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Abstract. A compact modulated birefringence-measurement system has been developed for
use in microgravity fluid physics applications with non-Newtonian fluids such as polymer
solutions. This instrument uses a dual-crystal transverse electro-optical modulator capable of
modulation frequencies in excess of 100 MHz. The two crystals are modulated 180◦ out of
phase from each other. The theoretical framework governing the development of this
instrument using the Mueller–Stokes polarization matrices is discussed. Several
ground-based experiments are performed to compare this system with the theoretical results.
Results from this transverse electro-optical modulator-based birefringence-measurement
system agree well with the theory. The instrument is also very stable and robust, making it
suitable for the extreme acceleration environment to be encountered in a NASA Black Brandt
sounding rocket.

Keywords: birefringence, polarization, modulation, electro-optical, Mueller matrix,
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1. Introduction

A compact, sensitive and robust birefringence-measurement
system was needed in order to perform non-invasive
diagnostic tests with high sensitivity in a deforming
non-Newtonian liquid bridge on an unmanned NASA
sounding rocket for a microgravity research project called
the ‘Extensional Rheology Experiment’ [1]. The entire
diagnostic system was required to fit within a 15 cm long
space. Commercially available instruments use modulation
techniques such as the photoelastic-effect modulator (PEM)
or a mechanically rotated retardation plate to produce the
desired polarization-state modulation, but are too bulky
for microgravity flight. Polarized light has long been
used to make non-invasive measurements of many physical
parameters of practical interest. Several investigators
have measured Stokes vectors and Mueller matrices using
Pockels cells or photoelastic modulators [2–7]. In the
1960s, Takasaki [8] developed an automatic ellipsometer
using ammonium dihydrogen phosphate (ADP) cells as
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modulators. Ellipsometry instruments based on the use
of four ADP-crystal light modulators to compensate for
temperature-dependent optical bias have also been presented
[9–10]. Compain and Drevillon [11] recently developed a
technique based on a coupled-phase-modulator configuration
using a single PEM. However, none of the available
techniques is suitable for the environment that will be
encountered on board a NASA Black Brandt sounding rocket,
where random vibrational launching loads can reach over 15g

and landing shock can be in excess of 50g.
Since the experiment section in the rocket allowed

only 15 cm of working space for the entire instrument,
a PEM-based system was not practical for microgravity
experiments. The experimental environment would also
produce high vibrational forces that could potentially shatter
the large thin quartz crystal found in a PEM or damage
a mechanically rotating retardation plate. Furthermore,
a single-crystal electro-optical modulator is not thermally
stable [12]. For these reasons, a compact dual-crystal electro-
optical modulator was chosen to perform the birefringence
measurements.

In this paper, we describe a compact, robust, electro-
optically modulated device capable of making independent
birefringence measurements during the measurement of
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Figure 1. Optical-system elements showing polarization orientations.

the transient extensional viscosity of a polymer solution
in a microgravity environment. This measurement
of a microstructural variable (i.e. the chain extension
and orientation) can then be coupled with macroscopic
measurements of the deformation field and resulting tensile
stresses in the elongating fluid sample to improve constitutive
modelling of polymeric fluids [13]. The instrument design
is underpinned by the Mueller-matrix calculations and its
functionality is verified by ground-based experimentation.
The retardance and thus the birefringence of an optically
transparent anisotropic polymeric fluid can be measured
accurately using this technique.

2. An overview of birefringence

Birefringence (1n′) is defined as the anisotropy in a
material’s refractive index with respect to the polarization
state of light propagating through it. In an optically
transparent polymer material under stress, the orientation
and degree of deformation of the polymer molecules cause
an anisotropic polarization. If the light propagates along
the z-direction through a birefringent material, thex andy
components of its electrical field vector will be different from
one another. This results in a phase difference or retardance
(δ) as the light traverses the sample material. If the material
is not dichroic, then the retardance is related directly to its
birefringence. This can be expressed as [14, 15]

1n′ = no − ne = − δλ

2πd
(1)

whereno andne are the refractive indices for ordinary and
extraordinary light rays respectively,λ is the wavelength of
the light in vacuoandd is the sample-material thickness.

One can apply this knowledge through the use of
the stress-optical law which provides a simple relationship
between the material stress and the refractive-index tensor
[13]. In terms of the stress components, the stress-optical
law can be expressed as

τxy = 1

2C
1n′ sin(2χ) (2a)

τxx − τyy = 1

C
1n′ cos(2χ) (2b)

whereτxy is the shear stress,τxx − τyy is the first normal
stress difference,C is the material’s stress-optical coefficient
andχ is the instantaneous orientation angle of the molecular
polymer chains with respect to the flow direction [13].
Thus, in order to unambiguously ascertain a material’s state
of stress, the birefringence and orientation angle must be
measured simultaneously.

Figure 1 shows schematically the layout of the optical
train of the birefringence instrument used to accomplish both
of these objectives. The solid-state laser system is coupled
to a polarization-maintaining optical fibre. A collimating
lens is rigidly attached to the output end of the optical fibre.
This assembly provides a collimated output beam with a
spot size of less than 300µm at the interface with the fluid
column. Using a Brewster-angle window, the input polarizer
is aligned in the same direction as the extensional fluid flow.
Henceforth, all angles specified are referenced with respect
to this flow axis (shown as vertical in figure 1). The electro-
optical modulator is inserted with the two modulating crystals
oriented at±45◦. The analyser can be oriented at 90◦ (crossed
polarizers) or at−45◦ with respect to the input polarization
state. The crossed polarizer configuration is used for initial
system alignment whereas the−45◦ configuration is used in
the actual data gathering. The high-speed photodetector uses
a silicon PIN diode which is polarization-insensitive so that
its orientation can be arbitrary.

3. Dual-crystal transverse-electro-optical
modulation technique

In order to develop a dual-crystal-modulation theory, it is
helpful to present some mathematical formalism regarding
the representation of polarized light and its interaction with
matter. This will be done using the Stokes parameters and
Mueller-matrix representations of the optical elements. It is
also necessary to present the transverse electro-optical effect
or Pockels effect and its application to the LiNbO3 crystals
used in the experimental instrument. The transverse electro-
optical effect will be examined first.

A birefringent crystal possesses two distinct indices of
refraction. These indices are represented byno and ne
which are the ordinary and extraordinary index of refraction
respectively. When a voltage is applied across the crystal
in a direction normal to the direction of light propagation,
the difference between the polarization-sensitive refractive
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Figure 2. The transverse electro-optical crystal configuration.

indices changes. This change results in a voltage-sensitive
phase retardance between the ordinary and extraordinary
light rays, which can be mathematically expressed as [15]

1φ = 2π

λ
|no − ne|L− 2π

λ
r33n

3
o

V L

D
(3)

wherer33 is the appropriate electro-optical coefficient,L is
the crystal length,D is the distance between the electrodes
andV is the voltage applied across the crystal. IfV is an
alternating voltage, the electrical field vector or polarization
state of the light passing through the crystal can be modulated.
For 5 mol% MgO-doped LiNbO3, no = 2.2792 and
ne = 2.1916 at 20◦C for light with a wavelengthλ =
632.8 nm [16]. A typical transverse electro-optical crystal
configuration is shown in figure 2.

In practice, the electrodes are usually made of gold
deposited on the entire top and bottom surfaces of the electro-
optical crystal material. The crystal material acts much the
same as a capacitor would in the alternating-current electrical
circuit. In the present work, a model having a very thin
braided gold bonding wire to connect the electrodes with the
modulator-driver circuitry was used. The LiNbO3 crystals
were also coated with an anti-reflective coating optimized for
visible light instead of the usual near-infrared coatings used
for most fibre-optical communications applications. From
equation (3), the electro-optical effect is maximized when
the electrical field vector of plane-polarized light is incident
on the left-hand crystal face at a 45◦ angle with respect to the
z-axis.

The Stokes vector,S, consists of four parameters that
characterize the polarization state of light. These parameters
are denotedI ,Q,U andV . They are based on the amplitude
and orientation of the electrical field vector [14, 15, 17]:

S =


I

Q

U

V

 =


E2
x +E2

y

E2
x − E2

y

2ExEy cos(δ)
2ExEy sin(δ)

 . (4)

In equation (4),Ex andEy are the time-dependentx
andy electrical field vector components. The parameterI

represents the intensity of the light while the parametersQ,
U andV specify its state of polarization.

The polarization state of the output light can be modelled
using the Stokes vector of the incident light multiplied by the
Mueller matrices of the individual optical elements. The
multiplications are performed from right to left (to match the
order in which the transmitted light beam encounters each
optical element) and ultimately generate the output Stokes
vector which contains the required information about the
anisotropy of the material under study.

For the dual-crystal instrument in our experiment, we
have the polarization-state configuration shown in figure 1
with the analyser at−45◦. Denoting the intrinsic static
birefringence of each modulator crystal byε, the Mueller
matrices for the various optical elements are given as follows
[13]. For the analyser at−45◦

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 .
For a sample with time-variant retardanceδ and time-variant
orientation angleχ :

1 0
0 cos2(2χ) + sin2(2χ) cos(δ)
0 sin(2χ) cos(2χ)[1− cos(δ)]
0 sin(2χ) sin(δ)

0 0
sin(2χ) cos(2χ)[1− cos(δ)] − sin(2χ) sin(δ)
sin2(2χ) + cos2(2χ) cos(δ) cos(2χ) sin(δ)
− cos(2χ) sin(δ) cos(δ)

 .
For the first LiNbO3 crystal at +45◦ with a sinusoidal
modulating electrical field applied with frequencyω:

1 0 0 0
0 cos[A sin(ωt) + ε] 0 − sin[A sin(ωt) + ε]
0 0 1 0
0 sin[A sin(ωt) + ε] 0 cos[A sin(ωt) + ε]

 .
For the second LiNbO3 crystal at−45◦ having a sinusoidal
modulating electrical field applied with frequencyω 180◦ out
of phase from that of the first crystal:

1 0 0 0
0 cos[A sin(ωt) + ε] 0 sin[A sin(ωt) + ε]
0 0 1 0
0 − sin[A sin(ωt) + ε] 0 cos[A sin(ωt) + ε]

 .
For the input Stokes vector (vertical P-state):

I0/2
−I0/2

0
0

 .
These Mueller matrices are multiplied in reverse order

in order to calculate an equivalent system matrix which is
then multiplied by the input Stokes vector. The resulting
Stokes vector describes the intensity and polarization of
the light emerging from the last element in the system
matrix.

3.1. The matrix representation for the system in
data-collection mode

The Mueller matrices and input Stokes vector are applied to
determine a mathematical representation of the time-varying
intensity observed at the photodetector. If a polarization-
insensitive photodetector such as a silicon-PIN-diode type is
used, only the polarization elements listed in section 3 need
be applied. Multiplying them in reverse order and by the
input Stokes vector gives us the following:
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[output Stokes vector]= [analyser at− 45◦]
×[sample][LiNbO3 at − 45◦]
×[LiNbO3 at + 45◦][input Stokes vector].

This matrix multiplication yields a very lengthy resultant
Stokes vector. The first element of this resultant Stokes
vector is the time-varying intensity,I (t), which is given by
[18]

I (t) = I0

2
+
I0

2
cos[A sin(ωt) + ε] sin(2χ) cos(2χ)

× cos[−A sin(ωt) + ε] − I0
2

cos[A sin(ωt) + ε]

× sin(2χ) cos(2χ) cos[−A sin(ωt) + ε] cos(δ)

−I0
2

cos[A sin(ωt) + ε] cos(2χ) sin(δ)

× sin[−A sin(ωt) + ε] +
I0

2
sin[A sin(ωt) + ε]

× sin(2χ) cos(2χ) sin[−A sin(ωt) + ε]

−I0
2

sin[A sin(ωt) + ε]

× sin(2χ) cos(2χ) sin[−A sin(ωt) + ε] cos(δ)

+
I0

2
sin[A sin(ωt) + ε] cos(2χ) sin(δ)

× cos[−A sin(ωt) + ε]. (5)

By combining and simplifying the appropriate terms in equa-
tion (5) and usingIdc = I0/2, the time-varying intensity
reduces to the following equation:

I (t) = Idc{1 + sin(2χ) cos(2χ){2 cos2[A sin(ωt)]

−1 + {1− 2 cos2[A sin(ωt)]} cos(δ)}
+2 sin[A sin(ωt)] cos[A sin(ωt)] cos(2χ) sin(δ)}. (6)

It is to be noted that 2 cos2[A sin(ωt)] − 1 =
cos[2A sin(ωt)] and 2 sin[A sin(ωt)] cos[A sin(ωt)] =
sin[2A sin(ωt)]. For notational purposes, we define the
following parameters:

M34 = sin(δ) cos(2χ) (7)

M32 = [1− cos(δ)] sin(2χ) cos(2χ). (8)

By substituting equations (7) and (8) into equation (6)
and then using the sine and cosine expansions we obtain the
following expression:

I (t) = Idc{1 +M32 cos[A sin(ωt)] + M34 sin[A sin(ωt)]}.
(9)

Next, the Fourier–Bessel expansions are applied to give
us an expression forI (t) in terms of measurable quantities.
The Fourier–Bessel expansions are written as follows [19]:

cos[A sin(ωt)] = J0(A) + 2
∞∑
n=1

J2n(A) cos(2nωt) (10)

sin[A sin(ωt)] = 2
∞∑
n=0

J2n+1(A) sin[(2n + 1)ωt ] (11)

whereJn is a Bessel function of the first kind, withn =
0, 1, 2, . . . . Completing the expansion yields the final form
of the equation to be used in measuring the time-varying
intensity:

I (t) = Idc{1 +M32[J0(A) + 2J2(A) cos(2ωt)

+ · · ·] + M34[2J1(A) sin(ωt) + · · ·]}. (12)

It is desired that the modulated birefringence system
be calibrated by setting the electro-optical modulation
amplitude such thatJ0(A) = 0 since this greatly simplifies
the final data analysis. Practical calibration methods are
discussed in detail in section 4. WithJ0(A) = 0(A = A0),
the calibrated expression then becomes

I (t) = Idc[1 + 2J1(A0) sin(ωt)M34

+2J2(A0) cos(2ωt)M32 + · · ·] (13)

which is written in terms of in-phase and in-quadrature
signal components measurable by two heterodyning lock-in
amplifiers. This occurs at the modulator-calibration-voltage
set point, at whichJ0(A0) = 0. It can be shown that the first
and second harmonics,Iω andI2ω, are given as [13]

Iω = −2J1(A0)Idc (14)

I2ω = −2J2(A0)Idc. (15)

Equation (13) is equivalent to the result previously
derived [13] using a single-element photoelastic modulator
in place of the dual-crystal electro-optical modulator and
neglecting the static birefringence intrinsic to the modulating
element. One experimental constraint is that the second
harmonic of the modulation frequency be low enough to
be measured by a heterodyning lock-in amplifier. If this
condition is satisfied, then two lock-in amplifiers can be
used to simultaneously measure both the first and the second
harmonic. Thus, the retardance,δ, and orientation angle,χ ,
can be measured simultaneously at any obtainable sampling
time.

The following parameters are defined for notational
purposes [13, 17]:

Rω = Iω
√

2

2IdcJ1(A0)
(16)

R2ω = I2ω
√

2

2IdcJ2(A0)
(17)

M = 1− R2
ω − R2

2ω. (18)

The square root of 2 is required in equations (16) and (17)
because the lock-in amplifiers output a root-mean-square
voltage instead of peak-to-peak values. The parametersδ and
χ are obtained fromM34 andM32. Equations (16)–(18) can
be substituted into equation (13) to compute instantaneous
measurements of the retardance and orientation angle [13].
These are given by equations (19) and (20) respectively:

δ = cos−1(−R2
2ω +R2

ω

√
M)

R2
ω +R2

2ω

(19)

χ = 1

2
cos−1

( |Rω|
sin(δ)

)
. (20)

The birefringence is then simply given by

1n′ = − δλ

2πd
. (21)
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The birefringence is defined as a negative quantity in order
to be consistent with previous sign conventions.

From this analysis, it is noted that the modulator’s
intrinsic static retardance is theoretically negated. With
‘perfect’ crystals, ‘perfect’ optics and ‘perfect’ alignment,
this would certainly apply. However, since perfection is
extremely difficult to achieve, the dual-crystal EOM effective
retardance has been measured [18] to be between 3.85×
10−4 and 4.00 × 10−4 radians depending on where the
laser beam traverses the crystals and how well the optical
alignment between the two crystals is achieved. From
equation (3), the effective retardance of the dual-crystal
transverse electro-optical modulator is related to the intrinsic
static birefringence of each modulator crystal. In the
microgravity flight system, each modulator crystal is 20 mm
long.

The Mueller–Stokes-matrix calculations for this system
in an arbitrary configuration have also been computed. From
these matrix calculations, we can observe that setting the
modulator crystals at±45◦ will maximize the modulation
depth and minimize the number of mathematical terms
representing the time-variant intensity. It can also be
observed that no modulation will occur when the modulator
crystals are set to 0◦ and 90◦ since in this configuration all of
theA sin(ωt) terms disappear.

4. Instrument calibration

To aid in the analysis of dynamical measurements, it is
beneficial to setJ0(A) to zero. From equation (12), this
occurs whenJ1(A) = 0.5191 andJ2(A) = 0.4317. If we
set the analyser to 90◦ and remove the sample, an equation
for the modulated intensity containing onlyJ0(A) andJ2(A)

terms is obtained. This calibration configuration is shown in
figure 1 with the analyser at 90◦ with respect to the incident
polarization state.

One method of calibration can be accomplished by
placing the system in a ‘data-collecting’ configuration with
the analyser at−45◦ and inserting a retarder into the sample
space so that bothIω and I2ω signals are present. The
optimum retardance setting for this occurs atπ/8 radians
since this is where the second harmonic is maximized and
the first harmonic is half its maximum value. Thus, if we
incrementally increase the modulator voltage, we will map
out J1(A) and J2(A) in terms of lock-in-amplifier-output
signals. If optical alignment has been performed correctly,
the calibration curves should appear as shown in the Bessel
function plot in figure 3.

The parameterA shown in figure 3 is proportional to the
modulator-driving voltage. One can observe from figure 3
thatJ1(A) andJ2(A) are near their peak values so that the
sensitivity of the instrument is maximized whenJ0(A) is
zero. Calibration must be performed in order to determine
the correct set point for the modulator-driver circuitry. The
experimental calibration results are examined in the next
section.
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Figure 3. A modulator-calibration plot showing the desired
calibration set point whereJ0(A) is zero.

5. Experimental testing of a microgravity flight
system

In this section we compare the experimental and theoretical
calibration curves generated by increasing modulator-driving
voltage for the electro-optical modulator. A test using a
rotating (1/16)-wave plate which has a maximum retardance
of π/8±0.001 waves and a minimum retardance of zero was
performed. The microgravity experimental system is shown
in figure 4. The upper-left-hand image in figure 4 shows the
‘optics bridge’ and optical subassemblies to be used for the
sounding rocket experiment. The optical assemblies include
the birefringence-system detector, analyser, modulator,
polarizer and (1/16)-wave-plate assembly which will be
used in autophasing two heterodyning lock-in amplifiers.
Also on the optics bridge are shown the digital particle-
image velocimetry (DPIV) camera, lens and interference
filter together with the transmitter and receiver for a laser
micrometer. The image in the top-right-hand corner shows
a closer view of the optical detector systems. The bottom-
left-hand image shows a view of a reducing-diameter device
(RDD) whose function is to give a uniform extensional shear-
free flow by closing during the fluid’s stretching. By closing
at a predetermined rate, a cylindrical fluid column is produced
at all times during the test [20]. The bottom-left-hand image
also shows a DPIV camera system and light-sheet-generating
optics. The bottom-right-hand image in figure 4 shows a
(1/16)-wave plate attached to an armature activated by a
solenoid actuator. Since the microgravity experiment will
occur in an unmanned sounding rocket, all activities must be
automated by computer control. The purpose of the (1/16)-
wave plate is to provide first- and second-harmonic signals to
the lock-in amplifiers so that autophasing can be performed.
Once the lock-in amplifiers are properly autophased, the
solenoid actuator moves the (1/16)-wave plate out of the
birefringence system’s optical path.

For ground-based testing of the birefringence system,
the polarizers were crossed (the analyser was at 90◦) during
initial alignment in order to determine extinction ratios.
The analyser was fixed at−45◦ when the rotating quarter-
wave-plate test was conducted. The dc-photodetector-signal
output was fed through a lowpass filter set to a frequency
of 300 Hz. The ac-photodetector-signal outputs were sent
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Figure 4. Experimental microgravity systems for obtaining calibration and test results.

to two heterodyning lock-in amplifiers. The modulation
frequency was set to 42 kHz. This was the frequency
of the first harmonic; 84 kHz was the second-harmonic
frequency. The harmonic signals,Iω andI2ω, were obtained
from the rear analogue output panels of the first- and second-
harmonic lock-in amplifiers respectively. The dc signal,Idc,
was obtained from the lowpass-filter output. All signals
were digitized by a data-acquisition system using LabviewTM

software.
The signal-acquisition-timing synchronization was

considered carefully. Since the analysis given in
equations (19)–(21) is based on signal ratios at exactly the
same time, a time lag for any of the three signals will give
incorrect results. Therefore, electronic-cable lengths, lock-
in-amplifier time delays and other electronic-component
choices must be carefully considered before proceeding.

Once the timing synchronization of the three signals had
been established, the modulator calibration was performed.
A resonant electro-optical modulator (New Focus, Inc,
model 4103) was used so that the required driving voltages
were very low. This is desired for microgravity applications
where electrical power is limited. The modulation voltage
was slowly incremented from 0 V RMS to 3.5 V RMS.
The retardance was inferred from the modulator-driving
voltage in order to compare the results with the expected
values. This curve generates a scaled version of the first
two Bessel functions. The experimental and theoretical
calibration curves for the dual-crystal transverse electro-
optical modulator are shown in figure 5.

Standard calibration methods may be performed by
configuring the analyser at several different orientation angles
and incrementing the modulator-driving voltage at each
analyser-orientation angle [21]. Plots of the dc signal as
a function of the modulator voltage for several analyser-
orientation angles should intersect at a point whereJ0(A) =
0. One problem with the standard calibration method is that
it gives only a single calibration point. Another potential
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Figure 5. The Bessel-function-calibration curve for a dual-crystal
transverse electro-optical modulator.

problem is that the dc signal may be subject to noise. One
advantage of the new calibration method is that it performs a
complete calibration sweep using both the first and the second
harmonic. These signals are output from two heterodyning
lock-in amplifiers, so they are much less subject to noise.
Another obvious advantage is that a complete calibration
curve is generated instead of a single calibration point.

5.1. Calibration-test results

In sections 5.1 and 5.2, we present the calibration-test results
for the dual-crystal electro-optical modulator and for the
rotating wave plate. Figure 5 shows that we obtained very
good agreement between the dual-crystal-transverse-electro-
optical-modulator calibration curves and the theoretical
calibration curves. Figure 5 also showsJ0(A) so that we may
determine the null point from the plot. The calibration data
show thatJ0(A) = 0 whenA = 2.4048 orJ2(A) = 0.4317.

The J1(A) calibration curves for the electro-optical
modulator also agree closely with the theory derived from
the Mueller–Stokes matrices [21–23]. Since this calibration
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requires thatJ0(A) = 0, the second root at whichJ1(A) =
0.5191 (after the function has gone through its maximum
value) must be chosen. This is the case when theJ1(A)

Bessel-function curve has a negative slope. Although it is
possible to perform the data analysis without settingJ0(A)

to zero, setting this value to zero eliminates one term from
the data analysis and thus simplifies the analysis procedures.

The calibration data were used to determine a driving
voltage of 1.95 V RMS for our dual-crystal transverse electro-
optical modulator. This voltage was then set accordingly and
the instrument was configured with the analyser at−45◦ as
shown in figure 1.

5.2. Rotating wave-plate test results

A fused silica (1/16)-wave plate was then placed in the
sample space and rotated with a constant rotational velocity.
Idc, Iω andI2ω signals were digitized, recorded and analysed
using equations (14)–(19) to calculateδ. The data were
analysed in accordance with the previously described theory
in order to calculate the retardance. A plot of the retardance
as a function of time is shown in figure 6. With a (1/16)-
wave plate rotating with a constant velocity in the sample
space, retardance levels from 0±0.06 toπ/8 (0.392)±0.06
radians should be observed. If the system is properly aligned
and there is little or no tilt associated with the wave plate,
then the dc signal should remain fairly constant while the
first- and second-harmonic signals should change with time.
Both harmonic signals should have zero crossings at the same
points. From figure 6, the maximum retardance measured is
π/8±0.06 radians and the minimum is 0±0.06 radians. The
values calculated above agree well to within the tolerance of
the precision wave-plate values.

5.3. Extensional-rheometry-test results

5.3.1. The modified birefringence-measurement system.
The birefringence-measurement system discussed in the
previous sections was developed for use in an extensional
rheometry experiment which will be performed on an
unmanned NASA sounding rocket. A similar birefringence-
measurement system was installed on a ground-based version
of the extensional rheometry experiment and used to test the
operation of the system in an actual non-Newtonian fluid-flow
application. The earth-based birefringence-measurement
system is nearly identical to the flight system described

Figure 7. The birefringence as a function of the applied stress for
a statically loaded PMMA rod under uniaxial tension.

above; the principal difference between the two systems
is that the ground-based system uses two single-crystal
modulators rather than one dual-crystal modulator. In this
case, the first crystal is not modulated, but rather acts as a
compensator to counteract the effects of static birefringence
and thermal drift. In spite of this modified configuration,
the Mueller matrices for this system results in a nearly
identical set of equations relating the measured quantities
to the retardance and the extinction angle.

The driving voltage for the earth-based birefringence
system was obtained by mapping out the Bessel-function-
calibration curves as described in section 5.1. The calibration
curves were found to agree well with those shown in figure 5
and the optimum driving voltage was taken to be 2.85 V.
In addition, the signal variation due to the presence of a
(1/16)-wave plate rotating with a constant angular velocity
agreed well with the data shown in figure 6. This system was
observed to have an offset in the dc voltage due to a very
slight misalignment of the compensator crystal. In order to
compensate for this intrinsic birefringence, the dc offset was
measured immediately before performing each experiment
and then subtracted from theIdc signal prior to computing
the retardance.

5.3.2. Static-tension-test results. Before investigating
results for the transient elongation of a fluid filament, it
is useful to examine the response of the birefringence-
measurement system in the case of a steady-state experiment.
In the following experiment, the retardance of a cylindrical
Plexiglas rod was measured as a function of the static tensile
stress in the rod, applied by suspending varying loads from
the lower end of the rod. With a constant force applied to
hold the rod in tension, the stress induced along the rod can
be computed. From equation (2), if the rod is loaded axially
such thatχ = 0◦, then the stress-optical law says that the
tensile stress is related to the birefringence of the material by
[24]

1n′ cos(2χ) = C(τ11− τ22). (22)

Thus, this experiment will allow us to demonstrate the
validity of the stress-optical law by fitting the stress-optical
coefficient to measured data and comparing these with values
reported in the literature. In addition, these results will
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Figure 8. The diameter profile for elongation of a dilute solution of high-relative-molecular-mass polystyrene (0.025 wt%) in a
styrene-oligomer resin.

Figure 9. The fluid-column diameter as a function of time.

demonstrate the range of values measurable with the present
system and will verify the reliability and accuracy of the
system by using a well-understood measurement.

The tensile stress in the Plexiglas rod can be computed
by performing a simple force balance on the rod. The applied
force equals the weight of the applied mass and the resulting
tensile stress is the ratio of this force to the cross-sectional
area of the rod. By combining these equations, we find that
the applied tensile stress is given by

τapp = 4gM

πD2
(23)

whereD is the diameter of the Plexiglas rod,g is the
acceleration due to gravity andM is the applied mass.

The diameter of the Plexiglas rod used in this experiment
was 19.05 mm and the applied masses ranged from 1 g
to 1.2 kg. For each applied mass, birefringence data were
collected for several seconds after a steady-state tension had
been reached, allowing average values and error bars for each
measurement to be calculated.

Figure 7 is a plot of the measured birefringence as a
function of the applied tensile stress for the Plexiglas-rod
system described above. The birefringence is observed to
increase linearly with the applied stress above a threshold
value of 1n′ cos(2χ) ≈ 1 × 10−8. The slope of the
linear portion of the measured curve was fitted using a least-
squares fitting technique, resulting in an effective stress-
optical coefficient ofC = (3.46± 0.16)× 10−12 Pa−1. The
quality of fit was given byR2 = 0.979, which reflects an
approximately 16% drift in the dc offset value over the course
of the experiment.

The stress-optical coefficient of polymethylmethacrylate
(PMMA), i.e. the polymeric constituent of Plexiglas, is
reported in several sources. Tsvetkov [25] reports that bulk

PMMA has an anisotropic polarizability in the melt that can
range from−1.0× 10−25 to +1.8× 10−25 cm3. The stress-
optical coefficient is related to this quantity by [24]

C = 2π(α1− α2)(n
2 + 2)2

45kT n
(24)

wheren is the average index of refraction of the material
(n = 1.49 for PMMA) and kT is the thermal energy.
Using equation (24) to compute the stress-optical coefficient
that corresponds to Tsvetkov’s data, we obtain a range of
C = −4.06× 10−11 to +7.5× 10−11 Pa−1. Our measured
value is well within this range and is approximately one
order of magnitude lower than the maximum value reported
by Tsvetkov. In addition, Niitsuet al [26] measured the
photoelastic properties of PMMA and several glasses using a
stress-analysis technique similar to the experiment described
in this section. They obtained a value ofC = 0.961×
10−12 Pa−1, which is approximately a factor of 3.6 lower than
the value reported above. The apparently large discrepancy
between these results could be due to some differences
between the experimental methods and sample geometries
used to obtain these values. Also, the PMMA samples
used in each case were probably processed in significantly
different ways, leading to different birefringent responses for
each sample. Frattini and Fuller [27] noted that tabulated
values of the stress-optical coefficient can be in error by up
to 20% and thus they suggested that this quantity should be
measured independently for each sample. The stress-optical
coefficient value we report for the cylindrical Plexiglas rod is
well within the wide range of values reported in the literature
and agrees roughly with results obtained from a similar static-
stress experiment.

5.3.3. Extensional rheometry. The final test we present
to verify the functionality of the compact birefringence-
measurement system is measurement of the transient
birefringence response of a non-Newtonian fluid in an
elongational flow. In a filament-stretching experiment [1, 20]
such as that presented here, a fluid sample undergoes a nearly
ideal elongational flow, allowing the material response of the
fluid to a purelystretchingdeformation to be isolated from
that due to a purelyshearingdeformation. Understanding
this simple shear-free flow will help researchers to understand
more complex flows, which often contain significant amounts
of both stretching and shearing components. Such flows
are prevalent both in industrial processes (e.g. coating and
extrusion flows) and in ‘benchmark’ flows of academic
interest (e.g. contraction flows and flow past a sphere). Since
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Figure 10. The measured birefringence as a function of the strain
for a 0.05 wt% polystyrene solution undergoing uniaxial
elongation in a filament-stretching device.

polymeric liquids exhibit surprising behaviours in many of
these flows, it is desirable to understand the effect of the
microstructurein the fluid (e.g. long polymer chains) on
the macroscopicflow behaviour [28]. The flow-induced
birefringence can be shown to be related to the molecular
conformation of the polymer chains [13], so simultaneous
measurements of the birefringence and the growth in tensile
stress during stretching and relaxation of the fluid column will
allow direct comparison of the molecular structure in the fluid
with the macroscopic flow response. These simultaneous
measurements will also allow an examination of the validity
of the stress-optical law, which becomes increasingly invalid
for strong flows in which the polymer chains are stretched
near their finite extensibility limit [29].

The filament-stretching rheometer discussed in this
section was presented earlier in some detailed by Annaet al
[30] and is modelled after a similar rheometer developed
by Sridharet al [31]. The experiment consists of placing a
small amount of fluid between two concentric circular plates.
The top plate is then pulled away from the bottom plate
with a velocity that increases approximately exponentially
with time. The force exerted by the fluid to resist this
stretching is then measured by a sensitive force transducer
that is rigidly mounted onto the bottom plate. This process
is illustrated by the sequence of images shown in figure 8.
As the fluid column stretches and relaxes, the force data
are collected together with measurements of the diameter
of the column at its midpoint and measurements of the flow-
induced birefringence at its midpoint. The force and diameter
measurements can then be used to compute a transient tensile
stress in the fluid column.

Several factors unique to the filament-stretching
experiment complicate an already sensitive birefringence
measurement. During the filament-stretching experiment,
the midpoint diameter of the fluid column decreases
exponentially with time, corresponding to the exponentially
increasing length of the column. Figure 9 shows a typical
diameter profile for the elongation of a dilute solution of
high-relative-molecular-mass polystyrene (0.025 wt%) in
an oligomeric styrene resin. The slope of this decreasing

diameter is used to compute the strain rate ˙ε of the flow

ε̇(t) = −2
d lnDmid

dt
. (25)

The Hencky strain, which is often used as a dimensionless
measure of time, was obtained from the equation

ε(t) = −2 ln

(
Dmid

D0

)
. (26)

The decreasing diameter of the fluid column means that
the path length contributing to the total retardance of the
signal is changing over at least an order of magnitude during
the experiment. In addition, the surface of the fluid column
is becoming increasingly curved as the diameter decreases.
This radial curvature leads to undesired refraction of the
laser beam such that the light impinging on the detector is
fanned out and is thus becoming increasingly less intense
as the experiment progresses. In addition, in a ground-
based experiment, the initially unstretched fluid sample has
an additional axial curvature due to gravitational sagging. As
a result, the laser beam is deflected completely away from the
detector surface for approximately 0.2 s at the beginning of
the stretching.

Figure 10 shows a measurement of the transient flow-
induced birefringence in the dilute polystyrene solution
described above. The strain rate of this filament stretching
experiment was ˙ε = 3.0 s−1 and the final Hencky strain of
the stretching portion wasε = 4.2. The birefringence signal
increases by more than one order of magnitude during the
experiment and the overall shape of the curve is consistent
with measurements reported previously for a similar fluid
[32]. However, even though the data were filtered using a
moving-average window of order 11, large fluctuations due
to noise in the system overshadowed some quantitative details
of the curve shape. This large level of noise can be attributed
to several factors. The most dominant contribution to the
noise is evidently vibration of the motion-control system
during the experiment. Baseline tests indicate that the noise
levels increase by approximately one order of magnitude
when the motors that move the top plate and the birefringent-
measurement system are enabled and moving. This effect can
be reduced by using more rigid mounts for the birefringent-
measurement system that will also make alignment of the
various components easier and more reliable. Other potential
sources of noise and drift are electromagnetic interference
and pick-up from the motor amplifiers and drift due to thermal
gradients across the two single-crystal modulators. Several
steps to improve the signal-to-noise ratio have been taken,
including boosting the laser power to the maximum tolerable
value and focusing the laser beam as another way of boosting
the power delivered to the detector. Another way of reducing
the noise levels, which will be investigated in the future,
involves using a collecting lens to gather the fanned laser
light after it has passed through the analyser [32]. Noise
reduction via wavelet analysis has also been used at NASA
Glenn. These noise-reduction techniques for processing of
data after they have been collected are still being developed.
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6. Conclusions

We have outlined the development of a dual-crystal transverse
electro-optically modulated flow-induced-birefringence-
measurement system that is suitable for measurement of op-
tical anisotropy in complex fluids undergoing deformation
in a microgravity environment. The choice of design con-
figuration is based on Mueller-matrix calculations and sup-
ported by experimental calibrations. This type of modula-
tion scheme has many advantages over existing ones. Ad-
vantages include low power consumption, low mass, small
size and extreme durability. The only apparent disadvantages
are the small aperture size (2 mm diameter for the unit used
for the preceding tests) and the fact that LiNbO3 may expe-
rience photorefractive damage at high optical power densi-
ties. Neither of these has any impact on most birefringence
measurement applications. Most commercial helium–neon
lasers output collimated beams with diameters of the order of
600µm. Typical laser powers are in the range 0.5–30 mW.

Environmental testing has also been performed on many
of the birefringence-system components. The modulator and
laser have successfully been tested with random three-axis
vibrational levels in excess of 15g while withstanding shock
testing in excess of 50g. The system should be capable of
surviving and providing data for the five sounding-rocket test
flights scheduled for the Extensional Rheology Experiment.
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