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Abstract

We investigate the transient viscoelastic behavior of weakly strain-hardening fluids in filament stretching devices during
uniaxial elongation and following the cessation of stretching. The numerical results are compared with experimental
observations on a concentrated shear-thinning polystyrene solution which is well characterized by a multi-mode Giesekus
model. The finite element computations incorporate the effects of viscoelasticity, surface tension, and fluid inertia and the
time-dependent moving-boundary problem is solved using the code POLYFLOW. A detailed comparison of multi-mode
computations with single-mode solution is presented in order to examine the differences in the predicted viscoelastic behavior
and the role of the fluid relaxation spectrum. The evolution in the transient Trouton ratio at different deformation rates is
compared with experimental measurements and with the theoretical predictions of ideal homogeneous uniaxial elongation.
Simulations of the filament stretching device using the multi-mode viscoelastic model demonstrate a significant improvement
in the agreement between the predicted and observed extensional viscosity at short times. The computed Trouton ratio is also
in good agreement with theoretical expectations for ideal homogeneous uniaxial extension, despite the strongly non-
homogeneous viscoelastic necking of the fluid column observed during elongation in the filament stretching device. Following
the cessation of elongation, numerical simulations predict an interesting and complex evolution in the kinematics of the fluid
filament. Initially the tensile stresses in the column relax in the non-linear form predicted theoretically, indicating that filament
stretching devices can be used to monitor transient extensional stress relaxation, provided that the evolution of the tensile force
at the end-plate and the filament radius at the mid-plane are carefully measured. However, at longer times after cessation of
stretching, the local extension rate at the axial mid-plane begins to increase rapidly, leading to a ‘necking failure’ that is
greatly accelerated compared to that expected in a corresponding Newtonian filament. The calculations show that this unstable
necking is not driven solely by the surface tension but also by the viscoelasticity of the fluid, and is coupled with significant
elastic recoil of the material near the end-plates. The rate of necking in the column is a sensitive function of the extensional
viscosity predicted by the constitutive model, in particular the magnitude and the rate of strain-hardening that occurs during
uniaxial elongation. This phenomenon can also be simply and accurately described by an appropriate set of coupled one-
dimensional thin filament equations that use the finite element computations to provide a suitable initial condition for the axial
distribution of the polymeric stresses in the filament. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent review [1] for the National Research Council on the future research trends in non-
Newtonian fluid mechanics, Denn remarks that “There are two major outstanding problems in
rheological measurement. One is the measurement of extensional stresses of mobile fluids such as
polymer solutions, ... This measurement is essential for determining the predictive power of
constitutive equations and the flow is closely related to many important processing situations.”
Pioneered by Matta and Tytus [2] and Sridhar et al. [3], the filament stretching device is one of the most
promising experimental techniques that has been developed for providing accurate measurements of the
transient extensional viscosity for polymer solutions. Numerous variants of such devices are currently
being developed by research groups around the world [4-10].

In the filament stretching apparatus, a cylindrical liquid column is first generated between two
concentric circular plates and then elongated by pulling one or both of the end-plate fixtures at an
exponentially increasing rate. It is hoped that the resulting flow kinematics in the liquid column
approximate an ideal uniaxial elongational flow; the extensional viscosity function is determined from
the axial force at the end-plate which is measured as a function of time, and the total Hencky strain
applied to the material is computed from the total stretch imposed on the sample [11].

As a result of the recent growing interest in filament stretching devices, theoretical and numerical
efforts [12-18] have been devoted to studying the complex extensional behavior that viscoelastic
liquids exhibit in such devices. Two classes of polymer solutions have been investigated so far: (i)
dilute polymer solutions which exhibit pronounced strain-hardening (e.g. polystyrene (PS) or
polyisobutylene (PIB)-based Boger fluids), and (ii) concentrated polymer solutions which only show
weakly strain-hardening behavior, such as the test fluid that will be studied in the present work. It is
found from both experimental and numerical studies that, under the same stretching conditions, the
dynamical response of these two classes of viscoelastic fluids is dramatically different.

For a Boger fluid exhibiting a constant shear viscosity and a pronounced strain-hardening in uniaxial
extension, the overall dynamical response of an elongating liquid in a filament stretching device is now
fairly well understood. A summary of the key observations for this type of fluid has been given
elsewhere [19]. Due to the increase in the transient extensional viscosity, the filament radius becomes
progressively more axially uniform at large strains and hence leads to an increasingly homogeneous
extensional deformation. As a result of this strain-hardening, the failure mechanism for the slender fluid
column is dramatically different from the capillary-driven breakup observed in Newtonian fluid and jets
which exhibit no strain-hardening [20-22]. In a filament stretching device, the large axial tensile
stresses developed at large strains inhibit further elongation in the mid-region of the liquid bridge.
Instead, the fluid reservoirs near either rigid end-plate are rapidly drained of fluid. The increasing
curvature of the free surface in this region and the resulting gradients in the normal stresses lead to the
onset of a local elastic instability [7]. Consequently, the stretching capability of the device (as
characterized by the maximum achievable Hencky strain) is limited by the onset of a viscoelastic
failure mechanism originating near the end-plates.
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For semi-dilute or concentrated polymer solutions, which typically exhibit shear-thinning
viscometric properties and significantly less pronounced strain-hardening in extension, the current
understanding of their extensional rheological behavior is still very limited. For such materials, the
need for direct comparison between experiments and numerical simulations is more pressing [23] since
the kinematics in the device never become spatially or temporally homogeneous [14,17]. Earlier
experimental studies of some shear-thinning concentrated polymer solutions (e.g. the ‘A1’ and ‘S1’
fluids) were performed by Sridhar and co-workers [4,24]. Their measurements show that for these
fluids, a strain-hardening extensional stress growth function still persists. Kolte et al. [17] performed
computations with the Papanastasiou-Scriven-Macosko (PSM) integral model using material
parameters fitted to rheological data for these fluids and showed that the stress growth measured in
a filament stretching device agrees closely with the ideal extensional viscosity function expected in a
homogeneous uniaxial elongation. For the values of the non-linear parameters selected in [17] for the
PSM constitutive model, Trouton ratios of O(100) were obtained at moderate Hencky strains (e~4) and
the radial profile of the elongating fluid column becomes increasingly uniform with time, in agreement
with computations and experiments for strain-hardening Boger fluids.

However, in a recent study, Hassager et al. [25] show that as the parameter controlling the level of
strain-hardening in the PSM model is varied and the ultimate steady-state extensional viscosity is
gradually decreased, then the filament can undergo a ductile failure in which the radius of the filament
rapidly decreases to zero at the axial mid-plane. This unstable necking phenomenon may be expected to
severely compromise the ability of the filament stretching device to measure the extensional viscosity
of weakly strain-hardening fluid such as polymer melts and concentrated polymer solutions. However,
little experimental data for such materials has been available to date.

A detailed experimental and numerical study of the dynamical behavior of shear-thinning and
weakly strain-hardening concentrated polymer solutions in filament stretching devices is reported
by Yao, Spiegelberg and McKinley in [19]. The numerical simulations are coupled with experi-
mental measurements using a 5.0 wt% concentrated solution of monodisperse polystyrene and show
that, even for such fluids, it is possible to quantitatively measure the transient uniaxial extensional
viscosity over a broad range of strain rates. Although the deformation in the elongating fluid
filament is neither spatially nor temporally homogeneous when a single uniaxial stretching profile
is applied to the end-plates of the device, accurate measurements of the tensile force and the rate
of deformation of fluid elements near the mid-plane of the filament are sufficient to extract the
transient extensional viscosity function. One important characteristic predicted by the simulations
with the Giesekus model is that after an initial period of linear viscoelastic stress growth, the rate of
necking in the fluid filament increases much more rapidly than is observed in either a corres-
ponding Newtonian fluid or in an ideal elastic fluid (modeled by the Oldroyd-B constitutive
equation). Consequently, this leads to the onset of unstable necking and the simulations suggest
that the filament will eventually fail, or rupture in a finite time. In this case, the stretching capability
of the device is restricted by the unstable necking developed in the middle of the filament. A
generalized Considere criterion [19,25-27] can be used to help understand this unstable necking in the
filament profile. This criterion can be obtained from energetic considerations of the static stability of an
elastic column, and homogeneous elongation of a viscoelastic filament is unstable when the tensile
force in the column passes through a maximum. However, the strain to failure and the rate of evolution
of the neck is found to be a sensitive function of the dynamics of the chosen constitutive model
[19,25,28]
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The present study is a continuation of the work in [19] for the same experimental test fluid which
exhibits strong shear-thinning in viscometric flows and very weak strain-hardening in extension. Small-
amplitude oscillatory shear flow measurements for this fluid indicate that a broad spectrum of
relaxation times is required to accurately model the response of the material [23], and consequently the
dynamical evolution of a spatially non-homogeneous transient flow, such as the rapid necking in the
filament radius, may be expected to be very sensitive to how accurately the constitutive response of the
material is modeled. The numerical results presented in [19] are based primarily on two-dimensional,
time-dependent simulations with the one-mode Giesekus model. In the present paper we extend these
simulations to multi-mode formulations of the Giesekus constitutive equation and perform quantitative
comparison of the numerical simulations and the experimental measurements.

Understanding the systematic modifications in the kinematics of a complex flow as the constitutive
relationship for the fluid is varied, and detailed comparison between experiment and computation have
been a central feature of numerous publications by Crochet and co-workers [29-31] and by other
researchers [32-34]. Bodart and Crochet [35] have recently considered transient simulations of the
sedimentation of a sphere accelerating from rest which, like a filament stretching device, is another
complex flow containing regions of shear and extension. The importance of accurately determining the
non-linear parameters in a constitutive model has been underscored by Satrape and Crochet [36], and,
as in the present work, they document the dramatic difference in the kinematics that arises from simply
changing the magnitude of the strain-hardening predicted in a region of strong extensional flow. In
recent years, numerous groups have focused on achieving a quantitative comparison between
experimental observations in complex viscoelastic flows and the associated linear stability analyses or
transient numerical simulations [23,37,44,45]. These numerical studies emphasize the conclusion that it
is necessary to accurately resolve both the linear viscoelastic spectrum and the non-linear response of
the test fluid in large amplitude deformations through the use of multi-mode differential constitutive
equations such as the Phan-Thien-Tanner and Giesekus models. The present work is a further
contribution to this literature and we perform multi-mode time-dependent simulations using the
numerical code POLYFLOW that has been developed by Crochet and co-workers over the past two
decades.

We consider two types of deformation history commonly employed in filament stretching
experiments. The first is a single-stage pure uniaxial extension of the type considered by numerous
investigators; whilst the second is a two-stage deformation, consisting of pure uniaxial extension
followed by a rapid cessation of elongation and the accompanying relaxation in the tensile stresses. The
uniaxial elongation coupled with the no-slip boundary conditions at the two rigid end-plates results in a
‘necked’ configuration for any test fluid which will subsequently evolve after the external deformation
is removed. However, one-dimensional (1-D) numerical simulations coupled with either finite element
computations [22] or asymptotic analysis [20,21] have shown that the dynamical evolution of such an
imperfection is a sensitive function of the chosen constitutive model and the resulting tensile force in
the column. In particular, for the Oldroyd-B model, no necking failure is predicted, whereas for a fluid
described by a Newtonian or Giesekus model the filament is predicted in each case to fail in finite time.
In experiments with strongly strain-hardening Boger fluids that are described by the Oldroyd-B or
FENE-P model, this viscoelastic stabilization of the fluid column has been exploited to permit
investigation of the rapid and non-linear stress relaxation following cessation of uniaxial elongation
[7,10,16,38]. It also forms the basis for a commercial device for extracting viscoelastic constitutive
parameters from observations of filament breakup [39,40]. The primary goals of the present work are:
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to compare multi-mode simulations with experimental measurements and to contrast their predictive
performance with analogous single-mode solutions; to study, through numerical simulation, the
viscoelastic behavior of the shear-thinning weakly strain-hardening fluid during stress relaxation and to
contrast the numerical calculations of the viscoelastic- and capillary-driven break-up processes with a
1-D asymptotic analysis.

2. Experimental background

We consider the experimental measurements performed by Spiegelberg [19]. The test fluid used in
the experiment is a 5.0 wt% solution of high molecular weight, narrow distribution polystyrene
obtained from Pressure Chemical, dissolved in a mixture of tricresyl phosphate (TCP) and dioctyl
phthalate (DOP). The preparation and viscometric characterization of the fluid is described by Li and
Burghardt [23]. The steady-state shear viscosity and the first normal stress difference of the test fluid
measured at a reference temperature of 22°C together with the predictions of the Giesekus model can
be found elsewhere (e.g. Fig. 1 in [19]). Comparisons presented in [19,23] suggest that the
experimental data can be well represented by a three-mode Giesekus model. The parametric values of
the three-mode Giesekus model have been given elsewhere [19,23], but for completeness are listed
again in Table 1. The three-mode fit was obtained by Li and Burghardt by first fitting the small-
amplitude oscillatory shear data (G'(w), G"(w)) to obtain the linear viscoelastic parameters, 7); and A;,
then by adjusting the values of «; for each mode to describe the first normal stress difference and the
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Fig. 1. Definition of the non-dimensional geometry and coordinate system for the liquid bridge in filament stretching devices.
(a) Initial configuration of the cylindrical filament. (b) Subsequent extensional deformation.
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Table 1
Material properties of a weakly strain-hardening, 5 wt.% solution of polystyrene and parameters of a three relaxation-mode
Giesekus model fit given by Li and Burghardt [23]

Parameter Symbol [unit] Mode 1 Mode 2 Mode 3
Relaxation time A [s] 0.421 0.0563 0.00306
Polymer viscosity 7; [Pas] 25.8 7.71 1.37
Mobility factor o; [—] 0.3162 0.2422 0.0993
Density p [kg/m?] 1030

Solvent viscosity 7, [Pas] 0.069

Surface tension coefficient o [N/m] 0.030

non-linear fluid response during start-up of steady shear flow. In our single-mode finite element
simulations, we retain the values of 7; and A, and let A,—0 and A\;—0 such that the total Newtonian
solvent viscosity becomes 7,=0.069-+1,413=9.15 Pa s. The solvent viscosity ratio for the single-mode
model thus becomes [ = 7s/ny = 0.262. This value limits the extent of the shear-thinning in the
viscosity and leads to deviation of the model predictions from measured data at high shear rates. In our
two-mode calculations, we retain the parametric values of the first two modes and let A;—0. In this
case, the Newtonian solvent viscosity becomes n,=0.069+1;=1.439 Pa s. The retardation parameter
for the two-mode model then becomes much smaller, 5 = n,/ny = 0.0412.

The experiments were conducted using the filament stretching rheometer developed by Spiegelberg,
Ables and McKinley [6]. A schematic diagram of the apparatus and discussion of the experimental
subsystems can be found in [6]. For the experiments simulated in this work, the fluid sample is extruded
through a positive-displacement syringe system onto rigid aluminium end-plates. The diameter of the
circular end-plates used in this study was dp=2Ry=0.7 cm. The initial separation between the two end-
plates, Ly, is adjusted to ensure the sample configuration is initially cylindrical. The geometric
parameters used in the tests are summarized in Table 2. During each filament stretching test, the lower
plate is held stationary and is attached to a force transducer. A computer-controlled linear positioning
system translates the upper end-plate so that the position and velocity of the end-plate both increase
exponentially with time.

No velocity compensation algorithm of the type discussed in [4,6] is used in the experiments. The
measured tensile force F(f), corrected for surface tension and gravitational body force contributions

Table 2

Geometric parameters and non-dimensional numbers

Parameter Symbol [unit] Test 1 Test 2 Test 3
Plate radius Ry [m] 0.0035 0.0035 0.0035
Initial aspect ratio Ao [-] 0.583 0.629 0.54
Extension rate Els'] 2.32 3.42 4.48
Reynolds number Re = pER /o 8.4x107* 1.2x107° 1.6x107°
Capillary number Ca=mnERy/o 9.46 13.94 18.27
Bond number Bo = pgRj/o ~0 ~0 ~0

Deborah number De = \|\E 0.98 1.44 1.89
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[6], and the filament radius, R;q(f) are then used to compute the evolution of the tensile stress
difference in the column with time. For more details of the experimental procedures, readers are
referred to [19].

3. Computational background
3.1. Problem description

Consider the extensional flow of a viscoelastic liquid contained between two parallel, coaxial,
massless, equal-diameter, circular disks. The liquid column and the circular end-plates are the basic
components of a filament stretching apparatus. This geometric configuration is also referred to as a
liquid bridge [13] and is depicted schematically in Fig. 1. In this paper, we consider two different types
of deformation history. The first is a one-stage process which involves uniaxial elongation only. The
second is a two-stage process: uniaxial stretching followed by an instantaneous or very rapid
deceleration and slower relaxation in the tensile stresses.

The initial configuration of the liquid bridge is assumed to be a cylinder when #<0~, as shown in
Fig. 1(a). Let Ry denote the radius of the two equal end-plates and L, the initial separation between the
two end-plates. The initial aspect ratio of the liquid bridge is then defined as Ag=Lo/Ry. At the instant
t=0", the top plate is set into vertical motion with a prescribed velocity. A typical subsequent
extensional deformation in the fluid filament is illustrated schematically in Fig. 1(b). The top plate will
be referred to as the moving end-plate and its axial velocity is Lp =dL,/dt. The fluid column is
assumed to remain axi-symmetric and to wet the end-plates so that the contact line is pinned to the
radial edges of the disks at all times. The aspect ratio of the filament, A, = L,(¢)/Ry, increases with
time while the volume of the liquid bridge remains constant. In this study, we are particularly interested
in the exponential separation between the two end-plates which is prescribed in dimensionless form by

A, = Aoe! and A, = Age' (D

where ¢ is a non-dimensional time that will be defined in Section 3.2. With this scaling, the non-
dimensional initial velocity of the moving end-plate is Vop=A,.

For the second type of deformation history, the uniaxial deformation prescribed above is performed
up to a certain strain. The moving plate is then brought to a stop and the viscoelastic stresses in the
filament begin to relax. In the computations, it is necessary to prescribe mathematically how the end-
plate decelerates to zero velocity. The following two assumptions are considered in the present work.
The first assumes an instantaneous stop which can be considered as an idealized situation; the second
assumes that the moving end-plate decelerates to zero velocity in a short time that corresponds to the
finite ramping time in the real stretching apparatus. A typical ramping time for the current experimental
design is about 50 ms.

For the particular experiments considered in this work, the small size of the initial sample and the
large viscous and elastic contributions to the total force ensure that gravitational body forces and inertia
are negligible at all strains. In the present numerical simulations, the gravitational body force term in
the momentum equation is neglected; however, for numerical reasons, the inertia term is retained in the
calculations.
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3.2. Governing equations

To non-dimensionalize the governing equation, we select the radius of the end-plates, Ry, as a
characteristic length, and use the imposed axial elongation rate E to construct both a time scale (E)_l
and a viscous scale for the stress ngE. This leads to the following dimensionless variables:

I"*:I‘/R()' Z*:Z/RQ
w =u/(ERy) " =tE (2)
p*=p/(mE) 7 =7/(nkE)

These variables along with the following dimensionless parameters

Reynolds number Re = pER% /Mo
Capillary number Ca = 10ERy /0 (3)
Deborah number De; = \,E

are used in obtaining the non-dimensional governing equations and boundary condition given below.
Here 7 is the zero-shear-rate viscosity, o is the surface tension coefficient and J; is the relaxation time
of the ith mode. For convenience, we drop the asterisk notation in the remainder of the paper and do not
explicitly identify variables as dimensionless. All the variables appearing below are assumed to be
dimensionless, except two primary variables, £ and 7, which remain dimensional throughout the
paper.

The fluid flow within the liquid bridge is assumed to be isothermal, incompressible, and axi-
symmetric, and is governed by the conservation equations for mass and linear momentum:

V-u=0 4)
R 8_u+ Vu ) =V- ®)
elg Tt Vu|=V-m

Here u is the velocity vector and 7 is the Cauchy stress tensor:
n=-pl+1 (6)

where p is an isotropic pressure, I is the unit tensor and 7 is the total extra stress tensor.

The appropriate boundary conditions for this problem include: the no-slip condition along the
interface between the liquid and the end-plates, axi-symmetry along the z-axis, the motion of the
moving end-plate prescribed by Eq. (1) and the following kinematic and dynamic conditions:

ag; I —
W‘i‘u'vef’ =0 @)
n-n=—(H/Ca+p,)n (8)

on the deformable free surface boundary. Eq. (7) is obtained by extending the formulation given in [22].
Here Z (r,z,t) = r — R(z,t) = 0 is a function that defines the spatial position of the free surface R(z, t),
n is the unit norm of the surface, p, is the ambient pressure, H is the mean Gaussian curvature of the
free surface and Ca is the Capillary number. Finally, at time t=0" the following initial conditions for



M. Yao et al./J. Non-Newtonian Fluid Mech. 79 (1998) 469-501 477

the velocity, pressure and extra stress fields are imposed,

u(r,z) =0, p(r,z) —pa=0 and t(r,z)=0atr<0" )

3.3. Constitutive model

To model the viscoelastic behavior of the test liquid considered in this work, we select the multi-
mode Giesekus model [41], a non-linear differential constitutive equation based on the concept of
deformation-dependent mobility. It can be derived from the Hookean dumbbell model [11,42] by
allowing the Brownian motion and/or the hydrodynamic drag acting on the beads to be anisotropic.
Previous numerical simulations have shown that the multi-mode Giesekus model is a good candidate
for modeling polymeric flows [32,43,44]. In multi-mode formulations of this model, the solvent
contribution 74 and the polymeric contribution 7, to the extra stress are defined as

T=1+1p (10)
7, = 23D (11)
H=) T (12)
i=1
iDe;
T + De,"Ei_’(l) + Oéﬂ_éf[ T = 2B,D (13)
. 81,’ T
T =, +u-Vr,— (Vu) -t —1 - (Vu) (14)

where t; (1) is the upper-convected time derivative of the extra stress tensor and the rate-of-strain tensor
is defined as

[Vu + (Vu)"| (15)

There are three independent physical parameters for each relaxation mode in this model; the polymer
contribution of the ith mode to the viscosity, 7;; the fluid relaxation time );; and the dimensionless
mobility factor «; associated with anisotropic effects. Finally, we have an additional parameter 7, which
originates from the contribution of the solvent to the total extra-stress tensor 7. The zero-shear viscosity
7o is obtained as the sum of all partial viscosity factors, i.e. o = 15+ > _: ;.

In the dimensionless Eqgs. (11) and (13), we have 5; = n;/no, Os = ns/n0 and G5 + Y _; §; = 1. Egs.
(4)-(15) plus the boundary conditions form a set of governing equations for simulating the moving
boundary problem of extensional deformation of viscoelastic liquid bridges.

For physically meaningful results with the Giesekus model, we require 0 < o; < 0.5. In the limit
a1—0 the single-mode Giesekus model reduces to the quasi-linear Oldroyd-B model and, in addition to
predicting a constant shear viscosity 7o=7s+,, the transient extensional viscosity function " grows
without bound for Deborah numbers De = \{E > 1/2. As «; is increased, the extent of the shear-
thinning in both the viscosity and the first normal stress difference increases while the value of the
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asymptotic or steady-state extensional viscosity decreases. For the values of «; used in this work, the
fluid is heavily shear-thinning and very weakly strain-hardening.

3.4. Calculation of extensional viscosity

The theoretical operating condition to be achieved in filament stretching devices is the ideal uniaxial
elongational flow. In such a deformation, the local axial strain rate Ju,/0z is homogeneous everywhere
in the liquid and identical to the imposed global extension rate, E. However, the kinematics in filament
stretching devices are spatially non-homogeneous, as has been shown both experimentally [3,6] and
numerically [14-17]. As a result, the local effective strain rate will vary throughout the elongating
liquid column and the Hencky strain accumulated by material elements in the filament will be non-
homogeneous. For example, the Hencky strain based on the separation of the two end-plates, i.e.

e =1 = Et =1n(A\,) (16)

in general represents only the average of the local strain and strain rates experienced by all the fluid
particles within the whole domain, as indicated by the first-order lubrication solution [6,14]. Note that
with the chosen scaling, the axial or end-plate Hencky strain ¢, is equivalent to the non-dimensional
time.

Since the local extensional strain rate at the mid-plane is extremely important for the experimental
data analysis, the following dimensionless effective extension rate is defined based on the free surface
deformation at the mid-plane, R;q,

éerf = —2d(In Riyia)/dt = —2U; mida/Rmid (17

where U, miq 1s the radial velocity component of the free surface at the mid-plane. An effective Hencky
strain based on €. can be calculated directly from Eq. (17) by the following integral,

t

e = / b () df’ = —2 In[Rua(1)] (18)
0

If the deformation near the axial mid-plane is essentially uniform in the radial direction, then this
effective Hencky strain represents the actual strain experienced by cylindrical fluid elements in the
vicinity of the mid-plane.

For the ideal homogeneous uniaxial elongational flow, the transient Trouton ratio and its equivalent
non-dimensional extensional viscosity function are defined as

Tr=0"(E,t) =T — T (19)

where 7, T,, are the normal components of the non-dimensional extra stress tensor defined in Eq. (10).
In the ideal uniaxial elongational flow of a Newtonian fluid, the Trouton ratio is simply a constant with
value Tr=3.

In filament stretching devices, the time-dependent quantities to be measured experimentally are the
normal force on the end-plate, F(¢), and the mid-plane radius of the fluid filament, R,,;4(¢). From these
experimental measurements, it is necessary to compute the extra stress difference and the extension rate



M. Yao et al./J. Non-Newtonian Fluid Mech. 79 (1998) 469-501 479

in the fluid. Since these quantities vary spatially throughout the material, a number of different
formulae for the ‘apparent extensional viscosity’ measured by the device have thus been proposed in
the literature. Following the notation used in Refs. [17,18] we define two different quantities
appropriate for an experiment in which a single exponential velocity profile of the form given in Eq. (1)
is imposed. In a Type I experiment the imposed axial extension rate and the average, or idealized,
filament radius are used to compute the extensional viscosity function from the experimentally
measured force,

F 1
0 (ep) = —— — + O(F;, F, (20a)
My (€p) TR CaRigeu (Fi, Fy)

where Rigea = exp(—O.Sep) is the non-dimensional ideal radial deformation in uniaxial elongational
flow. Note that the imposed axial extension rate does not appear explicitly in Eq. (20a), this is because
the extension rate is scaled by itself and hence we have £ = 1 in its dimensionless form. In the above
expression, the second term on the right hand side is the correction term arising from capillary effects
with non-zero surface tension, o. The final term O(F;, F,) accounts for the corrections due to the inertia
force F; and gravitational force F, respectively. In the results presented in this paper, this last term is
assumed to be negligibly small. Detailed studies of the inertia and gravity corrections will be pursued in
later publications.

The use of Rjgeq in Eq. (20a) implies that in the original type I analysis the filament is assumed to
deform homogeneously as a cylinder throughout the test. This assumption is clearly a poor one,
especially at early times (i.e. small strains), and modification is made in practice by making use of
additional experimental knowledge of the evolution of the filament radius R,,,;4(#) at the axial mid-plane
z = A;/2. There are several ways in which this additional information can be utilized. Firstly, the actual
mid-point filament radius can be substituted in Eq. (20a) to provide a better estimate of the tensile stress
in the filament. We refer to this as a modified type I or type IB analysis:

F 1
N (€6p) = —— — + O(F;, F, (20b)
Mip)(€p) 7R2.. CaRmg (Fi, Fy)

The experimental data presented in the present work are analyzed using this type IB formulation.

A further improvement for extensional viscosity calculations is to replace the constant axial
extension rate, E, in Eq. (20b) by the time-dependent local effective extension rate, é.¢r, defined in Eq.
(17). This procedure leads to the Type II formula defined in Ref. [17]:

F. |
. 2 - N
TRy CaéefRmia

M (€etr) = +O(F;, Fy) @1

For clarity, the type II analysis is used exclusively in the present work for post-processing numerical
solutions and for comparing with the type IB analysis.

Note that the use of local variables in evaluating the kinematics in Eq. (21) means that the computed
Trouton ratio pertains specifically to the material elements near the mid-plane, even though the stress
difference is measured through the force transducer located at the rigid end-plate. Similar problem are
faced in analysis of other extensional flow devices; however, the benefit of the filament stretching
device is that, although the deformation in the filament is spatially non-homogeneous throughout the
experiment, the tensile force transmitted axially along column is constant at any instant in time for all
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0 <z < A, (assuming inertial forces are negligibly small). By symmetry, shearing deformation are
negligible at the axial mid-plane, except for very short times or small aspect ratios and Eq. (21) thus
should accurately capture the response of a material element to a homogeneous uniaxial elongational
flow. In the present work we investigate the applicability of the type II analysis by comparing the
experimental measurements with numerical predictions and with the theoretically computed Trouton
ratio expected in an ideal homogeneous uniaxial elongation.

3.5. Numerical algorithms

The set of governing equations presented in Sections 3.2 and 3.3 will be solved by means of the finite
element technique [46]. For this, we use the commercial finite element package POLYFLOW primarily
designed for the analysis of industrial flow situations dominated by non-linear viscous phenomena and
viscoelastic effects. Details on the available applications and on the numerical technique used in
POLYFLOW are document in [47,48].

Several finite element algorithms are available in the literature. Their respective properties and
performances have been reviewed and detailed (see for example in [49-52]). Over the last two decades,
these algorithms have been steadily improved and applied with increasing efficiency to both confined
and free surface flows.

In the present paper, we employ the finite element algorithm originally developed by Kawahara and
Takeushi [53] and referred to as the MIX1 method [46,49]. In this method, all viscoelastic extra
stresses, velocity and pressure unknown fields are approximated by means of finite expansions. The
Galerkin formulation is then invoked for discretizing the flow governing equations. In the early 1980s,
this technique permitted simulation results to be obtained for the extrudate swell and the fiber drawing
of viscoelastic fluids [54-57].

This finite element method MIX1, is readily extended to multi-mode differential viscoelastic models,
and all viscoelastic extra-stress components t; and the velocity u are interpolated by means of
biquadratic shape functions. The pressure p is represented by means of independent first-degree
polynomials in each finite element instead of bilinear shape functions. This interpolation enforces the
local solenoidal character of the velocity field by strictly imposing the mass conservation across the
boundary of each element. This has significantly improved the performances of the MIX1 method for
Poiseuille flow of a Johnson—Segalman fluid [58] and for the contraction flow of a Phan-Thien-Tanner
fluid [59]. A further improvement has been developed by Crochet and co-workers [60,61], which
consists of using bilinear sub-element interpolation for the viscoelastic extra-stresses together with a
streamline upwinding technique. However, the required computer resources are relatively high for the
simulation of a viscoelastic flow with a relaxation spectrum [62] and may be prohibitive for a time-
dependent calculation in this context.

Keunings et al. [63,64] have extended the MIX1 method to time-dependent viscoelastic flows
involving moving boundaries. In particular, they have applied their technique to studies of jet break-up
[22]. By invoking the Galerkin formulation on deforming finite elements [65], one obtains a set of first-
order ordinary differential equations which are then discretized in time by mean of standard techniques
[66]. The technique has been successfully applied to several flow situations (see e.g. [22,63,64,67—69]).
The transient problem is solved by means of a predictor—corrector integration scheme in which the
corrector is the backward Euler method. The time-step is controlled using the algorithm suggested by
Gresho et al. [70,71].
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The governing equations and free surface conditions are solved in a coupled fashion. At each time
step, the non-linear algebraic system resulting from the finite element discretization is solved by
Newton—Raphon iteration. Termination of the non-linear iteration is controlled by a specific iteration
convergence criterion of 10> for the relative error norms of the residuals of the governing equations
and the free surface update. Spatial and temporal convergence of the simulation have been verified
separately.

Another important aspect for moving boundary problems is the remeshing algorithm which controls
mesh deformations by relocating internal nodes according to the displacement of boundary nodes, in
order to avoid unacceptable element distortions. A remeshing rule based on the Thompson
transformation is used in this work [72]. It consists of solving a partial differential equation of elliptic
type for the coordinates, and it exhibits a high robustness even for very large mesh deformations.

The numerical model used in this study is axi-symmetric and assumes solution symmetry with
respect to the axial mid-plane between both end-plates. Consequently, the computational domain is
defined by 0 < r < R(z,t) and 0 <z < A,/2 and we refer to this configuration as the half length
model. The computational domain is discretized by means of finite elements as displayed in an
intermediate configuration in Fig. 2. The mesh contains 720 quadrilateral elements and 793 vertices.
For the three-mode simulations investigated in the present work, this typically leads to 48 600 degrees
of freedom including unknowns of velocity, pressure, polymer stress and free surface coordinate. The
total number of time steps required to achieve a strain of €, ~ 4 is about 800. The computations are
performed on a Silicon Graphics four-processor IRIX Power Challenge (MIPS R8000) machine. In the
present context, the parallel capabilities of the computer are exploited at the level of basic linear algebra

l 1 |
T T T 11T
Fig. 2. Deformed finite element mesh at a strain of €,=1.0. The top boundary is the moving end-plate z = A,/2, the bottom

boundary is the mid-plane z=0, the left vertical boundary is the symmetric axis =0 and the right boundary curve is the free
surface.
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for performing the several matrix-vector products in order to solve the system of unknowns. In those
circumstances, a typical computation takes approximately 32 h CPU time.

4. Extensional deformation

In this section, we present numerical results for the weakly strain-hardening test fluid, a 5.0 wt%
concentrated polystyrene solution described in Section 2. Numerical solutions are obtained using the
multi-mode Giesekus model. The predicted transient Trouton ratios are compared with experimental
measurements as well as theoretical results. To examine the differences in the numerically predicted
viscoelastic behavior and the role of the relaxation spectrum, we also present a detailed comparison of
multi-mode solutions with single-mode solutions. In addition, a Newtonian fluid with the same solvent
viscosity as that of the test liquid will serve as a reference for comparison purposes.

The basic geometric parameters and the material properties used in the simulation are given in the
Tables 1 and 2. All results are presented in non-dimensional form, in which the dimensionless time is
equivalent to the Hencky strain ¢, defined in Eq. (16).

4.1. Multi-mode solutions vs. single-mode solutions

We first examine the differences in the fluid kinematics and dynamics predicted by the multi-mode
and single-mode formulations. Among the three experimental tests summarized in Table 2, we choose
the third test with De=1.89 as an example. Three solutions are computed for this test using the one-
mode, two-mode and three-mode Giesekus models, respectively. The material parameters for the three-
mode fit and the geometric information are given in the Tables 1 and 2.

Since the single-mode model incorporates a much larger response from the solvent viscosity, it is
expected that multi-mode solutions will differ significantly from the one-mode solution at short times.
This can be easily seen from the comparison of the simulated axial tensile force F, at the mid-plane
presented in Fig. 3. As we can see from Fig. 3(a), the one-mode solution has a much higher initial value
of F,. This is simply due to the fact that the initial dynamical response is dominated by the contribution
from the Newtonian solvent. In the absence of a large viscous contribution, the axial force in the multi-
mode simulations is governed by linear viscoelastic growth of the polymeric stresses. This difference
leads to a significant difference in the predicted extensional viscosity. The results in Fig. 3(a) also show
that the forces predicted by the two-mode and the three-mode solution are almost identical. This is
because the third-mode has a much shorter relaxation time (A3/A2 ~ 1/18) and also a much smaller
viscosity factor (73/m, & 1/5.6). Hence the individual contribution of the third-mode to the extensional
viscosity develops faster but remains small as compared to that of the other modes. It is interesting to
note that the multi-mode solutions lead to a local maximum in the F,-curve. According to the
generalized Considere criterion given in [19,25], the local maximum signifies that unstable necking
will occur during further stretching and the location of the local maximum provides an estimate of the
critical strain. For completeness, we also show here a numerical convergence check for the multi-mode
solution by considering two meshes, a 10x40 finite element grid with 10 elements in radial direction
and a 12x60 grid. In Fig. 3(b) we compare the calculated axial tensile force at the mid-plane based on
the two meshes. The difference between the two solutions is very small. However, for better accuracy,
the solutions presented in this work are all based on the finer mesh.
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Fig. 3. Variation of the axial tensile force at the mid-plane between two end-plates as a function of Hencky strain ¢,. The
relevant parameters used in this example are De=1.89, 1/Ca=0.0524, Ay=0.54. (a) Comparison of single-mode solution with
multi-mode solutions; (b) effect of mesh refinement.

Next we examine the flow kinematics characterized by the effective extensional strain rate €
defined in Eq. (17). It has been shown elsewhere [14,19] that é.¢ can be used to accurately characterize
the actual extensional strain rate that fluid elements experience at the mid-plane. In Fig. 4 the simulated
effective extension rate is plotted as a function of Hencky strain ¢,. There are two regions where the
multi-mode solutions differ from the single-mode solution. The first region is the small strain range
0.05 < ¢, < 1.0. An enlarged view for this region is shown in Fig. 4(b). When ¢, > 0.05, the multi-
mode solutions start to differ from the one-mode solution and exhibit a lower extension rate, indicating
that the multi-mode solution exhibit a slightly stronger strain-hardening due to the polymer stress
contributions from the higher relaxation modes. The maximum difference (only about 4%) between the
multi-mode and one-mode solutions in this region occurs at €, ~ 0.25. The difference decreases when
€p > 0.25 and becomes negligibly small when €, > 1.0. The results in this region also suggest that the
contribution to strain-hardening from the third relaxation mode is negligibly small as compared to the
second-mode contribution. The second region in which the single-mode results differ is the large strain
range €, > 2.5. In this region, the multi-mode solutions predict a faster necking rate than the single-
mode solution. This arises since the higher viscoelastic modes provide less instantaneous viscous
resistance to the elastic recoil of the macro-molecules near the end-plates and hence calculations
predict an even more accelerated unstable necking than the one-mode simulation. Consequently,
analysis of the necking failure based on the one-mode calculation can be considered as a more
conservative estimate of the time to break-up.

To investigate spatial differences in the fluid kinematics, in Fig. 5 we plot axial profiles of the
individual components of the rate-of-deformation tensor defined in Eq. (15). Two typical strain levels
are selected from consideration of the effective extensional strain rate shown in Fig. 4. The first is
€,=0.25 where there is a local maximal difference in €. between the multi-mode and single-mode
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Fig. 4. The role of multi-mode calculations in predicting the flow kinematics characterized by the effective extension rate €.
defined in Eq. (17). (a) Plotted in semi-logarithm scale; (b) local enlargement in linear scale for the small strain range.

solutions. Fig. 5(a) shows the variation of the axial velocity gradient D,, along the centerline of the
filament. The difference between the multi-mode and one-mode solutions is very small along the
centerline. The results suggest that the simple lubrication squeeze-flow solution, originally derived for
Newtonian fluids with small initial aspect ratios, also provides a good approximation of the kinematics
for the multi-mode Giesekus model at small strains. In Fig. 5(b) we plot the spatial variation of the
radial component of the rate-of-deformation tensor D,, on the free surface for €,=0.25. Once again the
two-mode and three-mode solutions are almost identical. The multi-mode solutions differ from the
single-mode solution primarily in two regions: the central part (around z=0) and a small region near the
rigid end-plate. In the central region, the absolute value of D,, for the one-mode solution is larger than
that for the multi-mode solution, indicating that the radial contraction rate at the central portion of the
free surface predicted by the multi-mode model is slightly lower than that of the one-mode model. This
slight decrease in the free surface deformation in multi-mode computations is consistent with the
effective extension rate shown in Fig. 4. The second strain level selected for comparison is €,=3.0. In
Fig. 5(c) we compare the profiles of D, along the centerline at this large strain. The results in Fig. 5(c)
demonstrate the major difference between the multi-mode and single-mode solutions, namely the
multi-mode solutions predict a significantly stronger elastic recoil of the fluid near the end-plate (as
indicated by larger negative values of D_,). As a result, the multi-mode predicts a higher local extension
rate near the mid-plane, which leads to a more rapid necking failure.

In Fig. 6 we examine the polymer stress growth for the three-mode solution. The axial stress
components of 7., (i =1,2,3) are computed pointwise at the center of the filament, r=z=0. In
Fig. 6(a) we scale the stress by n9E and plot the stress as a function of €p- The theoretical curves are
obtained using the ideal flow kinematics in the uniaxial elongational flow. As we can see, the calculated
stress does not agree with theory: in particular, it does not approach a steady-state. This is because the
actual kinematics within the elongating filament are non-homogeneous both spatially and temporally.
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Fig. 6. Time history of the axial component of polymeric stress contributions for the three-mode Giesekus model solution.
The stress is evaluated pointwise at the center of the liquid bridge, =0 and z=0. (a) 7;../(mE) as a function of ¢,; (b)
Tizz/(MoD,;) as a function of g

For example, the actual local extensional strain rate at the mid-plane varies with time and becomes
significantly higher than the imposed constant extension rate E. As a result, the actual local strain at the
mid-plane is much larger than the average strain €,. To improve the analysis, we re-scale the stress by
10D, (0,0, ¢) and plot it as a function of e.g. Here D, (0, 0, 7) is the pointwise value of D_. at the centre
of the filament, and the effective strain e is calculated using the integral fé D, (0,0,¢)dr. Therefore,
the spatial and temporal non-homogeneity experienced by the fluid particle at the center point is now
accounted for by the new scale and the new variable €. The rescaled stresses presented in Fig. 6(b)
show a much better agreement with theory. The agreement for the first mode is excellent. The results
presented in Fig. 6 provide an important insight for experimental measurement: in addition to the force
measurement, an accurate determination of the local kinematics is essential for more accurate
interpretation of experimental data, due to the highly non-homogeneous deformation generated in
filament stretching devices.

4.2. Extensional viscosity

We now consider the three experimental tests described in Section 2 and Table 2 and compare the
simulated transient extensional viscosity with the experimental measurements in [19] and with
theoretical predictions for homogeneous uniaxial elongation. The experimental observables are the total
normal force at the lower end-plate, F,, and the free surface profile R(z, t) from which the mid-plane
radius, R;q(f), can be extracted. These experimental data are then used to calculated the transient
extensional viscosity based on the type IB formulation described in Eq. (20b).

We first consider the third test run with an imposed extension rate £ =4.68 s™' and a Deborah
number De;=1.89. Three numerical solution are obtained using the one-mode, two-mode and three-



M. Yao et al./J. Non-Newtonian Fluid Mech. 79 (1998) 469-501 487

2 2

A ' ' 3 W71 ]
] A De =1.89
(a) Type IB . ool - (b) Typell
X oo e’ ! =
AT Ap=0.54
g w0 M‘!E 1 2 ot E
= e De = 1.89 - e i e LS e
8 ¥ Ay=0.54 2
=] =
8 10° }3 . Experiment = 8 — Theory =
= k P i B . ]
Q e 1-Mode Giesekus 0 e 1-Mode Giesekus
A 2-Mode Giesekus A 2-Mode Giesekus
% ---- 3-Mode Giesekus % ---- 3-Mode Giesekus
otle 10" R T R
0.0 10 2.0 3.0 40 5.0 0.0 3.0 6.0 9.0
Hencky Strain & Hencky Strain € ¢

Fig. 7. Comparison of the simulated Trouton ratio and with the experimental data for test run 3 with De=1.89 and Ay=0.54.
The three numerical solutions are obtained using the one-mode, two-mode and three-mode Giesekus models, respectively. (a)
Comparison based on the type IB analysis defined in Eq. (20b). (b) Based on the type II analysis defined in Eq. (21). The curve
denoted ‘theory’ refers to the analytical solution for the three-mode Giesekus model under homogeneous uniaxial elongational
flow conditions.

mode models, respectively, and the simulated transient Trouton ratios are presented in Fig. 7. In
Fig. 7(a) the measured transient extensional viscosity ﬁaB) is plotted as a function of the axial Hencky
strain €, defined by Eq. (16). The three numerical solution shown in Fig. 7(a) are also post-processed
using the same ‘type IB’ analysis. For the single-mode model, the agreement between measurement and
simulation is excellent except for the initial small strain range. This discrepancy at short times arises
mainly from the following two sources. Firstly, in the experiments, there is a finite ramping time
(approximately 0.05 s for the present device) required for the motor to accelerate from rest state to its
initial velocity, whereas in numerical calculations it is assumed that the moving plate attains its initial
velocity Vy=A, instantaneously. Secondly, for the small initial aspect ratios used in the tests, the error
in the measured force induced by additional shearing deformation near the rigid end-plates is
artificially elevated during the initial stage, due to the larger initial solvent viscosity in the single-mode
calculation. This second error source is greatly reduced when the multiple relaxation modes of the fluid
are incorporated. In Fig. 7(b), the numerical solutions are also post-processed using the type II analysis
defined in Eq. (21) and the results are compared with the theoretical prediction assuming ideal uniaxial
elongational flow kinematics. Note that here the curve denoted ‘theory’ is based on the three-mode
Giesekus model. As we can see the multi-mode calculation provides a much better prediction for the
initial stress growth of the material within the small strain range €,<0.6, and compares very favourably
to both experimental measurement and theoretical prediction. The difference between the 2-mode and
three-mode solutions is very small. The comparison presented in Fig. 7 suggests that the two-mode
calculation can provide adequate accuracy at a relatively lower computational cost for most of the
Hencky strains examined in the present work. For this reason, the other two experimental tests are
simulated using the two-mode Giesekus model.
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using the type II analysis.
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The major difference between the type IB and type II analysis is how the local extensional strain rate
is approximated. In the type IB formulation, the imposed axial extension rate E is used to approximate
the local extensional strain rate at the mid-plane. This is clearly a poor approximation, because E
underestimates the local extensional strain rate €. at the mid-plane, especially at large strains. As a
result, the Trouton ratio presented in Fig. 7(a) does not approach a steady state; instead, it increases
monotonically with strain (time). In interpreting experimental results for filament stretching devices, it
should be noted that, for weakly strain-hardening fluids, the type IB analysis provides an upper bound
of the actual extensional viscosity since the actual deformation rate is always higher than the imposed
axial deformation rate.

In Figs. 8 and 9, we present the experimental and numerical results for the first and second test runs
with imposed extension rate E=2.32, 3.42's~ ' and Deborah numbers De;=0.98, 1.44, respectively. In
Fig. 8(a) and Fig. 9, the measurements and numerical data are processed by using the type IB analysis
and the transient extensional viscosity is plotted as a transient Trouton ratio, versus the axial Hencky
strain €,. The calculations in Fig. 8(a) were performed both including surface tension (corresponding to
Ca'=0.106) and without (Ca™'=0). Clearly the effects of surface tension are small and will become
progressively less important at higher Deborah numbers as the tensile viscoelastic stresses in the fluid
column become even larger. In Fig. 8(b) and Fig. 9, the results of numerical simulations are post-
processed using the type II analysis given in Eq. (21) and the predicted Trouton ratio, 7}, is plotted as a
function of the effective strain e.; accumulated at the mid-plane. As we can see, the local strain e.¢ near
the mid-plane is much higher than the average strain €,. The ‘theory’ curves shown in Fig. 8(b) and
Fig. 9 are again the theoretical prediction of the three-mode Giesekus model for ideal uniaxial
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Fig. 9. Comparison of the Trouton ratio simulated using two-mode Giesekus model with the experimental data for the test run
2 described in Table 2 (De=1.44 and Ay=0.63).
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elongational flow. The use of é. in the type II analysis provides a far superior approximation of the
local extensional strain rate at the mid-plane. As a result, the numerical predictions shown in Fig. 8(b)
and Fig. 9 approach steady-state values that agree well with theoretical results. In comparing Figs. 7-9,
it should be noted that for data points computed using the type 1B analysis, the relevant strain measure
for the abscissa is the total axial strain €, = Et, whereas for the data computed using the type II analysis
the appropriate measure is the effective strain e.; experienced by fluid elements near the mid-plane
which can be computed using Eq. (18).

5. Stress relaxation

In this section, we study relaxation of the tensile stresses in the weakly strain-hardening test fluid. We
consider the two-stage extensional deformation history in which the filament is first stretched at an
exponential velocity prescribed by Eq. (1) up to a pre-set strain, then the stretching is stopped and the
relaxation in tensile stresses and the necking of the filament begin. The free surface evolution and the
fluid kinematics during relaxation are studied via full-scale numerical simulations and a 1-D
asymptotic analysis. The gravitational body force is neglected in the simulations.

Following the convention in the literature, the transient extensional viscosity and the transient
Trouton ratio in relaxation are defined as

Tzz — Trr

Tr =7 (E t,1) == (22)

€0

where 7, is the time when the moving end-plate starts to decelerate and €, is a dimensionless measure of
the extensional strain rate at the moment #, (scaled by 1/ E). In this work we use the effective extension
rate at the mid-plane as the appropriate scale for ¢y. For consistency with preyiolus work [16], the
characteristic time scale chosen for studies of stress relaxation is taken to be £ = and we define a
‘generalized Hencky strain’, €. This dimensionless time is identical to the average Hencky strain measure
used during elongation and, after stretching is stopped at a final strain of €, = E(t + 0t;), is given by

€ = €&+ E(t — 1ty — 6t;) = Et (23)

where 0¢, is the ramping time. For the sudden stop, we have 67,=0. When the ramping time is non-zero, the
motion of the end-plate is complete at t = fy + 0t;.

Of course, for a relaxing viscoelastic filament, a more appropriate characteristic time scale would be
the relaxation time \; and, for a Newtonian filament undergoing capillary thinning, the only relevant
time scale in the problem following cessation of stretching is pRy/o, however, the present choice
permits the evolution of both viscoelastic and Newtonian filaments during and after cessation of
stretching to be conveniently represented on the same graph.

We first consider a typical case of stress relaxation for the test fluid after stretching at De=2.0. In this
case, the stretching is stopped at a strain of €,=3.0 with zero ramping time. For simplicity, the problem
is simulated using the one-mode Giesekus model. The corresponding numerical solution for a
Newtonian fluid is also computed to serve as a reference state. The simulated free surface profiles at six
selected strains are presented in Fig. 10. Due to the assumed symmetry with respect to the mid-plane
between the two end-plates, only the top half of the deforming filament is shown.
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Fig. 10. Evolution of free surface profile and necking failure during a simulated stress relaxation test. The filament is
stretched to €,=3.0, then the stretching is suddenly stopped. The weakly strain-hardening fluid is simulated by a one-mode
Giesekus model. The generalized Hencky strain €, is calculated using Eq. (23).

As we can see from Fig. 10, the difference in free surface shape between the two fluids is very small
at €,=2.0. After stretching to €,=3.0, the central portion of the viscoelastic fluid column becomes
slightly thinner than that of the Newtonian fluid. During the relaxation stage, the gradual thinning in the
Newtonian filament radius is driven by surface tension and, for the selected fluid parameters, the
change in free surface shape is very slow, as shown by the profiles at €,=4.0, 5.0 and 7.2 in Fig. 10.
However, the necking behavior of the weakly strain-hardening test fluid predicted by the Giesekus
model is dramatically different from the Newtonian fluid. It can be seen from the simulated free surface
profiles at €,>3.0 that the necking rate of the test fluid is much faster than the Newtonian case.

In Fig. 11, we present a more quantitative description of the simulated fluid kinematics as
characterized by the mid-plane radius and the effective extension rate. For the weakly strain-hardening
test fluid, the initial radial deformation is very similar to the Newtonian filament within the small strain
range €,<2.0. As the strain increases, the necking in the fluid filament starts to accelerate. At €,=3.0,
the necking rate of the viscoelastic test fluid is about twice that in the Newtonian fluid. For the
Newtonian fluid, the two-stage deformation history can be easily recognized from the sudden change in
the slope of R,,;q(f) curve shown in Fig. 11(a) or from the discontinuity in the magnitude of the local
extension rate shown by the é. curve in Fig. 11(b). Also shown in Fig. 11 are the predictions of a 1-D
theory for the filament breakup which we now proceed to describe briefly.

Previous work by Bousfield et al. [22] has shown how a set of 1-D ‘thin filament’ equations can be
used to model the evolution of a viscoelastic jet from an initial perturbed configuration. This 1-D theory
accurately captures both the linear viscoelastic amplification in the initial disturbance growth rate and
the subsequent non-linear stabilization computed in more expensive finite element calculations.
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Asymptotic analysis of the 1-D equation set by Renardy [20,21] has further shown that the dynamical
evolution of the necked jet is a sensitive function of the constitutive model chosen to describe the
viscoelastic fluid. We have adapted these ideas to explore the role of extensional fluid rheology on the
evolution of the long slender fluid column generated in a filament stretching apparatus following
cessation of elongation.

A common difficulty encountered with 1-D approximations for viscoelastic flows is the choice
of appropriate initial conditions. The analyses of viscoelastic jets [20-22] have shown that the
dynamical evolution in the jet profile at short and intermediate times is modified appreciably by the
existence of an initial tensile stress difference in the fluid column. As Hinch and Entov [40] remark,
this sensitivity to the (unknown) initial conditions makes it difficult to use measurements of filament
breakup to quantitatively ascertain values of viscoelastic constitutive parameters. In the present
work we seek to investigate the unstable necking of a viscoelastic filament that develops during the
process of stress relaxation following cessation of a strong uniaxial elongation. As a result of
the previous deformation there is a significant initial tensile stress difference in the column; however,
one of the principal benefits of a filament stretching device is that the same Lagrangian fluid elements
are followed from their initial configuration as a uniform, fully-relaxed cylindrical liquid bridge
through a strong uniaxial deformation and into the ultimate stress-relaxation/filament break-up regime.
Our comparisons of the numerical simulations and experimental observations during stretching have
shown that we can quantitatively predict the tensile stress growth in the elongating filament. We
can thus use the computed spatial profile of the polymeric stresses at the cessation of stretching as
the initial condition for integration of the set of 1-D equations of motion governing the evolution
of a slender fluid filament.

These governing equations are formulated in a convenient Lagrangian form by Renardy [20,21]. In
this representation the axial location z(¢) of fluid elements with initial location Z, ( at time #y) is
followed as a function of time. The deformation in the fluid column is represented by the dimensionless
stretch S(Zy, t) of each element which is defined in a 1-D deformation by

0z R}
P = §(Zp, 1) = —0__ 24
<azo>, (o, 1) R(Zo,1)? (24)

Here time and position are non-dimensionalized as described in Eq. (2), and the initial Lagrangian
domain spans 0 < Z, < L(t)/Ry. For a 1-D flow, in which the axial velocity in the column is only a
function of z, the deformation rate at each axial position of the filament is given by

1 /08
e =D, (Zy,t) =< | — 25
€ <(Zo, 1) S <3f>zo (25)
The governing equations in dimensionless form are then
S _ @ ~1¢3/2
3ﬂSE:Sf(t) —S(T,; —T,,) —Ca ' § (26a)
oT. DeaT.
DeZZ =T, [2Dec — 1 — 2271 4 o(1 — B)é (26b)
ot 1 — B

aTrr .
De =—-T,,|Dee+1+
ot

Dea T,

1_/85

] — (1 = f)é (26¢)
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Here we have used the same dimensional scalings defined in Section 3.2 (Eq. (2)), T, and T,, are the
1-D approximations of the polymeric contributions to the total stress, and Ca is the capillary number
defined in Eq. (3). The dimensionless tensile force f(f), is scaled with the initial conditions and is
uniform along the filament in Eq. (26a) but decays with time. Since the total length of the column is not
changing with time, the force can be found from an integral constraint [21] as

F. [MIS(T. —T,) + Ca'$¥7]dZ,

WR%UOE B fOA(t”) S2dZy

f (27)

Given a filament profile R(Zy, fp), and an initial distribution of the polymeric stresses 7. (Z, fy) and
T,-(Zo, 10), Egs. (26a),(26b),(26¢) and (27) can be integrated in time to compute the evolution in the
filament profile. If the filament breaks in finite time then the Lagrangian stretch of the material element
at the mid-point diverges at a critical time 7, as S(zo = 0,7) ~ (. — )" Renardy [20,21] shows that
for the Giesekus model the critical exponent is b=2 corresponding to a linear decrease in the mid-point
radius R,;4/Ry at long times.

The predictions of the one-dimensional theory are compared with finite element calculations in
Fig. 11. Clearly, the 1-D set of equations provides a good description of the evolution in the filament
profile for both the Newtonian and viscoelastic fluids. For the Newtonian filament, capillary pressure in
the necked region drives the progressive decrease in the filament radius; however, for the high fluid
viscosity selected (u=no=34.95Pas), the characteristic time scale for breakup is very long
(t. ~ uRy/o = 4.08s). Little change in the filament profile is observed on the scale of Fig. 11
(Ar = Aeg/E ~ 1.07s), although close inspection shows that the mid-point radius does decrease
monotionically and the extension rate increases slowly. By contrast, the viscoelastic filament undergoes
an increasingly rapid rate of necking and the extension rate increases with time. Analysis of the 1-D
curve using the method proposed by Renardy [21] shows that the critical (dimensionless) time for
breakup is #.=7.36 and the exponent »=2.0 in agreement with asymptotic predictions. The slight
deviations between the 1-D equations and the full two-dimensional finite-element computations arise
from the assumed form of the 1-D kinematics which cannot capture the no-slip boundary conditions
imposed by the end-plates of the device. In this region, detailed analysis of the finite element
simulations (not shown here) indicates that the flow is locally two-dimensional and, furthermore, the
axial curvature of the filament surface is no longer small.

To further investigate why the necking behavior of the weakly strain-hardening test fluid differs so
significantly from the Newtonian fluid, we examine the spatial variation of the extensional strain rate
within the liquid filament. Fig. 12 shows the axial component of the rate-of-deformation tensor, D_,,
along the centerline of the filament (r = 0) at three selected strain levels. The plot at ¢, = 3.0~
(immediately before stretching ceased) shows a small region near the moving end-plate 0.35 < z < 0.5
where D, < 0. In this region the polymeric liquid undergoes elastic recoil. However, following
removal of the imposed external axial deformation, the profile at €,=3.1 shows that there is a sudden
increase in the strength and spatial extent of the viscoelastic recoil near the end-plate. Very close to the
axial end-plate the elastic stresses relax when the external deformation is removed and the filament
expands slightly in the radial direction as fluid elements recoil. Consequently the filament radius
decreases near the mid-plane and the rate of necking in this region increases. The region of elastic
recoil (i.e. D_,<0) is thus progressively localized at long times and the deformation rates in the necking
column slowly intensify in magnitude and move away from the rigid end-plates. Also shown in
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Fig. 13. The non-linear stress growth and relaxation for the weakly strain-hardening fluid simulated by the one-mode
Giesekus model. The stretching rate is £ = 4.68 s~ and stretching is suddenly stopped at €;=3.0. The Trouton ratio is
calculated by both the type IB (20b) and type II (22) analyses. The ‘theory’ curve is obtained assuming homogeneous fluid
kinematics for an ideal uniaxial elongational flow.

Fig. 12(b—c) are the predictions of the 1-D thin filament equations. This asymptotic theory accurately
predicts the kinematics inside the necking fluid column except in small regions near the end-plate
where the full numerical calculations show that the fluid motion is weakly two-dimensional.
Measurements of the decaying tensile force have been used to investigate stress relaxation following
cessation of elongational flow in strongly strain-hardening dilute polymer solutions [7,10,16,38]. In
Fig. 13 we show the computed evolution in the Trouton ration Tr~ for the one-mode Giesekus model,
and a comparison with the theoretical prediction for ideal uniaxial elongational flow. When the Trouton
ratio is computed using the type IB formulation and plotted as a function of €, (as shown by the squares
in Fig. 13) the predicted stress growth during stretching is larger than expected theoretically due to the
non-homogeneity in the local extensional strain rate near the mid-plane. Consequently, if the imposed
extension rate E is used as the appropriate measure of deformation rate in the Trouton ratio Tr™ defined
in Eq. (22) then the computed results do not agree with theoretical expectation. However, if we compute
Tr~ with the actual deformation rate ¢.¢r at the instant that deformation is creased, then we can see from
Fig. 13 that the stress relaxation in the filament is initially as expected theoretically. However, after a
generalized strain of Ae, ~ 2 corresponding to an elapsed time of order one fluid relaxation time
(At/A = Aey/De ~ 1.0), the polymeric stress difference passes through a minimum and begins to
increase rapidly due to the unstable necking in the filament. It is important to note that although the
stress in the filament diverges (as does the local deformation rate), the force f(¢) in the filament
computed using either the 1-D filament equations or the full two-dimensional finite element simulation
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Fig. 14. Influence of extensional fluid rheology on the necking failure of a viscoelastic fluid thread in a filament stretching
device. The initial conditions at €,=3.1 are taken from the numerical simulation shown in Figs. 10 and 11. As the Giesekus
parameter « is decreased, the 1-D theory (Eqgs. (26)—(27)) predicts that the time to breakup increases monotonically. In the
Oldroyd-B limit (a«=0) the filament radius decreases exponentially in agreement with asymptotic predictions and the thread
does not break in finite time. For comparison, the capillary-driven breakup of a corresponding viscous Newtonian filament is
shown by the hollow symbols.

decreases monotonically. The results in Fig. 13 suggest that filament stretching devices can be used
successfully to monitor the initial stages (Af ~ A;) of extensional stress relaxation even in weakly
strain-hardening materials such as the concentrated polystyrene solution. Of course, in the experiments,
additional factors such as the finite dynamic range of the force transducer and gravitational sagging of
the column may also be important at long times.

Two recent numerical studies [19,25] have shown that the dynamical evolution of viscoelastic
filaments and the predicted rate of necking failure are very sensitive to the magnitude and type of non-
linearity governing the dynamics of the tensile stress growth during uniaxial elongation. This variation
in the level of strain-hardening in the fluid also dramatically influences the unstable necking of the
filament following cessation of stretching as we show in Fig. 14. Here we investigate the effect of
decreasing the parameter « in the Giesekus model while holding all other variables (e.g. surface tension
and viscosity) constant. In order to eliminate the variation in initial conditions that would arise from
performing a full numerical simulation of the initial stretching deformation to a fixed Hencky strain e,
using different sets of constitutive parameters, we use the 1-D model equations presented above (Egs.
(26a—c) and (27)) and take the initial stress distribution to be that computed numerically for
deformation of a fluid sample described by a single-mode Giesekus model with «=0.316 to a final
strain €,=3.0 (i.e. the conditions shown in Figs. 10 and 11). Initially, there is a relaxation of the
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polymeric stresses in the filament of the form shown in Fig. 13 and consequently little fluid motion;
however, at longer times the deformation rate begins to climb and the rate of necking increases. As « is
decreased the onset of filament failure is delayed to progressively longer times, but for each value of
a70, asymptotic analysis of the stretch at the mid-plane S(Zy = 0, ¢) shows that the critical exponent is
b=2 corresponding to a linear decrease in the filament mid-point radius near breakup. By contrast, for
the Oldroyd-B model (a=0), the simulations show that at long times the filament radius decreases not
linearly but exponentially and the deformation rate approaches a constant value (although as noted by
Renardy [21], the numerical solution in fact becomes oscillatory at very long times). Asymptotic
analyses presented first by Bousfield et al. [22] and later by Hinch and Entov [40] show that for the
Oldroyd-B fluid, the mid-point radius should decrease as Ryia/Ro ~ exp[—1/(3A1)] = exp[—eg/(3De)]
at long time as indicated in Fig. 14. Also shown in Fig. 14 by the symbols is the evolution of a
Newtonian filament with same initial configuration but with 7,,=7,,=0 and A\;=0. In this case the
filament fails solely due to capillary-driven thinning. At short times following cessation of stretching,
close inspection of Fig. 14 shows that the necking of all the viscoelastic filaments is more rapid than
the corresponding Newtonian filament as predicted by linear stability theory [73]. However, at longer
times, the column can be partially or completely stabilized against capillary breakup. The extent of this
stabilization is clearly dependent on the magnitude of the strain-hardening predicted by the constitutive
model.

6. Conclusions

We have presented numerical simulations using the finite element package POLYFLOW developed
by Crochet and co-workers to investigate the dynamical evolution of viscoelastic fluid columns in
filament stretching devices during elongation and subsequent stress relaxation. A detailed comparison
of computations with single- and multi-mode formulations of the Giesekus model has been presented to
examine differences in the predicted viscoelastic behavior resulting from the relaxation spectrum and
the constitutive non-linearities characterizing the fluid.

Comparisons show that the multi-mode calculation provides a much better prediction for the initial
stress growth in the material at short times and small Hencky strains, and compares very favorably to
both experimental measurement and theoretical prediction. At larger strains, simulations using the
multi-mode constitutive model predict a significantly stronger elastic recoil of the fluid near the end-
plate. As a result, the multi-mode solution has a higher local extension rate near the mid-plane, which
leads to a more rapid necking in the column during stretching. Although the numerical calculations
cannot be carried all the way to ultimate filament rupture (due to the very large element deformations
that develop at large strains) the rate of necking increases without bound and the filament is clearly
destabilized with respect to the identical elongation of a Newtonian liquid bridge, despite the strain-
hardening in the extensional viscosity. This enhancement in the unstable necking is not dependent on
pressure gradients arising from surface tension but arises purely from viscoelastic effects such as elastic
recoil of the fluid elements near the end-plates. Improved resolution of the fluid’s viscoelastic
properties via incorporation of a discrete spectrum of relaxation times increases the rate of necking, and
analyses based on the single-mode calculations can be considered as more conservative estimates of the
time to break-up. Comparison with theoretical predictions for ideal homogeneous uniaxial elongation
shows that, even for weakly strain-hardening fluids, it is possible to make quantitative measurements of
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the transient uniaxial elongational viscosity if, in addition to measurement of the tensile force in the
column, it is possible to obtain an accurate determination of the local rate of deformation at the mid-
plane.

The differences in filament evolution resulting from variations in the extensional rheology of the test
fluid are even more evident in our numerical studies of the ‘stress relaxation experiments’ commonly
performed in filament stretching devices following cessation of elongation. For a viscous Newtonian
fluid filament, a sudden cessation of the extensional flow can be approximately achieved after a sudden
stop of the end-plate motion and, in the absence of gravity, the ensuing evolution of the initially necked
configuration is driven only by capillary pressure. Although the filament will eventually fail in a finite
time, the necking rate at the mid-plane is initially very slow due to the high viscosity of the test fluids
commonly used in filament stretching devices. The dynamical evolution of a viscoelastic test fluid after
cessation of stretching differs dramatically from the Newtonian fluid counterpart. The filament may be
stabilized or destabilized (i.e. the time to breakup can be increased or reduced, respectively, as shown in
Fig. 14) depending on the magnitude and rate of extensional strain-hardening predicted by the model.
Depending on the choice of non-linear constitutive parameters, up to three characteristic phases in the
filament evolution can be identified following cessation of stretching. These regions can be
distinguished by the magnitude of the axial deformation rate €. at the filament mid-plane which
characterizes the rate of necking in the fluid column. Initially there is a sudden, large decrease in the
rate of necking after the external forcing is removed, and the viscoelastic stress difference in the
elongated fluid column relaxes almost as predicted for cessation of ideal uniaxial extension. This
relaxation in the axial stress is accompanied, however, by elastic recoil of the fluid elements near the
rigid end-plates and a slow decrease in the diameter of the necked region near the filament mid-plane.
Although this rate of necking is small at first, it is always larger than that observed in the corresponding
Newtonian filament, in agreement with linear viscoelastic stability theory [73]. At longer times, strain-
hardening in the necking region may become significant enough (depending on the values of the non-
linear constitutive parameter characterizing the extensional fluid rheology), so that the local effective
extension rate at the mid-plane of the filament falls below that of the corresponding Newtonian
filament, and the fluid column is therefore (partially) stabilized. For an Oldroyd-B fluid, which permits
unbounded tensile stress growth, this is the terminal regime and asymptotic analysis shows that the final
filament profile consists of a long thin fibril of highly stretched fluid connecting two quasi-static, fully-
relaxed fluid reservoirs (i.e. the ‘beads-on-a-string’ configuration [20-22]). However, if the extensional
viscosity is bounded, then as the molecules in the fluid element at the mid-plane approach full
extension, the filament enters the final stage of the filament breakup process. In this phase the radius
decreases rapidly and the deformation rate in the filament starts to climb again. For the Giesekus model
at least, the Lagrangian stretch diverges as (7. — t)_2 and the mid-plane radius decreases linearly to zero
at a critical time f., as expected for a viscous Newtonian fluid [21]. These numerical observations
demonstrate the key role of the transient extensional rheology of the fluid in governing the evolution of
the fluid filament and are also self-consistent with the Considére criterion which is valid during the
imposed stretching phase of the experiment and discussed in detail elsewhere [19,25].

Of course fluid inertia may modify the asymptotic evolution in the neck at the very final stages of
breakup, and Entov and Hinch [40] have shown how a spectrum of relaxation times can change the
viscoelastic dynamics at intermediate times. However, it is clear that if the initial radial profile R(z, 1)
and tensile force f(fy) in the column are known, then careful measurements of the evolution in the mid-
plane radius R,;4(#) using a filament stretching device or a microfilament rheometer [39,40] can be
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combined with either two-dimensional, time-dependent, finite element calculations or a 1-D slender-
filament theory to provide a sensitive probe of the transient extensional rheology of mobile viscoelastic
fluids such as dilute and concentrated polymer solutions.
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