a type IV response) disappears at the transition temperature from soft gel 

to hard gel. Finally, the hard gel shows a type III response (G’ decreasing, with a local maximum in 

G” alone) as shown in Fig. 34b.  

The FT spectra for the hard gel and soft gel states were also compared. The LAOS measurements 

show that the intensity of the higher harmonics (3rd, 5th, 7th) in the soft gel reached a maximum and 
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then decreased with strain amplitude, before slightly increasing again with further increase of the 

strain amplitude (Fig. 34c). This result is similar to the “hump” in I3/1 observed for carbon black filled 

rubber compounds in the previous section [58]. On the other hand, the higher harmonics of a hard gel 

increase as a function of strain amplitude before approaching an asymptotic (Fig. 34d). Decreases in 

the intensity of the higher harmonics with increasing strain amplitude is perhaps initially unexpected, 

but can also be observed with the Giesekus model LAOS response in Fig. 24d and 24f, in which 

some higher harmonic components decrease in magnitude and subsequently change sign. Heymann et 

al. [78] have investigated highly concentrated suspensions of PMMA particles in PDMS, which show 

a combination of type I and type IV response like a soft gel, and also exhibited a local maximum in 

the intensity of the third harmonic. Kallus et al. [50] characterized rigid polymer dispersions by FT-

Rheology, and also found a local maximum in the Fourier intensities as a function of strain amplitude. 

By analogy, we may infer that the micellar aggregates in the soft gel behave like the rigid particles 

studied in [50]. However, the subsequent increase in the intensities after the local minimum shown in 

Fig. 34c has not been reported previously. It seems to be related to the alignment and rupture of large 

aggregates at very high strain amplitudes. From the experimental results shown in Fig. 34, it is clear 

that the flow-aligned microstructure of a soft gel and hard gel can be clearly distinguished by LAOS 

experiments.  
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Fig. 34. (a) LAOS pattern (type I +type IV) of a soft gel at 25℃ and microstructural interpretation: (1) clusters 

of micelles in the solution, (2) strain thinning (type I) due to the alignment of clusters with flow direction, (3) 

strong strain overshoot (type IV) due to the formation of larger clusters, (4) second strain thinning due to the 

break up or alignment with flow direction. (b) LAOS pattern (type III) of a hard gel and corresponding 

microstructural interpretation: (1) close-packed (cubic) array of micelles, (2) weak strain overshoot due to the 

break up of structures, (3) strain thinning due to layers sliding past each other in the flow direction. Fourier 

spectra as a function of strain amplitude: (c) soft gel (24℃), (d) hard gel (26℃). Reproduced by permission of 

Hyun et al. [6], copyright (2007) of Springer. 

 

5.3.3. Biopolymer gel  

LAOS characterization is also useful for probing the nonlinear rheological properties of 

biopolymer gels that are critical for the successful locomotion of gastropods. Snails and slugs utilize a 

rheologically complex fluid, called pedal mucus, as part of their locomotory strategy in order to 

adhere to and climb upon vertical surfaces [151]. This biopolymer gel acts as a yield stress fluid, in 

which the local magnitude of the applied stress reversibly transforms the mucus between an 

apparently solid and liquid state [151].  

Natural pedal mucus (the excreted slime trail) was collected from the slug Limax maximus. 

Similar analysis has been previously discussed in [68,152], and the same sample preparation and data 

acquisition protocols are used for the results presented here. The nonlinear behavior of these 

physically-crosslinked hydrogels is revealed by considering the distorted stress waveforms in the 

deformation-domain (Lissajous curves) and quantifying the higher harmonics with Chebyshev 

polynomials of the first kind. Strain-controlled LAOS tests are used with increasing strain amplitude 
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at a fixed frequency ω = 1 rad/s that is characteristic of actual molluscan locomotion. Strain 

amplitudes up to γ0 = 3.5 were imposed, but the sample was not fully yielded due to experimental 

limitations of the instrument (i.e. the maximum allowable angular displacement amplitude). Fig. 35 

displays the steady state oscillatory data in the form of Lissajous curves at each strain amplitude γ0. 

The closed 3D curves shown in Fig. 35a can be projected onto complementary 2D planes. The elastic 

perspective results from projection onto the plane of stress σ(t) vs. strain γ(t), shown in Fig. 35b. In 

such a projection, a purely elastic response would be a single-valued function σ(γ). By contrast, the 

Lissajous figure for the pedal mucus sample encloses a finite area on this plot, and thus viscous 

dissipation is also evident. The corresponding viscous perspective of the LAOS response is shown in 

Fig. 35d, in which the response curves are projected onto the plane of stress σ(t) vs. strain-rate )(tg& . 

The tools of stress decomposition can be applied to this data set to decompose the total stress into 

a superposition of elastic and viscous stresses, according to )()()( gsgss &¢¢+¢=t  (Section 4.3). The 

decomposed stresses are shown in Fig. 35c and 35e, in which these component stresses are single-

valued functions within their respective 2D projections. It is the non-constant slope of these 

component elastic and viscous stresses which immediately indicate the nature of the intra-cycle 

viscoelastic nonlinearities. For this pedal mucus sample, the elastic stresses are initially linear but 

develop a convexity as the strain amplitude increases. In this case the curves of elastic stress display 

intra-cycle strain stiffening. Similarly, the concavity of the viscous stress )(gs &¢¢  reveals the viscous 

nonlinearity, and in this case shear-thinning within a steady state oscillation is observed.   

The leading order elastic and viscous nonlinearities are quantified by the third-order Chebyshev 

coefficients 33 Ge ¢-=  and w/33 Gv ¢¢= , as described in Section 4.4. In Fig. 36 we display the n = 

1,3,5 coefficients for both the elastic and viscous stress decompositions. Each of the third-harmonic 

contributions, e3 and v3, initially appear with a dependence on 2
0g , which is expected from the 

integral expansion of the Boltzmann superposition principle [153], and is furthermore consistent with 

the observed behavior of the Q-parameter (Section 4.1.1), which effectively lumps together the 
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contributions of both e3 and v3 (Section 4.4).  It is the sign of the third-order Chebyshev coefficients 

which allows interpretation of the leading order nonlinearity. Fig. 36 is a log-log plot, and the sign of 

each data point is indicated by a filled symbol (positive value) or open symbol (negative value). For 

all strain-amplitudes, and for torque contributions above the critical noise threshold, it is found that 

e3 > 0 and v3 < 0. These results correspond to intra-cycle elastic strain-stiffening and viscous shear-

thinning, and this quantitative analysis is consistent with the visual analysis and interpretation of the 

decomposed elastic and viscous stress shown in Fig. 35c,e.  

The intra-cycle stiffening likely results from polymeric components within the pedal mucus gel 

which exhibit stretch-stiffening. However, the structure of the polymeric mucus gel must be more 

complicated than affine stretching of polymeric components to account for the distinct behavior 

revealed by the minimum-strain elastic modulus, 0/
=

¢º¢
g

gs ddGM , which decreases as a function of 

the imposed strain amplitude γ0. The LAOS decoupling of simultaneous overall softening with local 

stiffening was also reported recently for a filled elastomer system [154]. Such physical insight may be 

able to inform constitutive models of this and other materials tested with LAOS, as recently 

demonstrated with nonlinear constitutive models to capture the biomechanics of hagfish gel [155] and 

gluten dough networks [156].  
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Fig. 35. Strain-controlled LAOS response of natural pedal mucus from the slug Limax maximus at ω=1 rad/s. 

(a) steady state 3D response curves showing measured stress as a function of the orthogonal oscillatory inputs 

of strain and strain-rate, i.e. )](),([ tt ggs & . The closed 3D curves shown in (a) can be projected onto planes 

which emphasize an elastic interpretation (b), or a viscous interpretation (d). The response can be decomposed 

into the components of elastic stress )(gs ¢  as shown in (c), or the viscous stress contribution )(gs &¢¢  as 

shown in (e). The ordinate scale in Fig. 35e is deliberately chosen to be the same as in part (c), emphasizing the 

dominant elastic response in the mucus.  
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Fig. 36. Chebyshev analysis (Section 4.4) applied to the measured data shown in Fig. 35. (a) Elastic Chebyshev 

coefficients, and (b) Viscous Chebyshev coefficients. The sign of the third-order coefficients reveals a physical 

interpretation of the leading order nonlinearities, here 3e > 0 indicates elastic strain-stiffening and 3v < 0 

reveals viscous shear-thinning. Symbols in light gray indicate data points which are below a critical torque 

measurement threshold, Tmin=0.1 μNm.  

 

6. Microstructural Probes under LAOS flow  

Substantial efforts have been made to correlate the measured relationship between the nonlinear 

mechanical response in LAOS and the underlying microstructural orientation or molecular topology 

of the viscoelastic material. The macroscopic behavior of any complex fluid depends strongly on its 

microscopic structural state, thus an intimate relationship exists between rheological properties and 

microscopic structure. As an example, for flexible polymer chains under shear, orientational 

anisotropy is the structural origin of the shear-thinning in the macroscopic stress and the thermal 

motion of the chains which erases this anisotropy results in stress relaxation properties [157]. 

Consequently, quantitative prediction of both molecular scale structure and macroscopic flow 

properties in realistic flow fields is a central goal of research in complex fluids [158]. 

However, purely rheological methods provide only macroscopic measurements (e.g. the total 

measured torque or normal force response). This means that macroscopic rheological techniques can 

only be used to determine continuum-level averaged material functions, in which case any 



 105

information regarding microscopic or molecular structure is inherently indirect. Simultaneous 

determination of additional information on the microstructure or even molecular level structure is 

often needed for a deeper understanding of rheological behavior. Thus, several methods have been 

developed to cross this bridge with respect to the length scales involved. One example is the 

simultaneous measurement of rheological and optical properties, e.g. via optical microscopy, light 

scattering or measurement of birefringence and dichroism. Rheo-optics has been widely utilized in 

combined rheological and microstructural investigation of various materials [159,160]. Several 

companies have introduced various rheo-optical tools, for example, optical microscopes (Thermo 

Electron Co.: HAAKE RheoScope rheometer; Anton Paar: Physica MCR rheometer; Malvern 

Instruments: Bohlin rheometer), flow-birefringence measurement (TA instruments: ARES), and small 

angle light scattering (SALS) (Anton Paar: Physica MCR rheometer).  

There have also been numerous investigations designed to investigate microscopic or molecular 

scale morphology under various flow conditions with various optical tools, e.g. SALS, SANS (small-

angle neutron scattering), SAXS (small-angle X-ray scattering), flow-induced birefringence (FIB) etc. 

For example, Safinya et al. [161] investigated the nematic to smectic-A phase transition of a liquid 

crystal (LC) under shear flow with synchrotron X-rays. Bent et al. [158] investigated the flow field of 

an entangled polymer melt through a planar contraction, typical of many polymer processes, by using 

both optical imaging and SANS. Dootz et al. [162] demonstrated shear-induced alignment within 

microchannels by utilizing in-situ SAXS measurements. Block copolymer melts and solutions have 

also been investigated in great detail using LAOS. For example, Chen et al. [163] studied the flow 

alignment of a diblock copolymer melt under LAOS flow with in-situ birefringence measurements 

and ex-situ SAXS measurements. Wiesner [164] reviewed the effects of LAOS deformation (as a 

function of both frequency and strain amplitude) on the orientation behavior of lamellar structures of 

block copolymers with ex-situ SAXS measurements. Hamley and coworkers [165,166] have 

examined the effect of flow fields on the orientation of block copolymer nanostructures in both melt 
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and solution with in-situ SANS and SAXS measurement. Tapadia et al. [77] reported shear banding 

with an entangled polymer fluid under LAOS flow at various frequency and strain amplitude using a 

particle-tracking velocimetry method. In addition to the above examples, there have been many other 

studies conducted to investigate the effect of flow on the microscopic or molecular scale structure 

using a variety of optical and scattering tools.  

For rheo-optical methods to be applied, the material must be (at least partially) transparent at the 

interrogation wavelengths being utilized. More importantly, the rheo-optical measurement usually 

detects just an isochronal average of the material microstructure, and molecular motion is observed as 

a time-dependent change of this average [167]. Furthermore there are constraints with respect to the 

size of the observed objects. A detailed review of all these studies is beyond this review article. 

Therefore, in this section, we introduce and focus on two different in-situ combination setups, i.e. the 

rheo-dielectric setup and the rheo-SAXS setup in order to illustrate the effect of LAOS deformation 

on the sample microstructure.  

 

6.1. Rheo-Dielectric setup 

As a complementary method to rheo-optical techniques, the rheo-dielectric combination is 

applicable to any material having permanent electrical dipoles or charge-induced electrical dipoles. 

Rheo-dielectric setups allow for simultaneous measurements of dielectric and viscoelastic properties 

of a sample subjected to external electric and deformation fields [167], and have been used to study 

liquid crystals [168-170], the dynamics of polyisoprene chains [145,167,171], block-copolymers 

[145], carbon nanotube networks dispersed within polymer melts [172] and carbon black suspensions 

[173]. This method has also been extended to the nonlinear regime under LAOS deformations 

[82,168,174].  

The dielectric property reflects the orientational correlation of two segments at two separate times 

(e.g. t0 = 0 and t1 = τ) and can be converted to provide measures of the motion and fluctuations of the 
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dipolar constituents with respect to the molecular axis. The chain conformations and local motions are 

differently averaged in the viscoelastic and dielectric properties [175]; thus, the combination of 

rheological and dielectric property measurements provides distinct information compared to 

mechanical measurements alone. This includes detailed information about the relationship between 

local molecular relaxation dynamics and the corresponding macroscopic rheological response, as well 

as insight into the evolution of molecular conformation, specifically stretch and orientation. In 

addition to polymer chain dynamics, the rheo-dielectric combination can be used to investigate shear-

induced changes in various materials, e.g. in block copolymers or liquid crystals under shear.  

A polymer chain is called type-A if it has monomer dipoles oriented parallel along the chain 

backbone [176]. Therefore, for type-A polymers the overall electric dipole of the molecule is directly 

related to the end-to-end vector orientation and its fluctuations. Consequently the spectra reflect the 

global chain motion [177]. These specific dielectric features of type-A chains have been successfully 

utilized in recent studies to reveal interesting equilibrium and non-equilibrium dynamics of linear and 

branched polymer chains [145,167,171]. Furthermore, the in-situ combination of dielectric and 

mechanical methods reveals quite novel dynamic features [145]. Watanabe et al. [167,171,175] have 

studied polymer chain dynamics under steady shear in this way. They analyzed their rheo-dielectric 

and viscoelastic data for entangled PI melts within the molecular picture of convective constraint 

release (CCR) induced by dynamic tube dilation (DTD). The rheo-dielectric method also allows the 

investigation of global chain dynamics under LAOS flow. The effect of LAOS on the dielectric 

response of 1,4-cis-polyisoprene as a type-A polymer has been studied in some detail [82,168,174]. 

For the rheo-dielectric experiments, a new setup was built using a combination of the ARES-

Rheometer (TA Instruments) and a very sensitive dielectric analyzer (Alpha analyzer from 

Novocontrol Technologies) [82,174].  

Rheological measurements were carried out on a strain controlled rheometer using a modified 

parallel plate fixture and oven (Fig. 37). FT-Rheology was conducted as described in section 4.1 and a 
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separate PC was used to control the Alpha-analyzer. Fig. 37a shows the experimental setup of the 

combination of a rheometer and a dielectric analyzer in situ. To realize this rheo-dielectric setup with 

a conventional rheometer, a new measuring plate and fixture had to be designed and constructed and 

some parts of the oven were also modified (see Fig. 37b). Fig. 38a displays the dielectric spectra as a 

function of ωdiel/2π under LAOS with different strain amplitudes for a PI sample (Mw = 55K) at 10˚C. 

The intensity decreases with increasing strain amplitude, but the peak position and shape of the curve 

remain unchanged. This means that LAOS affects neither the mean relaxation time nor the relaxation 

time distributions of the normal mode process. Fig. 38b shows the dielectric strength (Δε) as a 

function of strain amplitude. It was observed that Δε shows significant changes as the shear strain 

amplitude is increased. At small or medium strain amplitude (γ0 = 0.2 and 0.4) the dilectric strength 

Δε remains unchanged from the value observed under no-flow conditions; however, for strain 

amplitude between γ0 = 0.4 and γ0 = 1, it decreases rapidly before leveling off and approaching an 

almost constant asymptote for strain amplitudes γ0 > 1.  

 

    

                             (a)                          (b) 

Fig. 37. (a) Experimental setup for the in situ combination of rheometry and dielectric spectroscopy. (b) 

Schematic 3-D view of the measurement geometry, which consists of parallel electrode plate, ceramic insulation, 

and bolts for connecting the measuring plate with the electronics. Reproduced by permission of Hyun et al. 

[174], copyright (2009) of Elsevier. 
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Fig. 38. (a) The dielectric loss ε˝ as a function of dielectric frequency under LAOS with PI 55K at 10℃. The 

LAOS tests were carried out at a rheological test frequency ωrheo/2π = 11.45Hz. (b) The dielectric strength as a 

function of strain amplitude is divided into three regions for the PI 55K, an initially constant value (0 <γ0 < 0.4), 

decreasing (0.4 < γ0 < 1), and asymptotic plateau at high strains (γ0 > 1). Reproduced by permission of Hyun et 

al. [174], copyright (2009) of Elsevier. 

 

6.2. In-situ Rheo-SAXS setup  

The combination of rheometry and X-ray scattering allows investigation of the effect of 

macroscopic shear on molecular ordering at the nanometer scale. Since this question is of general 

interest, there have been many in-situ rheo-SAXS experiments using a range of test geometries, 

including Couette cells [105,161,178-180], a toothed geometry [181,182], annular cone and plate 

[183], a conventional plate-plate geometry by reflecting X-ray beam [184], and others [106,185]. 

These in-situ Rheo-SAXS setups offer great potential for investigating the shear-induced changes in 

microstructure of various complex fluids under nonlinear oscillatory shear flow. The advent of very 

bright x-ray sources will enable development of time-resolved experiments that provide a large 

amount of new information regarding non-equilibrium chain dynamics and evolution in orientation 

and shape of micro- or nanostructure during nonlinear oscillatory shear flow. An in-situ Rheo-SAXS 

setup can directly correlate this structural information with changes in the nonlinear coefficients 

obtained from LAOS, e.g. the ratio I3/1 calculated from FT-rheology.  
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7. Concluding remarks 

In this article we have reviewed the current status of large amplitude oscillatory shear (LAOS) 

rheological measurements. The primary focus has been with respect to strain-controlled shear tests 

and measurement of the oscillating nonlinear shear stress and first normal stress difference for a wide 

range of complex fluids, with a primary focus on polymeric systems. LAOS tests are substantially 

more complex rheological probes than small amplitude oscillatory shear (SAOS) tests because of the 

non-sinusoidal and nonlinear system response. The complexity of the material response to LAOS is 

both the strength and weakness of the technique. The additional information obtained can help 

characterize the response of complex fluids to nonlinear deformation, but it also makes the results 

more difficult to interpret.  

Recent hardware and software advances have contributed to impressive advances in quantitative 

analysis of LAOS measurements. These quantitative techniques enable systematic investigation of 

nonlinear responses under large amplitude deformation; consequently, LAOS is becoming adopted 

more broadly. As a result of the very recent technical implementation of high performance LAOS 

techniques in commercial rheometers, the spread of these techniques will be further facilitated. 

Recent uses of LAOS measurements, not included in this review, include fitting nonlinear parameters 

for constitutive models, e.g. the Giesekus model [186] and nonlinear response of dense colloidal 

suspensions under oscillatory shear using Mode-coupling theory and experiments [187]. Broader 

experimental application is also being found by modifying the LAOS ideas reviewed here. For 

example, recent reports have demonstrated the use of controlled shear stress input with analysis of the 

resulting nonlinear strain signal [188], and the use of large amplitude oscillatory extension tests [189]. 

Experimentally, one continuing difficulty is ensuring homogenous deformation. Recent work has 

shown the ability to simultaneously observe LAOS behavior while confirming homogeneous 

deformation [190]. LAOS responses in concert with non-homogenous deformation (shear-banding) 

have also been considered, e.g. for a nonlinear model for entangled wormlike micellar solutions [191]. 
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The theoretical underpinnings of the nonlinear responses observed under LAOS flow for different 

complex fluids (e.g. polymer melts or solutions, dispersed systems, and blockcopolymer systems) are 

still poorly understood. The mechanisms that can lead to even harmonic generation in the shear stress 

also beg for improved theoretical understanding. Finally we also note that the use of complementary 

in situ microstructural probes, e.g. rheo-SAXS, rheo-dielectric configurations etc. will help to more 

deeply connect the measured macroscopic response with the microstructural origin of nonlinear 

viscoelastic behavior.  
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Appendix 

A. Stress direction and deformation direction 

In simple shear flow, the deformation gradient in the sample is given by 21eeIF g+=  where I is 

the identity tensor, g is the shear strain and ie  are the orthonormal base vectors inherent to the 

reference frame under consideration. Changes in the chosen coordinate system should not alter the 

physical phenomena that arise from the deformation. Consider a physical process that is described by 

two coordinate systems such that 

   332211 ,, eeeeee =¢-=¢-=¢                      (A1) 

Because of the symmetry of the simple shear flow, it follows that 
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In Eq. (A2), the summation convention was used. Since the stress (τ) arising from the simple 

shear depends on the deformation history, the nature of the tensor and the symmetry of the simple 

shearing deformation lead to 
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Thus, the only non-zero components of the stress tensor are the diagonal components and the off-

diagonal element σ12. Hence, we have 

 )( 122112333322221111 eeeeeeeeeeσ ++++= ssss   (A4) 

Eq. (A4) is valid for shear flows such as those generated between rotating parallel disks, those 

between a rotating cone and a stationary plate and those generated in capillary rheometers. In case of 

oscillatory shear flow, the stress is analyzed in the steady periodic state, therefore stress can be 

expressed by an algebraic function of deformation rather than a functional of deformation. Hence we 

can write 

   ),,,( )2()1( Lgggσσ =                             (A5) 
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where 

   n

n
n

td
d)( gg =                                  (A6) 

Because shear strain is given by twgg sino= , we know that all time derivatives of shear strains 

are not independent. This allows us to write Eq. (A5) in simpler form: 

   ( )yx,σσ =                                  (A7) 

where tx wg sinoº  and tty ddcos 1
o gwwg -== . 

If the shear direction is changed, i.e., xx -®  then we know that yy -® . This change of the 

direction of shearing is equivalent to a change of the base vectors as follows 

   332211 ,, eeeeee ¢=¢=¢-=¢                         (A8) 

Eq. (A8) and Eq. (A4) imply 

  

))(,(),(

),(),(

))(,(),(),(

122112

3

1

12

3

1

122112

3

1

eeeeee

ee

eeeeeeσ

+-=

+¢¢=

+--+--=--

å

å

å

=

=

=

yxyx

yxyx

yxyxyx

k
kkkk

k
kkkk

k
kkkk

ss

ss

ss

         (A9) 

Finally, we note that the shear stress changes its sign according to that of the imposed deformation 

whereas the normal stress difference does not. Therefore, the symmetry of shear stress and normal 

stress difference are given as follows, 

)](),([)](),([ 1212 tttt ggsggs && -=--     (A10) 
)](),([)](),([ 2,12,1 ttNttN gggg && --=     (A11) 

where N1,2 = first and second normal stress differences respectively. 

B. Odd harmonics of shear stress in oscillatory shear 

åå
= =

=
0 0

)()()(
i j

ji
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From Appendix A, the shear stress must be an odd function of the direction of shearing 

deformations.  

)](),([)](),([ tttt ggsggs && -=--                        (B2) 
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Applying an oscillatory shear flow, the strain and strain-rate can be described as follows 

tt wgg sin)( 0= , tt wwgg cos)( 0=& .                        (B4) 

Inserting Eq. (B4) into Eq. (B3) results in the following expression for the shear stress: 
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Sine and cosine functions are expressed as follows: 
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From the above equation, 
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Inserting Eq. (B9) and Eq. (B10) into the equation for stress given in Eq. (B6) results in the 
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following expression for the stress: 
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Therefore, we simply summarized the shear stress with the odd higher-order terms in the 

nonlinear regime as follows:  
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C. Giesekus and UCM model 

Giesekus attempted to derive a theory for concentrated solutions or melts by starting from the simple 

dumbbell theory for dilute solutions [122]. The Giesekus model is given by 

Dσσσσ G
G

211
=×++

Ñ

l
a

l
 or Dσσσσ h

h
lal 2=×++

Ñ
.                  (C1) 

Here, λ is the relaxation time, G is the modulus, η is the viscosity (λ = η/G) and the superscript 

Ñ denotes the upper convective time derivative, which is defined as follows; 

( )Tv v v
t

Ñ ¶
= + ×Ñ - Ñ × - ×Ñ

¶
σ σ σ σ σ ,                         (C2)                                     

where — is the stress tensor, vÑ  is the velocity gradient and D is the rate of deformation tensor. 

The parameter α is the “mobility factor” which can be associated with anisotropic Brownian motion 

and/or anisotropic hydrodynamic drag [2]. Maximum and minimum anisotropy correspond to α=1 

and α=0, respectively. If α exceeds unity, the stress keeps on growing rather than relaxing when 

deformation ceases. When α=0 (isotropic drag), the upper-convected Maxwell (UCM) equation is 

recovered [122]. 
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D. Q0 at low frequency 

Pearson and Rochefort [20] calculated the nonlinear coefficients using the Doi-Edwards model for 

entangled polymer systems: 
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The low-frequency limits of the dynamic moduli are 

2 2

11 2 6
,

3 8( )
5

d

e p odd

kTG
N p

w trw
p

¥

¢ @ å                                     (D5) 

 11 2 4
,

3 8( )
5

d

e p odd

kTG
N p

wtrw
p

¥

¢¢ @ å                                     (D6) 

4 4

33 2 10
,

123 8( )
28

d

e p odd

kTG
N p

w trw
p

¥ -¢ @ å                                 (D7) 

3 3

33 2 8
,

23 8( )
28

d

e p odd

kTG
N p

w trw
p

¥ -¢¢ @ å                                  (D8) 

Using the definition of the nonlinear coefficient Q0 from Eq. (31), the limiting response at low 

frequencies for the Doi-Edwards model is given as follows,  
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Therefore, a quadratic scaling (Q0 µ ω2) in the low-frequency limit can be assumed for the nonlinear 

coefficient Q0(ω). For the specific case of the Doi-Edwards mode using standard formulae for 

summation of the individual terms in eqs. (D5) – (D8), we find: 

2
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which is in good agreement with Fig. 12b of Hyun and Wilhelm [42]. 
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List of symbols 

lA : Coefficient of linear response function from characteristic function   

rA : Coefficient of periodic rectangular function from characteristic function   

tA : Coefficient of periodic triangular function from characteristic function   

stA : Coefficient of periodic saw tooth function from characteristic function  

a : Creation rate constants in Network model  

pqa : In-phase expansion coefficients at nonlinear oscillatory regime (p,q=1,odd) 

b : Loss rate constants in Network model  

pqb : Out-of-phase expansion coefficients at nonlinear oscillatory regime (p,q=1,odd) 

ijC : Taylor or polynomial expansion coefficient, L,3,2,1, =ji   

D : The rate of deformation tensor 

De : Deborah number (= cww / )  

ne : nth elastic Chebyshev coefficients (n=1,odd) 

)(tf : Creation rate function in Network model 

)(tg : Loss rate function in Network model 

G¢ : Elastic (storage) modulus at linear regime (SAOS) [Pa] 

G ¢¢ : Viscous (loss) modulus at linear regime (SAOS) [Pa] 

nG¢ : Nonlinear elastic (storage) modulus from a Fourier series (n=1,odd)  

nG ¢¢ : Nonlinear viscous (loss) modulus from a Fourier series (n=1,odd)  

nmG¢ : Nonlinear elastic modulus from a power series (n,m=1,odd) 

nmG ¢¢ : Nonlinear viscous modulus from a power series (n,m=1,odd) 
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NG¢ : Generalized elastic modulus 

SRG¢ : Single-wave regression fit elastic modulus 

LRG¢ : Linear regression fit elastic modulus 

PRG¢ : Polynomial regression fit elastic modulus  

MG¢ : The minimum-strain elastic modulus 

LG¢ : The largest-strain secant elastic modulus 

KG¢ : The largest-strain tangent elastic modulus 

0
NG : Plateau modulus 

nI : nth harmonic intensities from FT-Rheology (n=1,odd)  

11 // nn IorII : Relative intensities from FT-Rheology (n=3,odd) [-] 

iN : First normal stress difference at i=1 and second normal stress difference at i=2  

)2,1,0(2, L=kkiN : Nonlinear normal stress differences i=1 or 2  

),( 0 wgQ : Nonlinear parameter from FT-Rheology [-] 

)(0 wQ : Zero-strain nonlinear parameter or intrinsic nonlinear parameter from FT-Rheology [-] 

1Q : The first quarter cycle torque (stress) signal integration 

2Q : The second quarter cycle torque (stress) signal integration 

NS / : The signal to noise ratio 

t : Time [s] 

nT : Chebyshev functions  

vn: nth viscous Chebyshev coefficients 
 

Greek letters 

a : The mobility factor in Giesekus model 
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d : Phase angle at linear regime (SAOS) [rad or o] 

nd : nth phase angle from shear stress at nonlinear regime (n=1,odd) [rad or o] 

),,(, L2102 =kkid : kth phase angle from normal stress difference i=1 or 2 [rad or o] 

h : Viscosity  

0h : Zero shear viscosity  

sh : Solvent viscosity in Giesekus model 

ph : Polymer viscosity in Giesekus model 

g : Shear strain [-] 

0g : Shear strain amplitude [-] 

g& : Shear rate [s-1] 

l : Relaxation time [s] 

s  or 12s : Shear stress  

σ : Stress tensor  

Ñ

σ : Upper convected stress tensor  

ijs : Stress tensor component, i,j=1,2,3  

maxs : Maximum shear stress 

ns : nth harmonic shear stress at nonlinear regime (n=1,odd)  

s ¢ : Elastic shear stress (LAOS decomposition)  

s ¢¢ : Viscous shear stress (LAOS decomposition) 

sσ : Solvent stress tensor in Giesekus model  

pσ : Polymer stress tensor in Giesekus model  
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t : Characteristic relaxation time  

w : Angular frequency [rad/s] 

cw : Crossover angular frequency at GG ¢¢=¢ in SAOS test [rad/s] 

 

 


