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Abstract – In the past twenty years, shear-banding flows have been probed by various techniques,
such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data
collected exhibit unexplained spatio-temporal fluctuations. Recently, it has been suggested that
those fluctuations originate from a purely elastic instability of the flow. In cylindrical Couette
geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic
polymer solutions. In this letter, we describe how the criterion for purely elastic Taylor-Couette
instability should be adapted to shear-banding flows. We derive three categories of shear-banding
flows with curved streamlines, depending on their stability.

Copyright c© EPLA, 2011

“The stability of viscous liquids contained between two
rotating cylinders” of radii Ri and Ro —or Taylor-Couette
(TC) flow— is the benchmark problem for instability
of flows with curved streamlines. It was the title of a
seminal paper by Taylor in 1923 [1], wherein the author
showed that the purely annular flow eventually becomes
unstable. Above a critical rotation speed, a secondary
vortex flow sets in, with periodicity λ∼ d along the
vorticity direction, where d≡Ro−Ri. The original study
by Taylor concerned simple incompressible Newtonian
fluids. But many fluids are non-Newtonian and exhibit
viscoelastic contributions to the stress [2]. In 1990, Larson,
Shaqfeh and Muller showed that the TC flow of polymer
solutions could also become unstable to a Taylor-like
instability [3]. The kinematics of the unsteady flow are
roughly similar to those of the Newtonian case, i.e.
after a critical threshold, Taylor vortices appear, but the
destabilizing mechanisms are very different, depending on
two different kinds of non-linearities.
It is well known that Newtonian fluids can exhibit

increasingly unstable flows for large values of the Reynolds
number. When only the inner cylinder is rotating, the
Reynolds number depends on the rotation rate of the

(a)E-mail: sandra.lerouge@univ-paris-diderot.fr

inner cylinder Ωi, such that Re≡ ΩiRidν , where ν is the
kinematic viscosity of the fluid [4]. In a simple Newtonian
fluid, the constitutive relation is the simple linear
relation between stress and shear rate. Then, the only
non-linearity in the equations of motion comes from the
advective term on the velocity (v ·∇)v, in the equation
of motion to ensure consistency between Eulerian and
Lagrangian descriptions of fluid motion. The Reynolds
number Re is linked to the relative magnitude of this
term with respect to the dissipation terms [4].
In polymer solutions, and in many non-Newtonian

fluids, the primary non-linearity usually comes from the
constitutive relation rather than from the momentum
balance. The constitutive equation is dynamical, i.e. it
relates to the stress relaxation dynamics and typically
includes a convected derivative on the stress T [2]. In
this convected derivative, consistency between Eulerian
and Lagrangian descriptions requires a convective term,
now applied on the stress (v ·∇)T, and material frame
independence requires additional terms of similar dimen-
sionality ∇v ·T [2,3]. The dimensionless group linked to
the magnitude of those new non-linear terms is the Weis-
senberg number Wi≡ τ γ̇, where γ̇ ≡ ΩiRid is the typical
shear rate in the flow and τ is the stress relaxation time [5].
The similarity between Wi and Re is more apparent by
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defining Re as a function of the viscous diffusion time
τvd ≡ d

2

ν , Re= τvdγ̇ [6]. Re controls the magnitude of the
“inertial non-linearity”, while Wi controls the magnitude
of the “elastic non-linearity” [7]. In general, both Re and
Wi are non-zero, but in many practical cases for polymer
solutions and melts, the elasticity number E ≡ WiRe =

τ
τvd
is

large, leading to negligible inertial effects.
In the simplest TC flow, where only the inner cylinder

is rotating, and in the small gap limit, i.e. d%Ri,
there exist two dimensionless groups, one relevant to the
“purely inertial TC instability” Σi ≡

√
ΛRe—derived and

observed by Taylor [1]— and one to the “purely elastic TC
instability” Σe ≡

√
ΛWi—derived and observed by Larson

et al. [3]. Here, Λ≡ d
Ri
is the geometrical ratio linked to the

streamline curvature, necessarily finite for the instability
to be linear [1,7]. Note that the Taylor number is usually
defined as Ta≡Σ2i [4]. In the purely inertial case, the flow
becomes unstable for Σi >m′. In the purely elastic case,
the flow becomes unstable for Σe >m. Both m′ and m are
coefficients of order unity, with precise values that depend
on the boundary conditions [4,8].
In this letter, we extend the expression of the insta-

bility criterion for viscoelastic “shear-banding flows”.
Shear-banding is yet another curious but ubiquitous
phenomenon occurring in complex fluids [9,10]. When
a fluid material is sheared, the strain rate gradient can
be very large in narrow zones of the sample. Adjacent
domains of markedly different strain rates are identifi-
able. This phenomenon has been observed in a variety
of systems but in this letter, we focus on the steady
shear-banding phenomenon of “wormlike micelles” [9,10].
Entangled wormlike micellar solutions are model rheolog-
ical fluids due to their linear Maxwellian behaviour for
small deformations, characterized by a single relaxation
time τ and elastic modulus G0 [2]. Furthermore, the
robustness of their shear-banding behaviour makes them
attractive for the general study of banding phenomena in
complex fluids [11]. Roughly speaking, a shear-banding
flow is reminiscent of a first-order phase transition. Above
a lower critical Weissenberg number Wil, the shear stress
plateaus. Then, until a second higher critical Weissenberg
number Wih, the flow is inhomogeneous, split into two
bands with local Weissenberg numbers Wil and Wih.
To leading order, for Wi∈ [Wil,Wih], an increase in the
value of the macroscopic Weissenberg Wi only increases
the proportion α∈ [0, 1] of the high-Wi band, following
a “lever rule” Wi( αWih+(1−α)Wi1 [9,10]. This
scenario has been roughly confirmed experimentally with
various techniques e.g., pure viscometry, velocimetry,
birefringence, etc. [10] but many fluctuating behaviours
were observed in all the gathered data [10].
In a series of recent experiments [12–15] we have

shown that the interface between the bands undulates
due to an underlying secondary vortex flow that is
mainly localised in the high Weissenberg number (Wih)
band. Elastic instabilities similar to the one observed in
polymer solutions could be the source of many of the

observed spatio-temporal fluctuations. This rationale
was reinforced by a recent linear stability analysis of
the diffusive Johnson-Segalman (dJS) model [16], a
viscoelastic constitutive model widely used to study
shear-banding flows [17]. In this letter we wish to ratio-
nalize experimental data on the shear-banding TC flow of
wormlike micelles by determining the appropriate form of
the instability criterion in the case of shear-banding flow.

Rheological and geometric scaling of purely
elastic flow instabilities. – In the introduction, we
discussed the TC instability of the purely Newtonian fluid
and the purely elastic fluid, which are both idealizations
that facilitate our analysis, but which capture only the
behaviour of very specific fluids. In general, however, non-
Newtonian fluids can exhibit other attributes such as a
Newtonian solvent contribution to the stress, a spectrum
of relaxation times instead of a single relaxation time
τ , and/or “shear thinning”, i.e., a decreasing viscosity
with increasing shear rate [2]. Experiments conducted on
such non-Newtonian fluids have documented the effects of
such fluid rheology on the elastic TC instability [18]. To
rationalize these observations as well as to generalize the
elastic instability criterion to different kinds of flows with
curved streamlines, McKinley and coworkers established a
general criterion for elastic instabilities [19,20]. If Re( 0,
then, viscoelastic fluids are unstable if N1Txy

#
R >m

2, where

N1 ≡ Txx−Tyy is the first normal stress difference [2],
Txy is the shear stress, & is the characteristic distance over
which perturbations relax along a streamline [19], and R
is the characteristic radius of curvature of the streamlines.
For a purely viscoelastic fluid, &≡Uτ ∼ΩiRiτ =Wid,
R∼Ri and N1

Txy
= N1
Tθr
∼Wi [19] and we recover the

criterion of Larson et al. for the purely elastic instability:
ΛWi2 >m2⇔

√
ΛWi>m [3].

In turn, framed with respect to the general criterion
derived by McKinley et al. [19,20], our goal is to determine
the functional form of the dimensionless ratio N1

Txy
#
R in

terms of measurable quantities in the case of shear-
banding flows. By analogy with polymer solutions, we
would expect that this ratio can be expressed in terms
of a relevant geometric ratio and an appropriately defined
Weissenberg number.

Effective gap. – The relevant geometric ratio can
indeed be inferred from experiments through the notion
of an effective gap. In our recent experiments [14,15],
we recognized that the vortices were mainly localized in
the high-Wi band, and that each interfacial wavelength
between the bands corresponded to a pair of counter-
rotating vortices [14], as illustrated in fig. 1(a). In our
previous publications, we had noticed that the wavelength
increases upon the increase of the global shear rate, so
one could infer the scaling λ/d∼Wi [13,14]. Then, by
combining this scaling and the lever rule we can establish
that λ= nαd instead of λ= nd, where n is a number of
order unity, whose precise value depends on the boundary
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Fig. 1: (Color online) Effective gap scaling. (a) Overlay of two
visualization techniques showing the secondary vortex flow in
the high-Wi band for α! 0.4 [14]. (b) Wavelength scaling,
following λ= nαd, with n= 3.8± 0.1. For α> 0.6, the spatio-
temporal dynamics of the vortex flow do not allow us to extract
a single wavelength [13,14]. For α< 0.05, the size of the band
is smaller than our spatial resolution.

conditions. The extent of the high-Wi band acts as the
effective gap. Increasing the global Wi increases α and so
increases λ. The validity of this scaling is shown in fig. 1(b)
by re-plotting 2λ/d, i.e. twice the wavelength of vortices,
against α instead of Wi [13].

Local Weissenberg number. – As explained in the
introduction, in a shear-banding flow, the global value
of Wi is not a good measure of the local Weissenberg
number in the parts of the flow that are unstable. Instead,
the dimensionless group relevant to the flow instability
is the local value of Wih in the high shear rate band.
In the instability criterion, one must replace Wi by
Wih. Accordingly, the criterion for elastic instabilities in
shear-banding flows should involve the term

Σ∗ =
√
αΛWih. (1)

It has been observed in experiments that increasing
the concentration (c) of surfactant, or decreasing the
temperature (θ) tends to increase the value of Wih.
This fact is illustrated in fig. 2(a) in the flow curves of
two different surfactant systems [21,22]. Note that as c
increases, the dimensionless stress plateau decreases and
its range of Weissenberg numbers increases. In particular,
Wih shifts to higher values. For the most concentrated
solutions, viscometric measurements had to be aborted
because the sample was ejected from the rheometer. We
believe that this phenomenon is due to an instability of
the free surface of the system, driven by the underlying
bulk viscoelastic instability. However, we also note that
the instability of the free surface could be triggered by
second normal stress differences [23]. From eq. (1), we
note that solutions of high c or at low θ are more likely
to be unstable, owing to the larger values of Wih.

The case of dJS. – So far, we have suggested a
new relevant dimensionless group for elastic instabilities in
shear-banding flows, without appealing to any particular

Fig. 2: (Color online) Experimental and theoretical “flow-
phase diagrams” [21]. (a) Open symbols: Measured dimen-
sionless flow curves for varying [CTAB] = 3, 7, 10, 12, 15,
17, 18, 22wt.% at fixed [NaNO3] = 0.3M (replotted data
adapted from Cappelaere et al. [22], permission from Springer).
Closed symbols: Measured dimensionless flow curves for vary-
ing [CPCl+0.2NaSal] = 2, 4, 6, 8, 10, 12, 21wt.% (courtesy of
Berret et al. [21]). The arrow points in the direction of higher
c or lower θ [21]. In both cases, measurements were done using
a cone-and-plate device. The flow curves of the two systems do
not overlap, even when the stress and the shear rate are scaled
with G0 and τ , respectively, i.e. in the framework of the dJS
model, the two systems have a different value of the coefficient
“a”. (b) Analytical dimensionless flow curves obtained for the
dJS model in simple shear [24]. The different flow curves are
obtained for varying η. The color map gives the value of the

scaled dimensionless criterion Σ̃dJS ≡ΣdJS

√

1−a2

Λ . The arrow

points in the direction of lower η.

rheological model. To reinforce our argument, we can
investigate the form of the instability criterion for the
diffusive Johnson-Segalman (dJS) model, which has been
widely used to study shear-banding flows [17]. Recently,
it has even been used in numerical simulations confirming
the presence of a secondary vortex flow triggered by a
bulk viscoelastic instability in the high-Wi band [16]. In
this model, the stress is taken as the sum of a “polymeric”
part Tp and a “solvent” part Ts. The total viscosity of
the fluid is the sum of a polymeric and solvent part η0 =
ηp+ ηs, with the zero shear rate value of the polymeric
viscosity given by η0p ≡ τG0. The polymeric stress varies
non-monotonically with imposed shear rate and goes to
zero at large Wi, such that ηs is the asymptotic value of
viscosity for Wi→∞.

44004-p3
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To evaluate the expression N1
Txy

#
R , we need an analytic

expression for the stress ratio in the high-Wi band. Let us
symbolize this ratio by [ N1Txy ]h. In the small gap limit, we

can assume that the stress profile across the gap is close
to the profile in a plane Couette geometry. We can then
use the inhomogeneous plane Couette solution recently
derived by Sato et al. [24].
In the plane Couette flow of the dJS model, it is common

to express the total shear stress as Txy =
G0√
1−a2

σ, and

the first normal stress difference as N1 =
2G0
1−a2N [24]. The

parameter a is the “slip parameter” of the dJS equation.
Shear-banding happens if |a| ,= 1 and η≡ ηsη0p <

1
8 [17,24].

N is a dimensionless normal stress difference and σ is a
dimensionless total shear stress. In the plane Couette flow,
the momentum balance imposes that σ is a constant across
the gap, but N(y) is a function of the position y in the
gap [24]. For steady flow in the shear-banding regime, Sato
et al. established that

σ= 3

√

η− η2√
2
, (2)

N =KS =K(σ− ηK), (3)

where K(y)≡
√
1− a2Wi(y) and S(y)≡

√
1− a2 T

p
xy(y)

G0
are, respectively, a dimensionless shear rate and a
polymeric shear stress, both functions of the position
in the gap. In dimensionless form, the addition of the
polymeric and solvent shear stress is expressed by
σ≡ S(y)+ ηK(y) [24]. In the shear-banding regime, Sato
et al. have found an analytic solution for the dimensionless
shear rate profile K(y) that follows a hyperbolic tangent
profile between Kl and Kh [24], with Kl <Kh given by

Kl =

√

1/η− 2−
√

1/η− 8√
2

, (4)

Kh =

√

1/η− 2+
√

1/η− 8√
2

. (5)

In the high shear rate band,K (Kh =
√
1− a2Wih. Thus,

from eqs. (2), (3) and (5) we can obtain the following
expressions:

[

N1
Txy

]

h

=

[

N

σ

]

h

2√
1− a2

(6)

=
Kh(σ− ηKh)

σ

2√
1− a2

(7)

=
2

3
Wih

(

2−
√

1− 8η
1− 2η

)

. (8)

Then, overall, if we set &∼Wihαd and R∼Ri, we get

ΣdJS =
√
αΛWihf(η) =Σ∗f(η). (9)

Therefore, the result we obtain using dJS is slightly
more complex than the naive criterion Σ∗ since it also

depends on the viscosity ratio. For shear-banding we
require η< 1/8, so we have 0.7! f(η)! 1.3. This result
is indeed not surprising, since we had obtained Σ∗ in
analogy with the purely elastic case derived using the
upper convected Maxwell model, where η= 0 [3]. In the
homogeneous and non–shear-banding elastic case, adding
a Newtonian solvent also modifies the dimensionless group

by the addition of a function f%(η)(
√

2
1+η [19].

Note that the expression for ΣdJS can also be expressed
in terms of the two dimensionless variables K and σ.
Indeed, from the lever rule, α= K−Kl

Kh−Kl
, and from eqs. (4)

and (5), Kl and Kh can be expressed in terms of η,
which can be subsequently expressed in terms of σ using
eq. (2). Ultimately, one can reach the following equivalent
alternative expression for ΣdJS :

ΣdJS =

√

Λ

1− a2
Σ̃dJS(K,σ), (10)

where Σ̃dJS(K,σ) = (2
√

K
3σ −

√

σ
3K )+O[σ

3/2] is a func-

tion of K and σ only, whose precise functional form is a
little too cumbersome to be written explicitly. Figure 2(b)
plots the flow curves computed from eqs. (2), (4) and

(5) [24], together with the magnitude of Σ̃dJS . We can
see that as the shear rate is increased, the proportion of
the high-Wi band increases, the magnitude of the scaled

criterion Σ̃dJS increases and the flow is increasingly prone
to instability. By comparing the experimental flow curves
in fig. 2(a) and the flow curve derived in the case of dJS
in fig. 2(b) one can see that the effect of decreasing the
Newtonian solvent contribution η to the total stress is
similar to the effect of increasing the concentration of
surfactant, or decreasing the temperature.

Boundary conditions and classes of unstable
shear-banding flows. – Generally, we expect the
relevant dimensionless group for elastic instability in
shear-banding flows to be Σsb ≡Σ∗f∗(η), where f∗ is a
function of the ratio between the zero shear and infinite
shear viscosities. We expect the specific form of f∗ to
depend on the constitutive model used to study shear-
banding [9]. Elastic instabilities will generate a secondary
vortex flow with wavelength λ= nαd for Σsb >m. As
mentioned already, the precise values of n and m depend
on the boundary conditions. Of prime importance are the
values of m obtained for “soft” (ms) or for “hard” (mh)
boundary conditions [15]. Essentially, the “hard” case
usually corresponds to a no-slip Dirichlet boundary condi-
tion, while the “soft” case usually corresponds to imposing
only continuity of the stress, i.e. a Neumann boundary
condition. In both the purely inertial case [4] and the
purely elastic case [8], it is known thatms <mh. In ref. [8],
Khayat performed stability analysis of the Oldroyd-B
fluid for two different sets of boundary conditions. In the
first case, one boundary was soft, the other hard, and
the threshold was found to be 5.77. In the second case,
both boundaries were hard and the threshold was found

44004-p4
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Fig. 3: (Color online) Schematic instability diagram in the
plane (Max[Wih,Wi], αΛ). The black lines represent the
stability limits for soft and hard boundaries, Σsb =ms⇔ αΛ=
(ms/Wih)

2 and Σsb =mh⇔ αΛ= (mh/Wih)
2. To enhance

the visibility of the different categories of shear-banding, we
have arbitrarily chosen ms = 1 and mh = 3. The dashed black
line represent the value of 1×Λ= 1.13/13.33, the maximum
curvature corresponding to our recent experiments [15–18].
Above this line, the shaded region is inaccessible. The three
paths 1., 2. and 3. illustrate the three possible types of
shear-banding. The direction of the arrows represent the path
followed by the state of the flow as the global Weissenberg Wi
is increased. αc, αc1 and αc2 are the critical proportions of the
high-Wi band at which the flow state crosses a stability limit.
Wic is the threshold at which the type-1. trajectory becomes
unstable for the first time, and at which the type-2. trajectory
becomes unstable after a short relaminarization.

to be 5.92. For a banded flow with Wi∈ [Wil,Wih], the
interface with the low-Wi band should act as a sort of soft
boundary for the high-Wi band. But forWi"Wih, α= 1,
the flow becomes homogeneous again and the boundary
switches from soft to hard. The thresholds ms and mh, in
the case of shear-banding flows would most likely be differ-
ent than the values computed for the homogeneous flow of
the Oldroyd-B fluid. Nonetheless, we still expectms <mh,
and maybe a larger difference of values mh−ms.
Therefore, for a given geometry, i.e. a given value of Λ,

we can use basic Boolean logic to classify shear-banding
flows into three possible categories depending only on the
value of Wih:

1. For sufficiently low Wih —i.e. high θ and low c— the
shear-banding flow is stable for any α, since Σsb <ms
even for α= 1. The flow can then become unstable
for Weissenberg numbers above a critical valueWic >
Wih as in the case of a regular viscoelastic fluid, i.e.
following the scaling Σi =

√
ΛWi.

2. For intermediate values of Wih —i.e. intermediate
θ and c— the shear-banding flow is unstable above
a critical value αc when Σsb >ms for α> αc. Then
as the imposed shear rate is increased and α→ 1

the boundary conditions change and the flow is
stabilized, because the flow is below the thresholdmh.
Eventually for Wi>Wic >Wih the flow becomes
unstable again. This case was the one we observed
in our recent experiments [15].

3. Finally, ifWih is high enough —i.e. for low θ and high
c— we have two critical band widths αc1 and αc2.
For α> αc1, Σsb >ms. And for α> αc2, Σsb >mh. In
this case, there is no stabilization for Wi>Wih. The
flow remains unstable, although the spatio-temporal
characteristics may change.

The three possible shear-banding scenarios can
be illustrated on a stability diagram in the plane
(Max[Wih,Wi],αΛ), as presented in fig. 3. When the
global Weissenberg number Wi is increased above Wil,
the flow state is given by a constant abscissa depending on
the value of Wih (which is a function of the concentration
and temperature of the solution). As Wi increases, the
thickness of the high shear rate band α increases and so
the state of the flow moves vertically to larger ordinates.
Once the entire gap is filled, αΛ reaches its maximum
depending on the geometry of the chosen TC system.
Then, since Wi>Wih, the state of the flow is given
by a constant ordinate Λ and moves horizontally as Wi
increases. Any flow state with αΛ<Λ will be stable if
below the stability limit Σsb =ms, and unstable if above
Σsb =ms and a fortiori if above Σsb =mh. Any flow state
with αΛ=Λ will be stable if on the left of the stability
limit Σsb =mh, and unstable otherwise.

Interaction with interface modes. – So far, we
have only considered elastic instabilities arising in the
bulk of the high-Wi band. But there exist other elastic
instability mechanisms [25]. In particular, Fielding has
shown that the jump in normal stresses between the
bands could generate interfacial modes, even in the plane
Couette flow [17]. In her recent study in TC flow, Fielding
suggested that the interfacial and bulk elastic modes
lie in two separate regions of the space (Λ,N1|h), i.e.
of the space (Λ,Wih) [16]. The bulk mode prevails at
high Wih and high curvature Λ. The interfacial mode
prevails at low Wih and low Λ. Fielding’s study would
suggest the existence of another unstable region in the
lower left corner of the stability diagram sketched in
fig. 3. Nonetheless, only axisymmetric perturbations were
considered in Fielding’s study [16], and the stability
analysis was performed for a single value of α and η.
Interfacial and bulk modes may actually interact through
non-axisymmetric mechanisms [26].

Wall slip and non-local effects. – We believe that
the instability criterion we have derived for shear-banding
flows can be a powerful guide to interpret experiments
on wormlike micelles. Nonetheless, the criterion is fallible.
In particular, we think that two additional phenomena
can strongly compromise the validity of our scaling, since
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both have been shown to be relevant in some experimental
situations. In both phenomena the local Weissenberg value
in the high shear rate band may not be equal to the
upper boundary of the shear-banding regime on the flow
curve. The first phenomenon is wall slip, which has been
reported recently and may actually be a common feature
of many shear-banding flows [27]. The second phenomenon
is geometric confinement. The present scaling may be
inadequate if “non-local effects” become dominant [28].
“Non-local effects” are apparent in confined geometries
when the size d becomes comparable to the typical
interfacial width ξ ∼ µm, linked to the stress diffusion
coefficient [17,24]. Even in a macroscopic geometry with
d- ξ, non-local effects can be important when the lateral
extent of one of the bands is very small, i.e. α( 0 or α( 1.
Those effects were ignored in the analytic solution for dJS
proposed by Sato et al. but can actually be derived directly
from the dJS equations [29]. Non-local effects and wall
slip in the context of the dJS equations are discussed in
a recent tutorial review on “ways of thinking” about the
shear-banding phenomenon [29].
In summary, we have derived a useful dimensionless

criterion to rationalize the onset of secondary flows in the
base shear-banding flow of wormlike micelles. The valid-
ity of the criterion for the case of dJS could be checked by
numerical simulations for various value of the solvent ratio
η, and for a range of gap spacings (Λ) and Weissenberg
numbers. On the experimental side, we are currently
undertaking a large study of the stability of shear-banding
flows for many different surfactant types, concentrations
and temperatures. Preliminary results confirm the exis-
tence of the three distinct scenarios that we derived here.
Ultimately, the criterion could be extended to other flows
with curved streamlines, if the localization and number of
bands are known.
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