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Cavity flows of elastic liquids: Purely elastic instabilities
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Experimental observations of a purely elastic flow instability occurring in the lid-driven cavity flow
of two semi-dilute polymer solutions are reported and the effect of cavity aspect ratio on the
dynamical structure of the unstable flow is quantitatively investigated. The spatial and temporal
characteristics of the secondary flow are measured using flow visualization, laser Doppler
velocimetry, and digital particle image velocimetry. At the onset conditions the disturbances appear
in the form of spatially periodic flow cells which propagate along the neutral direction of the cavity.
The secondary flow structure is analogous to the Taylorti&ovortices observed in inertially
driven hydrodynamic instabilities. The critical onset conditions for two elastic test fluids and five
different aspect ratios correlate with a recently proposed dimensionless stability criterion which
incorporates measures of the local streamline radius of curvature and the non-Newtonian normal
stresses in the flow domain. @998 American Institute of Physid$1070-663(098)00505-4

I. INTRODUCTION This hydrodynamic instability is driven via the nonlinear
. . . . . L coupling termy-Vv, in the equation of motionand is char-
The lid-driven cavity flow is the motion of a fluid in a ,arizeq by the emergence of Taylor+@ar-like (TGL)
rectangu_lar box_ generated by'a constaqt translational Veloc'tyortices that are spatially periodic in the neutral direction of
of one ;lde V\{hl!e the other S|d§s remain at rest. In the WOthe flow and contain streamwise vorticity. Recent numerical
dimensional limit, the flow consists of a planar recirculatory ;o stability analyses and experimental flow visualizations

gu.'d mOt'O.? ;:lonfmfedN byt re_ctarll_gul_zr Eount?a”efﬁ Theb_“d'tprovide a consistent quantitative understanding of the dy-
fiven cavity Tlow ot ewtonian fiquids nas been the SUbIeCl, , o) structure of the inertial instabilities in recirculating

of extensive computational and experimental studies over the_ . L o .
ast 30 vears. These studies have been motivated b tﬁzgvny flows of Newtonian liquids. Flow visualization experi-
b years. 1he ; . Y Ments indicate that the secondary motions are initially time
geometrical simplicity of the flow domain, the existence of, .
: o independent (Rg~500) and characterized by a steady spa-

stress singularities at two corners, and the complex dynam%—

. ~7 . tially periodic structure in the spanwise direction. Increasing
cal structure that arises from the onset of inertial )
instabilitiest the Reynolds number beyond a value of#825 results in a

The lid-driven cavity flow poses a complex fluid me- further flow transition that leads to evolution of a time-

chanics problem in which regions of strong shear near thgep(énd(?tntftlravellgg-wave.rr:c?ae'. I | h
top moving plate, vortical motion in the central core, and avity Tiows become intrinsicatly more compiex wnen

corner flows simultaneously exist and interact in a systenin€ fiuid rheology is non-Newtonian. These complications

with closed streamlines. Inertial effects play a dominant rolea”?'e as a rfgslult oL_thr(]a.ponmer:c contrllbutlonhto ftlh? dk(?V|a—
in governing the kinematical structure of the fluid motion tOriC stress field, which is strongly coupled to the fluid kine-

and stability of cavity flows of Newtonian liquids. Inertial matics and is a function of an integral history of local rates of

effects are quantified by the Reynolds number, defined as deformation experienced by a fluid element moving along a
closed streamline. The presence of a viscoelastic fluid

LUp memory, shear thinning effects in the material functions,
Re= T (1.1 nonzero normal stress differences, and the complex exten-
sional rheological behavior of non-Newtonian fluids can
whereL is the width of the cavityl is the magnitude of the each alter the fluid kinematics in the cavity geometry.
imposed top-plate velocity, angt and p are the constant Leong and Ottino appear to have been the first to experi-
viscosity and density of the liquid, respectively. At negligi- mentally examine the effect of viscoelasticity in cavity
bly small Reynolds numbers, the Newtonian cavity flow isflows® They conducted a comparative experimental flow vi-
fore-aft symmetric. Increasing the Reynolds number breaksualization study of time-periodic flows in a viscous New-
this symmetry and eventually at a critical Reynolds numbertonian fluid and in an ideal elastic Boger fldidhese ideal
Re, =500, the flow becomes three dimensional via the amelastic fluids are synthesized by dissolving a small amount of
plification of spatial and temporal disturbanéeEhe driving ~ a high molecular weight polymer in a viscous Newtonian
mechanism of these inertial instabilities is similar to thatsolvent. In addition to exhibiting an almost constant shear
leading to the growth of classical Taylor vortices in the Cou-viscosity over a wide range of shear rates, they display ap-
ette devicd and to the related inertial instabilities that result preciable fluid viscoelasticity and large first normal stress
in the formation of Gdler vortices in boundary layer flows differences in steady shear flows. In their flow visualization
along curved surfacés. experiments with a passive dye tracer, Leong and Ottino ob-
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served that the extent of mixing was weaker in the non-and Wi provides a dimensionless measure of the magnitude
Newtonian case than in the corresponding Newtonian flowof the imposed shear ratg=U/H. The non-Newtonian nor-
under similar time-periodic boundary conditions. Analogousmal stress differences in the fluid are strong nonlinear func-
viscoelastic effects have also been observed in time-perioditons of the shear rate and consequently scale with Wi.
mixing flows generated in the eccentric cylinder geomé&try. Along with these groups a purely geometrical parameter,
Cavity flows of Generalized Newtonian fluids have beennamely the aspect ratid, can be defined as
the subject of two computational studies; Reddy and REtdy A=HI/L (1.4
investigated the heat transfer effects in steady three- ' '
dimensional cavity flows of power-law and Carreau fluids, This parameter quantifies the relative importance of the two
and Isaksson and Righdalexamined the steady streamline characteristic length scales in the cavity geometry. In the
patterns and local pressure distribution via two-dimensionatase of deep narrow slotéi&L,A>1), the width of the
numerical simulation of a power-law fluid. cavity governs the kinematics of the main circulation region,
In order to investigate the first effects of fluid elasticity, and in case of the long shallow channei$<€L,A<1) the
numerical computations of lid-driven cavity flow were per- height of the cavity plays the determining role in establishing
formed by Mendelsoret al*? using the second order fluid the streamline patterns of the recirculating shear flow in the
model. It is well known that the Newtonian velocity field bulk of the cavity. The collective set of dimensionless groups
satisfying the Stokes equations is a unique solution to th®e, Wi, andA, together with a knowledge of the fluid ma-
equations of motion for steady planar creeping flows of aerial functions, spans a parameter space that fully specifies
second order fluid® Based on these unigueness and existhe operating condition of cavity flows of viscoelastic fluids
tence theorems, Mendelset al*? show that finite element  at negligible Reynolds numbers.
simulations with the second order fluid model cannot accu-  Over the past eight years, viscoelastic instabilities occur-
rately resolve the steep gradients in viscoelastic stress thahg at negligibly small Reynolds numbers have been the
develop near the upper corners of the sliding plate. Furthersubject of intense theoretical and experimental studies. These
more, as pointed out by these authors, such numerical siminstabilities, commonly referred to asirely elastic instabili-
lations cannot provide information on the temporal stabilityties, are entirely absent in the corresponding flows of New-
of the flow and in fact, linear stability analysis has showntonian fluids and are driven by mechanisms associated with
that the steady planar flow of the second order fluid model iglastic normal stress differences rather than inertial nonlin-
temporally unstable at all finite Deborah numb¥ts. earities in the equation of motion. The nonlinear coupling
Pakdel, Spiegelberg, and McKinf&yhave conducted ki- among the components of the Cauchy momentum equations
nematic measurements of the steady two-dimensional motiols embedded in the nonlinear constitutive relationships that
of Boger fluids in the cavity geometry at negligible Reynoldsdescribe the evolution of the viscoelastic stresdn flowing
numbers using laser Doppler velocimettyDV) and digital  polymeric processes. This nonlinear coupling gives rise to
particle image velocimetryDPIV). They observe that vis- terms of the formv-V+andVv-7which scale independently
coelasticity breaks the fore-aft symmetry of the flow struc-of the Reynolds number in the governing equation set.
ture observed in the Stokes flow regime. The geometric cen-  Earlier studies on the subject of elastic instabilities date
ter of the core vortex region shifts slightly in the upstreamback to Giesekd§ who reported onset of elastic instabilities
direction (i.e., in the opposite direction to the translational in Taylor—Couette flow of a shear-thinning fluid at a Rey-
velocity of the lid and the magnitude of this shift increases nolds number of 10?. With the synthesis of ideal elastic
as the imposed velocity of the driving boundary wall is in- Boger fluids’ it became possible to isolate the effect of elas-
creased. The magnitude of the velocity gradients are entcity in the absence of additional complicating phenomena
hanced in the corner regions near the moving plate. The locauch as shear thinning in the fluid viscosity and the associ-
maxima in the velocity gradients are spatially locatedated increase in inertial effects. Purely elastic instabilities in
slightly away from the corners~0.2L) and appear in re- constant viscosity fluids were first reported by Muller, Lar-
gions where the fluid streamlines exhibit significant curva-son, and Shagféhwho observed clear indications of a flow
ture. instability while attempting to perform rheological measure-
To quantify the non-Newtonian effects in cavity flows, ments of Boger fluids in a Taylor—Couette device. Their
Pakdelet al1® define two-dimensionless groups; the Deborahstudy initiated a number of computational and experimental
and the Weissenberg numbers. The Deborah number is dstudies in the Taylor—Couette geometry over the past eight
fined as years(see, for example, Refs. 1820
. Similar studies of torsional flow in the cone-and-plate
De=AUIL, (1.2 geometry?}=?* and the coaxial parallel plate geometry?®
and the Weissenberg number is defined as the axisymmetric contraction flo#,and in the wake behind
. a cylindef® indicate that elastic instabilities are not specific
Wi=\U/H, 1.3 . :
to a flow geometry but occur in many complex flow fields.
whereU is the constant translational speed of the upper lid,;The critical onset conditions are sensitive functions of the
\ is a characteristic relaxation time of the fluild, is the  fluid rheology and of the characteristic geometric parameters
width, andH is the height of the cavity. With these defini- governing the flow configuration. Furthermore, these nu-
tions, De quantifies a ratio of the fluid viscoelastic memorymerical and experimental studies have all documented a
to a characteristic residence time in the systgg,=L/U, similar geometrical pattern in this class of instabilities,
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namely the development of a spatially periodic cellular struc- ‘\

ture in the neutral direction which may, or may not, be time

dependent. The review articles of Larédmnd Shagfel?

provide a detailed picture of the recent research on elastic c

instabilities, and identify specific mechanisms for the nonlin-

ear coupling between the momentum and constitutive equa-

tions. > End View
In a recent study closely related to the cavity flow ge- H

ometry, Grillet and Shagféhobserved elastic instabilities in

their modified Taylor—Couette experiments with Boger flu- ~

ids. In this work a meridional block was inserted in the cy- ) ,/:%

lindrical Taylor—Couette device which created a local recir-

culating pressure-driven Taylor—Dean motion upon steady L
rotation of either the inner or the outer cylindrical wall. In

this configuration, elastic instabilities were observed near the v
block at critical speeds which were markedly lower than the Plan View

critical values observed f_ar_fro_m the block in the unmc_)dmedFIG 1. Schematic diagram of the experimental appargghisavity cell: (b)
Taylor—Couette flow. This indicates that the local recircula-translating belt{c) pressure plate.

tion near the inserted block is responsible for initiating insta-

bilities at lower critical speeds. In the limit of narrow gaps

between the inner and outer cylinders, the azimuthal curvajon of the instabilities, plus quantitative measurements of
ture can be neglected and this geometry can be unraveled agek spatial and temporal frequency of the unstable modes and
viewed as a cavity flow with a very small aspect ratio, conclude with an analysis of the recently proposed dimen-

A—0. _ sionless criterion for elastic instabilities and its application in
In a companion study to the present work, Pakdel anq;iscoelastic cavity flows.

McKinley®? conducted a series of flow visualization experi-
ments of cavity flows of Boger fluids in a more moderate
range of aspect ratios 0.25\ <4.0 and reported observa- ||. EXPERIMENTAL CONDITIONS
tions of elastic instabilities for all aspect ratios. Based on
these observations and consideration of previous studies opf
elastic instabilities occurring in various geometries, they pro- A schematic diagram of the apparatus is shown in Fig. 1.
posed a general dimensionless stability criterion that can b&he geometric specifications of the test cell have been de-
used to quantify the onset of elastic instabilities based on thecribed previously? and here we briefly describe the perti-
local kinematics of the flow and the elastic properties of thenent information related to the present experimental study.
fluid. This criterion was further developed in a more detailedThe cavity cell is constructed with-in. Plexiglas and the
study® to incorporate the effects of shear thinning in the cavity dimensions aré =2.54 cm,W=10.16 cm, wheraV
material functions, changes in the solvent viscosity, and ds the length in the neutral direction. The depth of the cavity,
spectrum of relaxation times. Comparisons with existing datdd, can be varied in the range L/4H=<4L, by using Plexi-
in the literature showed that the proposed stability criterion igylass inserts to provide aspect ratios in the range of 0.25
successful in providing a sufficient condition that can char-<A <4, respectively. The aspect ratio in the spanwise direc-
acterize the onset of elastic instabilities for isothermal fluidtion is W/L =4 and can be altered ¥#&/L =8 by using suit-
motions within many geometries with curvilinear stream-able inserts. The fluid motion is generated by translating a
lines. This is consistent with theoretical studies which indi-smooth continuous polyester belt over the top of the cavity.
cate that there should exist universal destabilizing mechafhe maximum linear belt speed is approximately
nisms that depend on the local fluid kinematics and stress=5.0 cm/s or 2./s.
distributions, which are themselves functions of the fluid rhe-  The cavity cell provides visual access from all three
ology and global dimensionless geometrical parameters chaprincipal planes in the Cartesian coordinate system shown in
acterizing the flow. Fig. 1. Thex-y plane at the midpoint of the channel width is
In this study, we expand the results of Pakdel andhe cross section of the flow in which our previous two-
McKinley*? and Pakdekt al® and provide detailed experi- dimensional cavity flow measurements were performed. Fol-
mental results on the spatial and temporal dynamical strudowing the onset of hydrodynamic instabilities, the orthogo-
ture of the purely elastic instabilities that develop in cavitynal views of thex-z and y-z planes provide additional
flows over a range of aspect ratios (0s28<4.0). We use information about the kinematic structure of the disturbances
LDV and DPIV to probe the kinematics of the secondaryin the neutralz-direction. The test fluids are seeded with
motions in the cavity flows of two ideal elastic Boger fluids. minute amounts of small Mica flakes which reflect the inci-
In the next section we describe our experimental apparatugent light with varying intensity depending on the direction
and operating conditions, and characterize the rheology adnd uniformity of the local velocity field. In the steady base
the viscoelastic fluids used in our experiments. We then reflow regime, these particles reflect a uniform background
port our experimental results including global flow visualiza- light intensity in thex-z andy-z planes. However, following

Geometry
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TABLE |. Viscometric properties of the two PIB Boger fluids. 1.OE+0
Rheological parameter Fluid A-0.20 wt. % PIB  Fluid B-0.35 wt. % PIB

\Pl, pIateau[Pa §] 16 60

70 [Pag 24 35

s [Pad 19 23 S MEE

A [s] 1.6 25 \%

A [8] 8.5 15 -

B 0.79 0.66 -

Z—‘ 10E-2 |

the onset of an hydrodynamic instability, they develop non-
uniform effective light patterns in the neutral direction de-
pending on the relative fluid velocity and particle orientation . ) ) ) . ) . )
with respect to the incident light. A similar visualization 0.0 200 400 60.0 80.0
technique has been used by Baumert and Mtfiler docu- Time [s]

ment the complex s.pa.tlo-temporal dynamics following theFIG. 2. Relaxation of the first normal stress differerid¢g(t) with time
onset of purely elastic instabilities in Taylor—Couette flow. following cessation of steady shear flow for the 0.20 and 0.35 wt. % PIB
In addition to visualization of the global dynamics, solutions. The initial steady shear flow was at a shear ratgsf10 st

guantitative kinematic measurements are performed using la-

ser Doppler velocimetry and digital particle image velocim-

etry, details of which are given elsewhére”® The onset of the second plateau region since this range is consistent with

instabilities are detected both by visual inspection and byhe operating range of shear rates in our cavity flow geom-

LDV measurements. Spatial wave numbers are determineetry.

from photographs and verified by rapidly scanning the cell ~ The shear viscosity of both fluids remains relatively con-

with the laser probe using a translating stage while simultastant over a wide range of shear ratgs 100 s * beyond

neously collecting LDV data. The temporal frequencies arewhich it slowly shear thins. The values of the dimensionless

obtained from time-series analysis of velocity measurementparameter8= 54/ 7y, characterizing the relative contribu-

made using the LDV system at a fixed point in space. Eactiion of the Newtonian solvent to the total viscosity in vis-

experimental run is carried out with a fresh batch of each testoelastic constitutive equations such as the Oldroyd-B

fluid in order to reduce possible effects of polymer degradamodel, are in the range of 6:63<0.8.

tion. The time constantg computed from the viscometric
data measured in steady simple shear flow is defined as

B. Fluid rheology . \I’l,plateau

Ns= ,
A viscous polybutenéPB) oil (Amoco Indopol H30D 2(7m0~ 715)
with a mass-averaged molecular weight of approximatelywhere 74 is the solvent viscosity. As it has been noted
1000 g/mole is used as the Newtonian base fluid. The elastielsewheré? different rheological tests provide differently
Boger fluids are prepared by dissolving 0.20 wt. % and 0.35veighted moments of the relaxation spectrum present in any
wt. % of high molecular weight polyisobutylenéPIB)  macromolecular material. For completeness we also report
(Exxon L-120,M,,~1.2x 1¢° g/mole respectively in the PB  another characteristic time constaqgt in Table | obtained
oil. from measurements of the normal force relaxation following
The rheological properties of these fluids show similarthe cessation of steady shear flow as shown in Fig. 2. Match-
characteristics to those reported previously in theing the entire nonlinear relaxation observed in the decaying
literature361> The viscometric properties of both solutions first normal stress differende; (t) requires consideration of
are summarized in Table I. a multimodal constitutive model; however, the data beyond
As the rheological characterization of Quinzatial®®  the first few seconds can be accurately represented via a
demonstrates, the first normal stress coefficient of semidilutsingle relaxation time),. The ratio of relaxation times,
Boger fluids generally show two plateaulike regions; a zero-)\f/)\rB for the two fluidsA andB, appears to scale well with
shear-rate plateau at very small deformation rates, and a settve corresponding ratio o)ﬁé\/}\sB. Relevant values of the
ond region at an intermediate shear rate range 0&6.1 dimensionless numbers characterizing viscoelastic effects in
<10 s L. At higher shear rates af>10 s %, the first normal  the cavity flow can be based on either of these characteristic
stress coefficient monotonically shear thins. For these fluidime scales and for clarity are denoteds@e De as appro-
the zero-shear-rate limi¥' g is difficult to measure directly priate.
with reasonable accuracy since the normal force becomes In the context of elastic instabilities, it is appropriate to
indetectably small, although its magnitude can be inferredask which relaxation timéor Deborah numberis appropri-
from linear viscoelastic measurements of the quantifi//2» ate for correlating experimental results. This issue has been
at low frequencie$® However, in Table I, we choose to re- briefly discussed in Ref. 30 and has been considered in detail
port the average values df; measured experimentally in by Larsonet al®” In the latter work, experimental measure-
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ments of the steady and transient shear rheology were fitted
with a K-BKZ integral constitutive model with a continuous
spectrum of relaxation times characterized by a power-law
exponentp. For this model the ratio of average to the long-
est relaxation timédenoted bya/\; in Ref. 37 is given by
Ns/N=(1—p). For solutions of 0.1 wt. % PIB in PB and
polystyrene in oligomeric styrene, Larse al. report that

the values opb~0.75 andp~0.82, respectively, provide the
best correlations to the rheological data. For the fluid prop-
erties given in Table |, we fingp,~0.81 andpg~0.83, in
good agreement with the previous study. Larsoml®’ also
compared theoretical predictions of elastic instabilities in the
Taylor—Couette flow(using the K-BKZ modelwith experi-
mental stability observations and suggested that a Deborah
number based on the geometric mean of the average anc
longest relaxation times may provide the best measure of the
elasticity in the flow. In the present work we report our sta- (b)
bility observations in terms of both Dand Dg, and a geo-

metric mean can easily be Computed from these values ff'G. 3. Flow visualization of elastic instability in a square cavity=1;
plan view. The end view of the cavity flow is presented in which the

(@)

desired. imposed velocity is normal to the plane of view and outward from the paper.
(a) The stable flow at De=Wigs=0.25; (b) the unstable flow following the
onset of elastic instability at critical flow conditions of DeWi;=0.35.

Il. RESULTS

A. Global flow visualization As we show below, these cellular structures are in fact

To detect the evolution in the secondary flow structuretraveling waves which propagate along the neutzaldirec-
following onset of an elastic instability, the flow cell is illu- tion of the cavity. The LDV time series presented in Sec.
minated with a diffuse background white light source. In thelll B show that in a time-averaged sense the flow structure is
absence of any flow structure in the neutral direction, theperiodic at small supercritical Deborah numbers. However,
Mica flakes reflect the incident light uniformly. When the at any instant of time, analysis of the video recording shows
flow becomes nonuniform, bands of darker and brighter lighthat cells are continuously created and destroyed near either
intensities develop in the neutraldirection. end wall, and this accounts for the uneven spanwise distri-

The belt speed is increased in small discrete steps whileution observed in Figs.(8) and 4. In analogous Taylor—
ample observation timé&—10 min between increments is Couette studies, the neutral direction aspect ratgl., is
given for the possible development of elastic instabilities typically very large due to the small gap width in the flow
When a discernable flow structure appears in the neutral dicell. However, in cavity geometries appearing in industrial
rection, the critical linear belt speédi.; is recorded. In Fig. applications, this aspect ratio is much smaller and nonsym-
3 anend viewof the y-z plane of the cavity cell is shown metric structures arising from the influence of end effects
along thex-axis and the spatial scale of the cell is shown viaand geometric imperfections are more likely to be observed.
a ruler with centimeter gradations. The direction of motion  In Fig. 5 we show similar end view@n they-z plang of
of the belt is normal to the viewing plane and outward fromthe cellular structures following onset of elastic instability
the page. In the stable region, the reflected light intensitfor deeper cavities with aspect ratios/of=2 andA =3. The
appears uniforn[Fig. 3(a)] However, at the critical onset critical Deborah numbers are approximately the same as
condition, Dg ;~0.35, a new spatial structure develops inthose recorded for the square cavity= 1. Furthermore, the
the flow as shown in Fig.(8). The aspect ratio of the cavity number of primary cells remains unchanged at three, as ob-
in Fig. 3isA =1, and the aspect ratio in the neutral directionserved for the case oA =1. The separation between the
is W/L=4. The bright regions in Fig. () divide the flow primary recirculating vortex structure near the translating
domain into three cellular regions. plate and the weaker secondary vortex near the stationary

In Fig. 4, the flow structure at the onset conditions is
shown for a cavity with an identical aspect ratio/of& 1 but
with a neutral direction aspect ratio @/L=38. The critical
Deborah number is found to be the same for both cases and
the number of cellular regions in tWg/L =8 case is doubled
to six. This observation indicates that the elastic instabilities
are driven primarily from consideration of the stable two-
dimensional planar base flow in tley plane and the three- S o o )
dimensional flow regions near the end walls do not drive thd 'S 4 Flow visualization of the elastic instability in a square cavity

. . . . ~. =1, end view. The aspect ratio in the neutral directionW¢/L=8. The
flow into the three-dimensional regime, at least for cavitieSmposed velocity is normal to the plane of view in the outward direction
of sizeW/L=4. (Dey=Wi=0.35).
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FIG. 6. Flow visualization of elastic instabilities in cavity flogan view

with (a8 A=0.5, Dg=0.29, Wi=0.58, (b) A=0.25, Dg=0.25, Wi
=1.0. The imposed velocity is parallel to the plane of view and oriented in
the upward direction.

scales in the system, namely,andH, which in turn give
rise to two time scales in the cavity geometry.

Increasing the belt speed to values significantly greater
thanU,,;; excites higher order wave number disturbances. In
this region the cavity operates in a time-dependent mixing
flow regime with the cellular structures rapidly fluctuating in
extent and configuration. This transition to the mixing flow
regime can be better characterized by the spatio-temporal
(b) frequency measurements presented in the next section.

FIG. 5. Flow visualization of elastic instabilities in cavity flowend view

with (a) A=3, Dg,=0.37, W=0.12,(b) A=2, De,=0.35, Wi=0.18. The B. Local frequency measurements
imposed velocity is normal to the plane of view and oriented outward from

paper. To probe the dynamical structure of the instabilities ob-
served via flow visualization, temporal and spatial frequen-
cies are measured as the imposed lid velocity is increased. In
base of these deep cavities can be clearly discerned. THég. 7, time-series measurements of theomponent of the
uniformity of the reflected light in these lower regions indi- velocity are shown as a function of increasing Deborah num-
cates that, at least within the time scale of an experimentaber. These measurements are performed close to the geo-
run (=1 h), there is little dynamical evolution in this weak metrical center of the primary recirculation in the cavity at
recirculation region for either aspect ratio. x/L=0.5,y/H=0.8,z/W=0.0 for an aspect ratio of =1.
Decreasing the aspect ratio of the cavity, however, has a In the stable region, Re=0.2, the vertical component of
different effect. In Fig. 6, the cellular structures observed athe velocity at this position remains almost zero as a function
the critical onset conditions are shown iplan view(i.e., in  of time. At the critical onset condition, Rg;~0.35, the
the x-z plane for shallow cavities with aspect ratios d&f instability initially develops as a slowly traveling sinusoidal
=0.5 andA =0.25. The critical values of the Deborah num- wave in the cavity with a period of approximately 600 s.
ber and Weissenberg number are significantly different fronincreasing the Deborah number beyond the critical limit to
those recorded for the square cavitk£1). The critical De,=0.72 decreases the period of the traveling wave to val-
Deborah number decreases as the aspect ratio decreases,uas on the order of 100 s. At higher Deborah numbers, the
dicating that the instabilities are initiated at smaller beltprimary mode is combined with higher frequency distur-
speeds than for the square cavity. On the other hand, theances which ultimately result in rapid aperiodic fluctuations
critical Weissenberg number increases with decreasing a®f the local velocity field in the cavity.
pect ratios, indicating the increasing magnitude of the shear In Fig. 8, the power spectral densiiySD is shown for
rate near the moving belt and the resulting enhancement @ set of time-series measurements obtained at the same loca-
elastic normal stress differences in the cell. The relation betion in the cavity. At weakly supercritical Deborah numbers
tween these two dimensionless groups at the critical ons€De,/De v=1.3), the instability is characterized by a
conditions is a delicate balance between these two lengtsingle mode with a frequendy,=7.9x 102 Hz. Increasing
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— 1 . r T T T content of the secondary flow can no longer be simply char-
1 acterized by a single dominant frequency as the mixing flow
regime develops.

In Fig. 10, the primary dimensionless spatial wave num-
bers (@L), measured via LDV and photographic analyses are
plotted against the Deborah number and the Weissenberg
number respectivelybased on the steady shear relaxation
time). The spatial wave number is extracted from Fourier
analysis of the rapid LDV scans of,(z) andv,(z) in the
neutral z-direction of the cell and they monotonically in-
crease with increasing RQand Wi, consistent with our flow
visualization observations. The wave numbers are consis-
tently higher in smaller aspect ratios and, as observed in Fig.
5, the spatial frequency for deep cavities with higher aspect
ratios A=2,3 remain similar to the\=1 case. Increasing
the Deborah number beyond the limits shown in Fig. 10
creates a mixing flow in which many spatial modes are ex-
cited, making accurate determination of the primary spatial
wave number difficult.

[ 1 IV. OPERATING STABILITY DIAGRAMS
-0.04 - B
' ‘ ! Cavity flows are encountered in many important indus-

T Dey=02 ] trial processes and the knowledge of the boundaries of its
0.00 Ayttt et s tiiaqhrsyibeod operating stability for a given fluid formulation has impor-
-0.02 |- . tant design and processing implicatidris. Fig. 11, the criti-
— ”'m ' 2(')0 — 4;0 B — cal Deborah number is plotted versus the aspect ratio for
Time [s] both PIB fluids. For completeness, the Deborah numbers de-

G, 7 Ti ] s of th iod Cof th fined with both time constantsg; and \, are shown on the
lociy f'ield'";fXslirfggiﬁuzreg‘ge’nzi o0 ;’esrqwuaremf;\/?gkfl);ihv: left and right ordinate axes, respectively. Within the accu-
evolution of the elastic instability as a function of the imposed lid velocity. FaCy Of the experimental measurements, the data for both
fluids show an excellent superposition. The critical Deborah
numbers remain almost the same for aspect ratios greater
thanA =1, and decrease progressively for shallower cavities

the Deborah number further, excites the second harmonic. .
with small aspect ratios.

ar}d. other higher fr_equency modes ultimately creating a Recognizing the importance of both length scdleand
mixing-type flow regime. H in the cavity geometry, an operating stability diagram can

In Fig. 9, the primary temporal frequencfy,, is plotted . o :
against the Deborah number for the three dynamically dispe developed by plotting the critical Weissenberg number

tinct aspect ratios oh =1,0.5,0.25. The spectral resolution against the critical Deborah number for all aspect ratios as
of the slowly varying time-periodic flow that develops be- 220\{:]2 I::t tFr:g olri2.irlrz\:hi?grlhaés?ﬁci)gaetéol/é?:ci?p(iasfaz“(:d% I(lne
yond a critical Deborah number is governed by the total 9 9 P Y

duration of the velocity time serie3, For most of the data =0) and the fluid is at rest. Increasing the imposed driving

oresented here, the time-series span a period Tof velocity U describes a unique set of operating conditions

~200-300's leading to a spectral resolution of approxi-ly!ng along a straight line which passes through the origin

mately + 1/T~0.003 Hz indicated by the error bar on the with a slope ofA ~1. The stability boundary defines the re-
first dat; point iﬁ Fig. 9 gions of stable versus unstable operation of the lid-driven

. i <4, .
The temporal frequencies measured in deeper cavitie%avlty for the range of aspect ratios 0:28.=4.0 considered

. . . in the present study. More data are clearly required for shal-
with aspect ratios greater than one are similar to Ahel : : .
. R . . lower cavity flows with smaller aspect ratids<0.25 to ex-
case. As is shown in Fig.(9), the magnitude of the primary P,
N . . pand the process stability diagram. However, the present sta-
frequency initially increases with Deborah number and

: IbiIity diagram in Fig. 12 spans most industrially important

gradually approaches a plateau value as the flow evolves intQ . . )
- : . : ; cases in coating and extrusion processes.

the mixing regime. The frequencies are higher in the
=0.25 cavity than in the larger aspect ratios. In Figh)3he
same frequencies are scaled with the characteristic residen
time of the systeni./U and are plotted against the Deborah
number. The primary dimensionless frequency appears to de- The flow visualization photographs provide qualitative
cline dramatically forA=0.25 while remaining relatively information on the global structure of the three-dimensional
flat, particularly forA=1. When the cavity is operated at flow that develops in the neutral direction following onset of
belt speeds beyond the limits shown in Fig. 9, the spectrathe elastic instability. However, further details of the transi-

KINEMATIC CHARACTERISTICS OF THE
STABLE FLOW
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FIG. 8. Power spectral densiff?SD for the time-series measurements of theomponent of the fluid velocity at/L=0.5,y/H=0.8,z=0.0 in a square
cavity (A=1).

tion from the stable to unstable region and of the symmetrieplane following onset of the cellular instability are shown for
and kinematic characteristics of the resulting unsteady flovaspect ratios oA =0.5, 1 and 2. The exposure times of these
are needed to make a more clear assessment of the meclimages are less than 1 second and are very small compared
nisms that drive the growth of the observed temporal ando the period of the traveling wave disturbances propagating
spatial disturbances. in the neutralz-direction (orthogonal to the imaging plahe

In Fig. 13, streak images of the flow field in they Hence the streaklines in these images appear smooth and two
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F E FIG. 10. Dimensionless spatial wave numbers of secondary flow in cavity
012 — flows with aspect ratiod =0.25, 0.5, and 1.0 as a function of Deborah and
- R Weissenberg numbers. The data include LDV measurentkatiow sym-
0.10 — bols) and photographic image analy$solid symbol$ for 0.35 wt. % PIB
=) L 1 solution.
~
N 008
ay 06 I A=1 )
0. | Q | field in they-z plane atx/L=0.5 is attempted. The direction
0.04 L A of the imposed velocityJ is outward from the illuminated
L . plane; however the out-of-plane displacement occurring in
0.02 A=172 . the time interval of 1/30th s is smaller than the thickness of
" | @l ] the laser light sheet, hence we are able to resolve the in-plane
000 % - 20 20 components of the three-dimensional trajectories of the seed
' ' De ' ' particles in each subimage. In the stable flow regime, the
s

dominant component of the vectorial fluid velocity at the

FIG. 9. (a) Dimensional andb) dimensionless temporal frequency of the Midplanex/L=0.5 is projected in th&-direction and there-

primary mode of elastic instability in cavity flows with aspect ratits

fore DPIV observations in thg-z plane generate null dis-

=0.25,A=0.5, andA =1.0 as a function of Deborah number for 0.35 wt. % placement cross-correlations indicating no in-plane motion.

PIB solution. The error bars indicate the spectral resolution limit of the FFT
analysis.

dimensional. In all cases the fore-aft symmetry about the line
x=0.5_, observed for the creeping motion of Newtonian
liquids in the corresponding cavity geometry, is broken. The
upstream shift of the geometric center of the main core vor-
tex flow is enhanced compared to that reported previously in
steady two-dimensional flows at lower Deborah numbers.
Laser Doppler measurements of the out-of-plane component
of the velocity field at the critical conditions indicate that the
instability is initiated in the vicinity of the downstream cor-
ner where the curvature of the fluid streamlines is most en-
hanced.

This region is highlighted by the black box in the streak
photographs. The similarity in each image is readily apparent
and, furthermore, it is clear that the representative radius of
curvature of the streamlines in this region is not solely char-
acterized by either the height or width L of the test cell.

Following the onset of instability, thg- and z-components

0.35

5, crit

B
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0.20

Constant U 7290

»

m

T T T v T 2.25
Unstable

crit

Stable

--- Fluid A (0.2% PIB in PB) |
--- Fluid B (0.35% PIB in PB)

1.25

L L 1 1 1.00

0.0

In Fig. 14 an approximate DPIV analysis of the velocity both PIB fluids.

2.0 3.0 4.0
A

FIG. 11. The critical Deborah number Dg; and Deg . (based on the
relaxation times\g and\, , respectively as a function of aspect ratit for
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FIG. 14. DPIV measurements of the time-dependent secondary flow on the
0.00 : * planex/L=0.5 that develops following onset of elastic instabilities in a
0.00 0.10 0.20 0.30 0.40 0.50

square cavity at De=1.5. The imposed velocity is normal to the plane of
s view and in the outward direction. The dashed lines are used to illustrate the

. . . . . . . fluid trajectories and are not DPIV measurements.
FIG. 12. An operating stability diagram for isothermal viscoelastic cavity

flows. The solid line divides the stable and unstable operating regions.

De

VI. DISCUSSION

of the secondary flow are apparent in the DPIV measure- We have documented the onset of purely elastic insta-
ments as shown in Fig. 14. This measurement is, of coursdjlities in cavity flows of Boger fluids in moderate aspect
only an instantaneous snap shot of the evolving spatial strud¢atios (0.25<A=<4.0). Complementary experimental obser-
ture in the cavity geometry but it shows the complexity of vations have also been reported by Grillet and Shadfieh
the traveling waves in the flow domain. A similar techniquerecirculating flows of ideal elastic Boger fluids in the semi-
has been used very recently by Baumetraal>* to resolve ~ cavity problem A —0). The structural patterns of these in-
secondary cellular structures in the viscoelastic Taylor-stabilities are similar to the purely elastic instabilities ob-
Couette instability. served in the Taylor—Couette device, planar contraction
flows, and the stagnation flow in the wake of a stationary
cylinder. These instabilities are characterized by evolution of
a three-dimensional motion in the neutral direction which,
through flow visualization, appear as cellular structures simi-
lar to those presented in Figs. 3, 4, and 5.

As our LDV time-series measurements indicéfe. 7),
the elastic instability is time dependent, initially having very
long periods on the order of several hundreds of seconds. By
contrast, Grillet and Shagféhreport that for the semi-cavity
flow, the secondary flow that develops at small supercritical
Deborah numbers appears to be stationary. However, it is
important to note that the aspect ratd8H in the neutral
direction for these two sets of experiments are substantially
different. Recent experimental observations in the planar
contraction geometry have also shown that the mode of in-
stability (i.e., traveling or standing waves modified by the
aspect ratio of the flow cell in the neutral directi§hPrevi-
ous linear stability analyses in the Taylor—Couette
geometry® have shown that for a Couette cell of infinite
axial length both traveling and standing waves are admis-
sible modes of elastic instability for an Oldroyd-B fluid, and
recent numerical studies on the effects of eccentricity in this
geometry have shown that even very small geometric imper-
fections can have a pronounced effect on the most unstable
mode of the resulting elastic instability Since the period of
our measured velocity fluctuations close to the onset condi-
FIG. 13. Streak images of the fluid streamlines for cavity flows of the PIBtions is much longer than any fluid relaxation time scale our
solu'tion' with aspectgratios oh=0.5,A=1.0, andA=2.0.)/The Deborah experimental observations suggest that for a two-

number is Dg= 1.2 for all cases. The highlighted areas are the downstreanflimensional PaVity WithW/H — o, Whe_re the_ _eﬁeCt Of end
corner regions where the instability initiates. walls are entirely absent, the elastic instability may initially

A=1/2
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develop in the form of standing waves. Clearly, further ex-stream corner concomitantly decreases which, in turn, ampli-
perimental investigations in cavities with fixed aspect ratio fies the magnitude of the streamwise hoop stregg)( and
A=L/H, but with varying aspect ratim the neutral direc- its gradient ¢,,/r) in this region. Herer is a local coordi-
tion, W/H, are required to resolve this question. nate normal to the fluid streamline that characterizes the ra-

Within the resolution of our experimental apparatus, nodius of curvature of the streamline and,, is the 66-
detectable hysteresis effect was observed and all instabilitieomponent of polymeric stress. In curvilinear coordinates
were supercritical. The hysteresis is, of course, a completerms such as,, andr,,/r provide the coupling mechanism
phenomenon and it could occur within a very small windowbetween the individual components of the momentum equa-
of operating conditions which is experimentally difficult to tion and the convected derivatives of stress appearing in qua-
conclusively detect. Certainly numerical stability analysis issilinear constitutive equations. In their study of the purely
needed to clarify the behavior of the three-dimensional timeelastic instability arising in Taylor—Couette flow, Larson
dependent solution of the equations of motion, near, or agt al*’ point out that the systematic increase in the magni-
the critical onset conditions. tude of such terms with increasing shear rate is the primary

The spatial frequencies of the secondary flow that develphysical mechanism for driving the elastic instability. Simi-
ops at the onset conditions appear to be independent of tHar couplings between the kinematics and radial gradients in
neutral direction aspect ratiW/H as observed in Figs. 3 and the hoop stresses lead to instabilities in Taylor—Dean flows
4. The spatial frequencies are, however, strongly affected bgf elastic fluids?®
the variation in the aspect ratid. From Figs. 3 to 6, it can In more complex two-dimensional flows such as the cav-
be seen that the number of distinct cellular structures obity flow considered here, both the curvature of the fluid
served forA =3,2,1,0.5,0.25 are 2, 2, 2, 4-5, 11-12, respecstreamlines and the magnitude of the polymeric hoop stress
tively. The functional dependency of the spatial wave num-vary throughout the flow domain. Recently, a dimensionless
ber on A is complex because the aspect ratio is a relevangriterion for unifying the critical onset conditions of elastic
dynamic parameter only when both length scadtesand L instabilities in various flow geometries has been propdéed.
equally affect the local configuration of the planar two- This criterion for onset of elastic instability can be written in
dimensional base flow. In the limiting cases of deep slotghe following form,

(A<1) or shallow cavities £=1) only one length scale
affects the fluid kinematics, and therefore any scaling argu-
ment should be able to explain these limiting cases.

In general, the spatial frequencies increase with increas-
ing Deborah and Weissenberg numbers as shown in Fig. 1®&herel =\ U is interpreted as the characteristic length scale
Upon transition to the mixing regime (B&8De,;), itis ex-  over which the perturbations to the viscoelastic base flow
perimentally difficult to decompose the spatial frequencyrelax, and7 as the characteristic streamline radius of curva-
into a single predominant mode, since many higher freture in the system. At the critical conditions, this dimension-
guency disturbances are also excited and mask the primafgss group attains a critical magnitud,eﬁrit, beyond which
mode. The kinematical structure of these instabilities is simithe flow is unstable.
lar to the Taylor—Gdler vortices observed following onset In many unidirectional flow geometries, such as flows
of inertially driven hydrodynamic instabilities in Newtonian generated in a cone-plate rheometer, between two concentric
cavity flows? The DPIV snapshot of the flow field, presented parallel disks, and in the Taylor—Couette geometry, the char-
in Fig. 14, is also consistent with the laser light-sheet flowacteristic streamline radius of curvature can be readily iden-
visualization of Grillet and Shagfet.Both observations in- tified. More importantly, the streamline radius of curvature
dicate the existence of a “mushroomlike” structure which remains constant when the magnitude of the imposed driving
possibly arises from the pairwise interactions of weak travvelocity is increased. However, in more complex flows such
eling vortices near the floor of the cavity. Nonlinear stability as the cavity flow, the streamline radius of curvature varies
calculations have shown that similar structures evolve tdhroughout the flow geometry and is furthermore a function
form Gartler vortices in Newtonian fluids and these struc- of the imposed velocity or throughput. Under such circum-
tures lead to the rapid mixing of fluid regions with high and stances, a simple scaling expression can be constructed to
low momentunt: guantify the streamline radius of curvature by combining the

As we have argued previously,the kinematics of the principal radii of curvature of any two-dimensional flow field
two-dimensional flow in the downstream corner play an im-in the form
portant role in characterizing the critical onset conditions.

The two-dimensional view of the unstable flow shown in 1 a b
T + R (6.2

(-
[7 W|S] =M2Z,, (6.2)

Fig. 13 illustrates the key corner region where these elastic %
instabilities initiate. At the critical onset conditions it is clear

that the spatial structure of the primary flow in this region iswherea andb are two dimensionless weighting parameters
very similar regardless of the global aspect ratio of the cavthat identify the relative importance of the two primary
ity. At high Deborah numbers, the fore-aft asymmetry of thelength scaled andH in modulating the geometrical struc-
base two-dimensional flow becomes increasingly apparenture of the flow.

The center of the core vortex flow shifts in the upstream A more detailed studi provides further insight into this
direction and the streamline radius of curvature in the downdimensionless criterion and applies the formula successfully
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to a broad selection of experimental and theoretical case 14.0 ; l ' . T ' .
studies. In this work the proposed dimensionless group is

expressed in a more general form as 120 o) i
)\SU T11 2 I
( 7 T =Mgrie (6.3 100 - Stable

where 714 is the tensile stress in the local streamwise direc-
tion, and r,,~ 70y is the characteristic shear stress across
the stream lines. This definition, which provides an explicit
definition for the Weissenberg number in terms of a stress —~ &
ratio, can be obtained directly from dimensional consider-
ation of the convected derivative terms encountered in qua- 40
silinear and nonlinear constitutive equations. The dimension-
less criterion in Eq(6.3) can also be extended to include a
spectrum of relaxation times and, more importantly, the ef-
fect of shear thinning in the material propertiés.

If we follow a fluid element along a closed streamline, T T e ae a0 s
then the streamwise tensian, will decrease, and can even A

Change sign, as fluid partldes pass throth regions of IOCEHIG. 15. Reciprocal of the critical Weissenberg number as a function of the

(Lagrangian deceleration. In these regions, H§.3 SUJ-  cavity aspect ratio showing a linear relationship as predicted by the dimen-
gests that the flow is stable in agreement with our experisionless stability criterion. The data point marked (8y is from the mea-

mental observation. By contrast, regions characterized bgurements of Grillet and ShaqféRef. 31.
curved streamlines coupled with strong streamwise accelera-
tion are expected to be prone to elastic instability. The spatial, , .. oo , : : .
variation of the scalar magnitude M? in a stagnation flow stability criterion, My, without consideration of a numeri-
has recently been investigated Byt@,(in ot all cal linear stability analysis. AA —0 the critical onset con-

In the cavity geometry, the instability initiates in the dition reduc;]es td=0.14 or W-F',Cfit;?'z' Here
downstream corner where the streamlines of the base flow S We have documented in the present study, there is a

exhibit significant curvature, and fluid elements accelerat&!Ch dynamical structure in the cavity flow of non-Newtonian

) . 42
away from the corner. In this region, the deformation ratefluids- The scaling arguments proposed recéfifty*’can be

scales withy=U/.%2, which defines a local Weissenberg used to systematically describe the effects of fluid rheology
numberWi, ,=\.U/.%. Substituting the local Weissenberg and geometry on the operational stability of isothermal lid-
number and Eq(6.2) into Eq.(6.1), we arrive at the follow- driven cavity flows. Ultimately the critical conditions repre-
ing equation at the critical onset conditions, sented by a criterion such as E§.3 may even be utilized

in a predictive or design capacity to expand the operational

capabilities of processing operations involving complex
flows of viscoelastic liquids. Screw extruders embody many
of the kinematic elements of cavity flows, however such pro-
cesses are commonly nonisothermal, and it would be of in-
terest to extend these arguments to such processes.

8.0 -

/ Wls crit

Unstable

O ---0.20 wt% PIB

A ---0.35 wt% PIB
X --- Grillet & Shaqfeh

a
)\SU crit

E+ﬁ :Mcrit- (64)

Rearranging terms, we obtain

o~ 1
aA+b= i, 6.9
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