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Cavity flows of elastic liquids: Purely elastic instabilities
Peyman Pakdel and Gareth H. McKinley
Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138

~Received 3 September 1997; accepted 16 January 1998!

Experimental observations of a purely elastic flow instability occurring in the lid-driven cavity flow
of two semi-dilute polymer solutions are reported and the effect of cavity aspect ratio on the
dynamical structure of the unstable flow is quantitatively investigated. The spatial and temporal
characteristics of the secondary flow are measured using flow visualization, laser Doppler
velocimetry, and digital particle image velocimetry. At the onset conditions the disturbances appear
in the form of spatially periodic flow cells which propagate along the neutral direction of the cavity.
The secondary flow structure is analogous to the Taylor–Go¨rtler vortices observed in inertially
driven hydrodynamic instabilities. The critical onset conditions for two elastic test fluids and five
different aspect ratios correlate with a recently proposed dimensionless stability criterion which
incorporates measures of the local streamline radius of curvature and the non-Newtonian normal
stresses in the flow domain. ©1998 American Institute of Physics.@S1070-6631~98!00505-4#
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I. INTRODUCTION

The lid-driven cavity flow is the motion of a fluid in a
rectangular box generated by a constant translational velo
of one side while the other sides remain at rest. In the tw
dimensional limit, the flow consists of a planar recirculato
fluid motion confined by rectangular boundaries. The l
driven cavity flow of Newtonian liquids has been the subj
of extensive computational and experimental studies over
past 30 years. These studies have been motivated by
geometrical simplicity of the flow domain, the existence
stress singularities at two corners, and the complex dyna
cal structure that arises from the onset of inert
instabilities.1

The lid-driven cavity flow poses a complex fluid m
chanics problem in which regions of strong shear near
top moving plate, vortical motion in the central core, a
corner flows simultaneously exist and interact in a syst
with closed streamlines. Inertial effects play a dominant r
in governing the kinematical structure of the fluid motio
and stability of cavity flows of Newtonian liquids. Inertia
effects are quantified by the Reynolds number, defined a

Re5
LUr

m
, ~1.1!

whereL is the width of the cavity,U is the magnitude of the
imposed top-plate velocity, andm and r are the constan
viscosity and density of the liquid, respectively. At neglig
bly small Reynolds numbers, the Newtonian cavity flow
fore-aft symmetric. Increasing the Reynolds number bre
this symmetry and eventually at a critical Reynolds numb
Recrit'500, the flow becomes three dimensional via the a
plification of spatial and temporal disturbances.2 The driving
mechanism of these inertial instabilities is similar to th
leading to the growth of classical Taylor vortices in the Co
ette device3 and to the related inertial instabilities that res
in the formation of Go¨rtler vortices in boundary layer flow
along curved surfaces.4
1051070-6631/98/10(5)/1058/13/$15.00
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This hydrodynamic instability is driven via the nonline
coupling term,v–“v, in the equation of motion1 and is char-
acterized by the emergence of Taylor–Go¨rtler-like ~TGL!
vortices that are spatially periodic in the neutral direction
the flow and contain streamwise vorticity. Recent numeri
linear stability analyses and experimental flow visualizatio
provide a consistent quantitative understanding of the
namical structure of the inertial instabilities in recirculatin
cavity flows of Newtonian liquids. Flow visualization exper
ments indicate that the secondary motions are initially ti
independent (Recrit'500) and characterized by a steady sp
tially periodic structure in the spanwise direction. Increas
the Reynolds number beyond a value of Re'825 results in a
further flow transition that leads to evolution of a tim
dependent traveling-wave mode.5

Cavity flows become intrinsically more complex whe
the fluid rheology is non-Newtonian. These complicatio
arise as a result of the polymeric contribution to the dev
toric stress field, which is strongly coupled to the fluid kin
matics and is a function of an integral history of local rates
deformation experienced by a fluid element moving alon
closed streamline. The presence of a viscoelastic fl
memory, shear thinning effects in the material functio
nonzero normal stress differences, and the complex ex
sional rheological behavior of non-Newtonian fluids c
each alter the fluid kinematics in the cavity geometry.

Leong and Ottino appear to have been the first to exp
mentally examine the effect of viscoelasticity in cavi
flows.6 They conducted a comparative experimental flow
sualization study of time-periodic flows in a viscous Ne
tonian fluid and in an ideal elastic Boger fluid.7 These ideal
elastic fluids are synthesized by dissolving a small amoun
a high molecular weight polymer in a viscous Newtoni
solvent. In addition to exhibiting an almost constant sh
viscosity over a wide range of shear rates, they display
preciable fluid viscoelasticity and large first normal stre
differences in steady shear flows. In their flow visualizati
experiments with a passive dye tracer, Leong and Ottino
8 © 1998 American Institute of Physics
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served that the extent of mixing was weaker in the n
Newtonian case than in the corresponding Newtonian fl
under similar time-periodic boundary conditions. Analogo
viscoelastic effects have also been observed in time-peri
mixing flows generated in the eccentric cylinder geometry8,9

Cavity flows of Generalized Newtonian fluids have be
the subject of two computational studies; Reddy and Redd10

investigated the heat transfer effects in steady thr
dimensional cavity flows of power-law and Carreau fluid
and Isaksson and Righdal11 examined the steady streamlin
patterns and local pressure distribution via two-dimensio
numerical simulation of a power-law fluid.

In order to investigate the first effects of fluid elasticit
numerical computations of lid-driven cavity flow were pe
formed by Mendelsonet al.12 using the second order flui
model. It is well known that the Newtonian velocity fiel
satisfying the Stokes equations is a unique solution to
equations of motion for steady planar creeping flows o
second order fluid.13 Based on these uniqueness and ex
tence theorems, Mendelsonet al.12 show that finite elemen
simulations with the second order fluid model cannot ac
rately resolve the steep gradients in viscoelastic stress
develop near the upper corners of the sliding plate. Furth
more, as pointed out by these authors, such numerical s
lations cannot provide information on the temporal stabi
of the flow and in fact, linear stability analysis has show
that the steady planar flow of the second order fluid mode
temporally unstable at all finite Deborah numbers.14

Pakdel, Spiegelberg, and McKinley15 have conducted ki-
nematic measurements of the steady two-dimensional mo
of Boger fluids in the cavity geometry at negligible Reynol
numbers using laser Doppler velocimetry~LDV ! and digital
particle image velocimetry~DPIV!. They observe that vis
coelasticity breaks the fore-aft symmetry of the flow stru
ture observed in the Stokes flow regime. The geometric c
ter of the core vortex region shifts slightly in the upstrea
direction ~i.e., in the opposite direction to the translation
velocity of the lid! and the magnitude of this shift increas
as the imposed velocity of the driving boundary wall is i
creased. The magnitude of the velocity gradients are
hanced in the corner regions near the moving plate. The l
maxima in the velocity gradients are spatially locat
slightly away from the corners ('0.2L) and appear in re-
gions where the fluid streamlines exhibit significant curv
ture.

To quantify the non-Newtonian effects in cavity flow
Pakdelet al.15 define two-dimensionless groups; the Debor
and the Weissenberg numbers. The Deborah number is
fined as

De5lU/L, ~1.2!

and the Weissenberg number is defined as

Wi5lU/H, ~1.3!

whereU is the constant translational speed of the upper
l is a characteristic relaxation time of the fluid,L is the
width, andH is the height of the cavity. With these defin
tions, De quantifies a ratio of the fluid viscoelastic memo
to a characteristic residence time in the system,tflow5L/U,
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and Wi provides a dimensionless measure of the magnit
of the imposed shear rate,ġ5U/H. The non-Newtonian nor-
mal stress differences in the fluid are strong nonlinear fu
tions of the shear rate and consequently scale with Wi.

Along with these groups a purely geometrical parame
namely the aspect ratioL, can be defined as

L5H/L. ~1.4!

This parameter quantifies the relative importance of the
characteristic length scales in the cavity geometry. In
case of deep narrow slots (H@L,L@1), the width of the
cavity governs the kinematics of the main circulation regio
and in case of the long shallow channels (H!L,L!1) the
height of the cavity plays the determining role in establish
the streamline patterns of the recirculating shear flow in
bulk of the cavity. The collective set of dimensionless grou
De, Wi, andL, together with a knowledge of the fluid ma
terial functions, spans a parameter space that fully spec
the operating condition of cavity flows of viscoelastic fluid
at negligible Reynolds numbers.

Over the past eight years, viscoelastic instabilities occ
ring at negligibly small Reynolds numbers have been
subject of intense theoretical and experimental studies. Th
instabilities, commonly referred to aspurely elastic instabili-
ties, are entirely absent in the corresponding flows of Ne
tonian fluids and are driven by mechanisms associated
elastic normal stress differences rather than inertial non
earities in the equation of motion. The nonlinear coupli
among the components of the Cauchy momentum equat
is embedded in the nonlinear constitutive relationships t
describe the evolution of the viscoelastic stress,t, in flowing
polymeric processes. This nonlinear coupling gives rise
terms of the formv–¹t and¹v–t which scale independently
of the Reynolds number in the governing equation set.

Earlier studies on the subject of elastic instabilities d
back to Giesekus16 who reported onset of elastic instabilitie
in Taylor–Couette flow of a shear-thinning fluid at a Re
nolds number of 1022. With the synthesis of ideal elasti
Boger fluids,7 it became possible to isolate the effect of ela
ticity in the absence of additional complicating phenome
such as shear thinning in the fluid viscosity and the ass
ated increase in inertial effects. Purely elastic instabilities
constant viscosity fluids were first reported by Muller, La
son, and Shaqfeh17 who observed clear indications of a flo
instability while attempting to perform rheological measur
ments of Boger fluids in a Taylor–Couette device. Th
study initiated a number of computational and experimen
studies in the Taylor–Couette geometry over the past e
years~see, for example, Refs. 18–20!.

Similar studies of torsional flow in the cone-and-pla
geometry,21–24 and the coaxial parallel plate geometry,25,26

the axisymmetric contraction flow,27 and in the wake behind
a cylinder28 indicate that elastic instabilities are not speci
to a flow geometry but occur in many complex flow field
The critical onset conditions are sensitive functions of
fluid rheology and of the characteristic geometric parame
governing the flow configuration. Furthermore, these n
merical and experimental studies have all documente
similar geometrical pattern in this class of instabilitie
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namely the development of a spatially periodic cellular str
ture in the neutral direction which may, or may not, be tim
dependent. The review articles of Larson29 and Shaqfeh30

provide a detailed picture of the recent research on ela
instabilities, and identify specific mechanisms for the nonl
ear coupling between the momentum and constitutive eq
tions.

In a recent study closely related to the cavity flow g
ometry, Grillet and Shaqfeh31 observed elastic instabilities i
their modified Taylor–Couette experiments with Boger fl
ids. In this work a meridional block was inserted in the c
lindrical Taylor–Couette device which created a local rec
culating pressure-driven Taylor–Dean motion upon ste
rotation of either the inner or the outer cylindrical wall.
this configuration, elastic instabilities were observed near
block at critical speeds which were markedly lower than
critical values observed far from the block in the unmodifi
Taylor–Couette flow. This indicates that the local recircu
tion near the inserted block is responsible for initiating ins
bilities at lower critical speeds. In the limit of narrow gap
between the inner and outer cylinders, the azimuthal cu
ture can be neglected and this geometry can be unraveled
viewed as a cavity flow with a very small aspect rat
L→0.

In a companion study to the present work, Pakdel a
McKinley32 conducted a series of flow visualization expe
ments of cavity flows of Boger fluids in a more modera
range of aspect ratios 0.25<L<4.0 and reported observa
tions of elastic instabilities for all aspect ratios. Based
these observations and consideration of previous studie
elastic instabilities occurring in various geometries, they p
posed a general dimensionless stability criterion that can
used to quantify the onset of elastic instabilities based on
local kinematics of the flow and the elastic properties of
fluid. This criterion was further developed in a more detai
study,33 to incorporate the effects of shear thinning in t
material functions, changes in the solvent viscosity, an
spectrum of relaxation times. Comparisons with existing d
in the literature showed that the proposed stability criterion
successful in providing a sufficient condition that can ch
acterize the onset of elastic instabilities for isothermal fl
motions within many geometries with curvilinear strea
lines. This is consistent with theoretical studies which in
cate that there should exist universal destabilizing mec
nisms that depend on the local fluid kinematics and str
distributions, which are themselves functions of the fluid rh
ology and global dimensionless geometrical parameters c
acterizing the flow.

In this study, we expand the results of Pakdel a
McKinley32 and Pakdelet al.15 and provide detailed experi
mental results on the spatial and temporal dynamical st
ture of the purely elastic instabilities that develop in cav
flows over a range of aspect ratios (0.25<L<4.0). We use
LDV and DPIV to probe the kinematics of the seconda
motions in the cavity flows of two ideal elastic Boger fluid
In the next section we describe our experimental appar
and operating conditions, and characterize the rheolog
the viscoelastic fluids used in our experiments. We then
port our experimental results including global flow visualiz
-
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tion of the instabilities, plus quantitative measurements
the spatial and temporal frequency of the unstable modes
conclude with an analysis of the recently proposed dim
sionless criterion for elastic instabilities and its application
viscoelastic cavity flows.

II. EXPERIMENTAL CONDITIONS

A. Geometry

A schematic diagram of the apparatus is shown in Fig
The geometric specifications of the test cell have been
scribed previously,15 and here we briefly describe the per
nent information related to the present experimental stu
The cavity cell is constructed with12-in. Plexiglas and the
cavity dimensions areL52.54 cm,W510.16 cm, whereW
is the length in the neutral direction. The depth of the cav
H, can be varied in the range 1/4L<H<4L, by using Plexi-
glass inserts to provide aspect ratios in the range of 0
<L<4, respectively. The aspect ratio in the spanwise dir
tion is W/L54 and can be altered toW/L58 by using suit-
able inserts. The fluid motion is generated by translatin
smooth continuous polyester belt over the top of the cav
The maximum linear belt speed is approximatelyU
'5.0 cm/s or 2L/s.

The cavity cell provides visual access from all thr
principal planes in the Cartesian coordinate system show
Fig. 1. Thex-y plane at the midpoint of the channel width
the cross section of the flow in which our previous tw
dimensional cavity flow measurements were performed. F
lowing the onset of hydrodynamic instabilities, the orthog
nal views of thex-z and y-z planes provide additiona
information about the kinematic structure of the disturban
in the neutralz-direction. The test fluids are seeded wi
minute amounts of small Mica flakes which reflect the in
dent light with varying intensity depending on the directio
and uniformity of the local velocity field. In the steady ba
flow regime, these particles reflect a uniform backgrou
light intensity in thex-z andy-z planes. However, following

FIG. 1. Schematic diagram of the experimental apparatus:~a! cavity cell;~b!
translating belt;~c! pressure plate.
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the onset of an hydrodynamic instability, they develop no
uniform effective light patterns in the neutral direction d
pending on the relative fluid velocity and particle orientati
with respect to the incident light. A similar visualizatio
technique has been used by Baumert and Muller34 to docu-
ment the complex spatio-temporal dynamics following t
onset of purely elastic instabilities in Taylor–Couette flow

In addition to visualization of the global dynamic
quantitative kinematic measurements are performed usin
ser Doppler velocimetry and digital particle image veloci
etry, details of which are given elsewhere.15,35 The onset of
instabilities are detected both by visual inspection and
LDV measurements. Spatial wave numbers are determ
from photographs and verified by rapidly scanning the c
with the laser probe using a translating stage while simu
neously collecting LDV data. The temporal frequencies
obtained from time-series analysis of velocity measureme
made using the LDV system at a fixed point in space. E
experimental run is carried out with a fresh batch of each
fluid in order to reduce possible effects of polymer degra
tion.

B. Fluid rheology

A viscous polybutene~PB! oil ~Amoco Indopol H300!
with a mass-averaged molecular weight of approximat
1000 g/mole is used as the Newtonian base fluid. The ela
Boger fluids are prepared by dissolving 0.20 wt. % and 0
wt. % of high molecular weight polyisobutylene~PIB!
~Exxon L-120,Mw;1.23106 g/mole! respectively in the PB
oil.

The rheological properties of these fluids show simi
characteristics to those reported previously in
literature.36,15 The viscometric properties of both solution
are summarized in Table I.

As the rheological characterization of Quinzaniet al.36

demonstrates, the first normal stress coefficient of semidi
Boger fluids generally show two plateaulike regions; a ze
shear-rate plateau at very small deformation rates, and a
ond region at an intermediate shear rate range of 0.1<ġ
<10 s21. At higher shear rates ofġ.10 s21, the first normal
stress coefficient monotonically shear thins. For these flu
the zero-shear-rate limitC10 is difficult to measure directly
with reasonable accuracy since the normal force beco
indetectably small, although its magnitude can be infer
from linear viscoelastic measurements of the quantity 2h9/v
at low frequencies.36 However, in Table I, we choose to re
port the average values ofC1 measured experimentally i

TABLE I. Viscometric properties of the two PIB Boger fluids.

Rheological parameter Fluid A-0.20 wt. % PIB Fluid B-0.35 wt. % P

C1, plateau@Pa s2# 16 60
h0 @Pa s# 24 35
hs @Pa s# 19 23
ls @s# 1.6 2.5
l r @s# 8.5 15
b 0.79 0.66
-
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the second plateau region since this range is consistent
the operating range of shear rates in our cavity flow geo
etry.

The shear viscosity of both fluids remains relatively co
stant over a wide range of shear ratesġ<100 s21 beyond
which it slowly shear thins. The values of the dimensionle
parameterb5hs /h0 , characterizing the relative contribu
tion of the Newtonian solvent to the total viscosity in vi
coelastic constitutive equations such as the Oldroyd
model, are in the range of 0.6<b<0.8.

The time constantls computed from the viscometric
data measured in steady simple shear flow is defined as

ls5
C1,plateau

2~h02hs!
,

where hs is the solvent viscosity. As it has been note
elsewhere,30 different rheological tests provide differentl
weighted moments of the relaxation spectrum present in
macromolecular material. For completeness we also re
another characteristic time constantl r in Table I obtained
from measurements of the normal force relaxation followi
the cessation of steady shear flow as shown in Fig. 2. Ma
ing the entire nonlinear relaxation observed in the decay
first normal stress differenceN1

2(t) requires consideration o
a multimodal constitutive model; however, the data beyo
the first few seconds can be accurately represented v
single relaxation time,l r . The ratio of relaxation times
l r

A/l r
B for the two fluidsA andB, appears to scale well with

the corresponding ratio ofls
A/ls

B . Relevant values of the
dimensionless numbers characterizing viscoelastic effect
the cavity flow can be based on either of these character
time scales and for clarity are denoted Des or Der as appro-
priate.

In the context of elastic instabilities, it is appropriate
ask which relaxation time~or Deborah number! is appropri-
ate for correlating experimental results. This issue has b
briefly discussed in Ref. 30 and has been considered in d
by Larsonet al.37 In the latter work, experimental measur

FIG. 2. Relaxation of the first normal stress differenceN1
2(t) with time

following cessation of steady shear flow for the 0.20 and 0.35 wt. % P
solutions. The initial steady shear flow was at a shear rate ofġ0510 s21.
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ments of the steady and transient shear rheology were fi
with a K-BKZ integral constitutive model with a continuou
spectrum of relaxation times characterized by a power-
exponent,p. For this model the ratio of average to the lon
est relaxation time~denoted byl̄/l1 in Ref. 37! is given by
ls /l r5(12p). For solutions of 0.1 wt. % PIB in PB an
polystyrene in oligomeric styrene, Larsonet al. report that
the values ofp'0.75 andp'0.82, respectively, provide th
best correlations to the rheological data. For the fluid pr
erties given in Table I, we findpA'0.81 andpB'0.83, in
good agreement with the previous study. Larsonet al.37 also
compared theoretical predictions of elastic instabilities in
Taylor–Couette flow~using the K-BKZ model! with experi-
mental stability observations and suggested that a Deb
number based on the geometric mean of the average
longest relaxation times may provide the best measure o
elasticity in the flow. In the present work we report our s
bility observations in terms of both Der and Des , and a geo-
metric mean can easily be computed from these value
desired.

III. RESULTS

A. Global flow visualization

To detect the evolution in the secondary flow structu
following onset of an elastic instability, the flow cell is illu
minated with a diffuse background white light source. In t
absence of any flow structure in the neutral direction,
Mica flakes reflect the incident light uniformly. When th
flow becomes nonuniform, bands of darker and brighter li
intensities develop in the neutralz-direction.

The belt speed is increased in small discrete steps w
ample observation time~5–10 min! between increments i
given for the possible development of elastic instabiliti
When a discernable flow structure appears in the neutra
rection, the critical linear belt speedUcrit is recorded. In Fig.
3 an end viewof the y-z plane of the cavity cell is shown
along thex-axis and the spatial scale of the cell is shown
a ruler with centimeter gradations. The direction of moti
of the belt is normal to the viewing plane and outward fro
the page. In the stable region, the reflected light inten
appears uniform@Fig. 3~a!#. However, at the critical onse
condition, Des,crit'0.35, a new spatial structure develops
the flow as shown in Fig. 3~b!. The aspect ratio of the cavit
in Fig. 3 isL51, and the aspect ratio in the neutral directi
is W/L54. The bright regions in Fig. 3~b! divide the flow
domain into three cellular regions.

In Fig. 4, the flow structure at the onset conditions
shown for a cavity with an identical aspect ratio ofL51 but
with a neutral direction aspect ratio ofW/L58. The critical
Deborah number is found to be the same for both cases
the number of cellular regions in theW/L58 case is doubled
to six. This observation indicates that the elastic instabilit
are driven primarily from consideration of the stable tw
dimensional planar base flow in thex-y plane and the three
dimensional flow regions near the end walls do not drive
flow into the three-dimensional regime, at least for cavit
of sizeW/L>4.
ed
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As we show below, these cellular structures are in f
traveling waves which propagate along the neutral (z) direc-
tion of the cavity. The LDV time series presented in Se
III B show that in a time-averaged sense the flow structur
periodic at small supercritical Deborah numbers. Howev
at any instant of time, analysis of the video recording sho
that cells are continuously created and destroyed near e
end wall, and this accounts for the uneven spanwise dis
bution observed in Figs. 3~b! and 4. In analogous Taylor–
Couette studies, the neutral direction aspect ratio,W/L, is
typically very large due to the small gap width in the flo
cell. However, in cavity geometries appearing in industr
applications, this aspect ratio is much smaller and nons
metric structures arising from the influence of end effe
and geometric imperfections are more likely to be observ

In Fig. 5 we show similar end views~in they-z plane! of
the cellular structures following onset of elastic instabil
for deeper cavities with aspect ratios ofL52 andL53. The
critical Deborah numbers are approximately the same
those recorded for the square cavityL51. Furthermore, the
number of primary cells remains unchanged at three, as
served for the case ofL51. The separation between th
primary recirculating vortex structure near the translat
plate and the weaker secondary vortex near the statio

FIG. 3. Flow visualization of elastic instability in a square cavity~L51;
plan view!. The end view of the cavity flow is presented in which th
imposed velocity is normal to the plane of view and outward from the pa
~a! The stable flow at Des5Wis50.25; ~b! the unstable flow following the
onset of elastic instability at critical flow conditions of Des5Wis50.35.

FIG. 4. Flow visualization of the elastic instability in a square cavity~L
51, end view!. The aspect ratio in the neutral direction isW/L58. The
imposed velocity is normal to the plane of view in the outward directi
(Des5Wis50.35).
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base of these deep cavities can be clearly discerned.
uniformity of the reflected light in these lower regions ind
cates that, at least within the time scale of an experime
run ('1 h), there is little dynamical evolution in this wea
recirculation region for either aspect ratio.

Decreasing the aspect ratio of the cavity, however, ha
different effect. In Fig. 6, the cellular structures observed
the critical onset conditions are shown in aplan view~i.e., in
the x-z plane! for shallow cavities with aspect ratios ofL
50.5 andL50.25. The critical values of the Deborah num
ber and Weissenberg number are significantly different fr
those recorded for the square cavity (L51). The critical
Deborah number decreases as the aspect ratio decrease
dicating that the instabilities are initiated at smaller b
speeds than for the square cavity. On the other hand,
critical Weissenberg number increases with decreasing
pect ratios, indicating the increasing magnitude of the sh
rate near the moving belt and the resulting enhancemen
elastic normal stress differences in the cell. The relation
tween these two dimensionless groups at the critical o
conditions is a delicate balance between these two len

FIG. 5. Flow visualization of elastic instabilities in cavity flows~end view!
with ~a! L53, Des50.37, Wis50.12,~b! L52, Des50.35, Wis50.18. The
imposed velocity is normal to the plane of view and oriented outward fr
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scales in the system, namely,L and H, which in turn give
rise to two time scales in the cavity geometry.

Increasing the belt speed to values significantly grea
thanUcrit excites higher order wave number disturbances
this region the cavity operates in a time-dependent mix
flow regime with the cellular structures rapidly fluctuating
extent and configuration. This transition to the mixing flo
regime can be better characterized by the spatio-temp
frequency measurements presented in the next section.

B. Local frequency measurements

To probe the dynamical structure of the instabilities o
served via flow visualization, temporal and spatial freque
cies are measured as the imposed lid velocity is increase
Fig. 7, time-series measurements of they-component of the
velocity are shown as a function of increasing Deborah nu
ber. These measurements are performed close to the
metrical center of the primary recirculation in the cavity
x/L50.5, y/H50.8, z/W50.0 for an aspect ratio ofL51.

In the stable region, Des50.2, the vertical component o
the velocity at this position remains almost zero as a funct
of time. At the critical onset condition, Des,crit'0.35, the
instability initially develops as a slowly traveling sinusoid
wave in the cavity with a period of approximately 600
Increasing the Deborah number beyond the critical limit
Des50.72 decreases the period of the traveling wave to v
ues on the order of 100 s. At higher Deborah numbers,
primary mode is combined with higher frequency distu
bances which ultimately result in rapid aperiodic fluctuatio
of the local velocity field in the cavity.

In Fig. 8, the power spectral density~PSD! is shown for
a set of time-series measurements obtained at the same
tion in the cavity. At weakly supercritical Deborah numbe
(Des /Des,crit'1.3), the instability is characterized by
single mode with a frequencyf 157.931023 Hz. Increasing

FIG. 6. Flow visualization of elastic instabilities in cavity flows~plan view!
with ~a! L50.5, Des50.29, Wis50.58, ~b! L50.25, Des50.25, Wis
51.0. The imposed velocity is parallel to the plane of view and oriented
the upward direction.
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the Deborah number further, excites the second harm
and other higher frequency modes ultimately creating
mixing-type flow regime.

In Fig. 9, the primary temporal frequency,f 1 , is plotted
against the Deborah number for the three dynamically
tinct aspect ratios ofL51,0.5,0.25. The spectral resolutio
of the slowly varying time-periodic flow that develops b
yond a critical Deborah number is governed by the to
duration of the velocity time series,T. For most of the data
presented here, the time-series span a period ofT
'200– 300 s leading to a spectral resolution of appro
mately 61/T'0.003 Hz indicated by the error bar on th
first data point in Fig. 9.

The temporal frequencies measured in deeper cav
with aspect ratios greater than one are similar to theL51
case. As is shown in Fig. 9~a!, the magnitude of the primary
frequency initially increases with Deborah number a
gradually approaches a plateau value as the flow evolves
the mixing regime. The frequencies are higher in theL
50.25 cavity than in the larger aspect ratios. In Fig. 9~b! the
same frequencies are scaled with the characteristic resid
time of the systemL/U and are plotted against the Debor
number. The primary dimensionless frequency appears to
cline dramatically forL50.25 while remaining relatively
flat, particularly forL51. When the cavity is operated a
belt speeds beyond the limits shown in Fig. 9, the spec

FIG. 7. Time-series measurements of the verticaly-component of the ve-
locity field at x/L50.5, y/H50.8, z50.0 in a square cavity (L51); the
evolution of the elastic instability as a function of the imposed lid veloc
ic
a

-

l

i-

es

to
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e-

al

content of the secondary flow can no longer be simply ch
acterized by a single dominant frequency as the mixing fl
regime develops.

In Fig. 10, the primary dimensionless spatial wave nu
bers (aL), measured via LDV and photographic analyses
plotted against the Deborah number and the Weissen
number respectively~based on the steady shear relaxati
time!. The spatial wave numbera is extracted from Fourier
analysis of the rapid LDV scans ofvy(z) and vx(z) in the
neutral z-direction of the cell and they monotonically in
crease with increasing Des and Wis , consistent with our flow
visualization observations. The wave numbers are con
tently higher in smaller aspect ratios and, as observed in
5, the spatial frequency for deep cavities with higher asp
ratios L52,3 remain similar to theL51 case. Increasing
the Deborah number beyond the limits shown in Fig.
creates a mixing flow in which many spatial modes are
cited, making accurate determination of the primary spa
wave number difficult.

IV. OPERATING STABILITY DIAGRAMS

Cavity flows are encountered in many important indu
trial processes and the knowledge of the boundaries o
operating stability for a given fluid formulation has impo
tant design and processing implications.2 In Fig. 11, the criti-
cal Deborah number is plotted versus the aspect ratio
both PIB fluids. For completeness, the Deborah numbers
fined with both time constantsls and l r are shown on the
left and right ordinate axes, respectively. Within the acc
racy of the experimental measurements, the data for b
fluids show an excellent superposition. The critical Debo
numbers remain almost the same for aspect ratios gre
thanL51, and decrease progressively for shallower cavit
with small aspect ratios.

Recognizing the importance of both length scalesL and
H in the cavity geometry, an operating stability diagram c
be developed by plotting the critical Weissenberg num
against the critical Deborah number for all aspect ratios
shown in Fig. 12. For each aspect ratio, the operating
begins at the origin where the imposed velocity is zeroU
50) and the fluid is at rest. Increasing the imposed driv
velocity U describes a unique set of operating conditio
lying along a straight line which passes through the ori
with a slope ofL21. The stability boundary defines the re
gions of stable versus unstable operation of the lid-driv
cavity for the range of aspect ratios 0.25<L<4.0 considered
in the present study. More data are clearly required for sh
lower cavity flows with smaller aspect ratiosL,0.25 to ex-
pand the process stability diagram. However, the present
bility diagram in Fig. 12 spans most industrially importa
cases in coating and extrusion processes.

V. KINEMATIC CHARACTERISTICS OF THE
UNSTABLE FLOW

The flow visualization photographs provide qualitati
information on the global structure of the three-dimensio
flow that develops in the neutral direction following onset
the elastic instability. However, further details of the tran

.
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FIG. 8. Power spectral density~PSD! for the time-series measurements of they-component of the fluid velocity atx/L50.5, y/H50.8, z50.0 in a square
cavity (L51).
rie
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two
tion from the stable to unstable region and of the symmet
and kinematic characteristics of the resulting unsteady fl
are needed to make a more clear assessment of the m
nisms that drive the growth of the observed temporal a
spatial disturbances.

In Fig. 13, streak images of the flow field in thex-y
s
w
ha-
d

plane following onset of the cellular instability are shown f
aspect ratios ofL50.5, 1 and 2. The exposure times of the
images are less than 1 second and are very small comp
to the period of the traveling wave disturbances propaga
in the neutralz-direction ~orthogonal to the imaging plane!.
Hence the streaklines in these images appear smooth and
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dimensional. In all cases the fore-aft symmetry about the
x50.5L, observed for the creeping motion of Newtonia
liquids in the corresponding cavity geometry, is broken. T
upstream shift of the geometric center of the main core v
tex flow is enhanced compared to that reported previousl
steady two-dimensional flows at lower Deborah number15

Laser Doppler measurements of the out-of-plane compo
of the velocity field at the critical conditions indicate that t
instability is initiated in the vicinity of the downstream co
ner where the curvature of the fluid streamlines is most
hanced.

This region is highlighted by the black box in the stre
photographs. The similarity in each image is readily appar
and, furthermore, it is clear that the representative radiu
curvature of the streamlines in this region is not solely ch
acterized by either the heightH or width L of the test cell.

In Fig. 14 an approximate DPIV analysis of the veloc

FIG. 9. ~a! Dimensional and~b! dimensionless temporal frequency of th
primary mode of elastic instability in cavity flows with aspect ratiosL
50.25,L50.5, andL51.0 as a function of Deborah number for 0.35 wt.
PIB solution. The error bars indicate the spectral resolution limit of the F
analysis.
e

e
r-
in

nt

-

nt
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r-

field in they-z plane atx/L50.5 is attempted. The directio
of the imposed velocityU is outward from the illuminated
plane; however the out-of-plane displacement occurring
the time interval of 1/30th s is smaller than the thickness
the laser light sheet, hence we are able to resolve the in-p
components of the three-dimensional trajectories of the s
particles in each subimage. In the stable flow regime,
dominant component of the vectorial fluid velocity at th
midplanex/L50.5 is projected in thex-direction and there-
fore DPIV observations in they-z plane generate null dis
placement cross-correlations indicating no in-plane moti
Following the onset of instability, they- andz-componentsT

FIG. 10. Dimensionless spatial wave numbers of secondary flow in ca
flows with aspect ratiosL50.25, 0.5, and 1.0 as a function of Deborah a
Weissenberg numbers. The data include LDV measurements~hollow sym-
bols! and photographic image analysis~solid symbols! for 0.35 wt. % PIB
solution.

FIG. 11. The critical Deborah number Des,crit and Der ,crit ~based on the
relaxation timesls andl r , respectively! as a function of aspect ratioL for
both PIB fluids.
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of the secondary flow are apparent in the DPIV measu
ments as shown in Fig. 14. This measurement is, of cou
only an instantaneous snap shot of the evolving spatial st
ture in the cavity geometry but it shows the complexity
the traveling waves in the flow domain. A similar techniq
has been used very recently by Baumertet al.34 to resolve
secondary cellular structures in the viscoelastic Taylo
Couette instability.

FIG. 12. An operating stability diagram for isothermal viscoelastic cav
flows. The solid line divides the stable and unstable operating regions.

FIG. 13. Streak images of the fluid streamlines for cavity flows of the P
solution with aspect ratios ofL50.5, L51.0, andL52.0. The Deborah
number is Des51.2 for all cases. The highlighted areas are the downstre
corner regions where the instability initiates.
-
e,
c-
f

–

VI. DISCUSSION

We have documented the onset of purely elastic ins
bilities in cavity flows of Boger fluids in moderate aspe
ratios (0.25<L<4.0). Complementary experimental obse
vations have also been reported by Grillet and Shaqfeh31 in
recirculating flows of ideal elastic Boger fluids in the sem
cavity problem (L→0). The structural patterns of these in
stabilities are similar to the purely elastic instabilities o
served in the Taylor–Couette device, planar contract
flows, and the stagnation flow in the wake of a stationa
cylinder. These instabilities are characterized by evolution
a three-dimensional motion in the neutral direction whic
through flow visualization, appear as cellular structures si
lar to those presented in Figs. 3, 4, and 5.

As our LDV time-series measurements indicate~Fig. 7!,
the elastic instability is time dependent, initially having ve
long periods on the order of several hundreds of seconds
contrast, Grillet and Shaqfeh31 report that for the semi-cavity
flow, the secondary flow that develops at small supercriti
Deborah numbers appears to be stationary. However,
important to note that the aspect ratiosW/H in the neutral
direction for these two sets of experiments are substanti
different. Recent experimental observations in the pla
contraction geometry have also shown that the mode of
stability ~i.e., traveling or standing waves! is modified by the
aspect ratio of the flow cell in the neutral direction.38 Previ-
ous linear stability analyses in the Taylor–Coue
geometry30 have shown that for a Couette cell of infinit
axial length both traveling and standing waves are adm
sible modes of elastic instability for an Oldroyd-B fluid, an
recent numerical studies on the effects of eccentricity in t
geometry have shown that even very small geometric imp
fections can have a pronounced effect on the most unst
mode of the resulting elastic instability.39 Since the period of
our measured velocity fluctuations close to the onset co
tions is much longer than any fluid relaxation time scale o
experimental observations suggest that for a tw
dimensional cavity withW/H→`, where the effect of end
walls are entirely absent, the elastic instability may initia

m

FIG. 14. DPIV measurements of the time-dependent secondary flow on
plane x/L50.5 that develops following onset of elastic instabilities in
square cavity at Des51.5. The imposed velocity is normal to the plane
view and in the outward direction. The dashed lines are used to illustrate
fluid trajectories and are not DPIV measurements.
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develop in the form of standing waves. Clearly, further e
perimental investigations in cavities with fixed aspect ra
L5L/H, but with varying aspect ratioin the neutral direc-
tion, W/H, are required to resolve this question.

Within the resolution of our experimental apparatus,
detectable hysteresis effect was observed and all instabi
were supercritical. The hysteresis is, of course, a comp
phenomenon and it could occur within a very small windo
of operating conditions which is experimentally difficult
conclusively detect. Certainly numerical stability analysis
needed to clarify the behavior of the three-dimensional tim
dependent solution of the equations of motion, near, or
the critical onset conditions.

The spatial frequencies of the secondary flow that de
ops at the onset conditions appear to be independent o
neutral direction aspect ratioW/H as observed in Figs. 3 an
4. The spatial frequencies are, however, strongly affected
the variation in the aspect ratioL. From Figs. 3 to 6, it can
be seen that the number of distinct cellular structures
served forL53,2,1,0.5,0.25 are 2, 2, 2, 4–5, 11–12, resp
tively. The functional dependency of the spatial wave nu
ber onL is complex because the aspect ratio is a relev
dynamic parameter only when both length scalesH and L
equally affect the local configuration of the planar tw
dimensional base flow. In the limiting cases of deep sl
(L!1) or shallow cavities (L>1) only one length scale
affects the fluid kinematics, and therefore any scaling ar
ment should be able to explain these limiting cases.

In general, the spatial frequencies increase with incre
ing Deborah and Weissenberg numbers as shown in Fig
Upon transition to the mixing regime (De>3Decrit), it is ex-
perimentally difficult to decompose the spatial frequen
into a single predominant mode, since many higher f
quency disturbances are also excited and mask the prim
mode. The kinematical structure of these instabilities is si
lar to the Taylor–Go¨rtler vortices observed following onse
of inertially driven hydrodynamic instabilities in Newtonia
cavity flows.2 The DPIV snapshot of the flow field, presente
in Fig. 14, is also consistent with the laser light-sheet fl
visualization of Grillet and Shaqfeh.31 Both observations in-
dicate the existence of a ‘‘mushroomlike’’ structure whi
possibly arises from the pairwise interactions of weak tr
eling vortices near the floor of the cavity. Nonlinear stabil
calculations have shown that similar structures evolve
form Görtler vortices in Newtonian fluids and these stru
tures lead to the rapid mixing of fluid regions with high a
low momentum.4

As we have argued previously,15 the kinematics of the
two-dimensional flow in the downstream corner play an i
portant role in characterizing the critical onset conditio
The two-dimensional view of the unstable flow shown
Fig. 13 illustrates the key corner region where these ela
instabilities initiate. At the critical onset conditions it is cle
that the spatial structure of the primary flow in this region
very similar regardless of the global aspect ratio of the c
ity. At high Deborah numbers, the fore-aft asymmetry of t
base two-dimensional flow becomes increasingly appar
The center of the core vortex flow shifts in the upstre
direction and the streamline radius of curvature in the dow
-
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stream corner concomitantly decreases which, in turn, am
fies the magnitude of the streamwise hoop stress (tuu), and
its gradient (tuu /r ) in this region. Here,r is a local coordi-
nate normal to the fluid streamline that characterizes the
dius of curvature of the streamline andtuu is the uu-
component of polymeric stress. In curvilinear coordina
terms such astuu andtuu /r provide the coupling mechanism
between the individual components of the momentum eq
tion and the convected derivatives of stress appearing in q
silinear constitutive equations. In their study of the pure
elastic instability arising in Taylor–Couette flow, Larso
et al.17 point out that the systematic increase in the mag
tude of such terms with increasing shear rate is the prim
physical mechanism for driving the elastic instability. Sim
lar couplings between the kinematics and radial gradient
the hoop stresses lead to instabilities in Taylor–Dean flo
of elastic fluids.40

In more complex two-dimensional flows such as the c
ity flow considered here, both the curvature of the flu
streamlines and the magnitude of the polymeric hoop st
vary throughout the flow domain. Recently, a dimensionl
criterion for unifying the critical onset conditions of elast
instabilities in various flow geometries has been propose32

This criterion for onset of elastic instability can be written
the following form,

H l

R
WisJ >M crit

2 , ~6.1!

wherel[lsU is interpreted as the characteristic length sc
over which the perturbations to the viscoelastic base fl
relax, andR as the characteristic streamline radius of curv
ture in the system. At the critical conditions, this dimensio
less group attains a critical magnitudeM crit

2 , beyond which
the flow is unstable.

In many unidirectional flow geometries, such as flow
generated in a cone-plate rheometer, between two conce
parallel disks, and in the Taylor–Couette geometry, the ch
acteristic streamline radius of curvature can be readily id
tified. More importantly, the streamline radius of curvatu
remains constant when the magnitude of the imposed driv
velocity is increased. However, in more complex flows su
as the cavity flow, the streamline radius of curvature var
throughout the flow geometry and is furthermore a funct
of the imposed velocity or throughput. Under such circu
stances, a simple scaling expression can be constructe
quantify the streamline radius of curvature by combining
principal radii of curvature of any two-dimensional flow fie
in the form

1

R
5

a

L
1

b

H
, ~6.2!

wherea andb are two dimensionless weighting paramete
that identify the relative importance of the two prima
length scalesL and H in modulating the geometrical struc
ture of the flow.

A more detailed study33 provides further insight into this
dimensionless criterion and applies the formula successf
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to a broad selection of experimental and theoretical c
studies. In this work the proposed dimensionless group
expressed in a more general form as

S lsU

R

t11

t12
D>M crit

2 , ~6.3!

wheret11 is the tensile stress in the local streamwise dir
tion, andt12;h0ġ is the characteristic shear stress acr
the stream lines. This definition, which provides an expl
definition for the Weissenberg number in terms of a str
ratio, can be obtained directly from dimensional consid
ation of the convected derivative terms encountered in q
silinear and nonlinear constitutive equations. The dimens
less criterion in Eq.~6.3! can also be extended to include
spectrum of relaxation times and, more importantly, the
fect of shear thinning in the material properties.33

If we follow a fluid element along a closed streamlin
then the streamwise tensiont11 will decrease, and can eve
change sign, as fluid particles pass through regions of lo
~Lagrangian! deceleration. In these regions, Eq.~6.3! sug-
gests that the flow is stable in agreement with our exp
mental observation. By contrast, regions characterized
curved streamlines coupled with strong streamwise acce
tion are expected to be prone to elastic instability. The spa
variation of the scalar magnitude ofM2 in a stagnation flow
has recently been investigated by O¨ ztekin et al.41

In the cavity geometry, the instability initiates in th
downstream corner where the streamlines of the base
exhibit significant curvature, and fluid elements acceler
away from the corner. In this region, the deformation r
scales withġ5U/R, which defines a local Weissenbe
numberWis,R5lsU/R. Substituting the local Weissenber
number and Eq.~6.2! into Eq. ~6.1!, we arrive at the follow-
ing equation at the critical onset conditions,

lsUcritS a

L
1

b

H D5M crit . ~6.4!

Rearranging terms, we obtain

ãL1b̃5
1

Wis,crit
, ~6.5!

with ã5a/M crit and b̃5b/M crit . Although ã and b̃ are un-
known a priori, the reciprocal of the critical Weissenbe
number at the onset of instability is thus expected to b
linear function of the aspect ratioL.

In Fig. 15, the critical Weissenberg number is plott
against the aspect ratio and there is an excellent agree
with the proposed dimensionless scaling analysis.32,33 The
experimental measurement of Grillet and Shaqfeh31 for a
semi-infinite cavity geometry (L→0) can also be repre
sented in this form, and is shown in Fig. 15 by the aste
close to the abscissa. Clearly this experimental observa
which was performed with a very similar Boger fluid, is al
consistent with the proposed form of the stability criterio
Since Eq.~6.4! involves three dimensionless parameters a
only two values may be determined from linear regression
the experimental data in Fig. 15, it is not possible to una
biguously determine the critical magnitude of the propos
e
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stability criterion,M crit , without consideration of a numeri
cal linear stability analysis. AsL→0 the critical onset con-
dition reduces tob̃50.14 or Wis,crit57.2.

As we have documented in the present study, there
rich dynamical structure in the cavity flow of non-Newtonia
fluids. The scaling arguments proposed recently32,33,42can be
used to systematically describe the effects of fluid rheolo
and geometry on the operational stability of isothermal l
driven cavity flows. Ultimately the critical conditions repre
sented by a criterion such as Eq.~6.3! may even be utilized
in a predictive or design capacity to expand the operatio
capabilities of processing operations involving compl
flows of viscoelastic liquids. Screw extruders embody ma
of the kinematic elements of cavity flows, however such p
cesses are commonly nonisothermal, and it would be of
terest to extend these arguments to such processes.
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