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Abstract — The two-dimensional linear stability of creeping plane Couette and Poiseuille flow
of a viscoelastic fluid with viscous heating is investigated using a Galerkin-type Chebyshev col-
location approach and a non-isothermal formulation of the FENE-P constitutive model. Viscous
heating is observed to have a destabilizing/stabilizing tendency for Couette/Poiseuille flow at
long to moderate disturbance wavelengths, and a stabilizing effect at short wavelengths, but
no instabilities are found in the inertialess flow limit. Shear-thinning due to finite polymer
extensibility reduces the base flow stresses as well as normal stress gradients at fixed Nahme
number, and tends to further stabilize the flow, especially at short wavelengths. In addition
to our non-isothermal results, our calculations indicate that creeping Poiseuille flow using the
isothermal upper-convected Maxwell model is least-stable at high Deborah numbers to an odd
mode with a wavenumber based on channel half-width of £ = 1.5.
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1 Introduction

Polymeric solutions and melts typically have zero-shear-rate viscosities that are three to eight orders
of magnitude greater than the viscosity of water, and viscous heat generation is often important in
industrial polymer processing applications (Pearson 1985). Heat conduction in polymeric materials
is poor (thermal conductivity k. ~ 0.1 W/m K), and hence frictional dissipation, even in the absence
of externally applied heat sources, can cause significant temperature changes and gradients within
a flowing polymeric fluid. These temperature increases in most cases do not appreciably alter the
density p, the specific heat capacity Cp, or the thermal conductivity k., but do exponentially reduce
the local viscosity and polymer elasticity. To date, viscous dissipation has usually been neglected in
the study of Non-Newtonian fluid mechanics, even though thermally-induced gradients in viscosity
and elasticity can significantly modify the corresponding isothermal flow and may possibly lead
to new modes of elastic instabilities. In a series of papers, Shah and Pearson (1974abc) used
a “Hele-Shaw”-style lubrication analysis to consider the stability of generalized Newtonian fluids
incorporating viscous heating for pressure-driven flows in thin channels characteristic of injection
molding geometries. Viscoelastic thermohydrodynamic instabilities have, however, received very
little attention in the literature. Viscoelastic effects on Rayleigh-Benard convection have been
reviewed by Petrie and Denn (1976) and by Larson (1992); the existence of a Hopf bifurcation and
the resulting nonlinear dynamics of the over-stable oscillations predicted by the upper-convected
Maxwell model have been analyzed by Khayat (1995), and experiments in heated micro-channels
using DNA chains have been reported by Kolodner (1998). The effects of viscous heating on the
stability of a viscoelastic flow without externally-imposed heating have not been considered.

In this paper, we examine the stability of Non-Newtonian plane Couette and Poiseuille flow
with viscous heating, and the definition diagrams for these two flows are given in Figures 1(a) and
1(b), respectively.

[Figure 1 about here.]

The temperature dependence of the characteristic viscosity scale 7 is taken to follow a Nahme-type
law:

o = foe?, (1)

where 0 = o(T — Ty)/T) is a dimensionless temperature, and 7jy is the viscosity at the reference
temperature Ty . Typical values of the dimensionless heating coefficient « for polymeric solutions
and melts range from 20 to 100 (Winter 1977). Less commonly used in the relevant literature on
viscous heating is the Arrhenius-type law, in which the viscosity is taken to be proportional to
exp [—a(T — Tp)/T]. Although this latter law is based more soundly on thermodynamics, and is
able to fit data over a wider temperature range than the Nahme law, these two laws only differ
appreciably for temperature differences larger than those commonly encountered in most viscous
heating applications (Davis et al. 1983).
There are four dimensionless flow parameters governing this problem:

1. The Deborah number U
De = Oh 0 (2)
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is the ratio of the characteristic relaxation time Ag of the polymer molecules, at the reference
(wall) temperature T, to the convective time scale h/Up.

2. The Nahme number R
aijoUs
Na=——+ 3
T 3)
is a measure of the rate of heat generation by frictional dissipation relative to the rate of heat
loss via conduction, and may be considered as the square of the ratio of a viscous heating
time scale \/amoh?/(k:.Tp) to the convective time scale h/Uy. Alternatively, we also define
the Nahme number based on a characteristic stress instead of velocity, Na.,, as

ah?7r?

ok To Couette

— c

NaT - ah4 (_Q)Z Poi 1 ’ (4)
ﬁocho dz olseullle

where 7 refers to the constant shear stress in Couette flow and dP/dx to the constant pressure
gradient in Poiseuille flow. This latter dimensionless group Na, was denoted G in the early
work by Gruntfest on the transient start-up of Couette flow with viscous heating (Gruntfest
1963). Plots of Na, versus Na represent the evolution of the dimensionless shear stress
(x /Na,) with increasing shear rate (< v/Na) for a particular constitutive model and a
chosen form of the temperature dependence of the material properties. For the Nahme heating
model (1), such a plot shows a monotonic rise of Na, (or shear stress) with increasing Na (or
shear rate) up to a single maximum or turning point, followed by a monotonic decay to zero.
[The reader unfamiliar with the Nahme constitutive law may at this point wish to refer ahead
to Figure 4(a), in which we present the constitutive relation between Na, and Na in Couette
flow for the non-isothermal FENE-P model with different values of the polymer extensibility
parameter b; the result for b = oo is equivalent to the analytic solution for Couette flow of a
Newtonian fluid with viscous heating first obtained by Gavis and Laurence (1968).]

3. The Peclet number O Uk
pe = 2220 (5)
ke
is the ratio of the thermal diffusion time scale pCph?/k. to the convective time scale h/U.
4. The Reynolds number
o pU()h
o

is the ratio of the viscous diffusion time scale ph? /7y to the convective time scale h/Uy.

Re (6)

Due to the high viscosity and low thermal conductivity of polymeric solutions and melts, the
Reynolds number is generally much less than one (the inertialess flow limit), the Peclet number is
of the order of 103 to 10%, and Deborah and Nahme numbers up to 50 might reasonably be expected
in practical applications.
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Under isothermal conditions, Newtonian (plane) Couette flow is linearly stable at all Reynolds
numbers, and Newtonian (plane) Poiseuille flow is linearly stable below a critical Reynolds number
of Re. = 5772.22 (Drazin and Reid 1982, Orszag 1971). Isothermal viscoelastic Couette flow
is linearly stable for the (upper-convected) Maxwell constitutive model (Renardy and Renardy
1986, Gorodtsov and Leonov 1967) as well as for the Oldroyd-B model (Wilson et al. 1998).
Analyses with the second-order fluid and UCM/Oldroyd-B constitutive models show that elasticity
destabilizes isothermal plane Poiseuille flow to infinitesimal disturbances, and critical Reynolds
numbers down to Re. < 2000 have been computed (Sureshkumar and Beris 1995, Lee and Finlayson
1986, Porteus and Denn 1972). Sureshkumar and Beris (1995) also demonstrated the stabilizing
effect on Poiseuille flow of finite polymer extensibility for the (constant viscosity) Chilcott-Rallison
model, which reduces to the Oldroyd-B model in the limit of infinite extensibility. At low Reynolds
numbers of order one or less, both isothermal plane Couette and Poiseuille flows appear to be
stable, except for the case of co-extruded liquids in channel flows with jumps in viscosity and/or
normal stresses across the fluid-fluid interface (e.g. Wilson and Rallison 1997, Su and Khomami
1992).

Recently, Wilson and Rallison (1999) considered the stability of planar channel flows with a
continuous stratification in material properties across the channel. Calculations showed that the
flow can be destabilized for sufficiently steep cross-stream gradients in the fluid elasticity or other
material properties. Given the poor thermal conductivity of polymeric fluids (Pe > 1) and the high
shear rates near the wall, steep gradations in the viscoelastic material properties may be expected
during processes such as injection molding, and it has been conjectured that instabilities such as
“stick-slip” may be caused or modified by viscous heating effects (Hatzikiriakos et al. 1997).

Choosing the Nahme law for the viscosity in the Newtonian constitutive relation, Sukanek et al.
(1973) used a Galerkin technique with only four terms in each approximation series to determine
that plane Couette flow with viscous heating is linearly stable at low Reynolds numbers and that
it can become unstable for moderate Reynolds and Nahme numbers. Ho et al. (1977), employing
a shooting technique, found these results to be quantitatively in error, but still concluded that
both plane Couette and Poiseuille flows with viscous heating (without elastic effects) are stable
at low Reynolds numbers. Yueh and Weng (1996), apparently unaware of the work by Ho et al.,
thoroughly recalculated the work of Sukanek et al. for both Nahme- and Arrhenius-type laws using
a more accurate Chebyshev spectral approach. Their results again show a significant quantitative
disagreement with those of Sukanek et al., but also indicate instabilities only for moderate to
high Reynolds and Nahme numbers. For more general viscosity versus temperature dependences,
Joseph (1964, 1965) presented some base flow results and showed that inviscid Couette flow is
linearly unstable on that branch of the constitutive curve where the stress is a decreasing function
of shear rate (the “upper” branch), a result which is loosely confirmed by Yueh and Weng (1996)
for the Arrhenius law in the inviscid limit only. Johns and Narayanan (1997) performed a zero-
wavenumber perturbation analysis for frictional heating in plane Couette flow, and determined that
the only point of neutral stability occurs at the “nose” of the constitutive curve (where the shear
stress is a maximum) when wall stress, as opposed to wall speed, acts as the control variable. The
result that the nose is a point of neutral stability to zero-wavenumber perturbations at constant
stress appears reasonable, since no steady (uni-directional) base flow exists for stresses greater than
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at the nose. We do not, however, share their opinion that their basic result by itself suggests the
upper branch of the constitutive curve is unstable, which, at least for low Reynolds numbers, would
contradict all of the more rigorous stability analyses cited above.

The combined effects of viscous heating and polymer elasticity upon the stability of plane shear
flows have never been investigated, and in this work we examine the linear stability of creeping
plane Couette and Poiseuille flows with Nahme-type viscous heating for a non-isothermal form of
the FENE-P constitutive model.

2 Formulation

2.1 Governing Equations

In addition to the continuity equation for incompressible flow,

V-u=0, (7)
and the Cauchy momentum equation,
Du
R v 8
ey =V (8)

where 7 is the non-dimensionalized total stress tensor, a viscous heating formulation must also take
into account the energy equation

PeD—e = V%) + Naw: Vu. 9)
Dt
These equations have been non-dimensionalized with a characteristic length scale h, velocity scale
Uy, time scale h/Uy, and stress scale 7oUy/h.

For our constitutive relation, we chose a non-isothermal form of the standard isothermal FENE-P
dilute-solution dumbbell model (Bird et al. 1987b). Assuming that temperature gradients on the
scale of a polymer molecule are negligible so that the isothermal model applies locally, we define
a characteristic polymeric viscosity 1, = (nkpT)A\(T") and let 1y = ns + 1,, where n is the number
of dumbbells per unit volume, kp is the Boltzmann constant, and 7, is the solvent viscosity. Each
of these viscosities is assumed to follow the Nahme law of Equation (1) with the same dimension-
less heating coefficient «;, and hence the characteristic relaxation time of the polymer molecules at
temperature 7', \(T"), varies with A(Tp) = Ag as

o0
AT) = Ao <%) el — 1?79/@ . (10)

The justification and internal consistency of such a molecular approach has been discussed by Mar-
rucci (1972). Alternative non-isothermal formulations involving differential constitutive equations
have recently been developed by Peters and Baaijens (1997).

The non-dimensionalized total stress tensor 7r is then given by

7= —ps + B! [Vu+ (V)] + (;f) (%) [f(tr(A))A _ (HLQ 5] TN
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where p is the pressure, § the unit tensor, 3 the solvent viscosity ratio 7,/n9, A the momentum- and
phase-space-averaged dumbbell configuration tensor, b the dimensionless square of the dumbbell
end-to-end length, and the function f follows the Warner force law

1

ftr(A)) = T—tr(A)/b

(12)

(see Bird et al. 1987b). The configuration tensor A evolves according to the convection-diffusion
equation

To\ _og b
De (T) 0 Ay + f(tr(A)A (b+—2) 5=0, (13)
where A(j) denotes the upper-convected derivative of A,
0A
A(l):E—I—u-VA—A-Vu—(Vu)T'A. (14)

The two scalar equations of continuity and energy, the vector equation of momentum conservation,
together with the tensor diffusion equation for dumbbell configuration, form a consistent set for
the determination of the unknowns u, p, 8, and A. The transient stress growth for such a model
following the inception of steady shear flow under adiabatic conditions has been considered by
Wiest (1996).

2.2 Solution Procedure

For the steady, uni-directional Couette and Poiseuille base flows depicted in Figures 1(a) and 1(b),
respectively, the above set of governing equations is solved iteratively using the IMSL subroutine
DMOLCH, except for the cases of Oldroyd-B (polymer extensibility b — o) and Newtonian Couette
flow. In the latter case, the exact analytical solution was derived by Gavis and Laurence (1968):

Uly) = % {1 + 5 —]Fvi\fa tanh [(arcsinh Na/8> (2y — 1)} } , (15)

O(y) = In {(1 + Na/8) sech? [(arcsinh Na/8> (2y — 1)} } . (16)

An equivalent result is obtained for the Oldroyd-B model, with the addition of a non-zero normal
stress (treated later in Equation 24) which does not contribute to the dissipation term in the energy
equation (9). Base flow profiles along with constitutive plots for Couette and Poiseuille flows are
presented in the following section.

For the linear stability analysis, we consider only two-dimensional disturbances in the (z,y)
plane, which are uniform in the z-direction. The three-dimensional linear stability problem for
isothermal plane shear flows can in many cases be reduced to a two-dimensional one which is more
stable than that for purely two-dimensional perturbations. This transformation is known as Squire’s
theorem (Drazin and Reid 1982), but as noted by Sukanek et al. (1973), such a transformation does
not appear possible for the viscous heating problem. Given the complexity of the present analysis,
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we restrict ourselves here to two-dimensional disturbances and leave the three-dimensional stability
analysis for future work.

The complete set of governing equations presented in the previous subsection is linearized for
infinitesimal two-dimensional perturbations about the base flow using the symbolic manipulation
program Maple. These stability equations are subsequently reduced, by the usual elimination
of continuity and pressure, to six non-trivial partial differential equations for the six unknown
disturbance variables (v, 0, 4z, gy, Gyy, a.-), where v is the cross-stream component of velocity, ¢
now refers specifically to the perturbation in temperature, and the four non-zero a;; refer to the
perturbations in the dumbbell configuration tensor A. It does not appear possible (or insightful)
to represent this set of equations in a compact format suitable for publication due to the enormous
numbers of terms involved; interested readers may obtain the Maple script from the authors upon
request.

We seek to examine the growth of modes proportional to exp[ikx + ot], where k is the wavenum-
ber and o is the complex eigenvalue. Unstable modes correspond to those with Re(o) > 0. As
has become customary in linear stability analyses since the work of Orszag (1971) on the Orr-
Sommerfeld equation, we use Chebyshev polynomials to best approximate variations in the cross-
stream (y) direction (Fornberg 1995 gives an excellent recent treatise on pseudospectral methods).
In particular, we consider Galerkin-type expansions of shifted Chebyshev polynomials 7" (y) for the
disturbance velocity component v and the disturbance temperature 8 of the form:

N
v(z,y,t) = Re { [Z ar [y4 +x19° 4 x2y” + X3y + X4} Ti‘(y)] explikz + Ut]} (17)
r=0

N
O(x,y,t) = Re{ lz by [gf + x5y + X6} 17 (y)
r=0

explikx + Ut]} . (18)
The parameter vector x = (X1, X2, X3, X4, X5, X6) " is in general a function of the index r and is
chosen here so that each term of the expansion for v and the expansion for 6 satisfies individually the
no-slip boundary condition (v = 0 and dv/dy = —0u/Ox = 0) and the constant wall temperature
boundary condition (f = 0), respectively, on both the top (y = 1 Couette, y = 2 Poiseuille)
and bottom (y = 0) walls. In our case, these conditions correspond to x = (—2,1,0,0,—1,0)7
for Couette flow and x = (—4,4,0,0,—2,0)7 for Poiseuille flow. Our choice of Galerkin-type
expansions satisfying boundary conditions is particularly simple and convenient for our subsequent
collocation procedure to construct a generalized eigenvalue problem, and for our numerical analysis
performs no better or worse than previously reported Galerkin expansions of the same order such
as those obtained by the method of integrating the highest derivative (Zebib 1987). The four
disturbance configuration functions a;; are not required to satisfy further boundary conditions, and
are expanded as regular series of shifted Chebyshev polynomials:

N
aze(z,y,t) = Re{ lz chf(y)] explikz + Jt]} , (19)
r=0

Agy(z,y,t) = Re{ lz dTT;‘(y)] explikz + at]} , (20)
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N
ayy(x,y,t) = Re{ lz erT:(y)] explikz + Ut]} ) (21)
r=0

N
az(x,y,t) = Re{ lz fTTT*(y)] explikx + Jt]} . (22)
r=0

A generalized complex eigenvalue problem
Mz =0cNx (23)

with 6(N 4 1) x 6(N + 1) coefficient matrices M and N for the eigenvector of complex expansion
coeflicients, x, is generated by substituting the above expansions into the linearly perturbed set
of six governing equations and collocating at the (N + 1) roots of T ;(y) in order to minimize
the maximum spectral approximation error over the domain (Fornberg 1995). This collocation
procedure yields the same order of accuracy as the more common application of orthogonality,
which, as pointed out by Zebib (1987), can remove the two large, positive, but spurious eigenvalues
found by Orszag (1971) for the Orr-Sommerfeld equation using the Lanczos-tau method. In our
collocation formulation, we still obtain these two spurious modes at non-zero Reynolds numbers,
the eigenvalues of which increase in magnitude with increased spectral resolution. At zero Reynolds
number, there are no spurious modes at all except when the solvent viscosity is identically zero
(corresponding to the upper-convected Maxwell constitutive model), and this limit may be conve-
niently investigated by retaining a small but finite amount of solvent viscosity, say 4 = 10~*. The
work of Graham (1998) suggests that these spurious modes are a result of eliminating pressure in
such stability calculations, and that it is further possible to eliminate spurious modes by imposing
numerical Neumann conditions on stresses at the boundary collocation points; we did not inves-
tigate such issues in this work. The generalized eigenvalue problem of Equation (23) was solved
using the IMSL routine DGVCCG.

3 Base Flow Results

3.1 Couette Flow

The exact analytical solution for Couette flow with viscous heating presented in Equations (15)
and (16) applies in the limit of infinite polymer extensibility (b — oc), and is depicted graphically
in Figures 2 and 3 for Na = 0, 10, and 100.

[Figure 2 about here.]
[Figure 3 about here.]

As the Nahme number increases with increasing shear rate, the steady-state temperature rises
monotonically due to frictional dissipation and is maximum at the center of the channel, the
bounding walls of which are maintained at the constant reference temperature 7. The viscosity
becomes correspondingly lower in the channel, so that more and more of the fluid above mid-plane
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(less below) is dragged along with the top plate than in the isothermal case (Na = 0) with a linear
velocity profile. Further description of this base flow is given in the original paper by Gavis and
Laurence (1968).

Next we turn our attention to the effect of finite polymer extensibility, and also highlight in
Figures 2 and 3 the differences in the non-dimensionalized velocity and temperature profiles arising
when the finite extensibility parameter is decreased from b = oo to b = 10 for the case of Na = 10,
De =10, a = 60, and 8 = 0.5. We chose De = 10 to show strong elastic effects, a = 60 to match
polystyrene, and 8 = 0.5 to model common Boger fluids which contain significant amounts of
viscous solvent. Finite extensibility is responsible for shear-thinning of the polymeric contribution
to the total viscosity as well as for a reduction in elastic stresses (see Bird et al. 1987b for a detailed
discussion), and hence for the same Nahme number, the velocity and temperature profiles for b = 10
are less influenced by viscous heating than those for infinite extensibility.

Both viscous heating and finite extensibility tend to reduce the normal stress 7., (7 = 7+ pd),
which, for Couette flow, is nearly constant over the entire channel. Using the Oldroyd-B model
(b = 00), the formula relating the non-dimensionalized normal and shear stress components is

particularly simple: )
. 2(1 : ﬁ)DeTxy' (24)
+0/a

Since the shear stress is constant for Couette flow (an immediate consequence of conservation of
xz-momentum), the variations in normal stress across the gap are small and result from the weak
dependence on temperature through the factor (1 + 6/a) = (T'/Tp). For Poiseuille flow on the
other hand, the topic of the following subsection, the shear stress varies linearly across the channel,
resulting in quadratic variations in normal stress. Varying the dimensionless heating coefficient «,
in the range o € [20,100], by itself does not appreciably affect any of our results if the Nahme
number is kept unchanged; a large value of « is, however, essential for achieving Nahme numbers
greater than one in most practical applications.

Base flow constitutive plots for Couette flow of Na, versus Na (dimensionless square of shear
stress versus that of shear rate) and of normal stress at the wall versus Na are presented in Figures
4(a) and (b), respectively, where De = 10, « = 60, 5 = 0.5, and b = 10, 1000, and oo.

[Figure 4 about here.]

The wall shear stress reaches a maximum near Na = 18.2 for b = oo, and the plots again show that
finite polymer extensibility significantly lowers both the shear and normal stresses at fixed Nahme
and Deborah number. It is important to note that viscous heating dominates viscoelastic effects at
high Nahme numbers, and in each plot the curves for finite values of b approach those for infinite
extensibility as Na — oo. The monotonic trends of the base flow profiles with increasing Nahme
number, as shown in Figures 2 and 3, continue unaffected by the maximum in Na,, and the same
holds true for the stability results treated later; at low Reynolds numbers, there are no qualitative
changes associated with increasing the Nahme number beyond the local turning point in the shear
stress.
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3.2 Poiseuille Flow

No analytical solutions exist for Poiseuille flow with viscous heating, and Figures 5 and 6 respectively
show our numerically computed velocity and temperature profiles in the limit of infinite extensibility
for Na = 0, 10, and 100.

[Figure 5 about here.]
[Figure 6 about here.]

The steady-state temperature again increases monotonically with Nahme number, and is maximum
at the center of the channel (y/h = 1) even though the shear rate (and hence frictional dissipation)
is zero there. The majority of the heat is viscously generated close to the stationary walls, from
where it conducts both outward into the constant-temperature boundaries as well as inward. The
decreased viscosity in the interior of the channel results in enhanced convective transport of fluid
elements near the mid-plane (y/h = 1) relative to those near the bounding walls.

We also indicate in Figures 5 and 6 the effect of finite polymer extensibility upon the velocity
and temperature fields in plane Poiseuille flow by considering the case of b = 10 with Na = 10,
De = 10, a = 60, and 8 = 0.5. As observed for Couette flow, the additional shear-thinning
due to finite extensibility results in velocity and temperature profiles which, for the same Nahme
number, are less influenced by viscous heating than those for infinite extensibility. The variation
in the normal stress 7., across the channel is shown in Figure 7. Note that the pressure varies
linearly along the channel, but not across the channel. Thus the normal stress 7,, = 0, and 7.,
also represents the first normal stress difference.

[Figure 7 about here.]

In sharp contrast to plane Couette flow, the normal stress varies significantly across the channel
and is maximum at the walls (y/h = 0,2). As the FENE parameter b is decreased at fixed values of
De and Na, this continuous stratification in the elasticity of the fluid is reduced both in magnitude
and in its rate of variation.

Constitutive plots for the Poiseuille base flow are presented in Figure 8 for constant De = 10,
a = 60, and § = 0.5, with b = 10, 1000, and co. In Figure 8(a) we show the variation of Na,, a
dimensionless square of the pressure gradient, versus Na, a dimensionless square of the flow rate.
The wall shear stress reaches a maximum near Na = 8.2 for b — oo, and pressure-driven flows are
unstable beyond this turning point in the pressure gradient. Recent experiments with Newtonian
fluids (Skul’skiy et al. 1999) have demonstrated that beyond this point the flow “jumps” to a new
supercritical state which cannot be captured by the Nahme law, but which can be described using
the more realistic Arrhenius form of the thermal dependence of the viscosity (Davis et al. 1983).

[Figure 8 about here.]

The variation in the (maximum) normal stress at the wall is given in Figure 8(b). The calcula-
tions again show that finite polymer extensibility significantly lowers the magnitude of the normal
stresses at fixed Nahme and Deborah numbers. In addition, the effects of polymer extensibility
become less and less important as viscous heating increasingly dominates at large Nahme numbers.
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4 Stability Results

In this section, we present results for the linear stability of viscoelastic plane Couette and Poiseuille
flows with viscous heating at zero Reynolds number (Re = 0).

4.1 Couette Flow

We begin with an examination of the eigenvalue spectrum. Figure 9(a) gives the spectrum at a
wavenumber of k = 1 for the case of Pe = 10*, Na = 0, De = 10, a = 60, 8 = 0.5, and b = o0, as
computed with NV = 250 terms in each spectral approximation series.

[Figure 9 about here.]

Since the Nahme number is identically zero here, the energy disturbance equation decouples from
the continuity and momentum equations, and reduces to:

d%9 ‘ 9
a2 = {(sze)y +oPe+k } 6. (25)
This equation may be transformed into the standard Airy equation, from which the (energy) eigen-
values o, subject to the constant-temperature boundary conditions (6 = 0 at y = 0, 1), may be
determined as solutions to the equation

Ai(SO)Bi(Sl) = A’i(sl)B’i(So), (26)

where Ai and Bi are the two linearly independent Airy functions, sg = —(cPe + k?)/(kPe)*?, and
51 = —(ikPe + o Pe + k?)/(kPe)?/3.

The zero-Nahme-number spectrum of Figure 9(a) is composed of these energy eigenvalues (rep-
resented by hollow circles) and of those from the isothermal flow problem (solid circles). The two
least-stable isothermal modes in our case of 3 = 0.5 are analogous to the two discrete modes for
the Maxwell model (8 = 0) found analytically by Gorodtsov and Leonov (1967), and the remaining
discrete modes are due to the presence of the viscous solvent. The two continuous line spectra,
spanning the complete range of possible values of Im(c), correspond to the isothermal non-analytic
modes, which are located at ¢ = —1/De — ikys and at 0 = —1/(8De) — ikys with ys € [0, 1].
The former continuous spectrum is difficult to resolve, and appears as a balloon which converges
to a line with increasing spectral resolution; the corresponding eigenmodes have a discontinuity in
v" (y) along with singular stresses (and a;j) at a position y = y, in the channel. A more detailed
discussion of the continuous spectrum is presented in the appendix by Graham (1998) and in Wil-
son et al. (1998). Note that the overall least-stable eigenvalue in Figure 9(a) (k = 1) corresponds
to an energy eigenmode. At higher wavenumbers, the situation changes as the energy modes be-
come increasingly stable, while the temporal parts of the eigenvalues, Re(o), for the viscoelastic
modes increase monotonically and asymptotically approach a constant value. In the limit of large
Deborah number and wavenumber, the (two) least-stable isothermal Maxwell modes are known to
obey Re(o) = —1/(2De).



4 STABILITY RESULTS 11

The spectrum for k£ = 1, under conditions identical to those in Figure 9(a) but with a Nahme
number of five instead of zero, is shown in Figure 9(b). Although the energy and isothermal
viscoelastic modes are now coupled, it turns out that the (two) least-stable modes are very similar
to the corresponding original energy modes, and that they become increasingly stable at higher
wavenumbers. Hence we shall still refer to them as energy modes, and as will be shown shortly,
modes which are predominantly viscoelastic in character dominate at high wavenumber in a manner
akin to the case of zero Nahme number described above.

Next we briefly discuss the convergence of our spectral approximation for the discrete, analytic
eigenmodes. Figure 10 shows the convergence with increasing number of terms r of the coefficient c,,
from the spectral approximation series of a,, given in Equation (19), for the least-stable eigenvalues
at wavenumbers k = 1 and k = 5, where Pe = 10%, Na = 5, De = 10, o = 60, 3 = 0.5, and b = cc.

[Figure 10 about here.]

While the £ = 1 mode is an energy mode and the k£ = 5 a viscoelastic mode, it appears generally
true that convergence in the presence of viscoelasticity becomes increasingly slow with increasing
wavenumber, apparently due to localized regions of relatively large polymeric stresses that develop
as the secondary flow vortices move closer to either wall with increasing wavenumber. As discussed
in connection with the base flow solutions, both viscous heating and finite extensibility tend to
reduce elastic stresses, and it is indeed observed that either of these two effects can allow for
convergence in cases of high Deborah number and wavenumber for which no convergence may
otherwise be obtained (to N = 300) under isothermal conditions and/or infinite extensibility.

Our overall results are summarized in Figures 11 to 15, in which we plot the temporal part
of the least-stable eigenvalue, Re(0nqz), versus wavenumber k for a range of conditions at zero
Reynolds number with o = 60.

[Figure 11 about here.]

In particular, Figure 11 shows the exact agreement of our results at zero Nahme number (Pe = 10%,
De =5, b = o0) for B = 0 (solid circles) with the energy eigenvalues of Equation (25) at low to
moderate wavenumbers and with those of the isothermal Maxwell problem at higher wavenumbers.
There is a sharp cross-over in the curve for Re(oq,) at the point where the viscoelastic modes
overtake the energy modes as least-stable in the spectrum at higher wavenumbers. This cross-over
point is slightly delayed for the case of 5 = 0.5 (hollow circles), due to the stabilizing effect of
the viscous solvent on the isothermal viscoelastic modes. The curve for Na = 5 and 5 = 0 (solid
line) indicates both the destabilizing effect of viscous heating at moderate wavenumber and the
stabilizing effect relative to the isothermal Maxwell modes at high wavenumber. We could not
obtain convergence beyond a wavenumber of k &~ 8 for the isothermal viscoelastic modes at a
Deborah number De = 5 with up to N = 300 terms in each expansion, and slightly less so for the
case of B = 0.5 relative to that of § = 0 as the discrete modes are closer to and engulfed sooner
by the expanding balloon of the poorly resolved continuous spectrum (see Wilson et al. 1998 for
spectra with larger balloons). The presence of viscous heating, however, reduces the elastic stresses
and speeds their convergence, so that for Na = 5 we are able to obtain converged solutions to just
beyond k = 10.
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The destabilizing effect of viscous heating at moderate wavenumbers is demonstrated in Figure
12 for Na = 5, 10, and 50 with Pe = 10*, De =5, = 0.5, and b = cc.

[Figure 12 about here.]

We did not investigate Nahme numbers greater than 100, as such high Nahme numbers are not
encountered in practical applications. The viscoelastic modes are increasingly stable with increasing
Nahme number, so that the above-mentioned cross-over point in the curve occurs at higher and
higher wavenumbers. The consequences of changes in Peclet number are illustrated in Figure 13
for Pe =103, 10%, and 10° at a Deborah number of De = 10.

[Figure 13 about here.]

Increasing the Peclet number also causes a destabilization of the energy modes at moderate wavenum-
ber, but, unlike the case of increasing Nahme number, does not significantly affect the viscoelastic

modes at high wavenumber. The stabilizing effect of increased solvent proportions on the viscoelas-

tic modes is shown in Figure 14, and that of finite extensibility in Figure 15.

[Figure 14 about here.]
[Figure 15 about here.]

Increasing the solvent viscosity ratio § and/or decreasing the extensibility parameter b has a slight
stabilizing effect on the energy modes, and a more significant one on the viscoelastic modes.

Before concluding our presentation of results for inertialess viscoelastic plane Couette flow, we
consider two sets of streamline and contour plots for one of each pair of least-stable eigenvalues at
wavenumbers k = 1 and k = 5, respectively, where Pe = 10*, Na = 5, De = 10, o = 60, 3 = 0.5,
and b = co. In the first set at a wavenumber of k& = 1, we examine the (energy) eigenmode for
the eigenvalue 0 = —0.043 — 0.992¢, which is the larger in magnitude of the least-stable pair. This
eigenmode has a (dimensionless) wave speed of 0.992 and travels with the top wall, while the other
mode of the pair is nearly stationary with a wave speed of 0.078. The streamlines of both modes
look identical, except that the faster moving mode is composed of vortices closer to the top wall
while the slower moving one consists of a similar array of vortices closer to the lower wall. The
perturbation streamlines for the faster of the least-stable eigenvalues at k = 1 are given in Figure
16, indicating regions of extensional flow near the walls where the streamlines diverge.

[Figure 16 about here.]

The corresponding contour plots of the zz-component of the disturbance configuration tensor a
and of the disturbance temperature 6 are presented in Figures 17 and 18, respectively, showing a
strong variation only near the top wall.

[Figure 17 about here.|

[Figure 18 about here.|
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The disturbance configuration function a,,, which for b = oo is proportional to the stress 7., is
in general larger in magnitude than the other components of a and slowest to converge. Relatively
large positive values of a,, and 6 apparently develop near the upper wall where the perturbation
flow opposes the motion of the upper wall, creating regions of increased shear.

These results with £ = 1 may be compared to those with k = 5 for the (viscoelastic) eigenmode
of 0 = —0.074 — 0.067¢, the smaller of the least-stable pair; the perturbation streamlines for this
latter mode are shown in Figure 19.

[Figure 19 about here.]

This eigenmode is nearly stationary with a wave speed of 0.013, and has an array of vortices closer
to the bottom wall. As the wavenumber increases, the vortices in general move closer and closer
to the top and bottom walls, causing large variations of all perturbation quantities in the region
between the vortex and the wall. This variation is largest for a,;, and, in the narrowing boundary
layer, is qualitatively similar to that for £ = 1 (Figs. 17 and 18); values over the rest of the channel
are negligible in comparison. The eigenfunctions at high wavenumber hence contain large spikes
near either the top or the bottom wall which become increasingly difficult to resolve, as observed
by Sureshkumar and Beris (1995).

4.2 Poiseuille Flow

We again begin with an examination of the eigenvalue spectrum. Figure 20(a) gives the spectrum
at a wavenumber of k = 1.5 for the case of Pe = 103, Na = 0, De = 5, a = 60, 3 = 0.5, and
b = o0, as computed with N = 250 terms in each spectral approximation series.

[Figure 20 about here.]

At zero Nahme number, the energy modes (hollow circles) at this wavenumber dominate the isother-
mal viscoelastic modes (solid circles), and there no longer exist the pairs of discrete eigenvalues
with the same temporal part as were observed for Couette flow. No analytical solutions are known
for the stability of Poiseuille flow. When the Nahme number is increased to Na = 20, as shown in
Figure 20(b), the spectrum is further dominated by energy modes, due to the reduction in polymeric
stresses caused by viscous heating. The discussion of convergence for Couette flow applies equally
well to Poiseuille flow, except that convergence of the viscoelastic modes is even more difficult to
achieve for the same Deborah number and wavenumber.

Our results for Poiseuille flow are summarized in Figures 21 and 22, in which we plot the tem-
poral part of the least-stable eigenvalue, Re(0y,qz ), versus wavenumber k for a range of conditions
at zero Reynolds number with o = 60.

[Figure 21 about here.]

Figure 21 shows the effect of increasing Nahme number at Pe = 103, De = 5, 3 = 0.5, and b = co. In
contrast to our findings for Couette flow, viscous heating tends to stabilize at all wavenumbers. The
energy modes again dominate at low to moderate wavenumbers, while viscoelastic modes dominate
at high wavenumbers. The cross-over point of the Na = 0 curve is not shown, as convergence could



4 STABILITY RESULTS 14

not be obtained (to N = 300) for the viscoelastic modes at that range of wavenumbers. We also
present our computations for the isothermal Maxwell model (8 = 0), the curve for which shows
a maximum near k£ = 1.5 and terminates where convergence is lost. By symmetry, each mode is
either even (sinuous) or odd (varicose) in the cross-stream component of the disturbance velocity, v,
about the mid-plane of the channel. The least-stable energy modes shown in Figure 21 are always
odd, and the least-stable viscoelastic modes after the cross-over point appear to be always even (at
least until loss of convergence). The least-stable modes for the isothermal Maxwell model are odd
below a wavenumber of about k = 3 and even above.

Figure 22 presents our results obtained with a higher Peclet number of Pe = 10* at a Deborah
number of De = 10.

[Figure 22 about here.]

Increasing Peclet number, as observed for Couette flow, destabilizes the flow at moderate wavenum-
ber, but viscous heating, specified by the Nahme number, is still stabilizing at all wavenumbers.
No cross-over points fall within the domain of this plot; the curve for Na = 0 is terminated at the
point where unresolved viscoelastic modes dominate. The maximum in the curve for the isothermal
Maxwell model is again near £k = 1.5, and all modes for points shown in the figure are odd. Un-
converged results again suggest that the least-stable isothermal Maxwell modes above about k = 3
are even.

Perturbation streamlines are presented in Figure 23 for the eigenmode of the least-stable eigen-
value, o = —0.061 — 2.95¢, at a wavenumber of k = 3 with Pe = 103, Na = 20, De = 5, a = 60,
6 =0.5, and b = oo.

[Figure 23 about here.]

This odd or varicose energy mode, depicted over the lower half-channel region 0 < y < 1, travels
close to the centerline velocity at a wave speed of 0.983, and consists of an array of cells containing
two vortices each. For the least-stable mode, the vortices closer to the walls become more so at
higher wavenumbers, and at lower wavenumbers disappear entirely leaving just one vortex per
(more rectangular) cell located close to the mid-plane of the channel. The disturbance quantities
all vary relatively slowly over the domain, and are easily resolved.

The least-stable eigenmodes for the isothermal Maxwell Poiseuille (creeping) flow below about
k = 3 are odd and correspond to plain, rectangular recirculation cells with a single vortex near
the center of each cell. The least-stable modes above about k& = 3, however, are even, and the
streamline pattern for ¢ = —.112 — .0993¢ at k£ = 3.13 is shown in Figure 24.

[Figure 24 about here.]

This even or sinuous mode is nearly stationary with a wave speed of 0.032, and is shown for the full
channel width, as the secondary flow cells are no longer confined to a half-channel. The vortices
move closer to the bounding walls with increasing wavenumber, and the polymeric stress (and
configuration) pattern near the wall is very similar to that for the viscoelastic modes in Couette
flow presented in Figure 17. As discussed earlier, these boundary layers (especially those for the
xa-component of configuration and stress) become increasingly intense, narrow, and hence difficult
to resolve, as the vortices move closer to the walls with increasing wavenumber.
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5 Discussion

The stability calculations presented herein show that inertialess viscoelastic plane Couette and
Poiseuille flows are stable to two-dimensional infinitesimal disturbances even when subject to rela-
tively strong viscous dissipation (Na > 1); thermally induced gradients in the local viscosity and
elasticity are insufficiently steep to drive an instability. At low and moderate wavenumbers, viscous
heating destabilizes/stabilizes the least-stable energy modes for Couette/Poiseuille flow, while at
high wavenumber it stabilizes the dominant viscoelastic modes. Decreasing the Peclet number,
the polymeric viscosity ratio (1 — ), or the polymer extensibility, appears to have a stabilizing
effect. For isothermal creeping Poiseuille flow using the upper-convected Maxwell model, our calcu-
lations indicate that the least-stable mode is odd with a wavenumber based on channel half-width
of k =1.5.

In the absence of other driving mechanisms for elastic instability, there is insufficient coupling
between the energy and viscoelastic modes to lead to growth of infinitesimal disturbances. This ap-
pears to be consistent with recent isothermal stability calculations by Wilson and Rallison (1999)
that indicate very large transverse gradients in material properties are required to result in an
instability. Although increased viscous heating effects do lead to transverse gradients in fluid elas-
ticity and viscosity, as the Nahme number is increased, the magnitudes of the polymeric stresses
decrease and thus eliminate onset of instability. Very recent computations by Sureshkumar and
coworkers show that this balance can, however, change in flows with curvilinear streamlines (such
as the Taylor-Couette geometry) which can exhibit purely elastic instability under isothermal con-
ditions. Incorporating viscous heating effects can change both the critical onset conditions and the
spatio-temporal characteristics of the resulting disturbance (Al-Mubaiyedh et al. 1999).

[Figure 25 about here.]

Exploratory computations at finite Reynolds numbers suggest that any instabilities in nonisother-
mal viscoelastic flows with rectilinear streamlines are due primarily to inertial effects. In Figure
25, we show the variation of Re(0,,q,) versus wavenumber k for Poiseuille flow at Re = 100 and
Re = 103 for the case Pe = 103, Na =5, De =5, a = 60, § = 0.5, and b = co. The stable curve
for Re = 100 is visibly indistinguishable from the corresponding curve for Re = 0 on the scale of
Figure 25, and hence it appears that a relatively large amount of inertia must be present in order
to destabilize the flow. Our findings are the first to conclusively show that low-Reynolds-number
polymeric melt extrudate instabilities such as sharkskin and melt fracture are probably not due to
frictional dissipation alone, though thermal effects may still contribute to current theories involving
polymer disentanglement or loss of adhesion near the wall (e.g. Barone et al. 1998, DeKee and
Wissbrun 1998, Denn 1990, and references therein).
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Figure 1: (a) Definition diagram for plane Couette flow. The bottom plate is stationary while the
top plate translates at a constant velocity Uy. Both plates are maintained at a constant temperature
Ty, and are separated by a distance h. (b) Definition diagram for plane Poiseuille flow. The top
and bottom plates are stationary. A constant-average negative pressure gradient in the z-direction
causes a flow with centerline velocity Uy. Both plates are maintained at a constant temperature
Ty, and are separated by a distance 2h.
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Figure 2: Couette base flow velocity profiles for b = oo with Na = 0, 10, and 100, as well as for
b =10 with Na = 10, De = 10, o = 60, and 8 = 0.5.
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Figure 3: Couette base flow temperature profiles for b = co with Na = 10 and 100, as well as for
b =10 with Na = 10, De = 10, a = 60, and 8 = 0.5.
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Figure 4: (a) Couette flow constitutive plot of Na, versus Na for b = 10, 1000, and oo, with
De =10, a =60, and = 0.5. (b) As (a) but for normal stress at the wall versus Na.
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Figure 5: Poiseuille base flow velocity profiles for b = co with Na = 0, 10, and 100, as well as for
b =10 with Na = 10, De = 10, o = 60, and 8 = 0.5.
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Figure 6: Poiseuille base flow temperature profiles for b = co with Na = 10 and 100, as well as for
b =10 with Na = 10, De = 10, a = 60, and 8 = 0.5.




FIGURES 27

o
[
T

b=10, Na =3.90 b=100, Na,=4.97
!l . N L L

0 1 2 3« 4 5 6
XX

Figure 7: Poiseuille base flow normal stress profiles comparing b = 10, 100, and oo, for Na = 10,
De =10, a =60, and 5 = 0.5.
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Figure 8: (a) Poiseuille flow constitutive plot of Na, versus Na for b = 10, 1000, and oo, with
De =10, a =60, and = 0.5. (b) As (a) but for normal stress at the wall versus Na.




0.0
FIGURES ! 29
0.2f
,\-0.4j
o | %
O O O @0 (@) O (@) (@) O (@) (@) o O O
& [
— 06
0.8}
-1.o’~~'~~'
0.8 0.0

0.0

6 R e(o_)-O 4
(b)

Figure 9: (a) Couette flow eigenvalue spectrum for k¥ = 1, Pe = 10*, Na = 0, De = 10, a = 60,
6 =0.5,b =00, and N = 250. The solid circles correspond to the eigenvalues of the isothermal
stability problem, while the hollow circles correspond to those of the energy equation (25). (b) As
(a) but for Na = 5.
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Figure 10: Convergence of a,,-series coefficient ¢, with number of terms r for the least-stable
(discrete) Couette flow eigenmodes at wavenumbers k£ = 1 (thick line) and k = 5 (thin line), where
Pe =10% Na =5, De=10, a =60, 3 =0.5, and b = oo.
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Figure 11: Temporal part of least-stable Couette flow eigenvalue, Re(opqz), versus k for Re = 0,
a =60, b = o0, at De = 5, with comparison to known isothermal results.
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Figure 12: Temporal part of least-stable Couette flow eigenvalue, Re(0yqz), versus k for Na = 5,
10, and 50 with Re =0, Pe = 10*, De =5, a = 60, = 0.5, and b = cc.
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Figure 13: Temporal part of least-stable Couette flow eigenvalue, Re(0ynaz ), versus k for Pe = 102,
104, and 10° at De = 10 with Re =0, o = 60, and b = cc.
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Figure 14: Temporal part of least-stable Couette flow eigenvalue, Re(oyqs), versus k for different
values of 3 at Re =0, Pe = 10*, Na = 5, De = 10, o = 60, and b = cc.
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Figure 15: Temporal part of least-stable Couette flow eigenvalue, Re(0yqs), versus k for different
values of b at Re =0, Pe = 10*, a = 60, and = 0.5.




FIGURES 36

(y/h)

3(X/h)4

0.0¢

Figure 16: Couette flow perturbation streamlines for o = —0.043 — 0.992i at k = 1 with Pe = 10%,
Na =5, De =10, a =60, 8 = 0.5, and b = oo.
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Figure 17: Couette flow contour plot of ag, for ¢ = —0.043 — 0.992i at k = 1 with Pe = 10%,
Na =5, De =10, a =60, 8 = 0.5, and b = oo.
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Figure 18: Couette flow contour plot of 6 for ¢ = —0.043 — 0.992i at k = 1 with Pe = 10*, Na = 5,

De =10, a =60, 3 =0.5, and b = co.
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Figure 19: Couette flow perturbation streamlines for o = —0.074 — 0.0674 at k = 5 with Pe = 10%,
Na =5, De =10, a =60, 8 = 0.5, and b = oo.
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Figure 20: (a) Poiseuille flow eigenvalue spectrum for k = 1.5, Pe = 103, Na = 0, De = 5, a = 60,
6 =0.5,b =00, and N = 250. The solid circles correspond to the eigenvalues of the isothermal
stability problem, while the hollow circles correspond to those of the energy equation at zero Nahme
number. (b) As (a) but for Na = 20.




FIGURES

41

0.00
-0.05 | Pe=10°, Na=0, p=0.5
_______________ Pe=10°, Na=5, p=0.5 N
~ 3 "
é [ Pe=10 , Na= 201 B: 0.5

% 010+  -mee------- [s0. Maxwell A
D: _____ \\

-0.15 |-

-0.20 b====== cee L : o s

10° 10" 10° 10

Kk

Figure 21: Temporal part of least-stable Poiseuille flow eigenvalue, Re(o,qs), versus k for Re = 0,
a =60, b = o0, at De = 5, with comparison to isothermal results.
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a =60, b = oo, at De = 10, with comparison to isothermal results.
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Figure 23: Poiseuille flow perturbation streamlines for o = —0.061 — 2.95i at k = 3 with Pe = 103,
Na =20, De=5, a =60, 3=0.5, and b = oo.
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Figure 24: Poiseuille flow perturbation streamlines for ¢ = —.112 — .0993i at k£ = 3.13 with
isothermal Maxwell model at De = 5.
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Figure 25: Temporal part of least-stable Poiseuille flow eigenvalue, Re(04), versus k for Re = 100
and 103 with Pe = 103, Na =5, De =5, a = 60, 3 = 0.5, and b = co.




