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Abstract A numerical method for simulating the exten-
sional dynamics of elongating ®laments of non-Newtonian
¯uids in a ®lament stretching rheometer is presented. The
boundary element method, in conjunction with either the
Oldroyd-B or the generalized multimode Upper-Convected
Maxwell constitutive model, is used to calculate the tran-
sient evolution of the liquid interface, the applied force on
the stationary end plate and the polymeric stresses. The
numerical results are compared to experimental results
and are in excellent agreement at low Hencky strains
(Newtonian response) but provide less accurate modeling
of the stress growth observed in experiments at higher
strains. A comparison of different methods for measuring
the apparent extensional viscosity from global measure-
ments of the net force and the mid-point radius of the
®lament is presented. At large strains calculations show
that the ¯uid motion in these devices closely approximates
ideal uniaxial elongation.

1
Introduction
The characterization of a ¯uid's response to elongational
deformation is of importance because of the wide variety
of ¯ows with dominant extensional kinematics that arise in
industrial processes. Fiber-spinning, extrusion and injec-
tion molding are examples of processes in which many
types of non-Newtonian liquids undergo signi®cant elon-
gational stretching. Many of these ¯uids are viscoelastic
and do not exhibit a resistance to elongation proportional

to the rate at which they are being extended, as is the case
for Newtonian ¯uids. In fact, the extensional viscosity of
viscoelastic ¯uids, such as polymer solutions, can increase
dramatically, and in a nonlinear manner, with strain and
with the rate of deformation. Although rheometric meth-
ods for measuring the extensional viscosity of high-vis-
cosity, rigid ¯uids such as polymer melts (Meissner
(1985a, 1985b)) are well established, methods for deter-
mining the extensional properties of more mobile com-
plex ¯uids such as polymer solutions are still being
developed (Khagram, Gupta and Sridhar (1985); Gupta
and Sridhar (1988); James and Walters (1993); Hermanksy
and Boger (1995)). Ferguson and Hudson (1993) showed
the dramatic discrepancies that can arise in the mea-
surements of the extensional viscosity of a single test ¯uid
when different experimental test con®gurations are used.
These dif®culties in measuring extensional properties
frequently arise due to the presence of shearing effects
near solid surfaces (Gupta and Sridhar (1988); James and
Walters (1993)) which signi®cantly affect experimentally
measured quantities such as the pressure drop or tensile
force.

The velocity components in an ideal homogeneous
uniaxial extensional ¯ow are

ur � ÿ1
2
_er; uz � _ez; uh � 0 ; �1�

where ur , uz and uh are the radial, axial and azimuthal
velocities, respectively and _e is the (constant) extension
rate. For this ¯ow ®eld an extensional viscosity can be
de®ned as

�g � Tzz ÿ Trr

_e
; �2�

where Tzz and Trr are, respectively, the axial and radial
normal stresses in the ¯uid. An ideal extensional rheo-
meter would be one that reproduces a shear-free ¯ow ®eld
similar to (1) while measuring the stress difference
Tzz ÿ Trr at a point. However in practice, the inherent
dif®culty in realizing an ideal shear-free extensional ¯ow
such as (1) is that shearing effects are always introduced
when a ¯uid sample is physically elongated; primarily due
to the presence of no-slip boundary conditions at solid
surfaces which introduce vorticity. These kinematic dif®-
culties have been discussed in detail in James and Walters
(1993) and numerical computations can play an important
role in guiding design of experimental protocols that
minimize these undesired nonhomogeneities.

The ®lament (or liquid bridge) stretching apparatus il-
lustrated in Fig. 1 is a device that attempts to reproduce
the ¯ow ®eld in (1) and is the experimental con®guration
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which has arguably yielded the most consistent exten-
sional viscosity measurements for polymer solutions thus
far. Sridhar, Tirtaatmadja, Nguyen and Gupta (1991) and
Tirtaatmadja and Sridhar (1993) were the ®rst to present
extensional viscosity measurements using this apparatus.
Since then several similar experimental devices have been
used by different investigators (see the recent work by
Spiegelberg, Ables and McKinley (1996) for a review).
However, the liquid bridge stretching device does not
generate a uniform shear-free ¯ow. Shearing effects are
present in the ¯ow near the end plates because of the
pinning of ¯uid elements adjacent to the solid end-plate
®xtures. Furthermore, the ¯ow is spatially non-homoge-
neous since different strain rates are experienced at dif-
ferent locations in the liquid sample. Velocity
compensation techniques (Tirtaatmadja and Sridhar
(1993); Spiegelberg, Ables and McKinley (1996)) are used
in experiments in order to generate local regions of uni-
form strain rates within the ¯uid ®lament in an attempt to
simplify calculations of the extensional viscosity of the test
sample.

Despite all the recent experimental attention, numerical
simulations of extensional rheometers, such as the one in
Fig. 1, are scarce. Shipman, Denn and Keunings (1991)
presented a numerical study of viscoelastic ¯uid samples
described by the Oldroyd-B model undergoing extensional
stretching in an attempt to simulate the low-rate experi-
ments of Sridhar, Tirtaatmadja, Nguyen and Gupta (1991).
As a result of numerical dif®culties only parts of the liquid
®lament near the rigid end plates were simulated and an
approximate initial surface con®guration was selected.
Viscoelastic ¯uids have a fading memory of their previous
deformations and as shown by Spiegelberg, Ables and
McKinley (1996) the initial con®guration of the ¯uid in a
®lament stretching device can play an important role in
de®ning the evolution of the transient uniaxial extensional
stresses in the ®lament at large strains. Extensional de-
formations of Newtonian liquid bridges at large strains
were studied numerically by Gaudet, McKinley and Stone
(1996) who used the boundary element method to study
the effects of interfacial tension, outer ¯uid viscosity and
the initial bridge con®guration on the dynamics of these
viscously dominated, quasi-steady ¯ows. Although the
total force required to elongate the ¯uid ®laments was
calculated in this study, no attention was given to the
calculation of the extensional viscosity.

An integral equation representation of the momentum
equation for ¯ows involving non-Newtonian ¯uids (Bush
(1984)) can also be developed using the boundary ele-
ment method, but the more complicated constitutive re-
lationships require treatment of volume integrals in the
numerical implementation. Bush, Milthorpe and Tanner
(1984) and Bush, Tanner and Phan-Thien (1985) suc-
cessfully implemented the boundary element formulation
to simulate extrusion ¯ow experiments and Zheng and
Phan-Thien (1992) used the method to study the un-
steady motion of a sphere in a cylindrical tube con-
taining a viscoelastic ¯uid. Also, Toose, Geurts and
Kuerten (1995) recently performed simulations of two-
dimensional viscoelastic drops in viscous ¯ows using the
boundary element method. To our knowledge there are
no published simulations of the extensional dynamics of
non-Newtonian liquid bridges (or ®lament stretching
rheometers) where the temporal evolution of the interface
shape, the applied force and the extensional viscosity are
calculated.

The objective of this paper is thus to numerically ex-
plore the liquid ®lament stretching con®guration in hope
of discussing the validity of these techniques for calcu-
lating the extensional viscosity of complex ¯uids. The
boundary element method is used to simulate the vis-
cously dominated extension of axisymmetric, non-New-
tonian liquid bridges. The non-Newtonian stresses in the
¯uid are modeled using the Oldroyd-B and the generalized
upper-convected Maxwell constitutive equations. The
simulations are compared with experimental results to
investigate the effectiveness of these constitutive models,
in a transient strong extensional ¯ow.

We start by presenting the governing equations and a
detailed discussion of different methods for computing the
Trouton ratio in Section 2, followed, in Section 3, by a
description of the numerical method. Results of the nu-
merical simulations are presented in Section 4 and some
conclusions are drawn in Section 5.

2
Mathematical model
The non-Newtonian ¯uids studied in ®lament stretching
rheometers are typically very viscous liquids. The Rey-
nolds number R � qU0L0=g0 characteristic of the experi-
mental device used by Spiegelberg, Ables and McKinley
(1996), with an initial end-plate separation of
L0 � 2:2 mm, an initial velocity U0 � 3:8 mm/s and for a
polystyrene-based polymer solution with material prop-
erties g0 � 47:7 Pa � s and q � 1026:0 kg/m3, is R �
1:8� 10ÿ4. A Hencky strain of _et � ln�U=U0� � 4:3 can be
achieved in this apparatus before the Reynolds number is
of order one at which time inertial effects are expected to
become signi®cant. The theoretical treatment that follows
is focused on the viscously dominated ¯ow regime present
in the experimental liquid bridge stretching device used by
Spiegelberg, Ables and McKinley (1996), and we neglect
¯uid inertia.

A study of the dynamical evolution of a deforming
liquid bridge involves solving for the shape of the free
surface at every instant in time. This feature renders the
problem nonlinear even for a Newtonian ¯uid at low

Fig. 1. Fluid ®lament stretching device
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Reynolds number and dif®cult to treat. The boundary
element method is a well established method for simulat-
ing free surface ¯ows involving Newtonian ¯uids in the
viscous ¯ow regime (Rallison and Acrivos (1978);
Pozrikidis (1992)) and was successfully implemented to
model the extensional deformation of Newtonian liquid
bridges (Gaudet, McKinley and Stone (1996)). Bush (1984)
reviewed the application of the boundary element method
for the simulation of viscoelastic ¯ow problems and pre-
sented a general derivation of the integral equation rep-
resentation of the equations of motion. The principal
stages of the development of the integral equations are
summarized here and closely follow that presented by
Bush (1984). We consider the elongation of a non-New-
tonian liquid bridge as shown schematically in Fig. 2.
Properties of the ¯uid ®lament are denoted with a sub-
script 1 and those of the surrounding ¯uid are denoted by
2. The external ¯uid is considered to be Newtonian and
treated as unbounded so that the ¯uid has two internal
boundaries, the ¯uid-¯uid interface SI and the end-plate
surfaces SP. We will restrict ourselves to axisymmetric
bridge shapes so that the end plate ®xtures are assumed to
have an axisymmetric shape and, in particular, we focus
attention on the case of in®nitely thin, ¯at, circular disks
shown in Fig. 2. The general analysis presented below al-
lows for each end plate to move with an arbitrary pre-
scribed velocity.

2.1
Integral representation of the momentum equation
The equations of motion for creeping ¯ows of incom-
pressible ¯uids inside or outside the liquid bridge are
written as

r � Ti � 0 r � ui � 0 ; �3�
where i � 1; 2; u is the velocity vector and the total stress
tensor T is de®ned as

T � TN � TNN : �4�
The Newtonian stress tensor is de®ned so as to incorporate
the modi®ed pressure, Pÿ qg � x,

TN � ÿ�Pÿ qg � x�I� gs _c �5�
where gs is the Newtonian ¯uid viscosity, q is the density,
g denotes the gravitational acceleration, x denotes the

position vector, and _c � �ru� �ru�T� is the rate of strain
tensor. The choice of constitutive relationship for the non-
Newtonian extra stress tensor TNN � sijeiej will be dis-
cussed in Section 2.2.

The underlying assumption that is made when ex-
pressing the equations of motion for a non-Newtonian
¯uid in integral equation form is that the non-Newtonian
effects in (3) can be treated as pseudo-body forces (Bush
(1984)). Equation (3) is thus rewritten

r � TN
i � ÿr � TNN

i r � ui � 0 ; �6�
and interpreted as Stokes equations subject to the body
forces r � TNN

i . The outer ¯uid 2 is taken as a Newton-
ian ¯uid so TNN

2 � 0 and we drop the subscript i � 1 in-
dicating the non-Newtonian stress tensor for the inner
¯uid. The derivation now follows the standard approach
used in expressing Stokes equations in integral form
(Gaudet, McKinley and Stone (1996); Bush (1984); Rallison
and Acrivos (1978); Pozrikidis (1992)). The integral
equation representation of the solution is (assuming the
velocity vanishes far away)

ÿ 1

g2

Z
SI�SP

�n � T2 ÿ n � T1� � J�xjy� dSy

� �kÿ 1�
Z

SI�SP

n � K�xjy� � u dSy

� 1

g2

Z
V1

TNN : rJ�xjy� dVy

�
ku1�x� x 2 V1

1
2 �1� k�u1�xs� xs 2 SI � SP ,

u2�x� x 2 V2

8><>: �7�

where gs is the solvent viscosity for ¯uid 1; k � gs=g2 is the
viscosity ratio, y is the integration variable, and the tensors
J and K are the Green's functions (Tanzosh, Manga and
Stone (1992))

J�xjy� � 1

8p
I

r
� rr

r3

� �
;

K�xjy� � ÿ 3

4p
rrr

r5
with r � xÿ y; r � jrj :

�8�

The ®rst term in equation (7) is divided into two integrals,
one over SI and the other over SP. Use will also be made of
the normal stress jump condition at a ¯uid-¯uid interface,

n � T2 ÿ n � T1 � r�rs � n�nÿ D q�g � x�n xs 2 SI ;

�9�
where n is the unit normal directed into ¯uid 2, rs �
�Iÿ nn� � r is the gradient operator along the interface,
rs � n is the mean interface curvature, the interfacial ten-
sion r is assumed constant, and Dq � q1 ÿ q2. The stress
jump across the rigid end plates is denoted
f � n � T2 ÿ n � T1 on SP.

The integral equation (7) may now be nondimension-
alized by choosing UR0;R0 and gsUR0=R0, respectively, as
the characteristic velocity, length and stress. Here the
initial velocity of the right-hand end plate is denoted by
UR0. Equation (7) is expressed in dimensionless form

Fig. 2. Non-Newtonian liquid bridge undergoing steady stretching
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(using the same variables as above for their dimensionless
counterparts) as

ÿ 1

C

Z
SI

�n�rs � n� ÿB�eg � y�n� � J�xjy� dSy

� 1ÿ 1

k

� �Z
SI�SP

n � K�xjy� � u dSy

�
Z

V1

TNN : $J�xjy� dVy ÿ
Z

SP

f � J�xjy� dSy

�
u1�x� x 2 V1

1
2 1� 1

k

ÿ �
u1�xs� xs 2 SI � SP ,

1
k u2�x� x 2 V2

8><>: �10�

where eg is a unit vector in the direction of gravity. As a
result of expressing (7) in a dimensionless form, two pa-
rameters, the capillary number C and the Bond number
B,

C � gsUR0

r
B � DqgR2

0

r
�11�

which represent, respectively, the relative magnitudes of
viscous and gravitational body forces to interfacial tension
forces, appear as two relevant dimensionless groupings in
the problem. The viscosity ratio k and the Deborah
number D, which will be introduced in Section 2.2, are the
other important dimensional groups. In the present work
we are primarily interested in the effects of viscoelasticity
on the evolution of the column rather than the perturba-
tions arising from an outer ¯uid viscosity. Hence, the
viscosity ratio is held constant at k � 2:0� 106, corre-
sponding to the case of the inner viscous experimental test
¯uid and air as the outer ¯uid. The effects of varying k on
the evolution of a Newtonian ¯uid column have been in-
vestigated elsewhere by Gaudet, McKinley and Stone
(1996), and for k > 100 the outer ¯uid has negligible effect
on the column dynamics.

Boundary conditions are speci®ed on the end plates
where the velocities are u�xs 2 SP� � UL�t� on the left end
plate and u�xs 2 SP� � UR�t� on the right end plate.
Speci®cation of an initial surface con®guration completes
the problem statement. Assuming the stress tensor TNN at
any time is known, the solution of integral equation (10),
de®ned over the bounding surfaces SP and SI , yields the
stress jump distribution on the end plates f�xs 2 SP� and
the interfacial velocities u�xs 2 SI� from which the shape
of the liquid bridge can be determined as a function of
time.

2.2
Constitutive equation
In this work we use the generalized upper-convected
Maxwell model (Bird, Armstrong and Hassager (1987))
together with an additional solvent contribution to com-
pute the evolution of the viscoelastic stresses in the ¯uid.
In dimensional terms the stresses are written in terms of a
Newtonian contribution TN and a polymeric contribution
TNN as:

TN � gs _c

TNN �
XNmodes

i

TNN
i

TNN
i � kiT

NN
i�1� � gip _c ;

�12�

where ki are the spectrum of elastic time constants or re-
laxation times of the polymer, gip are the corresponding
polymeric viscosities for each mode and the subscript (1)
denotes an upper-convected derivative (Bird, Armstrong
and Hassager (1987))

TNN
�1� �

oTNN

ot
� u � rTNN ÿ �ru�T � TNN ÿ TNN � ru :

�13�
When a single mode is used in (12), the resulting consti-
tutive equation is the well known Oldroyd-B or upper-
convected Jeffreys model

TN � gs _c TNN � k1TNN
�1� � gp _c ; �14�

where k1 is the single elastic time constant and gp is the
polymeric contribution to the total viscosity of the inner
¯uid. The dimensionless form (again using the same
variables) of the constitutive equation is

TN � _c TNN
i � 2K0DiT

NN
i�1� � bip _c ; �15�

and can be obtained by again choosing the initial velocity
of the right-hand end plate UR0 as the characteristic ve-
locity and R0; gsUR0=R0 and R0=UR0, respectively, as the
characteristic length, stress and time scales. The initial
aspect ratio of the liquid bridge is denoted by K0 � L0=R0

and bip � gip=gs. The dimensionless number that charac-
terizes the relative importance of the elastic stresses in
equation (15) to viscous stresses is the Deborah number,

Di � ki
_E ; �16�

where _E � UR0=2L0 is the characteristic dimensional axial
extension rate conventionally chosen. The aspect ratio also
arises in (15) as a result of the choice of the length scale
2L0 in the de®nition of _E. The natural time scale arising
from the chosen scaling for velocity and length is the
convective scale R0=UR0. However, for consistency with
existing experimental work (Tirtaatmadja and Sridhar
(1993); Spiegelberg, Ables and McKinley (1996)) we pres-
ent results in this paper using the axial Hencky strain

e � ln
L�t� � L0

2L0

� �
� _Et :

The Oldroyd-B equation is a three parameter model that
predicts a constant shear viscosity g0 � gp � gs and ®rst
normal stress coef®cient W10 � 2gpk1 in steady shear ¯ow
and a strain-rate-dependent extensional viscosity in tran-
sient uniaxial elongation (Bird, Armstrong and Hassager
(1987)). Another feature of the upper-convected Jeffreys
model is that for a Deborah number D > 0:5 the axial
stresses in a homogeneous uniaxial elongational ¯ow grow
unbounded in time and a steady state value of the exten-
sional viscosity cannot be achieved (Bird, Armstrong and
Hassager (1987)). Extensional rheometers are designed to
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be dominated by extensional kinematics and to be free of
shearing motions and the Oldroyd-B model has been
shown to be a reasonable choice as a constitutive equation
for these ¯ows (Keiller (1992a, 1992b)). Keiller (1992a,
1992b) used the Oldroyd-B model to qualitatively and
quantitatively simulate some of the many extensional
viscosity measurements performed on international test
standard ¯uid denoted `M1' (James and Walters (1993)).
The Oldroyd-B model does have the limitation that
stresses may grow unbounded at large strains but steady
state values of the extensional viscosity are dif®cult to
achieve in the experiments (Spiegelberg, Ables and Mc-
Kinley (1996)), and it does capture the transient expo-
nential stress growth in regions of a complex ¯ow where
uniaxial extension kinematics are dominant.

We use a cylindrical polar coordinate system and for an
axisymmetric elongating column, only four of the com-
ponents of the non-Newtonian extra stress tensor (for
mode i) TNN

i � siabeaeb; sirr; sizz; sirz and sihh, are expected
to be independent and non-zero �sirz � sizr, sirh � sihr � 0,
sizh � sihz � 0�. Four coupled partial differential equations
thus result from (15) and are written as

sirr � 2K0Di
Dsirr

Dt
ÿ 2sirr

our

or
ÿ 2sirz

our

oz

� �
� 2bip

our

or

sizz � 2K0Di
Dsizz

Dt
ÿ 2sizz

ouz

oz
ÿ 2sirz

ouz

or

� �
� 2bip

ouz

oz

sirz � 2K0Di
Dsirz

Dt
ÿ sirz

our

or
ÿ sizz

our

oz
�17�

�
ÿsirr

ouz

or
ÿ sirz

ouz

oz

�
� bip

ouz

or
� our

oz

� �
sihh � 2K0Di

Dsihh

Dt
ÿ 2sihh

ur

r

� �
� 2bip

ur

r
;

where D=Dt is the usual material derivative.
In order to integrate this system of equations in time,

initial values for the four stress components s�0�irr ; s
�0�
izz ; s

�0�
irz

and s�0�ihh are required as well as knowledge of the velocity
vector u everywhere inside the liquid bridge volume V1.
Simultaneous solutions of equations (10) and (17) will be
discussed in Section 3. We now turn to a discussion of the
calculation of the extensional viscosity and the Trouton
ratio.

2.3
Trouton ratio
In Section 1 a de®nition for the extensional viscosity was
introduced for an ideal shear-free ¯ow (see equation (2)).
The transient Trouton ratio (Trouton (1906)), which
compares the relative importance of the extensional visc-
osity in a homogeneous transient elongational ¯ow with
the shear viscosity, is expressed in terms of the tensile
stress difference at extension rate _E

Tr� � Tzz ÿ Trr

g0
_E

: �18�

In terms of the dimensionless Newtonian and polymeric
contributions to the total tensile stress, equation (18) be-
comes

Tr� � 2K0
gs

g0

�szz ÿ srr� � � _czz ÿ _crr�� � : �19�

If the imposed axial extension rate _E in an extensional
rheometer is constant in time and the kinematics of the
¯ow given by equation (1) are realized then an initially
cylindrical volume of ¯uid will deform as a cylinder and
each component of stress is spatially and temporally ho-
mogeneous. However, the ¯ow ®eld generated by the liq-
uid bridge stretching device is not free of shearing motions
as a result of the rigid end plates and the extensional de-
formation rate _czz varies throughout the ¯ow domain. The
question of how to best calculate the extensional viscosity
and the Trouton ratio for an actual liquid bridge stretching
experiment thus arises.

The quantity most easily measured in a laboratory ex-
periment is the force required to maintain the left end
plate stationary. Referring to Fig. 3a, a force balance on the
left end plate yields the dimensionless equation

FL � FL

gsUR0R0
� ÿFvis ÿ 2p

C 1� ox
oz

ÿ �2

z�ÿK0

� �1=2
;

�20�
where the ®rst term Fvis �

R
SP

n � �n � T2 ÿ n � T1� dS is the
total viscoelastic force contribution obtained by integrat-
ing the normal stress jump on the end-plate surface SP and
the second term represents the integrated contribution
from interfacial tension forces on the left end plate de-
noted by Fr on Figures 3a and 3b. The dimensionless
pro®le of the free surface is denoted by x � R�z�=R0. The
stress jump is one of the unknowns of integral equa-
tion (10) while the slope of the interface ox=oz is obtained
at the left end plate as the interface evolves in time. We
note that all dimensionless forces and stresses in this pa-
per are scaled with the solvent viscosity gs, rather than the
total viscosity.

A true Trouton ratio can be de®ned as

Trtrue � 2K0gsFvis

g0p
; �21�

Fig. 3. a Force balance on the left end plate b Force balance on a
control volume containing half of the liquid bridge;
Fs � _czz1 � szz1, and Fr is the integrated contribution from
interfacial tension forces at the perimeter of the left end plate
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where AP � p is the dimensionless left end-plate area.
However, the Trouton ratio expressed in (21) cannot be
used as it is and has to be modi®ed to correct for inter-
facial tension effects which are present in the pressure
difference term contributing to the total traction on the
left-hand end plate.

For a deforming cylinder in a uniaxial extensional
¯ow ®eld, and in a case where there is no interfacial
tension �C!1� and the viscosity ratio is large �k� 1�,
P1 ÿ P2 � _crr1 � srr1 (given by (9)) and Trtrue reduces to
(19). However, for ®nite interfacial tension on the ¯uid-
¯uid interface and a liquid bridge geometry with solid end
plates, the expression (21) contains capillary effects in the
pressure difference term contributing to Fvis. If the as-
sumption is made that the pressure inside the liquid col-
umn, P1, varies very little in the radial direction, then the
stress jump on the interface (9) can be used to express the
dimensionless pressure difference as

P1 ÿ P2 � _crr1 � srr1 � jL

C
; �22�

where jL is the dimensionless interfacial curvature at the
left end plate. Using (22) to remove the capillary pressure
contribution to the total end-plate force leads to an al-
ternative de®nition for the Trouton ratio (Gaudet (1996))
but will not be presented here because shearing effects
would still be present in Fvis.

We will see in Section 4 that in the middle of the ¯uid
column, after a certain strain, a nearly shear-free region
develops. A force balance, based on the control volume
shown in Fig. 3b, can thus be written so as to exploit this
extensionally dominated region however this expression
requires explicit information about the evolution of the
middle of the liquid bridge. The Trouton ratio, based on
this information can be written

Trmid � ÿ
2K0gs FL ÿ pXmid

C

ÿ �
pg0X2

mid

; �23�

where Xmid�t� is the dimensionless mid-point radius. The
advantages of expression (23) are that the curvature in the
middle of a strain-hardened and fore-aft symmetric ®la-
ment is given by the inverse of the minimum ®lament
radius and the assumption of no radial dependence of the
pressure is a much better one in this region. The ®nal
remaining disadvantage of (23) is that the extension rate
used to calculate the Trouton ratio is the imposed axial
extension rate _E which is not the actual strain rate realized
in the middle of the ¯uid column. An improved version of
(23) is thus obtained by replacing the imposed strain rate
_E by the effective strain rate in the middle of the liquid

sample,

Treff � ÿ
2K0gs

_E FL ÿ pXmid

C

ÿ �
pg0 _eeff X2

mid

; �24�

where

_eeff � ÿ2ur�Xmid�
Xmid

� ÿ 2

Xmid

dXmid

dt

is the dimensionless effective radial strain rate in the
middle of the ¯uid column.

A ®nal point-wise Trouton ratio can be de®ned which
also uses the actual strain rate at the middle of the liquid
bridge where shearing effects are minimal,

Trpoint �
gs� _czz � szz ÿ � _crr � srr��jx�0;z�mid

g0 _eeff
: �25�

Expression (25) generates a point-wise Trouton ratio at
the point x � 0; z � L�t�; but is dif®cult to use experi-
mentally since point-wise dynamical data for the evolving
polymeric stresses is dif®cult to obtain.

The validity of expressions (23±25) for Trouton ratio
will be compared and discussed in Section 4.

3
Numerical implementation

3.1
Discretization of the bounding surfaces
The governing integral equation (10) contains both sur-
face and volume integrals. Because of the axisymmetric
nature of the problem, the azimuthal integration of all the
integrands in (10) can be performed analytically reducing
all surface integrals to line integrals and the volume inte-
grals to surface integrals. At a given time, the ¯uid-¯uid
interface need only be described by a one-dimensional
function X�z� � R�z�=R0 and subdivided into NI line ele-
ments. On each of the end plates, NP line elements are
de®ned. A constant element boundary integral formulation
is utilized whereby the unknown velocities u�x 2 SI� and
stress jump f�x 2 SP� are assumed constant on each ele-
ment. The nodal points where unknowns are evaluated are
de®ned at the middle of the surface elements. The interface
shape X � X�z� is approximated by a cubic spline inter-
polant with which second derivatives are evaluated in or-
der to obtain the surface curvature j�z�.

The discretization of the two-dimensional surface of
revolution of the liquid bridge, which we will henceforth
call the ¯ow domain, is independent of the discretization
of the interface X�z� and is discussed in the following
paragraph.

3.2
Mapping
At every instant in time, the ¯ow domain is mapped onto a
rectangular domain whose length increases with time. The
discretization of the mapped domain is shown in Fig. 4.
We de®ne NX surface elements in the radial direction and
NZ in the axial direction. Velocities and stresses are de-
®ned at the center of the surface elements and are assumed
constant on these elements.

At any instant in time t, the ¯ow domain �x; z� is
mapped onto the rectangular domain �S;T� according to
the following linear transformation:

S�x; z� � x

X�z� T�z� � z ; �26�

where 0 � S � 1 at all points along column, and
ÿK0 � T � 2Kÿ K0 and where we have neglected to in-
dicate the time dependence of the transformation. The
mapping transformation is simple and the two-dimen-
sional integrations are all performed on the rectangular
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mapped domain where the IMSL two-dimensional spline
routines for rectangular grids can be used. A simple
change of variables for double integrals (Kreyszig (1993))
is used to perform the two-dimensional integration of the
non-Newtonian term according toZ

z

Z
x

G�x; z� dx dz �
Z

T

Z
S

G�x�S;T�; z�S;T��jJj dS dT ;

�27�
where G�x; z� represents the non-Newtonian integrand in
(10) after the azimuthal integration and J is the Jacobian of
the transformation, which using (26) becomes

J �
ox
oS

ox
oT

oz
oS

oz
oT

���� ���� � X�z� : �28�

When equation (10) is used to determine the velocities
inside V1, the integrand G�x�S;T�; z�S;T�� becomes sin-
gular at each of the points where the velocities are sought.
The degenerate quadrilaterals method (Lucas (1995)) is
used to eliminate the singularities at these points. Two-
dimensional splines are used to represent the velocity ®eld
in the mapped domain and to calculate derivatives of ve-
locity with respect to the transformation variables S and T.
The derivatives of velocity in the physical domain are re-
quired in (17) and are obtained using the chain rules,

our

oz

� �
x

� ÿ x

X�z�2
dX

dz

our

oS

� �
T

� our

oT

� �
S

our

ox

� �
z

� 1

X�z�
our

oS

� �
T

ouz

oz

� �
x

� ÿ x

X�z�2
dX

dz

ouz

oS

� �
T

� ouz

oT

� �
S

ouz

ox

� �
z

� 1

X�z�
ouz

oS

� �
T

:

�29�

3.3
Initial and boundary conditions
Two sets of initial conditions are required for this problem:
1) values for the four components of the non-Newtonian
stress and 2) an initial interface shape speci®ed by
R�z; t � 0�. In this paper, results will be presented for

the initial conditions: s�0�irr � 0; s�0�izz � 0; s�0�irz � 0; s�0�ihh � 0
and X�z; t � 0� � 1. This corresponds to the typical ex-
perimental con®guration in which a liquid sample is placed
between the plates and allowed to equilibrate for a period
corresponding to several relaxation times. We show below
that in a strong stretching motion this initial data can in-
¯uence the column dynamics and care must be taken to
ensure a preshear history does not contaminate measure-
ment of the transient evolution in the viscoelastic stresses.

At a given time step, knowledge of the shape of the in-
terface and its curvature everywhere are required, as are the
velocities of the two end plates. As mentioned above, a cubic
spline interpolant provides all the information required on
the interface including the curvature which enters in the
®rst term of equation (10). The dimensional end-plate ve-
locity boundary conditions imposed in all of our simula-
tions (except a validation case described in Section 4 and
for the velocity compensation study of Section 4.2.3) are
uz�z � L�t�� � UR0 exp� _Et� and ur � 0. The simulations
start with a fully relaxed cylinder of a non-Newtonian ¯uid
having no elastic stress history and the cylinder then un-
dergoes quasi-steady extensional motion driven by the
right-hand end plate that is translating at a velocity which
increases exponentially with time.

3.4
Algorithm
We will now present the details of the numerical proce-
dure. We note that equations (17) are rewritten in the
form Dsiab=Dt � giab. The time-dependent boundary ele-
ment formulation for the deformation of a viscoelastic
¯uid with a deformable free surface are solved in the fol-
lowing sequence of steps:

i. Impose the initial conditions (interface shape, TNN ),
the time step Dt and boundary conditions.

ii. Write the discretized version of equation (10) suc-
cessively for NI points on the interface and the 2NP points
on the two end plates. A 2�NI � 2NP� � 2�NI � 2NP� sys-
tem of linear equations is thus obtained and solved using
standard linear system solvers. The velocities on the in-
terface and the stress jump on the end plates are thus
obtained.

iii. With the velocities and stress jump values obtained
in step (ii), calculate velocities at each node point in the
internal domain using equation (10).

iv. Using the velocities calculated in step (iii), integrate
the system of equations (17) forward in time using the
explicit fourth-order Adams-Bashforth method (Burden
and Faires (1985)). For example at node point jk,

s�t�Dt�
irr

� �
jk
�
�
s�t�irr �

Dt

24
�55girr�t� ÿ 59girr�t ÿ Dt�

� 37girr�t ÿ 2Dt� ÿ 9girr�t ÿ 3Dt��
�

jk
:

Fig. 4. Discretization of the ¯ow and mapped domains
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Notes: As we have previously mentioned, a Lagrangian
integration is used for the stresses. An explicit Euler
time step (still a Lagrangian integration but using Eu-
ler's method) is used to generate the ®rst values of
giab�t ÿ Dt�; giab�t ÿ 2Dt� and giab�t ÿ 3Dt�. Here time
has also been nondimensionalized with the convective
time scale R0=UR0.

v. Move (in a Lagrangian sense) the interface and the
internal Lagrangian nodes using the explicit fourth-order
Adams-Bashforth method:

x
�t�Dt�
i � x

�t�
i �

Dt

24
�55ur�t� ÿ 59ur�t ÿ Dt�

� 37ur�t ÿ 2Dt� ÿ 9ur�t ÿ 3Dt��
z
�t�Dt�
i � z

�t�
i �

Dt

24
�55uz�t� ÿ 59uz�t ÿ Dt�

� 37uz�t ÿ 2Dt� ÿ 9uz�t ÿ 3Dt�� :

�30�

vi. Compute values of the Trouton ratio using equa-
tions (23)±(25).

vii. Using the stresses obtained in step (iv) repeat steps
(ii) to (v).

We will now present results of the numerical implemen-
tation of the above algorithm to equations (10) and (17).

4
Numerical results
In this section we present results of our numerical simu-
lations of the stretching of non-Newtonian liquid bridges,
an example of which has been shown above in Fig. 2. In
the results reported here, gravitational body forces are
neglected, i.e., B � 0; it is nevertheless straightforward to
solve (10) and (17) for axisymmetric geometries with
B 6� 0. Numerical convergence checks have been per-
formed to ensure convergence with time step as well as
with spatial discretization.

4.1
Validation case: homogeneous extensional flow
The transient evolution of the non-Newtonian stresses for
an ideal extensional ¯ow (1) can be obtained analytically
(Bird, Armstrong and Hassager (1987)), by integrating the
Oldroyd-B equation, and expressed in dimensionless form

srr �
1� bp �D
2K0�1�D� ÿ

1

2K0

1� bp �D
1�D ÿ 1ÿ 2K0s

�0�
rr

� �
� exp ÿ t

2K0D
�1�D�

� �
szz � ÿ

�1� bp�
K0�1ÿ 2D� �

2D

K0�1ÿ 2D�
� 1

K0

1� bp

1ÿ 2D
ÿ 2D

1ÿ 2D
ÿ 1� K0s

�0�
zz

� �
� exp ÿ t

2K0D
�1ÿ 2D�

� �
; �31�

where s�0�rr � srr�0� and s�0�zz � szz�0� are the initial radial
and axial stresses, respectively. For the numerical results
that follow, s�0�rr � s�0�zz � 0. This one-dimensional ¯ow can

also be numerically simulated with the two-dimensional
algorithm presented in Section 2 and 3 by relaxing the no-
slip boundary condition on SP allowing the ¯uid particles
adjacent to the end plates to move radially inwards as well
as axially. We simply impose the dimensionless form of (1)
as the velocity boundary conditions on both end plates:

u�x; z � ÿK0� � ÿ 1

4

x

K0
ex

u�x; z � 2K�t� ÿ K0� � ÿ 1

4

x

K0
ex � exp� _Et�ez ;

where 2K�t� is the instantaneous dimensionless length of
the liquid bridge, x is the dimensionless radial coordinate
on the end plates and ex and ez are unit vectors in the
radial and axial directions, respectively. In a laboratory
this boundary motion could be achieved by having end
plates that are made of a compressible sponge-like or
stretched elastomeric material, for example. Berg, KroÈger
and Rath (1994) performed this experiment using an
elastic diaphragm.

In Fig. 5 we show the results of our numerical simula-
tions for a liquid bridge whose end plates are deforming

Fig. 5. Evolution of a the mid-point radius and b the effective
Trouton ratio; C � 1:0� 109, k � 2:0� 106, K0 � 1, bp � 0:28
and B � 0. The curves for D � 1, D � 0:4 and D � 0 superpose
in a

468



according to an ideal extensional ¯ow. For these results the
Oldroyd-B model was used. In Fig. 5a we show the evo-
lution of the liquid bridge mid-point radius for various
values of the Deborah number D. The dashed line in this
®gure represents the radial evolution at any Deborah
number D. The initial interface con®guration for all the
computations in this paper is that of a cylinder, charac-
terized by its initial aspect ratio K0. The predicted radial
evolution for an ideal extensional ¯ow follows a straight
line on a semi-logarithmic plot with slope ÿ _E=2. The re-
sults of the numerical simulations nearly superpose with
the analytical results for all the values of D computed
which indicates the simulated ¯ow kinematics are the
same as an ideal extensional ¯ow.

The transient effective Trouton ratio (expression (24))
result for the same values of D is shown in Fig. 5b.
Agreement with the analytic Trouton ratio is almost per-
fect for strains larger than _Et � 0:5. Our numerical results
show that the stress-jump (or force) distribution on the
end plates is not uniform for small values of the initial
aspect ratio K0 and that this variation from the center of
the end plate to the perimeter diminishes as the liquid
bridge is extended. The other expressions for the Trouton
ratio introduced in Section 2.3 are not presented, but as
expected, all reduce to the same value for C � 1 and a
very large viscosity ratio. We also mention that the stress
growth for the case D � 0:4 at early strains is faster than
for D � 1 due to the linear viscoelastic response of the
¯uid and the non-dimensional scaling chosen for time but
eventually approaches a plateau whereas the Trouton ratio
in the other case grows unbounded.

The numerical results presented in this section, apart
from the discrepancies at very small strains, are in excel-
lent agreement with the analytic expressions (31) and (1).
In the process of generating results for this validation case,
every aspect of the algorithm presented in Section 3.4 was
tested and appeared to perform well so we now turn to the
simulation of ®lament stretching devices.

4.2
Numerical simulations of the filament stretching device
In this section we present results of our numerical simu-
lations of the ®lament stretching device used by Sridhar,
Tirtaatmadja, Nguyen and Gupta (1991) and Spiegelberg,
Ables and McKinley (1996). In addition to exploring the
general trends of the predicted response using the Old-
royd-B model, the numerical results will also be compared
to a stretching experiment conducted by Spiegelberg,
Ables and McKinley (1996). In these experiments, the end-
plate radius was R0 � 3:5 mm for both disks and the vis-
coelastic test solution consisted of a high-molecular weight
polystyrene solute (polymer) in a low-molecular weight
polystyrene solvent. The parameters for the four-mode
model obtained from regression to linear viscoelastic data
are: k1 � 2:414 s, k2 � 0:91 s, k3 � 0:096 s, k4 � 6:4�
10ÿ3 s, g1p � 2:2 Pa � s, g2p � 1:02 Pa � s, g3p � 0:77 Pa � s
and g4p � 1:52 Pa � s. The solvent viscosity of the polysty-
rene solvent is gs � 37:2 Pa � s. These parameters were
obtained from viscometric shear measurements on the
polystyrene solution and the resulting Deborah numbers,
given an imposed axial extension rate of _E � 1:72 sÿ1, are:

D1 � 4:15, D2 � 1:56, D3 � 0:17 and D4 � 1:1� 10ÿ2.
Hence the ®rst and second modes are expected to exhibit
signi®cant elastic stress growth, whereas the shorter re-
laxation modes �Di < 1=2� will contribute only to the
linear viscoelastic response of the system.

4.2.1
Oldroyd-B model
We ®rst present, in Fig. 6, a comparison of the evolution of
the liquid ®lament interface for two cases, a Newtonian
liquid (Fig. 6a) and a non-Newtonian liquid described by a
single-mode Oldroyd-B ¯uid model (Fig. 6b). The stretch
rate in the experiment was _E � 1:72 sÿ1 and will be used
for all the numerical computations in this paper. The
Deborah number D, for the single mode result in Fig. 6b,
isD � 6:0 and we show this ®gure in order to highlight the
difference ¯uid elasticity makes in the kinematics of an
extending liquid bridge. In fact, strain hardening in the
non-Newtonian ®lament is responsible for suppressing the
accelerated pinching that occurs in the Newtonian ®lament
and leads to the formation of an almost cylindrical region
in the middle of the ®lament (whose length increases with
time). In this region the ¯ow is nearly shear-free, which is
a necessary feature for an extensional rheometer. Align-
ment and extension of the macromolecules in the direction
of stretching increases the tensile force in the ¯uid thread
and, inhibits further elongation in the narrowest section of
the ®lament. Radial displacement of ¯uid elements thus
becomes easier away from the middle of the ¯uid ®lament
in regions where the tensile stresses are lower and for-
mation of an increasingly uniform cylindrical region re-
sults. These kinematic observations have been well
documented in the experimental literature (Sridhar,
Tirtaatmadja, Nguyen and Gupta (1991); Tirtaatmadja and

Fig. 6. Evolution of the liquid bridge interface; C � 4:7,
k � 2:0� 106, K0 � 0:3143 and B � 0. a Newtonian ¯uid, D � 0
b Oldroyd-B model D � 6, bp � 0:28
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Sridhar (1993); Spiegelberg, Ables and McKinley (1996)).
We note that only the node points of the interface have
been plotted in Fig. 6 and that the apparent cusps in this
®gure do not exist in the calculations since the interface is
represented by a cubic spline interpolant at all time steps.

For the purpose of comparison, we have obtained (from
the stretching experiment by Spiegelberg, Ables and Mc-
Kinley (1996)) the experimentally measured evolution of
the mid-point radius, Rmid, of the ¯uid thread at an ex-
tension rate of _E � 1:72 sÿ1. These measurements were
made using a digital video imaging system. In Fig. 7a, the
numerically predicted evolution of the liquid bridge mid-
point radius, for different values of the Deborah number
D, are plotted against Hencky strain. The agreement be-
tween the simulations and the experiment is excellent up
to a strain of _Et � 2:6. Beyond this point the numerical
results predict that the radial pro®le decreases at a slightly
faster rate than is observed in the experiment suggesting
that the Oldroyd-B model does not provide enough strain
hardening (or stress growth) to fully reproduce the ex-
perimental measurements. The slope of the curves in
Fig. 7a are not constant as was the case in Fig. 5 for an
ideal shear-free ¯ow. Fig. 7b shows that the effective strain

rate _eeff � ÿ�2=X��dX=dt�, computed in the middle of the
¯uid column, is initially higher than the imposed axial
strain rate _E before it rapidly drops below the imposed
value at intermediate strains _Et > 1:5. The effective strain
rate only approaches the ideal uniaxial elongation rate for
strains _Et � 1:5. The effective strain rate in Fig. 7b initially
evolves to a relatively constant value _eeff � 3 _E=2 at low
strains and this has implications for the velocity com-
pensation technique which will be discussed later. In the
case of a Newtonian ¯uid ®lament �D � 0� capillary effects
at higher strains result in an increasingly rapid rate of
thinning in the mid-point region. However, for the values
of C typical in the experiments �C > 1� viscous stresses on
the interface dominate the surface tension contribution
and delay the onset of capillary break-up until very large
strains. In the case of non-Newtonian ®laments the rapidly
growing elastic stresses dominate the interfacial force and
surface tension is unimportant except very close to the end
plates.

Experimental measurements of the applied force on the
stationary end plate, are also compared with our numerical
results. In Fig. 8, the dimensionless applied force on the
stationary end plate (denoted by FL in Fig. 2) is plotted
against Hencky strain for the same four values of D pre-
sented in Fig. 7. The curves in Fig. 8 also indicate that the
single mode Oldroyd equation fails to provide enough
stress growth, at higher strains, to quantitatively simulate
the rapidly increasing tensile force in the elongating ¯uid
®lament. The single mode model with a value of D � 6
provides the best qualitative and quantitative agreement
with the experimental force measurement up to a strain of
_Et � 2:6 beyond which point the results diverge. We note

that the D � 0 simulation also falls directly on top of the
experimental data points for values of axial strain up to
_Et � 1:2 but the applied force for this case (Newtonian

¯uid) then evolves to zero as the radius of the ®lament
continues to decrease. A clear distinction in behavior,
between the values D � 1 and D � 3, can also be observed
upon closer inspection of Fig. 8. The applied force, for the

Fig. 7. Evolution of a the mid-point radius b the effective strain
rate at the liquid bridge mid-point; C � 4:7, k � 2:0� 106,
K0 � 0:3143, bp � 0:28 and B � 0

Fig. 8. Evolution of the absolute value of the applied force on the
stationary end plate; Oldroyd-B model; C � 4:7, k � 2:0� 106,
K0 � 0:3143, bp � 0:28 and B � 0
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case D � 1, does not plateau (at least up to _Et � 3:0) and
appears to be slowly evolving to zero whereas the force, in
the case D � 3, levels off at _Et � 2 and subsequently be-
gins increasing. The critical value separating these two
classes of behavior is D � 1 in the case of an ideal ex-
tensional ¯ow at an extension rate of _eeff � _E0 and, arises
since at large strains the stresses grow exponentially with
time as szz � exp��2ÿ 1=D� _E0t� while the ®lament radius
decreases with time as Rmid � exp�ÿ1=2 _E0t� leading to an
evolution of the force FL � exp��1ÿ 1=D� _E0t�, which be-
comes constant when D � 1 (Harlen (1995)). In the cal-
culation, the computed or effective strain rate for ¯uid
elements near midplane is in fact _eeff= _E < 1 (cf Fig. 7b) so
the force FL in fact decreases weakly with strain. The
dotted curve in Fig. 8 represents the projected stress
growth using the analytical prediction for an ideal exten-
sional ¯ow of the Oldroyd-B model (14), at large strains
and at an effective strain rate _eeff � 0:9 _E, subject to the
initial stress s�0�zz which is taken to be the numerically
computed stress at _Et � 3. The value _eeff � 0:9 _E was esti-
mated from Fig. 7b and used as the effective strain rate
that is approached in the simulations at _Et > 3. The cor-
responding Deborah number is then D � 5:43. The nu-
merical simulation for the case D � 6 was continued to a
strain of _Et � 3:4 to verify the good agreement with the
analytical curve which was started at _Et � 3.

We now proceed to justify why an analytic one-di-
mensional expression is suf®cient to describe the force
evolution (and hence the Trouton ratio) for strains of
_Et � 3 and higher. It is already apparent from Fig. 6 that a

cylindrical region forms in the middle of the ¯uid sample
where sample deformation occurs at a nearly constant
strain rate. Contour plots for the evolution of the tensile
stress are presented in Figures 9 and 10. Figure 9 shows
the evolution of the total tensile stress TN

zz for a purely
viscous ¯uid column (Newtonian ¯uid). The contours in
this ®gure show that the radial distribution of TN

zz in the
middle region of the ¯uid column is non-uniform for low
strains. Since TN

zz has been non-dimensionalized with a
characteristic viscous stress g0

_E, the contours essentially
represent local values of an effective Trouton ratio (scaled
on the nominal axial elongation rate, rather than the ef-
fective strain rate actually experienced by ¯uid elements
near the mid point of the column). At large strains, the
tensile stress TN

zz in the column becomes increasingly ra-
dially uniform. The largest values are obtained in the
narrowest region of the ¯uid ®lament near the midpoint
Xmid�t� and the regions near the rigid end plates are qui-
escent with almost no viscous tensile stress. Since the re-
sponse of a non-Newtonian liquid bridge described by the
Oldroyd-B model is initially the same as that of a New-
tonian ¯uid at small strains, the same axial and radial
nonuniformities in the non-Newtonian tensile stress szz

can be observed in Fig. 10 for the case D � 6 with the
important difference that the non-Newtonian tensile
stresses remain axially and radially non-uniform even at
high strains. This radial nonhomogeneity in the stress is a
result of the nonhomogeneous ¯ow in the ¯uid column at
short times (small strains) and is ``remembered'' by the
elastic ¯uid even at higher strains. The radial distribution
of the normalized axial stress szz=�szz�int is shown in

Fig. 11 as a function of the rescaled radial coordinate
x=Xmid, where Xmid is the instantaneous dimensionless
radius in the middle of the liquid bridge, and �szz�int is the
tensile stress on the ¯uid interface at Xmid. It can be seen
from Fig. 11 that the tensile stresses near the midplane of
the ®lament evolve in a self similar manner for axial
strains of _Et � 2:3. Knowledge of the evolution of the ¯uid
particle on the interface (in the middle of the ¯uid col-
umn) is thus suf®cient to completely reproduce the self
similar stress pro®le at higher strains. In a suf®ciently
strong stretching ¯ow, i.e. D > 1=2, it can be seen from
equation (31) that the initial stress boundary condition
s�0�zz is not forgotten even though the Oldroyd-B model is
conventionally thought of as a ¯uid with ``fading memo-
ry''. The spatial variations in szz throughout the liquid
column thus become ``frozen'' into the ¯uid as the ®lament
is elongated and are convected with ¯uid elements without
decaying. The stress pro®le shown in Fig. 11 can be inte-
grated radially to obtain the dimensionless applied force
according to

FL�t� � 2p
Z Xmid�t�

0

szz�x; t�x dx� p
X2

mid

K0
ÿ p

Xmid

C
;

�32�
where the second term represents viscous contributions
from the solvent and the third term represents capillary
pressure contributions. We note that at high strains (and
high tensile stresses) the viscous solvent and capillary
pressure contributions are negligible. Expressions (24)
and (25) can be used to obtain values for the corre-
sponding Trouton ratios.

We now turn to a discussion of the applicability of the
various Trouton ratio expressions presented in Section 2.
We ®rst present in Fig. 12 the Trouton ratio values given
by expressions (23±25), for the case D � 0, compared to
the well known and expected analytical result for a New-
tonian ¯uid, Tr � 3. The effective Trouton ratio Trpoint

based on a point-wise measure of the stress and local ex-
tension rate reproduces the analytical result almost exactly
up to a strain of _Et � 2:2 before the ¯uid column starts to
undergo capillary breakup and additional shearing and
extensional effects become important in the middle of the
®lament (where the stresses are calculated and used in
equation (25)).

Of the remaining estimates for the Trouton ratio, it is
clear that equation (24) which takes into account the
capillary pressure variation and the variation in the ef-
fective strain rate _eeff with time provides the best estimate
of the Trouton ratio actually obtained in a ®lament
stretching rheometer. Also in Fig. 12, the Trouton ratio
expression Treff levels off to a value Treff � 3:5. This slight
difference from the analytical result can be rationalized by
the fact that Treff represents a mean value for the Trouton
ratio and that our numerical results show the shearing
effects on or near the interface are two orders of magni-
tude larger than along the symmetry plane �x � 0� of the
liquid bridge. Interfacial tension and an increasing cur-
vature are responsible for this effect and contribute to this
increase in the calculated Trouton ratio value. These
shearing effects are clearly not present in the analytical
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Fig. 9. Evolution of the tensile
stress; D � 0, C � 4:7,
k � 2:0� 106, K0 � 0:3143
and B � 0. (a) _Et � 0:2 (b)
_Et � 1:2 (c) _Et � 2 (d)
_Et � 2:8. The contour scale for

the dimensionless axial stress
is the same in (a), (b), (c) and
(d)

Fig. 10. Evolution of the ten-
sile stresses; D � 6, C � 4:7,
k � 2:0� 106, K0 � 0:3143
and B � 0. (a) _Et � 0 (b)
_Et � 1:2 (c) _Et � 2 (d)
_Et � 2:5 (e) _Et � 3

c
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(ideal) Trouton ratio Tr � 3. The radial stress srr on the
interface is also two to three times smaller than at the
center while the tensile stress is uniform along the radial
coordinate. Even though Fig. 7b shows the variation of the
effective strain rate _eeff with time for this case, excellent
agreement with the analytical value of Tr � 3 is obtained
because, for a Newtonian ¯uid, the strain rate history is
not important. However, the evolution of the stresses in a
non-Newtonian ¯uid ®lament depends upon the entire
history of imposed strain rate and a varying strain rate
does not provide a fundamental way in which to compute
the transient Trouton ratio of an unknown ¯uid. Velocity
compensation techniques are used experimentally (Ti-
rtaatmadja and Sridhar (1993); Spiegelberg, Ables and
McKinley (1996)) to generate a constant strain rate in the
middle of the ¯uid thread. We will perform numerical
velocity compensation in Section 4.2.3.

Values of Trouton ratio for the simulations presented in
Figures 7±8 are shown in Fig. 13 for the case D � 3. Ex-
pression (24) was also used to calculate Trouton ratio
values using the experimental force and radius measure-
ments and this experimental result is included in Fig. 13
for comparison. We note that the effective strain rate was
not measured in the experiment since differentiation of the
discretely measured Rmid�t� data is required. Unsurpris-
ingly, all the Trouton ratio expressions discussed in Sec-
tion 2 provide the right qualitative behavior given the fact
that at large strains, tensile stresses can be several orders
of magnitude larger than any other stresses in the ¯uid. At
small strains, the point-wise Trouton ratio �Trpoint� pro-
vides the most accurate prediction of the analytical value
Tr � 3 for the essentially Newtonian response of the ¯uid.
The difference in values for Treff and Trpoint in Fig. 13 is
due to the fact that Treff , in contrast to Trpoint (which is a
local value), represents a radially averaged value and that,
as is apparent in Fig. 10, the tensile stresses vary radially
in the middle region. The main result from Fig. 13 is that
the Oldroyd-B constitutive equation predicts the steep rise
in Trouton ratio at slightly higher strains than is observed
in the experiment, which is consistent with our earlier

Fig. 11. Radial distribution of the nor-
malized polymeric tensile stress at the
liquid ®lament mid-point; D � 6,
C � 4:7, k � 2:0� 106, K0 � 0:3143 and
B � 0

Fig. 12. Evolution of the Trouton ratio; D � 0, C � 4:7,
k � 2:0� 106, K0 � 0:3143 and B � 0

Fig. 13. Evolution of the transient Trouton ratio predicted by
Oldroyd-B model and observed in experiments; D � 3, C � 4:7,
k � 2:0� 106, K0 � 0:3143, bp � 0:28 and B � 0
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observation that the stress growth predicted by this quasi-
linear model is not suf®cient.

4.2.2
Four-mode convected Maxwell model
In this section we present results of our numerical simu-
lations of the ®lament stretching device, using the four-
mode convected Maxwell equation to more accurately
model the viscoelastic response of the stresses in the ex-
perimental test ¯uid.

In Fig. 14a, the evolution of the middle radius is plotted
as a function of strain and shows that, for strains of
_Et � 1:6, the results diverge from the experimental mea-

surements. The four-mode model results are initially sur-
prising since they are less accurate than those obtained
using the single-mode model. The problem, again, is
the lack of stress growth at strains of _Et � 1:6. Each mode
in the generalized convected Maxwell model behaves as a
Newtonian ¯uid in the limit Di ! 0. So adding more
modes with ki < k1 simply pushes signi®cant strain
hardening to higher strain levels since the elastic modulus
G �Pi�gi=ki� of the material is redistributed from the
single-mode model to modes that have lower Di and thus
contribute less to the total stress. What is clearly required
for increased strain hardening at moderate strains is the
superposition of multiple modes of nonlinear models such
as the Chilcott-Rallison and Phan-Thien-Tanner models or
the incorporation of additional dissipative terms in the
constitutive equation which result in faster stress growth
than the exponential response given by equation (31)
(Tirtaatmadja and Sridhar (1995); Rallison (1997)).

The applied force (Fig. 14b) and computed value of the
effective Trouton ratio at the midpoint of the column
(Fig. 15) results also show the same lack of strain hard-
ening at moderate strains.

4.2.3
Velocity compensation
As we have shown above, direct calculation of the Trouton
ratio is preferred using kinematic data from the middle of
the ¯uid bridge were shearing effects are minimal. How-
ever, the effective strain rate _eeff has been shown to vary
temporally in this region. We now emulate the experi-
mental attempts that are made to compensate for this
strain rate variation (Tirtaatmadja and Sridhar (1993);
Spiegelberg, Ables and McKinley (1996)) and implement a
numerical procedure that generates constant effective
strain rates in the middle of the ®lament. The only mod-
i®cation that is required to the algorithm presented in
Section 3.4 is that at steps (i) and (ii), an iterative proce-
dure is established whereby different velocity boundary
conditions on the moving plate are imposed until the
strain rate in the middle converges to the desired constant
value. A shooting method is used to insure convergence.
All the other steps in the algorithm are followed as before.

In Figures 16 and 17, we show the results obtained with
the single-mode Oldroyd-B equations with D � 3. Fig-
ure 16 shows the evolution of the dimensionless imposed
velocity on the right end plate and is plotted versus the
effective Hencky strain e � R _eeff �t� dt. The iterative pro-
cedure performs well in generating a constant strain rate at

Fig. 15. Evolution of the effective Trouton ratio Treff ; C � 4:7,
k � 2:0� 106, K0 � 0:3143 and B � 0

Fig. 14. Evolution of a the mid-point radius b the applied force on
the stationary end plate using a four mode formulation of the
Generalized Maxwell model with a Newtonian solvent; C � 4:7,
k � 2:0� 106, K0 � 0:3143 and B � 0
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the ®lament midpoint. The only reported experimental
practice (Spiegelberg, Ables and McKinley (1996)) for in-
suring a constant rate in the experiments is to apply a
velocity pro®le composed of two exponentially varying
elements, at two distinct stretch rates, with a smooth
transition region between the two. This approach yields
relatively constant rates. Figure 16, plotted on a semi-
logarithmic scale, suggests that the correct velocity pro®le
is more complicated than a single or double exponential
pro®le and only asymptotically approaches the ideal uni-
axial extensional pro®le at strains e > 3:5.

The attempts to generate a constant strain rate are made
to provide more accurate calculations (or measurements)
of the Trouton ratio. We thus verify in Fig. 17 that the
Trouton ratio calculations, for the simulations using the
velocity compensation technique, provide excellent
agreement with the analytical result for the Trouton ratio

of a liquid ®lament evolving in a shear-free ¯ow at the
corresponding effective strain rate.

5
Conclusions
In this paper, we have presented the results of numerical
simulations of the ®lament stretching devices used by
Sridhar, Tirtaatmadja, Nguyen and Gupta (1991), Ti-
rtaatmadja and Sridhar (1993) and Spiegelberg, Ables and
McKinley (1996). The boundary element method was used
to simulate the extensional dynamics of extending New-
tonian and non-Newtonian ¯uid bridges, and, the Old-
royd-B (single mode) and the generalized Maxwell model
(four modes) were used to model the stresses in the liquid
®lament. Parameters for the numerical calculations were
chosen to match an experiment conducted by Spiegelberg,
Ables and McKinley (1996) and direct comparisons with
these experimental results were made. Results show that
the Oldroyd-B constitutive equation fails to adequately
model the high stress growth observed experimentally at
strains of _Et � 2:4 although excellent agreement is ob-
tained at lower values of strain. In fact, signi®cant strain
hardening with the single mode model occurs at higher
strains than in the experiment (see Fig. 8). The four-mode
convected Maxwell model only provides signi®cant strain
hardening at yet higher strains due to the lowered elas-
ticity of the dominant relaxation mode. It was also found
that for strains of _Et � 2:3, the tensile stresses in the
middle region of the liquid ®lament evolve in a self similar
manner. Since the effective strain rate _eeff in the middle of
the liquid column was also shown to approach a relatively
constant value, we have shown in Section 4.2.1 that the
evolution of the mid-point radius, the applied force on the
stationary end plate and the Trouton ratio, for strains
_Et � 2:3, can in fact be predicted by use of the analytical

expressions for an ideal extensional ¯ow, and initial con-
ditions for the stress obtained from numerical calcula-
tions. Qualitatively similar results are to be expected for
the other nonlinear elastic models that show pronounced
strain hardening (e.g. FENE dumbell models). However,
the quantitative evolution of such liquid ®laments will of
course depend on the initial conditions obtained from the
numerical calculation.

The ultimate goal of a ®lament stretching device is to
make unambiguous measurements of the transient tensile
stress growth in a viscoelastic ¯uid which can be quanti-
tatively compared with the prediction obtained from ap-
propriate constitutive models in ideal uniaxial elongation.
To this end, different expressions for calculating the
Trouton ratio from the actual dynamical response of the
bridge were also compared in order to highlight the ad-
vantages and disadvantages of each. A point-wise expres-
sion, Trpoint (25), which uses local stress values and an
effective strain rate calculated in the middle of the liquid
®lament, exactly reproduces the analytical result Tr � 3
for a Newtonian ¯uid and provides the most accurate
Trouton ratio values in general. Velocity compensation
techniques (numerical and experimental) assure a con-
stant effective strain rate at the liquid bridge mid-point
and render this expression even more accurate. However,
point-wise measurement of stresses, which rely on bire-

Fig. 16. Evolution of the imposed dimensionless velocity on the
right end plate and the effective dimensionless strain rate in the
middle of the ¯uid ®lament; D � 3, C � 4:7, k � 2:0� 106,
K0 � 0:3143 and B � 0

Fig. 17. Evolution of the Trouton ratio; D � 3, C � 4:7,
k � 2:0� 106, K0 � 0:3143 and B � 0
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fringence techniques, are dif®cult to achieve experimen-
tally so that a Trouton ratio which utilizes the measured
force on the stationary end plate is usually employed in
experimental analyses. The Trouton ratio expression (24),
based on a force balance containing half of the liquid
bridge, uses the measured applied force and information
from the ®lament mid-point where the ¯ow is nearly
shear-free and provides an adequate, but not perfect, way
(compared to Trpoint� of computing the Trouton ratio. The
disadvantage of Treff is the fact that it represents a radially
averaged value of the stress in the ¯uid ®lament which is
signi®cant because of the pronounced non-uniform radial
variation in the tensile stress. This distribution arises as a
result of the initial shear ¯ow in the ¯uid near the rigid
end plates, and clearly care has to be taken in experimental
design of such devices. Other approximate expressions for
the Trouton ratio based on force balances on the station-
ary end plate and/or the applied strain rate yield results
which still contain shearing effects and are therefore un-
desirable. We thus conclude that until point-wise mea-
surements of stress are experimentally feasible, precise
measurements of the uniaxial stress growth in an ideal
uniaxial elongational ¯ow are dif®cult to achieve using the
®lament stretching device unless great care is taken in
experimental selection of the initial aspect ratio and ve-
locity compensation pro®le. The transient extensional
viscosities that are measured using these devices even
without such corrective techniques are however a clear
advance on other experimental techniques to date and, are
probably very adequate and useful quantities to be em-
ployed in most practical, engineering situations.
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