Controllable adhesion using field-activated fluids

Ewoldt, R.H., Tourkine, P., McKinley, G.H. and Hosoi, A.E.


We demonstrate that field-responsive magnetorheological (MR)  fluids can be used for variable-strength controllable adhesion. The adhesive performance is measured experimentally in tensile tests (a.k.a. probe-tack experiments) in which the magnetic field is provided by a cylindrical permanent magnet. Increasing the magnetic field strength induces higher peak adhesive forces. We hypothesize that the adhesion mechanism arises from the shear resistance of a yield stress fluid in a thin gap. This hypothesis is supported by comparing the experimentally measured adhesive performance to the response predicted by a lubrication model for a non-Newtonian  fluid with a field-dependent
yield stress. The model predictions are in agreement with experimental data up to moderate field strengths. Above a critical magnetic field strength the model over-predicts the experimentally measured values indicating non-ideal conditions such as local fluid dewetting from the surface.