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Abstract

We present two new experimental methods of realizing the desired kinematics in a

filament stretching rheometer.  Due to the presence of the rigid plates connecting the

fluid filament in this device, a homogeneous uniaxial elongational flow cannot be

imposed throughout the entire fluid filament.  However, if the fluid element at the

midpoint of the filament is forced to contract in the same manner as a cylindrical column

undergoing ideal uniaxial extension, then the measured rheological response will be

virtually identical to that experienced in a homogeneous shearfree flow.  We investigate

both a real-time active control scheme and a second, original technique based on a one-

dimensional slender-filament approximation of the kinematics as possible methods of

realizing this form of nearly-ideal filament stretching experiment.

We find that the real-time active control scheme induces undesirable oscillations in

the imposed plate separation profile, leading to unacceptable fluctuations in the measured

force data and limiting the achievable operating range of the device.  The second

technique, on the other hand, produces very accurate and smooth mid-point diameter

profiles in a two-step process.  Transient Trouton ratio data obtained by using the second

method with both a polystyrene-based Boger fluid and a polyisobutylene-based Boger

fluid agree well with data previously reported in the literature.  Differences between the

transient Trouton ratios at intermediate strains obtained from experiments in which the

midpoint diameter decreases either ideally or inhomogeneously are consistent with

expectations from recent simulations.  The second technique presented here provides a

simple method of achieving accurate filament stretching data that can be compared

quantitatively with theoretical constitutive models.

Keywords: Extensional rheometry, filament stretching rheometer, Transient

extensional viscosity, Trouton ratio, Boger fluid, polystyrene,

polyisobutylene.
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1. Introduction

Understanding the extensional behavior of polymeric fluids has been of long-standing

interest since the kinematics of the deformation lead to a very different dynamical

response in the fluid microstructure than that observed in a simple shearing flow.

However, a basic understanding of the extensional behavior of many non-Newtonian

fluids, especially the more ÔmobileÕ dilute polymer solutions, has been difficult to achieve

[1].  Numerous devices, including the opposed jet rheometer, two- and four-roll mills, the

converging channel rheometer, and many more, have been used to try to characterize

extensional behavior of these mobile fluids [2,3].  The filament stretching device has

recently emerged as one of the most controllable and accurate methods of measuring the

extensional viscosity of a fluid.

The filament stretching device was pioneered early in this decade by Matta and Tytus

[4], and was further developed by Sridhar and coworkers over the next few years [5,6].

Several groups around the world, including Spiegelberg et al. [7,8], Kr�ger, Berg et al.

[9,10], Solomon and Muller [11], Koelling et al. [12], Van Nieuwkoop and Muller Von

Czernicki [13], and Verhoef et al. [14] have subsequently constructed filament stretching

devices of various designs.  In addition, several groups have begun to investigate the

details of the flow in the filament stretching device via numerical simulations, using

various constitutive models [15 - 21].

In order to probe the extensional behavior of a fluid, one desires to impose a flow that

effectively isolates extensional kinematics from any shearing deformation that arises

from inhomogeneities induced by the experimental device.  In homogeneous pure

uniaxial elongation, a cylindrical fluid sample is uniformly stretched in such a way that

local fluid elements move apart exponentially in time.  The filament stretching device

attempts to create such a purely elongational flow by placing a small sample of fluid
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between two circular endplates and moving these rigid fixtures apart so that the gap

between the plates increases exponentially in time.  However, an additional shearing

component of flow is induced near the endplates due to the no-slip boundary condition.

This non-ideality in the flow has been investigated experimentally by Spiegelberg and

McKinley [7] and numerically by Kolte et al. [16] and Yao and McKinley [18].  The

stability of the motion has recently been examined by Olagunju [19].  For small strains,

the flow closely approximates a ÔreverseÕ squeeze flow that can be accurately represented

by a lubrication analysis.  At larger strains for Deborah numbers greater than De > 0 5.

the experimental and numerical investigations all show that the deformation in the central

portion of the filament becomes increasingly homogeneous.  Kolte et al. discuss three

types of experiments that can be performed in the filament stretching device, each of

which result in very different deformation history within the elongating fluid column.

Comparison of these three experimental protocols demonstrates that it is possible, at least

in theory, to impose a flow in the filament stretching device that minimizes the effect of

non-idealities, and leads to transient stress growth in the fluid which is nearly identical to

the stress growth in a purely elongational flow.

The focus of this paper is not to measure the transient extensional viscosity of a

particular fluid, per se, but rather to realize the three types of experiments discussed in

[16], using a new filament stretching device with an extended operating space.  The

resulting insights and kinematic analysis should then be of broad use in the systematic

design and optimization of the operation of any filament stretching device.  The desired

kinematics in the fluid filament are achieved via two different techniques, the first

involving real-time active (Ôclosed-loopÕ) control of the mid-filament diameter as a

function of time.  The second technique is a much simpler, essentially Ôopen-loopÕ,

technique based on a one-dimensional approximation of the fluid response in the filament

stretching device.    To demonstrate the performance of these differing control protocols,
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we measure the transient extensional rheology of two different constant-viscosity, ideal-

elastic Boger fluids, both of which have been previously investigated by Spiegelberg et

al. [7,8].  Results for transient extensional viscosities obtained using the new methods are

shown to match previous results at intermediate Hencky strains, and the data are also

extended to higher final strains than previously measured, allowing the evolution of stress

growth toward a steady state plateau to be monitored.  The principal benefit of the new

control techniques presented here is that they eliminate much of the tedious iterative

design of endplate velocity profiles that has accompanied filament stretching rheometry

to date.

In Section 2, we briefly review the relevant features of the slender filament

approximation and introduce definitions and notation for the three different experiments

we will discuss.  In Section 3, we describe the specifics of the filament stretching device

used in this paper and the formulations and viscometric properties of the fluids tested.  In

Sections 4 and 5 we describe the concept and application of the active control scheme

and the 1-D formulation scheme, respectively, and in Section 6 we present the results of

applying these two schemes on two different PS- and PIB-based Boger fluids.  Finally,

Section 7 summarizes the main points discussed in this paper.

2. Background

2.1. Slender Filament Approximation

Before commencing filament stretching experiments, it is helpful to make a simple

prediction as to how a fluid filament will deform given a particular set of imposed

boundary conditions.  Figure 1 shows a sketch of a filament stretching apparatus, and

defines the coordinate system and boundary conditions we use in mathematical analyses

of the experiment.  A one-dimensional model for the filament can be constructed by first

recognizing that there are typically two widely disparate length scales in the fluid
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filament, i.e. the rapidly increasing endplate separation L tp( ) ,and the rapidly shrinking

mid-filament diameter D tmid( ).  Consequently, over most of the filament, the derivative

∂ ∂D z t z,( )  is small and the axial component of the curvature is negligible for aspect ratios

Λ t L t D tp mid( ) = ( ) ( )( ) >>2 1.  This so-called Òslender filament approximationÓ leads to the

assumption that the axial velocity,   vz , in the filament depends only on the axial position

and time.  More detailed derivation of the resulting one-dimensional equations of motion

in Lagrangian and Eulerian coordinates are given by Renardy [22] and Eggers [23]

respectively.  A general one-dimensional formulation of the velocity field satisfying

continuity can be written as
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A complete formulation requires the appropriate stress boundary condition at the free

surface, which is given by

∂
∂ ( ) −( ) + ( )[ ] =z D z t D z tzz rr

2 4 2 0, ,τ τ σ (3)

where D z t,( )  denotes the diameter profile of the free surface, σ  is the surface tension,

and τ τzz rr−( ) is the tensile stress difference in a fluid element on the free surface [22].

Within the one-dimensional slender filament approximation, the no-slip boundary

condition at z L tp= ± ( ) cannot, in general, be satisfied and the approximation fails close to

the rigid endplates [23].  The precise form of the function F z t,( ) depends on the initial

profile of the filament D z t, =( )0 , the externally imposed displacement L tp( ) , and the

constitutive response of the elongating fluid column.  In what follows, we assume that

inertial effects in the viscous fluid filament are negligible.  We will always use Ė t( )  to

represent the imposed or axial elongation rate; ˙ ,εeff pt z L=( )2  to denote the effective
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deformation rate for the Lagrangian element at the midplane of the elongating fluid

column (computed from measurements of the midpoint diameter); and ε̇0  to denote the

ideal case in which the deformation rate experienced by this fluid element is temporally

homogeneous.

One solution to the slender filament equations for an initially cylindrical sample leads

to an Eulerian velocity field in which the axial velocity is linear in axial position, or,

equivalently, a Lagrangian profile in which the plate separation increases exponentially in

time.  This condition on   vz  then leads to an exponentially decreasing filament diameter.

  
vz p

t t
z L t L e D t D e= ⇒ ( ) = ⇒ ( ) =

−
˙         

˙ ˙
ε ε ε

0 0 0

1
20 0 (4)

In general, other solutions to the slender filament equations must be computed

numerically.  It is worth noting that another solution of identical kinematic form to (1) is

the lubrication solution for a Newtonian fluid confined between two rigid plates of aspect

ratio Λ0 0 0 2 1= ( ) <<L D  [7].  In this limit, the appropriate conditions to satisfy are no

slip and no flux at the endplates, since the effects of the free surface are confined to a

radial region of order L t D t( ) << ( ) near the outer edge of the disks.  The axial velocity in

this case is a cubic function of the axial position,

  
vz p p pL t z L z L= ( ) ( ) − ( )





˙ 3
2

3
2 (5)

and the resulting deformation rate ˙ ,ε z t( )  in the fluid is both spatially and temporally

inhomogeneous.  Consequently, an initially cylindrical fluid sample becomes concave at

later times.  However, if an exponentially increasing endplate separation is imposed,

L t L Etp( ) = +( )0 exp ˙ , the mid-filament diameter will still decrease exponentially, with an

effective deformation rate, based on the actual evolution of the mid-filament diameter,

that is 50 percent faster than the imposed elongation rate.  Evaluating the radial velocity
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at z r D tmid= = ( )0 2,   leads to

D t D emid

Et( ) = −
0

3
4

˙
(6)

and hence, the effective deformation rate is given by

˙ ˙εeff
mid

mid

D
dD

dt E≡ − = +2 3
2 . (7)

The solution to the general one-dimensional formulation for a viscoelastic material is

expected to be significantly more complex than either of the two previous solutions;

however, detailed comparisons with finite element calculations show that a one-

dimensional formulation can still accurately capture the evolution in the fluid column

during stretching (Harlen [24]) and also during stress relaxation and breakup (Yao and

McKinley [18]).  At early times, when Λ t( ) << 1, the viscous response of the material

dominates and the mid-filament diameter may be expected to follow the Newtonian

lubrication response.  At larger strains Λ t( ) >>( )1 , the nonlinear viscoelastic nature of the

fluid begins to play a role, and the evolution of the diameter profile can then reveal

information about the constitutive behavior of the fluid.  A complete solution is not

possible unless the appropriate constitutive relationship for the fluid is known, and it is

this relationship that is probed in a filament stretching experiment.  However, the fact that

the filament kinematics at all strains are of the form in equation (1) suggests the basis for

a control strategy for filament stretching rheometers which we will explore in ¤3.

2.2. Definitions of Material Functions for Transient Extensional Rheology

In a uniaxial stretching flow, the desired material function is the transient extensional

viscosity as a function of time and commanded elongation rate, ε̇0 .  This transient

extensional viscosity is defined in terms of the tensile stress growth in the fluid and the

imposed deformation rate, according to the expression
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η ε τ τ
ε

+( ) = ( ) − ( )[ ]t
t tzz rr, ˙ ˙0

0
. (8)

By performing a force balance on the filament, the transient extensional viscosity can be

related to measured quantities, including the total force exerted on the endplate, F tp( )

(corrected for surface tension and gravitational body forces), and the mid-filament

diameter, D tmid( ),which are shown schematically in Figure 1 [17].  The transient

extensional viscosity is frequently expressed in non-dimensional form as the Trouton

ratio, or the ratio of the transient extensional viscosity to the zero-shear-rate viscosity of

the fluid, η0 .  Thus, the transient Trouton ratio is related to measured quantities by

Tr
t t t F

D
zz rr p

mid

≡ ( ) = ( ) − ( )[ ] = ( )
+η ε
η

τ τ
η ε π η ε

, ˙
˙ ˙

0

0 0 0
2

0 02
. (9)

Three characteristic types of experiments that can be performed in the filament stretching

device were first considered numerically by Kolte et al. [16].  These experiments differ in

the precise form of the imposed endplate separation profile, and thus also exhibit

different measured force and mid-filament diameter profiles.  The first two experiments

involve moving the endplates apart such that the plate separation increases at an

exponential rate and the axial elongation rate is constant, ˙ ˙E t( ) = ε0 .  In a Type I

experiment, the mid-filament diameter is assumed to follow an ideal profile such that

D t D tideal( ) = −( )0 00 5exp . ε̇ .  In reality, the diameter profile will not deform ideally due to

the no-slip condition at the endplates (¤2.1).  Thus, in a Type II experiment, the

measured, non-ideal mid-filament diameter is used to compute the temporally

inhomogeneous effective deformation rate ε̇eff  experienced by fluid elements near the

midplane.  The resulting Trouton ratio incorporates these non-ideal quantities, and is now

computed via

Tr
F t

D t t
II p

mid eff

( )

˙
=

( )
( )( ) ( )π η ε2

2

0

. (10)
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The effective Hencky strain in the fluid element at the centerline can be determined

directly from

εeff
mid

mid

t

t

midt D
dD

dt
dt D D0 2 2

0
0, ˜

˜ ln
˜

( ) = −⌠
⌡

= [ ]
=

. (11)

A more detailed description of these experiments is given by Kolte et al., who compare

numerical calculations for each type of experiment with results for an ideally deforming

cylinder [16].  Kolte et al. show that results from a Type I experiment are the least

accurate compared to those for an ideal deformation, but that incorporating the true mid-

filament diameter profile in a Type II experiment significantly increases the accuracy.

However, Kolte et al. find that yet another type of experiment is still more accurate, and

in fact yields results that are indistinguishable from those for an ideally deforming

cylinder.  It is clearly desirable for experimentalists to perform Type III experiments in

order to allow detailed comparisons with numerical models of ideal uniaxial flow.

The Type III experiment requires the mid-filament diameter to follow an ideal

exponential deformation, given in equation (4), such that ˙ ˙ε εeff t( ) = 0 .  In other words, the

fluid elements near the midplane now experience a constant stretch rate.  To achieve this

constraint, the velocity of the endplates, L̇ tp( ) , no longer follows the profile predicted by

ideal uniaxial elongational flow, and thus the axial stretch rate, Ė t( ) , is no longer

constant, in contrast to the Type I and Type II experiments.  As Kolte et al. note in their

paper, Òthis type of experiment is quite difficult to perform in practiseÉ[requiring] either

a very fast control mechanism for the plate motion based on inline observations of the

mid-filament diameter or a trial-and-error procedureÉÓ [16].  To date, all Type III

experiments have used the latter, iterative method [5-14].  It is the goal of the current

paper to show that not only can the active control alternative work, but that there is also a

much simpler method of obtaining the ideal diameter profile using the simple one-

dimensional kinematics of the filament stretching problem discussed in ¤2.1.
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3. Experiment Procedure

3.1. Filament Stretching Device

Figure 2 shows a schematic diagram of the new filament stretching device used in this

study.  The apparatus is based around a motion control system consisting of two linear

DC brushless motors moving along the same axis.  The upper endplate assembly is

mounted to the upper motor, and the lower endplate is mounted to a sensitive force

transducer.  This assembly is mounted to a rigid base that is mechanically uncoupled

from the motor assembly.  The lower motor platen carries a CCD laser micrometer that is

used to measure the mid-filament diameter. In the experiments performed here, the top

endplate/motor platen assembly moves away from the fixed bottom endplate according to

a velocity profile specified by the user.  The bottom motor platen moves in the same

direction as the top motor, but at half the speed, in order that the diameter measurement is

taken at the midpoint of the filament throughout the entire experiment.

The linear motors that control the endplate separation are manufactured by Northern

Magnetics, Inc., controlled by a Delta Tau PMAC-Lite Controller, and powered by two

Glentek three-phase amplifiers.  The position of each motor can be controlled to within

±150 µm, and measured to within ±1 µm.  The maximum total travel of the motors is

Lmax  = 180 cm , and the maximum speed is ˙  maxL = 300 cm s .  Position profiles can either

be downloaded to the PMAC controller prior to the experiment, or they can be computed

autonomously during an experiment.

The operating space of a filament stretching rheometer can be conveniently

represented by plotting the velocity of the plates against the plate separation.  Since the

plate separation and the velocity in a filament stretching experiment nominally grow

exponentially in time, an homogeneous stretching experiment can be represented as a
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straight line on this operating diagram.  The new filament stretching rheometer used in

the current study has an extended operating space, shown in Figure 3, capable of

achieving Hencky strains up to ε f ≈ 6 3.  and elongational stretch rates of

0 1 201
0

1.    ˙    s s− −≤ ≤ε .  These limits were estimated based on an initial plate

separation of L0 0 35= .  cm , and an endplate diameter of D0 0 35= .  cm, which are the

values used for all of the experiments presented here.

As a fluid filament is stretched in the rheometer, the mid-filament diameter, Dmid , is

measured in real time by a CCD laser micrometer (Keyence Model VG-301).  Five

thousand CCD elements in a 1-D linear array allow the diameter to be measured with a

resolution of ±10  µm .  The total force, Fp , on the bottom endplate, is measured with a

load cell (Futek Model L2338), which has a capacity of 10 grams and a resolution of

±5 mg .  The load cell design is based on strain-gage technology, and has a dynamic

response that can be modeled by a 2-pole Butterworth filter.  The static and dynamic

response of this load cell has been fully characterized and will be reported in a separate

note, including a discussion of the ramifications of performing transient force

measurements with a mechanical measurement system [25].

All data relevant to the transient extensional rheology of the stretching filament,

including total force on the endplate, mid-filament diameter, plate positions, and position

errors, are gathered synchronously and in real-time by the PMAC motion controller.

Video images of the deforming filament are simultaneously recorded in the stationary

reference frame of the bottom endplate.  During post-processing, raw force data is

deconvolved from the response function of the load cell, as described in [25], and the

processed data is then filtered using a moving average window of between 3 and 11 data

elements.  The raw mid-filament diameter data is fitted to a function comprised of a

decaying exponential superposed with a low-order polynomial function.  The effective
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deformation rate, ε̇eff t( ), is computed from this fitted function using equation (7).  Finally,

the transient Trouton ratio is computed as a function of Hencky strain via equations (10)

and (11).

3.2. Rheology of Elastic Test Fluids

The two fluids measured in the current study are constant-viscosity, ideal-elastic

Boger fluids.  The polystyrene-based fluid consists of a high molecular weight

polystyrene with a narrow polydispersity index (Scientific Polymer Products,

Mw = ×2 25 106.  g mol , PDI = 1 02. ) dissolved in oligomeric styrene (Hercules

Piccolastic A5) at a concentration of 0 05.  .%wt .  The extensional rheology of this fluid

was previously considered by Spiegelberg and McKinley, and is denoted PS-05 [8].  The

polyisobutylene-based fluid was also previously considered by Spiegelberg et al., and is

denoted BG-1 [7].  The fluid consists of 0 31.  .%wt  high molecular weight PIB (Exxon

Vistanex L-120, Mw ≈ ×1 8 106.  g mol) dissolved in 4 83.  .%wt  tetradecane (C14) and

94 86.  .%wt  polybutene (Amoco H100, Mw ≈ 900  g mol ).  While the high molecular

weight polystyrene used in the PS-05 fluid is almost monodisperse, the polyisobutylene

used in BG-1 is significantly more polydisperse.

Details of the fluid preparation and characterization for each of the above fluids can

be found in [7] and [8].  The viscometric properties of the two fluids are summarized in

Table 1, and the viscometric functions for PS-05 are shown in Figure 4.  The Deborah

number, or the ratio between the characteristic response time of the fluid and a

characteristic time in the flow, is defined throughout this paper in terms of the

commanded (or constant) deformation rate,

De s= λ ε̇0 (12)

where ˙ ˙ε0 = E  for a Type I/II experiment, and ˙ ˙ε ε0 = eff  for a Type III experiment.  The
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relaxation time of the fluid that is used in this paper is computed from the zero-shear-rate

viscometric properties,

λ η ηs
s

=
−( )

Ψ10

02
. (13)

The temperature dependence of both fluids used in this study is described by an

Arrhenius relationship, in which the viscosity at a given temperature T  is related to the

viscosity at a reference temperature T0 by the ratio

a
T
T

H
R T TT ≡ ( )

( ) = −











η
η

0

0 0 0

1 1exp ∆ . (14)

The quantity ∆H R, known as the Òactivation energy for flowÓ, is given in Table 1 for

each fluid.  This Arrhenius relationship allows measured material properties of a given

fluid to be shifted to a master curve that corresponds to the reference temperature T0.  All

data reported in this paper, including both shear viscometric functions and transient

extensional viscosities, have been shifted to correspond to data taken at the reference

temperature T0 25= ° C according to these principles of time-temperature superposition

[26].

4. Active Control Schemes for Filament Stretching Rheometers

As discussed in ¤2.2 of this paper, one ultimately wishes to perform an experiment

that approximates the uniaxial elongational stretching of an axially-uniform cylinder as

closely as possible.  To achieve this, numerical simulations have shown that the mid-

filament diameter must decrease according to equation (4) [16].  The first method

examined in this study for prescribing such a flow involves controlling the mid-filament

diameter via a real-time active control scheme.

The basic idea behind this control scheme is illustrated in a block diagram as shown

in Figure 5.  The actual mid-filament diameter is sampled at discrete, equally-spaced time
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intervals, ∆t , which can be adjusted to stabilize the control loop.  At each time step, the

measured diameter is compared to the ideal diameter for the corresponding elapsed time.

The resulting error information is then used to compute the next commanded movement

of the endplates.

Computing the desired motion of the endplates consists of two stages.  In the first

stage, the diameter error is used to compute the desired diameter at the next time step via

a standard PID-type controller [29,30].  In general, the desired diameter at time

t i ti+ = +( )1 1 ∆  can be computed via

D i D i K D i K t D i D i K t D jcmd meas P D I
j

i

+( ) = ( ) + ( ) + ( ) ( ) − −( )[ ] + ( ) ( )
=
∑1 1

0

δ δ δ δ∆ ∆ , (15)

where δD i( )  is the error in the diameter, and K K KP D I,    and  are the proportional,

derivative, and integral controller gains, respectively.  These gains are Òtunable,Ó

allowing the experimenter to find an optimal set of values that minimize the diameter

error over the duration of the experiment and that yield a stable control system.

Each controller gain has a different physical effect on the control outcome.  The

proportional gain, KP , adds a value proportional to the diameter error to the commanded

diameter increment.  Proportional gain acts analogously to a mechanical spring and

determines the ÒstiffnessÓ of the loop.  Too low a value of KP  will result in a control loop

which cannot react quickly enough to errors, but too high a value can lead to sustained

oscillations in the measured diameter.  The derivative gain, KD, adds a value proportional

to the derivative of the diameter error to the commanded diameter increment.  The effect

of derivative gain is analogous to a mechanical damper, lending stability to a

proportional-only controller.  Using a non-zero value of KD will allow stability at higher

values of KP , but using too high a value of KD can again lead to instability, since small

errors in the measurement system will be amplified by the differentiation process.



14

Finally, the integral gain, KI , adds a term proportional to the cumulative integral over the

diameter error to the commanded diameter increment.  The effect of integral gain is to

eliminate steady state, or slowly-varying, errors in the diameter, and allows the diameter

to change even if the instantaneous error is exactly zero.  The proportional-integral-

derivative (PID) controller is a standard, widely-used type of control.  Further

information about tuning such a controller or about the effects of each type of gain can be

found in standard controls textbooks [29].

The second stage in computing the desired motion of the endplates involves

converting the desired diameter D icmd +( )1 into a desired axial position increment ∆Lp  at

time i t+( )1 ∆ , since the position of each motor is the quantity directly controlled in the

filament stretching rheometer.  This conversion is not simple, as it depends intimately on

the response of the fluid filament to a given separation of the endplates.  Discussions of

the one-dimensional slender filament approximation in ¤2.1 have illustrated that this

response can be quite complicated, and is certainly nonlinear.  The simplest conversion

method involves assuming the filament is deforming as a uniform cylinder, and thus, by

manipulating equations (4), the plate separation will be related to the diameter according

to

L i L i D i D ip p meas cmd+( ) = ( ) ( ) +( )[ ]1 1
2
. (16)

Since the response of a fluid in a filament stretching rheometer is clearly not ideal, one

needs a more accurate method of converting between the desired diameter and the

endplate separation.  At short times an obvious improvement would be to assume that the

fluid follows the lubrication solution given in equations (5) for the reverse squeeze flow

of a Newtonian fluid.  In this case, the relationship becomes

L i L i D i D ip p meas cmd+( ) = ( ) ( ) +( )[ ]1 1
4 3

, (17)

which has the same form as for the case of a uniform cylinder, but with a different value
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of the exponent.  Here and in what follows we assume that the desired (measured or

commanded) value of D  is at the axial midplane ( z L tp= ( ) 2 ) of the filament.

Although the response of a viscoelastic fluid should be considerably more

complicated than either of the two cases already discussed, within the one-dimensional

formulation given in equation (1), the desired relationship will have the same form as

equations (16) and (17).  Renardy [27] provides several numerical examples of how the

Lagrangian stretch in a filament evolves as a function of time within this one-dimensional

framework with no imposed stretching.  Bousfield et al. [28] have also used a similar

(Eulerian) 1-D formulation and show how well it can describe the non-linear evolution of

Newtonian and viscoelastic liquid jets in both finite-element simulations and

experimental observations.  The form of equations (16) and (17) can be expected to hold

at least locally in time, although the exponent will no longer be constant, but will instead

vary with time, according to

L i L i D i D ip p meas meas
p i+( ) = ( ) ( ) +( )[ ] ( )1 1 (18)

Numerical simulations with different constitutive models can provide predictions for the

evolution of p i( ).  In the present work, the goal is to determine the evolution of the

exponent p i( ) for an unknown material.

5. Open-Loop Control Using the Simple 1-D Formulation

The real-time active control scheme outlined in the previous section, although

effective in achieving a temporally homogeneous mid-filament diameter profile, exhibits

behavior characteristic of all such control systems: it oscillates.  A PID controller

determines its next step by examining an error signal, which leads to a measured signal

that varies about a reference signal.  Although this deviation may be very small, any

fluctuation in the diameter profile will be amplified in the plate motion, as shown in
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equations (16)-(18).  Differentiation of rapid, small-amplitude position fluctuations leads

to larger velocity fluctuations and even larger velocity gradient fluctuations.  These

fluctuations rapidly propagate through the viscous incompressible filament, causing large

fluctuations in the total force exerted on the bottom endplate.  Since the ultimate goal of

the filament stretching experiment is to measure the transient force response, and thus the

transient extensional viscosity of a fluid filament, the oscillations that naturally arise in a

PID-type controller will undermine the desired goal, and are thus unacceptable.  While

the trial-and-error technique so often used in the past will certainly work, this method is

tedious and time-consuming.  One would like to find a new technique that will result in

smooth force profiles while also reducing the time and effort involved in performing a

single experiment.  Fortunately, closer examination of the one-dimensional slender

filament approximation embodied in equations (1) and (18) reveals a surprisingly simple

procedure.

In the active control scheme of ¤4, we proposed a general relationship between the

endplate separation and the midpoint diameter via equation (18).  We can obtain more

information about a specific form for this relationship by considering the general form of

the velocity profile in the slender filament, given in equations (1).  These may be

rewritten in dimensionless form as

  

v

v

z p

r
p

p

L S t t

r
L
L S t t

= ( )( )

= −






′ ( )( )

˙ ,

˙
,

ζ

ζ1
2

  , (19)

where ζ t z L tp( ) ≡ ( )  is a dimensionless axial position, S t tζ( )( ),  is the instantaneous

dimensionless axial velocity profile, and ′ ( )( ) ≡ ( )S t t S
t

ζ ∂ ∂ζ, .  Using the definition of the

radial velocity at the axial midpoint of the free surface z r Dmid= =( )0 2,  , we find that

the mid-filament diameter can be related to the plate separation by the following

equation:
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dD
dt D

L
L S tmid

mid
p

p
= −







′( )1
2 0

˙
, , (20)

where the midplane of the filament is always located at ζ = 0 .

Using definitions of the imposed axial elongation rate ˙ ˙E t L Lp p( ) =  and the effective

deformation rate given in equation (7), we obtain a general relationship between the

principal deformation rates in the experiment,

˙
˙ ,

εeff t

E t
S t

( )
( ) = ′( )0 . (21)

Equations (20) and (21) show that the resulting midpoint diameter profile is related to the

endplate separation profile through the dimensionless function ′( )S t0, .  In general, ′( )S t0,

will depend on the constitutive response of the fluid, and on the specific applied

deformation history.  However, we expect that experiments on a given fluid with the

same nominal strain rate should yield the same function ′( )S t0, .  We can thus use the

above formulation to directly obtain the correct position profile for a Type III experiment,

in which ˙ ˙ε εeff t( ) = 0 , by simply measuring and computing ′( )S t0,  from a Type II

experiment, in which ˙ ˙E t( ) = ε0 , which is straight-forward to impose.

At this point it is insightful to note that an empirical relationship between the endplate

separation and the midpoint diameter has recently been noticed by other research groups

[31,32].  Orr and Sridhar reported a method [32] in which they plot data for a given

experiment as ln L Lp 0( ) vs. ln D Dmid0( ).  Orr and Sridhar note that this curve, which

compares two different measures of the Hencky strain in the filament, is observed to

follow a Ômaster curveÕ for certain Boger fluids over a wide range of Deborah numbers.

Orr and Sridhar use the Ômaster curveÕ generated in a Type II experiment to obtain the

desired position profile for a Type III experiment by picking points along the curve that

correspond to an exponentially-decreasing midpoint diameter.
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The one-dimensional formalism introduced in the present paper incorporates the

empirical method of Orr and Sridhar.  The relationship between the two methods can be

shown by reconsidering equation (20).  Nondimensionalizing both sides by using L0 and

D0, and bringing both derivatives to one side, we obtain

d D D
dt

d L L
dt

S t
mid

p

ln

ln
,

0

0

1
2 0

( )

( ) = − ′( ). (22)

Eliminating dt  and inverting leads to

d L L

d D D S t
pln

ln ,
min

0

0

2
0

( )
( ) = ′( ) . (23)

Thus, we can see that the function ′( )S t0,  can be determined by differentiating the Ômaster

curveÕ of Orr and Sridhar.  Finally, we note that although ′S  is apparently a function of

time in equations (19), the form of equation (23) shows that we have effectively created a

parametric curve, where time is an implicit parameter along a curve of ln L Lp 0( )  vs.

ln D Dmid0( ) .  The function ′S  is more accurately written as a function of the current

strain,

′( ) = ′ ( )( ) = ′ ( )( )S t S t D S D Dmid mid0 0 0, , ln . (24)

To illustrate the validity of this approach, we examine a prototypical response from

an Oldroyd-B fluid.  We simulate a Type II experiment by constructing a diameter profile

of a qualitatively similar form to profiles observed experimentally.  This diameter profile

consists of a superposition of two decaying exponential functions,

D t D a abEt Et b( ) = −( ) +− −
0

2 21 e e
˙ ˙

(25)

where a ≈ 0 3.  and b ≈ 1 5. .  This functional form is related to the endplate position

formula typically used in a trial-and-error approach [7].  The instantaneous effective
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strain rate can now be computed by combining equations (7) and (25), and this effective

strain rate can then be used when integrating the evolution equations for the stress in a

spatially homogeneous cylindrical fluid element of an Oldroyd-B fluid which is

deforming with a temporally inhomogeneous strain rate [26].

We now compare the tensile stress profiles for the simulated Type II experiment

discussed above and a simulated Type III experiment in which the strain rate is constant.

Figure 6 (a) and (b) shows the diameter profiles and the tensile stress profiles,

respectively, which correspond to simulated Type II and III experiments for De = 4 64. .

The two stress profiles will be qualitatively distinct if they are plotted as functions of

time.  However, at all moderate and large Deborah numbers ( De > 0 5. ), the curves will

superimpose if plotted as functions of Hencky strain εD  (based on the actual diameter

profile, cf. Eq. (11)), as illustrated in the figure.  This universal response for stress is

analogous to the master curve of Orr and Sridhar which was based on the flow

kinematics, and also helps motivate the need to express the function ′S  as a function of

the current strain, εD .  Our earlier assumption that the function ′( )S Dε  should be the

same for two different types of experiments at the same nominal stretch rate will hold for

fluids whose rheological response is governed primarily by the current strain, as is the

case for an Oldroyd-B fluid when De ≥ 0 5. .  Thus, we expect the one-dimensional

formulation we have discussed here will work for Boger fluids, since measured transient

extensional viscosities for these fluids have been observed to nearly superimpose when

plotted as functions of Hencky strain [7,8].  However, the technique would not be

expected to work for fluids whose response is governed by other forces, such as a

Newtonian filament with aspect ratio Λ >> 1, or for materials whose structure changes

with time, such as a thermosetting resin.
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In this section, we have shown that a one-dimensional approximation of the stretching

filament can be used to obtain a general relationship between the endplate separation and

the midpoint diameter in a filament stretching experiment.  This general relationship

suggests a very simple method for computing the complicated endplate position profile

needed to obtain an exponentially-decreasing midpoint diameter.  Although the function

relating L tp( )  and D tmid( ) is unknown in general, it is easily measured by imposing a

known function for the endplate separation, L t L Etp( ) = ( )0 exp ˙  and recording D tmid( ).  The

computation to obtain the desired position profile can be approached in two different

ways.  The first approach computes a Type III position profile using the two

characteristic strain rates of the stretching experiment, ˙ ˙E t L Lp p( ) =  and ε̇eff t( )  (equation

(7)).  The second approach, on the other hand, uses the two characteristic Hencky strains

in the stretching filament, εL L Lp= ln( )0  and εD midD D= ( )2 0ln .  In both methods,

equations (21) and (23), respectively, can be combined with equation (24) and then

integrated to obtain the desired position profile,

L L S dp
III

D
ideal

D
ideal( ) exp  = ′( )( )⌠

⌡








−
0

1
ε ε   . (26)

where ε εD
ideal t= ˙

0 , and d dtD
idealε ε= ˙

0 .  The computed endplate separation can then be

downloaded to the motion controller for the filament stretching device.  In the following

section, we present some results using these methods for two different Boger fluids, and

we evaluate the accuracy of this method as compared to other heuristic methods used in

the past.

6. Results and Discussion

In this section, we present results for Type III filament stretching experiments,

obtained by both the real-time active control method described in ¤4, and the open-loop

method described in ¤5.  Comparisons of mid-filament diameter profiles and endplate

position profiles for the two methods illustrate the oscillations that naturally occur in an
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active control loop.  We compare total force profiles for Type II and III experiments

using the open-loop method, and finally, we compare transient Trouton ratios for Type II

and III experiments for two different Boger fluids.

6.1 Closed Loop Control

Tuning of the real-time active control loop is illustrated in Figure 7(a).  The fluid used

is a polystyrene-based Boger fluid with a similar formulation to the PS-05 fluid, but with

a lower concentration 0 025.  .%wt( ) of high-molecular weight polystyrene.  Tuning

results were found to be relatively independent of the imposed stretch rate and of the

fluid formulation.  The update time of the control loop was set to 50  ms; smaller time

increments were found to be dynamically unstable.  Two Type II experiments are shown

in the figure for comparison purposes, the first with an imposed stretch rate Ė  equal to

the desired deformation rate ε̇0 , and the second with an imposed stretch rate equal to two-

thirds of the desired deformation rate (cf. Eq. (7)).  Results from these two experiments

show that since the fluid velocity field is initially described by the Newtonian lubrication

response given in equation (5), a good first step toward achieving the desired deformation

rate is to simply impose a slower stretch rate.  However, once strain hardening begins to

occur for the Boger fluid at a Hencky strain ε ≈ 2 , neither Type II experiment can

maintain a constant effective deformation rate, ε̇eff .  Active control results using the three

formulas for converting desired mid-filament diameter into desired endplate position,

given in equations (16), (17), and (18), are also shown in the figure.  All three

mechanisms produce diameter profiles that are closer to the targeted exponential decrease

than a simple Type II experiment yields.  However, as with the Type II experiments, once

strain hardening begins, the first two formulations are unable to maintain the desired

diameter profile. The general formulation given in equation (18) allows the control

system to maintain a nearly ideal diameter profile over the duration of the experiment.
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The success of the active control method becomes clearer through examination of

diameter error profiles, as illustrated in Figure 7(b).  The actual diameter measured in a

Type II experiment can drift away from the ideal curve by as much as 40%, although the

diameter again approaches the target profile at higher Hencky strains.  Figure 7(b) shows

that all three methods of converting between desired diameter and desired position yield

relatively small diameter errors up to a Hencky strain of approximately 2.  Beyond this

point, the polymeric stresses arising from the onset of strain hardening in the fluid

overwhelm the stresses in the Newtonian solvent, and the first two overly-simplistic

control schemes cannot cope with such rapid changes in the fluid response.  These two

control schemes are able to control the diameter to within an absolute deviation from the

ideal curve of 8% over most of the duration of the experiment, but this deviation

increases to 20% at later times.  The third method, which implements a time-varying

relationship between mid-filament diameter and endplate position, is able to improve the

late-time deviation to less than 15%.

6.2 Open-Loop Control

As discussed in ¤5, the fluctuations inherent in the active control loop cause

significant oscillations in the measured tensile force.  In order to circumvent these

undesirable fluctuations, we now examine the open-loop technique described in ¤5.  The

first step in the process is to perform a Type II experiment, and then compute the function

′( )S Dε  via equations (21) and (24).  Figure 8 shows the resulting function ′( )S Dε  for

various applied stretch rates for the PS-05 Boger fluid and the BG-1 Boger fluid.  At

small strains, when the viscous response of the Boger fluid dominates, this ratio of

deformation rates approaches ′ ≅S 1 5. , which is the expected response of a Newtonian

fluid in a reverse squeeze flow, given in equation (17).  As the polymeric stresses grow,

the actual radial contraction of the filament slows, ′S  begins to decrease, dropping below

unity, and then increasing again and approaching unity at higher strains.  Similar
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behavior of the effective strain rate has previously been observed both experimentally

[14] and numerically [18].  The plots in Figure 8 show that the response of both Boger

fluids are weakly dependent on the imposed strain rate.  While the form of ′( )S Dε  remains

qualitatively similar for each rate, the magnitude of the function for a fixed strain value

decreases with increasing strain rate for each fluid.  In addition, the onset of the sudden

decrease in filament contraction rate shifts toward lower strains as the imposed strain rate

increases.  The trend is much more pronounced for the BG-1 fluid, indicating that the

precise fluid response is also dependent on fluid formulation.

A second alternative method of representing the kinematic response of a fluid is

shown in Figure 9.  As discussed in ¤5, these figures compare two different characteristic

Hencky strain measures for the elongating filament, one based on the endplate position,

εL pL L= ( )ln 0 , and the second based on the decreasing midpoint diameter,

εD midD D= ( )2 0ln .  A similar Ômaster curveÕ for a fluid was first presented by Orr and

Sridhar [32].  Figure 9(a) shows the Ômaster curveÕ for the PS-05 Boger fluid, and (b)

shows the same function corresponding to the BG-1 Boger fluid.  As we saw in Figure 8,

the precise shape of the curve in fact depends on both the applied strain rate and on the

fluid formulation.

Once the function ′( )S Dε  has been computed, the next step toward performing a Type

III experiment is to compute the desired endplate position profile using equation (26).  A

smooth endplate position profile for a Type III experiment computed using this procedure

is shown in Figure 10 for the PS-05 Boger fluid for an applied strain rate of 3.0 s-1.  The

curve of ′( )S Dε  shown in Figure 8(a) for ˙ .  ε0
13 0= −s  is the same data used to generate

this position profile.  The endplate position profile resulting from the active control loop

is shown for comparison.  Although the closed-loop active control and open-loop profiles

follow similar trends, the oscillations in the active control case are noticeable and the
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endplate position deviates dramatically from the smooth profile well before the end of the

experiment, indicating that the active control loop became unstable.  In addition to being

unstable, the position oscillations also lead to accelerations and velocities that rapidly

exceed the motion control system limits.  Thus, the active control scheme is limited not

only by the undesirable force oscillations that are transmitted through the viscous

filament from the oscillating endplates, but it is also limited to only moderate strains due

to its unstable nature and due to mechanical system limitations.  In contrast, the open-

loop technique leads to smooth profiles that can be reliably and repeatedly performed by

the motion control system.

Figure 11(a) and (b) illustrates the success of the open loop technique in prescribing

an ideal mid-filament diameter profile.  The diameter profiles shown are those resulting

from the application of the endplate position profiles shown in Figure 10.  The actual

diameter profile for this Type III experiment is visually indistinguishable from the

desired profile, and the error profile is much smoother than that resulting from active

control.  Although the technique is open loop, with no means for correcting the

deformation of the filament in real time, the resulting diameter error remains under 2%

for most of the duration of the experiment, while the diameter itself has decreased by an

order of magnitude and the filament length has increased by two orders of magnitude.

The slight increase in the diameter error (still under 10%) at later times is due mainly to

instrument noise in the CCD laser micrometer, which becomes proportionally larger in

the final 0.3 seconds of this experiment as the diameter approaches the minimum

specification of the device (500 µm).  These errors can be readily reduced by using a

more sensitive measuring device.
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6.3 Extensional Stress Growth

Now that we have confirmed that Type III experiments can be successfully performed

using our one-dimensional open loop technique, we examine the rheological response of

the test fluids to both Type II and Type III experiments.  The final experimental quantity

that we measure during the filament stretching experiment is the axial force exerted on

the bottom endplate.  Figure 12 compares the transient force profiles for an applied strain

rate of ˙ .  ε0
13 0= −s  for Type II and III experiments for both Boger fluids.  The force data

has been deconvolved from the transducer response function and filtered as described in

¤3.1.  The typical qualitative response of a Boger fluid is seen in these profiles, in which

there is an initial overshoot and subsequent decrease in the tensile force at early times due

to the dominant response of the Newtonian solvent.  At intermediate times, strain

hardening becomes apparent and the force begins to rise again.  Finally, at later times, the

force reaches a maximum and gradually begins to decrease as the stress in the fluid

reaches steady state.

Although the qualitative dynamical response is similar for both fluids and for both

types of experiments, the curves in Figure 12 are quantitatively distinct.  The local

minima in the force curve for Type III experiments (hollow symbols) are shifted toward

later times, and the magnitude of the second maximum increases slightly.  Finally, the

magnitude of the tensile force in the lower molecular weight, polydisperse BG-1 fluid is

nearly an order of magnitude smaller than that measured in the PS-05 fluid.

Finally, we present the transient Trouton ratios for the two Boger fluids computed

using equation (10).  We first show results comparing Type II and III experiments for a

rate of 3.0 s-1 for both fluids in Figure 13.  Results measured using the open loop

technique described above agree well with those measured previously by Spiegelberg et

al. [7,8] for both fluids.  However, to obtain such profiles previously required repeated
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use of a Ôtrial-and-errorÕ method based on the dual-exponential approach we discuss in

¤5.  By contrast, the technique presented here requires only two steps.  The new results

presented here also extend the transient curve up to a Hencky strain of approximately

εD ≅ ±5 7 0 1. . , allowing the evolution of stresses toward steady state to be observed.  The

Type III experiment leads to a different transient growth of the Trouton ratio compared to

the Type II experiment, primarily modifying the shape of the curve at intermediate

strains.  The trends observed in the data presented here for Type II and III experiments

are consistent with those indicated by the simulations of Kolte et al. [16].  The

discrepancy between our Type III results and those previously reported by Spiegelberg et

al. [7,8] at intermediate strains illustrates the sensitivity of the rheological response of a

fluid filament to slight changes in the shape of the imposed position profile.  This

sensitivity drives the need to obtain accurate diameter and force measurements so that

accurate TypeÊIII position and Trouton ratio profiles can be computed.

In Figure 14(a) and (b) we compare the results from the Type III experiments for

several different applied strain rates for each fluid.  The three curves for the PS-05 fluid ,

corresponding to Deborah numbers of De = 2 50. , De = 6 80.  and De = 11 3. ,

respectively, nearly superimpose, a phenomenon that has also been observed by

numerous other research groups [5-14].  The experimental curves do not exactly

superimpose, however, exhibiting a more rapid stress growth as the Deborah number

increases.  This trend is consistent with expectations from simulations using simple

dumbbell models, which also show a delayed linear viscoelastic response at short times

as the Deborah number increases (when plotted as a function of strain rather than t sλ ).

The approach to steady state is much more gradual than was reported in early filament

stretching experiments (e.g. Tirtaatmadja and Sridhar [6]), but this is also consistent with

Brownian dynamics calculations and single chain experiments that reflect the non-

Gaussian distribution of individual trajectories of the chains [33,34].  For the semi-dilute

polydisperse PIB fluid, BG-1, there is even less superposition in the data curves, which
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correspond to Deborah numbers of De = 1 01 2 44 4 03. ,  . ,   .and , respectively.  The steady

state Trouton ratio approached by the PS-05 fluid appears to be approximately the same

for all three Deborah numbers, while the BG-1 fluid still has not begun to reach steady

state even at a Hencky strain of εD ≈ 5 8. .

Finally, Figure 15 directly compares the transient Trouton ratio profiles for the two

different Boger fluids.  Since the Deborah numbers corresponding to the same applied

strain rates are significantly higher for the PS-05 fluid, it is not surprising that the slopes

in the growth region are steeper for this fluid.  The lack of a definite steady state plateau

for the BG-1 fluid can be attributed to the polydispersity of the high molecular weight

polyisobutylene in the solution [35].  In contrast, the high molecular weight polystyrene

in the PS-05 solution is very monodisperse, allowing the finite extensibility of the chains

to be sensitively probed.

7. Conclusions

We have presented two new techniques for obtaining the desired kinematics in a

filament stretching device.  The first technique is an active, Ôclosed-loopÕ control loop in

which the mid-filament diameter is observed in real-time and the diameter error

information is used to change the controlled position profile on-the-fly.  This active

control scheme allows the diameter to be controlled to within 15% error for the duration

of the experiment.  However, oscillations characteristic of this and many other active

control systems proved to be unacceptable, both in obtaining smooth transient force

measurements, and in realizing the potential operating range of the filament stretching

rheometer.

The second technique, while essentially open loop, utilizes a one-dimensional

analysis of the kinematic profile in the slender stretching filament to determine the
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desired endplate separation as a function of time.  A ÔType IIÕ experiment, described in

¤2.2, is performed first, and measured values of the mid-filament diameter and endplate

position profiles are used to compute desired endplate position profiles for a ÔType IIIÕ

experiment.  This procedure is significantly simpler to implement than either the active

control technique described above, or the trial-and-error procedure employed by all

practitioners of filament stretching rheometry in the past [5-14].  This systematic

approach is logically connected to the empirical technique recently presented by Orr and

Sridhar [32] and reviewed briefly in ¤5.  Diameter profiles obtained using this method

consistently agreed with the ideal diameter D tideal( ) to within ±2%.  This simple one-

dimensional analysis demonstrates that, although the fluid behaves in a non-ideal way in

a Type II experiment, this behavior is predictable and unique, containing all the

information needed to prescribe a different set of kinematics in the stretching filament.

Although the techniques presented here for controlling the mid-filament diameter

were tested on Boger fluids, both could work for other types of fluids, assuming that the

solution for the filament deformation is unique and dominated by the total strain at

De > 0 5.  rather than by local variations in ε̇eff t( ).  In practice, the connection between the

endplate displacement and the midplane strain experienced by the filament, which is

represented by the function ′( )S Dε , is governed by the constitutive response of the fluid.

In particular, the one-dimensional slender filament theory of Renardy [22] shows that the

evolution of the rate of change of the midplane ÔstretchÕ or radius depends on the

instantaneous tensile stress difference in the filament.  For many viscoelastic materials in

strong stretching flows with De > 1 the polymeric stress is primarily a function of strain

(provided the strain rate is large and only varies slowly), and thus we expect our open-

loop control strategy to be an effective way of determining the desired profile in a single

iteration.  The behavior of other types of fluids, such as Newtonian fluids and shear-
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thinning fluids, are also of interest, and Type III experiments for these fluids will be

presented in a later publication.

The active control technique presented here can also be extended to perform other

types of controlled experiments, such as constant force and constant stress experiments.

Such constant stress experiments, performed at low stretch rates in a similar filament

stretching device that is appropriate for polymer melts, are presented by M�nstedt et al.

[37]. However, due to the short experimental duration of experiments with polymer

solutions and the large instantaneous viscous stresses, oscillations will most likely still

lead to undesirable fluctuations in the results for controlled stress experiments with more

mobile fluids.  Our active control scheme was based on very elementary principles of

control theory, and a simple PID controller.  This basic formulation assumes that the

response functions of all the elements in the control system are linear, and that they can

be compensated by the linear elements of a PID loop.  However, we know that the actual

fluid response is governed by the momentum equations and a constitutive relationship

between stress and deformation.  These coupled equations are nonlinear, and can in

general display effects arising from coupling, hysteresis, and many other anomalous

behaviors.  Linear control methods are not optimal for such systems.  More complicated

methods involving nonlinear control theory will be more appropriate and could lead to

better results than those presented here [40,41].  However, for the constant rate

experiments given here, the one-dimensional open loop method is simple to implement,

can be applied to a wide range of different control systems, and offers additional insights

into the rheological behavior of the fluid.  The errors in the actual diameter profile as

compared to the target profile for this method are significantly smaller than those induced

by the simple active control scheme.
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Finally, we have also presented transient extensional rheology data for two different

Boger fluids, using the open-loop technique described and a new filament stretching

device with an extended operating range.  The transient Trouton ratios for a polystyrene-

based Boger fluid, previously investigated in [8], and for a polyisobutylene-based Boger

fluid, previously investigated in [7], agree well with the previously reported data.  The

transient Trouton ratios for the monodisperse polymer solution nearly superimpose when

plotted as a function of Hencky strain, which has been observed previously and is

consistent with ideas of a large dissipative contribution to the stress [38,39].

Numerical simulations have indicated that performing a Type III experiment in a

filament stretching rheometer will minimize the effect of the no-slip boundary conditions

at the endplates and yield results that are virtually indistinguishable from those of an

ideal, homogeneously deforming cylinder.  This level of accuracy is desirable if detailed

comparisons with theoretical constitutive models and simulations are to be made.  The

open-loop technique presented here provides a more accurate alternative to the tedious

iterative method that has been used in the past to realize Type III experiments, and will

hopefully be of use in the design and optimization of future filament stretching

rheometers.

Acknowledgements

This research was supported by NASA under Grant No. NAG3-1385.  S.L.A. thanks

the Fannie and John Hertz Foundation for supporting her graduate research.  S.L.A.

would also like to thank Dr. Stephen Spiegelberg and Dr. Gavin Braithwaite for sharing

their insight and experience with extensional rheology, controls, and experimental

technique.



31

References

[1] T.T. Perkins, D.E. Smith, and S. Chu in: H.K. Kausch, T.Q. Ngoyen (Eds.), Flexible

Chain Dynamics in Elongational Flows, Springer-Verlag, Berlin, Heidelberg, 1998.

[2] R.K. Gupta and T. Sridhar, in A.A. Collyer, D.W. Clegg (Eds.), Rheological

Measurement, Elsevier Applied Science, London, 1988, pp. 211-245.

[3] D.F. James and K.A. Walters, Techniques in Rheological Measurement, Elsevier,

London, 1993.

[4] J.E. Matta and R.P. Tytus, J. Non-Newtonian Fluid Mech. 35 (1990) 215.

[5] T. Sridhar, V. Tirtaatmadja, D.A. Hguyen and R.K. Gupta, J. Non-Newtonian Fluid

Mech. 40 (1991) 271.

[6] V. Tirtaatmadja and T. Sridhar, J. Rheol. 37 (1993) 1081.

[7] S.H. Spiegelberg, D.C. Ables and G.H. McKinley, J. Non-Newtonian Fluid Mech.

64 (1996) 229.

[8] S.H. Spiegelberg and G.H. McKinley, J. Non-Newtonian Fluid Mech. 67 (1996) 49.

[9] R. Kr�ger, S. Berg, A. Delgado, H.J. Rath, J. Non-Newtonian Fluid Mech. 45 (1992)

385.

[10] S. Berg, R. Kr�ger, H.J. Rath, J. Non-Newtonian Fluid Mech. 55 (1994) 307.

[11] M.J. Solomon and S.J. Muller, J. Rheol. 40 (1996) 837.

[12] A. Jain, D.S. Shackleford and K.W. Koelling, The 68th Society of Rheology Annual

Meeting (1997).

[13] J. van Nieuwkoop and M.M.O. Muller von Czernicki, J. Non-Newtonian Fluid

Mech. 67 (1996) 105.

[14] M.R.J. Verhoef, B.H.A.A. van den Brule and M.A. Hulsen, submitted to J. Non-

Newtonian Fluid Mech. (1997).

[15] R.W. Shipman, M.M. Denn, and R. Keunings, J. Non-Newtonian Fluid Mech. 40

(1991) 281.

[16] M.I. Kolte, H.K. Rasmussen and O. Hassager, Rheol. Acta 36 (1997) 285.



32

[17] P. Szabo, Rheol. Acta, 36 (1997) 277.

[18] M. Yao and G.H. McKinley, J. Non-Newtonian Fluid Mech. 74 (1998) 47.

[19] D.O. Olagunju, submitted to J. Non-Newtonian Fluid Mech.

[20] R. Sizaire and V. Legat, J. Non-Newtonian Fluid Mech. 71 (1997) 89.

[21] S. Gaudet, G.H. McKinley and H.A. Stone, Phys. Fluids 8 (1996) 2568.

[22] M. Renardy, J. Non-Newtonian Fluid Mech. 51 (1994) 97.

[23] J. Eggers, Rev. Mod. Phys. 69 (1997) 865.

[24] O. Harlen, The 70th Society of Rheology Annual Meeting (1998).

[25] S.L. Anna, E. Anderson and G.H. McKinley, in preparation for J. Non-Newtonian

Fluid Mech. (1998).

[26] R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids.

Volume 1: Fluid Mechanics, Wiley-Interscience, New York, 1987.

[27] M. Renardy, J. Non-Newtonian Fluid Mech., 59 (1995) 267.

[28] D.W. Bousfield, R. Keunings, G. Marrucci, and M.M. Denn, J. Non-Newtonian

Fluid Mech., 21 (1986) 79.

[29] K. Ogata, Modern Control Engineering, 2nd Ed., Prentice Hall, Englewood Cliffs,

New Jersey, 1990, Chapter 3.

[30] PMAC Software Reference, Delta Tau Data Systems, Northridge, California, 1996,

Chapters 3 and 5.

[31] T. Sridhar, personal communication, (1998).

[32] N.V. Orr and T. Sridhar, J. Non-Newtonian Fluid Mech., in press, 1998.

[33] R. Keunings, J. Non-Newtonian Fluid Mech., 68 (1997) 85.

[34] D.E. Smith and S. Chu, Science, 281 (1998) 1335.

[35] J. Remmelgas, L.G. Leal, N.V. Orr, and T. Sridhar, J. Non-Newtonian Fluid Mech.,

76 (1998) 111.

[36] M. Yao, G.H. McKinley, and B. Debbaut, J. Non-Newtonian Fluid Mech., 79 (1998)

469.



33

[37] H. M�nstedt, S. Kurzbeck, L. Egersd�rfer, Rheol. Acta, 37 (1998) 21.

[38] J.M. Rallison, J. Non-Newtonian Fluid Mech., 68 (1997) 61.

[39] P.S. Doyle, E.S.G. Shaqfeh, G.H. McKinley, and S.H. Spiegelberg, J. Non-

Newtonian Fluid Mech., 76 (1998) 79.

[40] D. Graham and D. McRuer, Analysis of Nonlinear Control Systems, John Wiley &

Sons, Inc., New York, 1961.

[41] J.M. Skowronski, Control of Nonlinear Mechanical Systems, Plenum Press, New

York, 1991.



34

Captions
Figure 1. Sketch of a filament stretching apparatus.  The origin is taken to be at the axial

midplane of the filament.
Figure 2. Schematic diagram of the filament stretching rheometer:  (a) linear DC

brushless motor; (b) upper motor, with top endplate assembly; (c) lower
motor, with diameter measurement assembly; (d) fluid sample; (e) force
transducer, (f) CCD laser micrometer, transmitter, (g) receiver; (h) CCD
camera.

Figure 3. Operating diagram for the filament stretching rheometer.  This figure shows
the range of velocities and endplate separations achievable in the current
device, with corresponding Hencky strains shown along the top axis.  The
small box at lower left shows the operating space for a previous device [7].

Figure 4. Viscometric functions for a monodisperse 0.05 wt.% polystyrene-based Boger
fluid, PS-05, measured in a cone-and-plate rheometer.  Solid symbols
represent the measured dynamic properties, while the hollow symbols
represent measured steady shear properties.  Solid lines show predictions for
the viscometric functions using a FENE-P model, and dashed lines show the
linear viscoelastic predictions of the Zimm model.

Figure 5. Block diagram showing an active control scheme for a Type III experiment in
a filament stretching rheometer.

Figure 6. (a) Diameter profiles used to simulate Type II (¡) and Type III (solid line)
experiments, and (b) Tensile stress profiles for an Oldroyd-B model using the
instantaneous effective strain rates computed from these diameter profiles.

Figure 7. (a) Diameter and (b) fractional error in the diameter illustrating the tuning
process for an active control loop designed to yield a Type III experiment with
˙ .  ε0

12 0= −s .  Dark solid line shows the ideal, target diameter profile; (+)
symbols show data points from a Type II experiment with ˙ .  E s= −2 0 1; (¡)
symbols show results from a Type II experiment with
˙ .  .  E s s= ( ) =− −2 3 2 0 1 331 1 ; thin solid lines show results of active control

experiments using various formulae for converting between desired diameter
and desired endplate position.  (dash: ideal cylinder, equation (16); (¡):
lubrication solution, equation (17); (r): general form, equation (18)).
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Figure 8. Computed strain rate ratio for Type II experiments, given by the function
′( )S Dε  in equations (21) and (24).  Results for three different applied stretch

rates are shown for (a) the PS-05 and (b) the BG-1 Boger fluids:  (¡)1 0 1.  s− ,
(r) 3 0 1.  s− , and (¯) 5 0 1.  s− .  Dashed lines mark ideal homogeneous uniaxial
deformation, in which the radial contraction rate is equal to half of the axial
stretch rate ( ′( ) =S Dε 1), and the lubrication solution for a Newtonian fluid
with exponentially stretching endplate boundary conditions imposed
( ′( ) =S Dε 1 5. ).

Figure 9. ÔMaster curveÕ profiles showing the Hencky strain, εL  (based on endplate
position) as a function of the Hencky strain, εD  (based on midpoint diameter)
for (a) PS-05 and (b) BG-1 Boger fluids for the same applied stretch rates
shown in Figure 7.

Figure 10. Endplate position profiles for Type II and III experiments with the PS-05
Boger fluid (nominal strain rate of 3 0 1.  s− ).  The solid dark line corresponds
to a Type II experiment; the (¡ ) symbols show a Type III experiment
performed via the active control scheme; and the dashed line shows the Type
III position profile computed via the one-dimensional open-loop scheme.
Smooth curves result from the open-loop scheme, while the active control
loop leads to undesirable oscillations.

Figure 11. (a) Diameter profiles and (b) fractional diameter error profiles for a nominal
strain rate of 3 0 1.  s− , illustrating that a simple one-dimensional analysis yields
a diameter profile that is within ±2% of the desired profile over most of the
duration of the experiment, while the active control loop can only control the
diameter to within 15% over the duration of the experiment.  The solid dark
line shows the target diameter profile; (r) symbols show the Type II
experiment profile and (l) symbols show the Type III experiment profile
resulting from the one-dimensional open loop scheme.  The thin solid line
shows the profile resulting from the active control scheme.

Figure 12. Force profiles comparing Type II experiments (filled symbols) and Type III
experiments (hollow symbols) for an imposed strain rate of ˙ .  ε0

13 0= −s .  (¡)
symbols show force profiles for the PS-05 Boger fluid, which are nearly an
order of magnitude larger than those of the BG-1 Boger fluid, (r) symbols.

Figure 13. Transient Trouton ratio curves for (a) PS-05 Boger fluid and (b) BG-1 Boger
fluid.  The nominal applied strain rate is ˙ .  ε0

13 0= −s .  Solid symbols (®) show
Type III results previously reported in [7,8] for the same fluids, performed via
the traditional Ôtrial-and-errorÕ approach.  Hollow symbols show Type II
results performed by the author (r), and Type III results performed via the
one-dimensional open-loop scheme (¡).  The dashed line marks a Trouton
ratio of Tr = 3.
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Figure 14. Transient Trouton ratio curves for (a) the PS-05 Boger fluid and (b) the BG-1
Boger fluid for Type III experiments at different applied strain rates.  Symbols
correspond to stretch rates of  (¡)1 0 1.  s− , (r) 3 0 1.  s− , (+) 5 0 1.  s− .  These
correspond to Deborah numbers of De = 2 50 6 80 11 3. ,  . ,   .and  for the PS-05
fluid and De = 1 01 2 44 4 03. ,  . ,   .and  for the BG-1 fluid after using time-
temperature superposition to correct for temperature deviations on the day of
the test.  The dashed line marks a Trouton ratio of Tr = 3.

Figure 15. Comparison of transient Trouton Ratios for PS-05 (¡) and BG-1 (�) Boger
fluids for similar applied strain rates. (¡) symbols correspond to ˙ .  ε0

11 0= −s ,
(r) symbols to ˙ .  ε0

13 0= −s , and (¯) symbols to ˙ .  ε0
15 0= −s .
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Table 1. Zero-shear-rate viscometric properties for a polystyrene-based Boger fluid,

PS-05 (0.05 wt.%), a polyisobutylene-based Boger fluid, BG-1 (0.31 wt.%),

and a viscous polystyrene oil at a reference temperature of T0=25 ¡C.

Material Property PS-05 BG-1 PS Oil

η0   [Pa s] 38.0 13.8

ηs   [Pa s] 32.5 8.10 32.5

Ψ10   [Pa s2] 20.0 8.96

λs   [s] 1.78 0.76

∆H R  [Κ] 19400 7360 19400
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