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Previous experimental measurements and linear stability analyses of curvilinear shearing flows of
viscoelastic fluids have shown that the combination of streamwise curvature and elastic normal
stresses can lead to flow destabilization. Torsional shear flows of highly elastic fluids with closed
streamlines can also accumulate heat from viscous dissipation resulting in nonuniformity in the
temperature profile within the flow and nonlinearity in the viscometric properties of the fluid.
Recently, it has been shown by Al-Mubaiyedhet al. @Phys. Fluids11, 3217 ~1999!# that the
inclusion of energetics in the linear stability analysis of viscoelastic Taylor–Couette flow can
change the dominant mode of the purely elastic instability from a nonaxisymmetric and
time-dependent secondary flow to an axisymmetric stationary Taylor-type toroidal vortex that more
closely agrees with the stability characteristics observed experimentally. In this work, we present a
detailed experimental study of the effect of viscous heating on the torsional steady shearing of
elastic fluids between a rotating cone and plate and between two rotating coaxial parallel plates.
Elastic effects in the flow are characterized by the Deborah number, De, while the magnitude of the
viscous heating is characterized by the Nahme–Griffith number, Na. We show that the relative
importance of these two competing effects can be quantified by a new dimensionless thermoelastic
parameter,Q5Na1/2/De, which is a material property of a given viscoelastic fluid independent of
the rate of deformation. By utilizing this thermoelastic number, experimental observations of
viscoelastic flow stability in three different fluids and two different geometries over a range of
temperatures can be rationalized and the critical conditions unified into a single flow stability
diagram. The thermoelastic number is a function of the molecular weight of the polymer, the flow
geometry, and the temperature of the test fluid. The experiments presented here were performed
using test fluids consisting of three different high molecular weight monodisperse polystyrene
solutions in various flow geometries and over a large range of temperatures. By systematically
varying the temperature of the test fluid or the configuration of the test geometry, the thermoelastic
number can be adjusted appreciably. When the characteristic time scale for viscous heating is much
longer than the relaxation time of the test fluid~Q!1! the critical conditions for the onset of the
elastic instability are in good agreement with the predictions of isothermal linear stability analyses.
As the thermoelastic number approaches a critical value, the strong temperature gradients induced
by viscous heating reduce the elasticity of the test fluid and delay the onset of the instability. At even
larger values of the thermoelastic parameter, viscous heating stabilizes the flow completely.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1338540#
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I. INTRODUCTION

The torsional motion of a fluid between a rotating co
and plate and between two rotating coaxial parallel plate
used extensively in rheometry to measure the material p
erties that characterize non-Newtonian fluids. For hig
elastic fluids, the combination of streamline curvature a
large normal stresses in a torsional shear flow results
streamwise tension that can destabilize the flow.1,2 Beyond a
critical rotation rate, experimental observations and lin
stability analyses show that the steady, two-dimensional,
sional shearing motion becomes unstable to a th
dimensional, time-dependent flow with a spiral plan form.3–6

The occurrence of instabilities in the processing of polym
melts and solutions has been understood for many years
3821070-6631/2001/13(2)/382/15/$18.00
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has been well documented in reviews by Petrie and De7

and Larson8 while a detailed review of purely elastic flow
instabilities in viscometric flows can be found in Shaqfe9

In the present study, we will focus on the latter class
viscometric motion with closed streamlines in which inert
effects are vanishingly small and the purely elastic instabi
is strictly a result of the interaction between the viscoelas
ity of the fluid and the curvature of the flow streamlines.

In any shear flow with closed streamlines, the test flu
can be exposed to high shear rates over an extended p
of time. As a result of the poor thermal conductivity of typ
cal polymeric materials, the accumulating heat from visco
dissipation can have a significant effect on the tempera
profile and, hence, on the measured viscometric propertie
the fluid. For a fluid undergoing a steady shearing deform
© 2001 American Institute of Physics
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tion, the Nahme number quantifies the relative importance
viscous heating10 and is given by

Na5
h0bH2ġ2

kT
, ~1!

where h0 is the viscosity in the limit of zero shear rat
Hġ5U is the characteristic velocity,k is the thermal con-
ductivity, T is the absolute temperature, andb is the thermal
sensitivity of the fluid viscosity, defined as

b5
T

h0
S Udh

dTU D . ~2!

Recognizing the onset of viscous heating is importan
the study of polymer solutions and melts because the the
sensitivity of the fluid tends to increase monotonically as
molecular weight and the viscosity of the fluid a
increased.11 Polymer melts are typically very viscous and,
highly elastic dilute polymer solutions, the solvent is oft
chosen to have a very large viscosity~denotedhs! in order to
increase the relaxation time of the polymer and reduce in
tial effects.12 Therefore, it is to be expected that viscous he
ing in polymeric fluids may significantly affect the stabilit
of viscoelastic flows. In fact, some of these effects have
ready been observed. Nonpermanent reductions in the m
sured first normal stress difference after long periods of c
tinuous shearing between a rotating cone and plate
parallel plate under unstable conditions were reported
both MacDonald and Muller13 and Magda and Larson.14 This
long time stabilization of the flow is indicative of the acc
mulation of energy as a direct result of viscous dissipati
despite careful control of the thermal boundary conditio
Nonisothermal effects on the stability conditions of mo
complex viscoelastic flows have also been investigated15 and
the possibility of using thermal modulation for optimal co
trol of viscoelastic flow has recently been considered.16

A number of theoretical studies have investigated
effect of viscous heating on the stability of shear flows.
the linear stability analyses of Newtonian planar Coue
flow, viscous stratification induced by temperature gradie
resulting from viscous heating was found to destabilize
flow at finite values of the Reynolds number.17,18 However,
at zero Reynolds number, the Newtonian plane shear fl
was shown to be stable.17 The addition of viscoelasticity
does not destabilize the inertialess flow because of the p
coupling between the~stable! energy modes and the~stable!
eigenmodes of the viscoelastic isothermal shear flow.19 Iso-
thermal viscoelastic Taylor–Couette flow, however,
unstable1 even at zero Reynolds number because of the
dition of streamline curvature. Detailed experimental inv
tigations using highly viscous polymer solutions have
ported the appearance of steady axisymmetric toro
vortices following the loss of flow stability.20 These obser-
vations directly contradict the nonaxisymmetric and tim
dependent form of the secondary flow predicted by isoth
mal linear stability analysis.1,9 Furthermore, the critica
conditions for the onset of instability can differ by more th
an order of magnitude from those observed experimental13

Recent work by Al-Mubaiyedhet al. has demonstrated tha
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the form of the secondary flow observed experimentally c
be predicted theoretically through inclusion of viscous he
ing terms in the linear stability analysis of the viscoelas
Taylor–Couette flow.21 The resulting critical conditions are
also much closer to the experimental observations. The ef
of viscous heating on the stability boundaries of other t
sional shear flows such as the flow between a rotating c
and plate and rotating coaxial parallel plates remain to
investigated. In the current work we address these issue

Schematic diagrams of the cone-and-plate and para
plate geometries are shown in Fig. 1. In these devices,
possible to alter the flow geometry by varying the radiu
R0 , cone angle,u0 , and gap height separating the test fi
tures,h. The corresponding dimensionless parameter cha
terizing the flow geometry can be written asapp5h/R0 for
the parallel-plate configuration and asacp5u0 for the cone-
and-plate configuration. For smalla!1, the base flow for
each geometry is steady, two dimensional, and leads to m
sured values of torque,T, and normal thrust,N, which in turn
can be used to compute the deformation-rate-dependent
cosity,h(ġ), and the first normal stress coefficient,C1(ġ).
As the differential angular velocity,V, between the uppe
and lower plates is increased, experiments have shown
the flow can become unstable. The critical flow conditio
for the onset of this instability are typically reported in term
of a critical Deborah number,

Decrit5lVcrit , ~3!

wherel is the characteristic relaxation time of the fluid an

FIG. 1. Schematic diagram of the cone-and-plate and the parallel-plate
ometries.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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TABLE I. Summary of analytical and numerical solutions to the isothermal cone-and-plate and paralle
linear stability problem. Note that Wi5De/a with aPP5h/R0 andaCP5u0 .

Contributor
Description of

work
Parallel-plate

result
Cone-and-plate

result

Phan-Thien
~1983,1985!
~Refs. 22 and 23!

• Oldroyd-B/UCM

• Similarity solution
Decrit5

p

A~12S!~122S!
Decrit5pA 2

~12S!~122S!

Olagunju • Oldroyd-B/UCM Decrit54.604f (S)a1/2 Decrit54.604f (S)u0
1/2

~1994,1995!
~Refs. 4 and 5!

• Short-wavelength
solution

f (S);(12S)21/2 for
S→1

f (S);(12S)21/2 for
S→1

Avagliano and
Phan-Thien
~1996! ~Ref. 6!

• Oldroyd-B/UCM

• Short-wavelength solution

Decrit5K11aK2

0&K1&2
5&K2&10

?

Renardy and
Renardy
~1998! ~Ref. 29!

• Finite edge effects
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the characteristic residence time in the flow is equal to
inverse of the angular velocity,V. Alternatively, the critical
conditions can be reported in terms of a critical Weissenb
number,

Wicrit5lġcrit , ~4!

whereġcrit is the critical deformation rate at which the flo
becomes unstable. For both test geometries,ġ5V/a.

The stability of inertialess viscoelastic flows in con
and-plate and parallel-plate geometries was first investig
analytically by Phan-Thien.22,23Using the von Karman simi-
larity form for long-wavelength disturbances in a
Oldroyd-B fluid, Phan-Thien was able to calculate critic
Deborah numbers that were, for both cases, dependent
on the ratio of solvent to total viscosity,S5hs /h0 , although
the precise form of the dependence onS for the cone-and-
plate geometry was later corrected by Olagunju.24 Soon after,
Magda and Larson14 made the first quantitative experiment
investigation of an elastic torsional flow instability. They o
served the onset of a time-dependent increase in visco
and first normal stress difference in tests run in both a co
and-plate and a parallel-plate rheometer when the shear
was increased above a critical value. Visual observation
the induced secondary flow by McKinleyet al.3 indicated
that the flow transition was nonaxisymmetric, overstable
time, and subcritical in shear rate. These observations
tradicted the theoretical analysis of Phan-Thien. This d
crepancy was later resolved by Olagunju,4,25 who showed
that the most unstable disturbance is not the long-wavele
solution of Phan-Thien, but a short-wavelength mode of
mensionless wave numberO(a). He went on to show tha
the critical Deborah number is not simply a function ofS, but
scales witha1/2. A weakly nonlinear stability analysis for th
small cone-angle limit of the viscoelastic flow between
cone and plate was also performed by Olagunju.26 The rhe-
ology of the test fluid was found to have a strong influen
on the temporal form of the instability. ForS.0.02, the flow
transition was found to be a subcritical Hopf bifurcation
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shear rate whereas in the small solvent viscosity lim
S<0.02, the flow transition was found to be supercritic
The results of these analyses are in good agreement with
work of McKinley et al.3,27 for the cone-and-plate geometry
but do not agree with the radially localized flow structu
experimentally observed in the parallel-plate geometry
cause the analysis fails to include the influence of the f
surface and the effect of shear thinning in the nonhomo
neous shearing flow.28 The presence of a free surface at t
edge of the parallel-plate geometry and the weak secon
flow that it induces were later included by Avagliano a
Phan-Thien.6 The analysis of Avagliano and Phan-Thien im
proved agreement between theory and experiment
showed that, when edge effects were considered, the cri
Deborah number scaled linearly with the geometric para
eter aPP. Using an analytical model equation developed
Olagunju25 that is valid in the limit of small gaps, Renard
and Renardy29 were able to closely approximate the tw
dimensional numerical results of Avagliano an
Phan-Thien.25,29The effect of a free surface on the instabili
in cone-and-plate flow has yet to be investigated. A summ
of the predicted forms of the critical conditions given by t
theoretical and numerical isothermal linear stability analy
discussed above can be found in Table I.

The primary objective of the present experimental wo
will be to systematically characterize the effect of visco
heating and the resulting nonisothermal fluid temperat
profiles on the onset conditions of purely elastic torsio
flow instabilities. We have chosen the cone-and-plate
parallel-plate geometries because they allow for precise t
perature control of the boundary, sensitive shear stress
first normal stress difference measurements and the flex
ity to easily make significant changes in the dimensionl
geometric parametera.

The isothermal stability analyses presented in Tabl
suggest that the stability boundary can be represented
two-dimensional plot of the Deborah number against the
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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mensionless geometric parameter. Such diagrams have
presented in previous publications.2,3,9,27 Incorporating the
effects of viscous heating leads to the study of the stab
boundary off this plane. However, the proper dimensionl
group to represent this third dimension is unclear. We
plore possible three-dimensional representations of the
bility diagram in Sec. II A and introduce a dimensionle
thermoelastic parameter,Q, characterizing viscous heating i
a polymeric fluid. In Sec. II B, we briefly summarize th
rheological characteristics of our test fluids and the ac
values of the thermoelastic parameter for the dilute polys
rene solutions used in these experiments. In Sec. III, we
compare our experimental results for flow within a cone-a
plate and parallel-plate rheometer to isothermal linear sta
ity analyses. The effect of viscous heating on the purely e
tic flow instability is then demonstrated through experime
performed over a wide range of temperatures. Finally, in S
IV, we present our conclusions.

II. EXPERIMENT

A. Stability diagrams for nonisothermal viscoelastic
flows

By nondimensionalizing the governing partial differe
tial equations for momentum and energy, one can iden
the time scales that characterize nonisothermal polym
flows. These values are tabulated in Table II and include
time scales for thermal and viscous diffusion, the polyme
time scale for stress relaxation and the time scale for visc
heating. These time scales can be used to construct two t
of dimensionless groups:~i! dynamical ratios that use th
convective time as the characteristic scale and thus have

TABLE II. Governing timescales of nonisothermal polymeric flows. No
that the characteristic length scaleH5h for parallel-plate geometries an
H5u0 R for cone-and-plate geometries. The time scale for viscoela
stress relaxation is indicated generically byl; however, in reality, a poly-
meric fluid is characterized by a spectrum of time scales. A numbe
different average measures may therefore be used@see the text and Eqs
~11!–~16! for details#.

Time scale
Dimensionless group

~scaled withtconv5ġ21! Typical value

a tthermal5
rCpH2

k
Péclet number Pé5

rCpH2ġ

k
@1

b tdiffusion5
rH2

h0
Reynolds number Re5

rH2ġ

h0
!1

c tpolymer5l Weissenberg
number

Wi5lġ ;O(1)

d theat5Ah0H2b

kT
Nahme number Na5

h0H2bġ2

kT
;O(1)

Natural ratios
~material functions independent of kinematics!

a

b
5

tthermal

tdiffusion
5Prandtl number, Pr5

h0Cp

k
@1

c

b
5

tpolymer

tdiffusion
5elasticity number, E5

lh0

rH2 @1

d

c
5

theat

tpolymera
5thermoelastic number, Q5 lR0Ah0b

kT
;O~1!
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ues that depend on the shear rate; and~ii ! intrinsic or mate-
rial ratios that are independent of kinematics. This table s
gests that a self-consistent set of dimensionless groups to
when considering the stability of viscoelastic flows are t
Weissenberg number, which is a direct measure of the fl
strength, in conjunction with the elasticity number,E, and
thermoelastic number,Q, which measure the intrinsic impor
tance of the additional nonlinearities arising from iner
and/or viscous heating. Baumert and Muller20 have reported
extensively on the effect of varying the elasticity number
the stability boundaries of viscoelastic Taylor–Couette fl
by preparing a set of fluids with differing solvent viscositie
Al-Mubaiyedhet al.21 report their results in terms of a Pe´clet
number~which will always be very large since Pr@1 for all
polymer melts and organic solutions! and a Brinkman num-
ber Br5Na/b ~which is always very small becauseb@1!.
To our knowledge no one has yet experimentally inve
gated the importance of the thermoelastic number, wh
may be ofO(1) for elastic fluids undergoing a rapid shearin
deformation. Systematic investigation of thermoelastic
fects can be performed by preparing a set of viscoela
fluids of different viscosities and/or relaxation times~by
varying the molecular weight of the polymer or the viscos
of the solvent! and then conducting tests while varying th
flow geometry and ambient temperature.

The combined effect of these variations on the th
moelastic number on the stability boundary for a typical el
tic flow instability is shown graphically in Fig. 2. Here w
select the Deborah number as a measure of the elastic ef
and the Nahme number as a measure of the importanc
viscous heating. When flow stability experiments are p
formed with a given fluid in a fixed flow geometry by slowl
incrementing the deformation rate,ġ, the slope of the trajec-

ic

f

FIG. 2. Three-dimensional schematic stability diagram for a typical v
coelastic fluid.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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tory in this three-dimensional space is given by the th
moelastic parameter

Q5
ANa

De
5

R0

l~T,Mw!
Ah0~T,Mw!b~T!

kT
. ~5!

For very low values of the thermoelastic parameter,Q!1
~corresponding ideally to fluids of low viscosity and hig
relaxation time! the stability boundary is expected to co
lapse to the form given in Table I. However, quite genera
we expect that when the two time scales are of compar
magnitude, viscous heating will affect the critical conditio
for onset of the elastic instability.

For dilute polymer solutions, the Rouse–Zimm kine
theory model predicts that the viscosity and the relaxat
time are differing functions of the molecular weight.30,31 For
example, in the non-free-draining limit the Zimm model pr
dicts that the polymeric contribution to the viscosity scales
hp}chsMw

1/2/kBT and l}Mw
3/2 , wherec is the concentra-

tion, Mw is the molecular weight of the chain, andkB is
Boltzmann’s constant. Thus, decreasing the molec
weight of the polymer will increase the relative importan
of viscous heating. The geometry can also be adjuste
alter the extent of viscous heating at a given Deborah n
ber, but the flexibility for geometric variation is quite limite
for standard test fixtures because the analytical form of
base flow assumesa!1.

Another alternative, and the avenue down which
have proceeded, is to vary the experimental test tempera
T. As the temperature is increased, the thermoelastic num
increases and the critical Deborah number for the onse
the purely elastic instability occurs at progressively larg
Nahme numbers. At these large Nahme numbers, visc
heating will delay or even completely suppress the onse
the instability. This is indicated schematically in Fig. 2, bu
may not be clear from a cursory inspection of Eq.~5!. For
amorphous viscoelastic materials, time–temperature su
position ~TTS! can be used to characterize the temperat
dependence of the material properties of the fluid.10,32 The
viscosity and relaxation time can be explicitly determined
a temperature,T, in terms of a time–temperature shift fact
and the known material properties at a reference tempera
T0 , by

aT~T,T0!5
h0~T!

h0~T0!
5

l~T!T

l~T0!T0
. ~6!

A common functional form for the shift factor is given by th
Arrhenius relationship,

aT5expFDH

R̄
S 1

T
2

1

T0
D G , ~7!

whereDH is known as the ‘‘activation energy for flow,’’10 R̄
is the universal gas constant, andT0 is the reference tem
perature. For this form, the thermal sensitivityb of the ma-
terial given in Eq.~2! is given by

b5
DH

R̄T
. ~8!
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Substituting back into Eq.~5!, the thermoelastic number be
comes

Q5
R0

l~T0!T0
ADH

kR̄

1

aT
;A 1

aT
. ~9!

Since the shift factoraT,1 for temperaturesT.T0 , there is
a monotonic increase in the thermoelastic number with
creasing temperature. This can be seen clearly by taking
ratio of the value of the thermoelastic numbers for a giv
fluid and test geometry at any two temperatures:

Q~Ttest!

Q~T0!
5A aT0

aTtest

5expFDH

2R̄
S 1

T0
2

1

Ttest
D G . ~10!

As the test temperature is decreased from the reference
perature, the thermoelastic number will decrease and
relative importance of viscous heating compared to ela
effects in the fluid will diminish.

B. Fluid rheology

Two different test fluids are used in these experiments
order to investigate the effects of fluid rheology and therm
physical properties on the elastic flow instability. These v
coelastic fluids consist of 0.05 wt.% solutions of monod
perse polystyrene~PS! ~Scientific Polymer Products, Inc.!
with a polydispersities of 1.03 and 1.2 and mass-aver
molecular weights of 6.53106 g/mol ~SM2! and 2.03107

g/mol ~SM3!, respectively. In each case, the polystyrene
dissolved in oligomeric styrene~Hercules Piccolastic! with a
molecular weight ofMw;500 g/mol. The resulting solution
fall into a class of fluids first described in detail by Bog
and co-workers12 that are highly elastic with an almost con
stant viscosity. The large viscosities and long relaxat
times of these fluids eliminate inertial effects and permit
study of viscoelastic flows at high Deborah numbers.

These two test fluids were initially prepared by Profes
Susan J. Muller as part of an interlaboratory comparison
filament stretching rheometers. A detailed analysis of
steady and transient shear and extensional rheology is
sented elsewhere.33 The rheological properties of importanc
to the present study of elastic flow instabilities will be briefl
summarized here and are tabulated in Table III.

In Fig. 3 a master curve of the rheological properties
fluid SM2 at T0525 °C is shown, measured with a con
trolled stress device~TA Instruments, Model AR1000N!. A
similar master curve can be generated for fluid SM3. T
viscoelastic properties of the fluid are characterized in sm
amplitude oscillatory shear flow by the dynamic viscos
h8~v! and the dynamic rigidity 2h9(v)/v[2G8(v)/v2,
which are both functions of the frequency of oscillation. T
linear viscoelastic properties are well described by
Rouse–Zimm bead-spring kinetic theory for dilu
solutions,34 as indicated by the solid lines in Fig. 3. Over a
intermediate range of frequencies, 1/lz!v!1/lps, the slope
of the dynamic rigidity allows an approximate determinati
of the hydrodynamic interaction parameter,35 h* , which
plays a large role in determining the spectrum of relaxat
times,30 given by
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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TABLE III. Parameters characterizing the viscometric properties of the dilute polystyrene solutions de
SM2 and SM3.

Notation Description

Parameter value

SM2 SM3

Known: c Concentration of high molecular
weight polystyrene

0.05% 0.05%

Mw /Mn Polydispersity 1.03 1.2
Mw Molecular weight~g/mol! 6.53106 2.03107

b5L2 Extensibility parameter 25000 76700
T0 Reference temperature~K! 298 298

Fitted: h0 Zero shear rate viscosity~Pa•s! 46.1 55.5
hs Solvent viscosity~Pa•s! 34.0 34.0
lps Solvent relaxation time~s! 2.731024 2.731024

h* Hydrodynamic interaction parameter 0.15 0.18
sBD Extent of anisotropy in Stokes’ law 0.59 0.79
bBD Extent of anisotropy in Brownian

motion forces
1.0 1.0

Calculated: lz Zimm ~longest! relaxation time~s! 32.1 155
l̄ Oldroyd relaxation time~s! 17.7 81.7
C10 First normal stress coefficient (Pa•s2) 428 3510
n
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l j5
lz

j ~21s! , ~11!

wheres'21.40(h* )0.78. The linear viscoelastic moduli ca
then be conveniently expressed in the following comp
form:

G85
cR̄T

Mw
(
j 51

Nm ~lzv!2

j 2~21s!1~lzv!2 1
hs

lps

~lpsv!2

11~lpsv)2 , ~12!

G95
cR̄T

Mw
(
j 51

Nm lzv j 21s

j 2~21s!1~lzv!2 1
hsv

11~lpsv!2 , ~13!

whereNm is the number of modes used to fit the linear v
coelastic data. In the limith* 50, the free-draining Rouse
model incorporates no hydrodynamic interaction a
2h9/v;v23/2, whereas in the Zimm~non-free-draining!

FIG. 3. Rheological material functions of the SM2 fluid. The data inclu
‘‘ s,’’ steady shear viscosityh(ġ) ~Pa•s!; ‘‘ d,’’ dynamic viscosityh8~v!
~Pa•s!; ‘‘ j,’’ dynamic rigidity 2h9~v!/v (Pa•s2); ‘‘ h,’’ first normal stress
coefficientC1(ġ)(Pa•s2); and the corresponding Bird–Deaguiar, FENE-
and Rouse–Zimm model fits plotted as dotted lines ‘‘- - -,’’ dashed lin
‘‘– – –,’’ and solid lines ‘‘—,’’ respectively.
6 Jan 2001  to 18.80.3.118.  Redistribution subject to
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limit h* '0.25 and 2h9/v;v24/3. At low frequencies
~v<0.01 rad/s!, the fluid is essentially Newtonian with
constant viscosityh05(1/j 21scR̄TlZ /Mw1hs . However,
at high frequencies~v>1000 rad/s!, the predictions of the
Zimm model deviate from the experimental measureme
due to the small but finite elasticity of the oligomeric solve
This additional elasticity can be modeled by an extra Ma
well element for the solvent@the final term in Eqs.~12! and
~13!# with a relaxation timelps'2.731024 s, which is in
good agreement with the range of values reported by Mac
and Boger.36 Table III lists the parameters used to compu
the material properties for both fluids.

In steady shear flow, the viscometric properties of t
fluids are characterized by the first normal stress coeffic
C1(ġ)5@t11(ġ)2t22(ġ)#/ġ2 and viscosityh(ġ), each of
which are functions of the shear rate. As shown in Fig. 3,
viscosity of the solution is approximately constant over s
eral decades of shear rate. The fluid is strongly elastic
the first normal stress coefficient shear thins monotonic
throughout the entire range over which data can be obtain
By contrast, the Rouse–Zimm bead-spring model predic
constant value of the first normal stress coefficient as a c
sequence of the preaveraging of hydrodynamic int
actions.37 The dashed lines in Fig. 3 represent the predictio
of a single-mode FENE-P model for the steady shear d
The value of the extensibility parameter,L2, is derived from
molecular quantities for both fluids and can be found
Table III. This value is consistent with measurements of
transient extensional viscosity,33 but clearly leads to an over
prediction of the steady shear properties. An improved
scription requires a more detailed treatment of hydrodyna
interactions between segments of a polymer chain unde
ing a steady shearing deformation. One such model that
counts for the anisotropy in the hydrodynamic drag forces
approximate form is the encapsulated dumbbell model
Bird and DeAguiar.38 The dotted lines in Fig. 3 represent th
predictions of a single-mode Bird–DeAguiar model fit a

s

 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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are in good agreement with both the viscosity and first n
mal stress difference measurements of the SM2 fluid.
Bird–DeAguiar model contains two parameters,sBD and
bBD , which specify the extent of anisotropy in the visco
drag on the beads and in the velocity distribution aris
from anisotropic Brownian motion, respectively. Whe
sBD5bBD51, the FENE-P model is recovered. Our explo
atory calculations suggest that to quantitatively describe
viscometric properties of dilute polymer solutions in visco
solvents, the anisotropy in the viscous drag is the prim
effect of importance. The Brownian motion of the beads c
thus be assumed to be isotropic withb51. To determine the
proper values ofsBD , the Bird–DeAguiar model was fit to
the viscometric properties of the two fluids by minimizes t
mean square error between the predicted and computed
ues of bothh(ġ) andC1(ġ). The results of these fits can b
found in Table III.

When defining a Deborah number for reporting the e
perimental measurements of the critical rotation rate for
onset of the purely elastic instability, a representative m
sure of the spectrum of relaxation times of the fluid must
chosen. The simplest choice for this fluid time scale is
longest or Zimm relaxation time,lZ , determined from the
linear viscoelastic measurements and tabulated in Table
An alternative measure commonly used is the ‘‘average’’
Oldroyd relaxation time, which is a viscosity weighted ave
age of the relaxation spectrum,

l̄5
C10

2hp,0
5

( j 51
Nm h jl j

( j 51
Nm l j

. ~14!

For the Rouse–Zimm spectrum, in which the time const
and viscosity of each relaxation mode is related to the lo
est mode by a simple recursion relation, this becomes

l̄5
( j 51

Nm j 22~21s!

( j 51
Nm j 2~21s!

lz . ~15!

Theoretical stability analyses39,40 and scaling arguments2

show that both the longest and the average value of the
laxation spectrum are important in determining the criti
conditions for flow stability.

Even though the shear viscosities of these dilute so
tions do not have a strong rate dependence, Fig. 3 dem
strates that, at the shear rates investigated in this researc
first normal stress coefficient shear thins quite heavily. T
initial onset of shear thinning is primarily the result of h
drodynamic interaction while more drastic shear thinning
higher shear rates can be attributed to, among other eff
the finite extensibility of the polymer chain. The true rela
ation time of the fluid, which can be calculated from t
viscometric properties of the fluid previously determined,
thus a strong function of the shear rate,3

l~ġ ![
C1~ ġ !

2hp~ ġ !
. ~16!

It has been found in a number of studies of viscoelastic fl
instabilities that to achieve quantitative agreement with t
oretical predictions it is necessary to use this shear-r
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dependent relaxation time when calculating the effect
value of the critical Deborah number for the onset of elas
instabilities.2,6,39,41The disadvantage of this approach is th
the precise functional form of Eq.~16! becomes model de
pendent. Therefore, for convenience and clarity the aver
relaxation time evaluated in the limit of zero shear rate,l̄,
will be used for reporting critical Deborah numbers unle
explicitly indicated otherwise.

The viscoelastic properties of the test fluids will al
change as the temperature of the experiments is varied
order to compare tests performed at different temperature
is necessary to adjust the relaxation time, normal stress
ference, and viscosity to their values at a reference temp
ture of T0525 °C. This is accomplished by employin
time–temperature superposition with a shift factoraT(T,T0)
defined in Eq.~6!. In this paper we will use the Williams–
Landel–Ferry~WLF! equation to specify the functional form
of aT(T,T0), as it has been found to accurately describe
thermorheological behavior of a wide variety of polymer s
lutions and melts.32 However, we will also present results fo
the Arrhenius formulation ofaT(T,T0) because of its sim-
plicity and widespread use in previous analyses of fl
stability.17,19,21The WLF equation has the form10

logaT5
2c1~T2T0!

c21~T2T0!
, ~17!

where c1 and c2 are constants to be determined. Figure
demonstrates how the viscosity of the SM2 and SM3 t
fluids changes as the temperature is raised from 15 °C
40 °C. Over the span of 25 °C the zero shear rate visco
decreases by a factor of 100. Superimposed on these dat
fits of the Arrhenius and WLF models for each fluid. Th
values of the constants used to fit the temperature de
dence of the fluid viscosity of both SM2 and SM3 can
found in Table IV. When represented on a semilogarithm
scales of viscosity as a function of 1/T, the Arrhenius equa-
tion @Eq. ~7!# predicts a linear relationship that accurate
describes the experimental measurements close to the r
ence temperatureT0 . However, the data in Fig. 4 show clea

FIG. 4. Steady shear viscosityh(ġ) as a function of fluid temperature. Th
data include ‘‘s,’’ SM3 test fluid; ‘‘h,’’ SM2 test fluid; and the corre-
sponding WLF and Arrhenius model fits plotted as dashed lines ‘‘–––’’ a
solid lines ‘‘—’’ respectively.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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nonlinear trends for large values ofuT2T0u that are better
described by the WLF model. For temperatures close
T0 , linearizing the WLF equation@Eq. ~17!# suggests
b(T0)5DH/R̄T0'c1T0 /c2 . Both the WLF and Arrhenius
models predict a thermal sensitivity ofb'68 for both SM2
and SM3. By contrast, the thermal sensitivity isb'20 for a
typical PIB Boger fluid.42

The density, thermal conductivity, and heat capacity
fluid SM2 and SM3 can be found in Table V and are a
sumed to be identical to the thermophysical properties of
oligomeric solvent. Additionally, the properties of both fluid
are assumed to be constant over the range of temperatu
which they are tested in this study.42

III. EXPERIMENTAL RESULTS

Our goal is to construct an experimental stability d
gram such as the one shown in Fig. 2. We first investig
the horizontal~a, De! plane by using the SM3 fluid to per
form essentially isothermal experiments, all of which hav
thermoelastic number smaller thanQ<1022.

A. Comparison with isothermal theory

The experiments were performed using a control
stress rheometer~TA Instruments, AR1000N! capable of
torque and normal force measurement as well as precise
perature control of the bottom plate using a Peltier dev
Each measurement was performed using a fresh samp
Boger fluid. After carefully loading the rheometer, the flu
was allowed to reach thermal and structural equilibrium a
test temperatureT before the testing commenced. A consta
torque,T, was then applied to the upper fixture. The sh
stress acting on the fluid is given bytCP53T/2pR0

3 for the
homogeneous shear flow in the cone-and-plate geometry
the nonhomogeneous torsional flow in the parallel-plate
ometry we report results in terms of the rim shear r
ġPP(r 5R0)5VR0 /h and the shear stress at the ri

TABLE IV. Parameters used to describe the temperature dependen
SM2 and SM3 polystyrene solutions with a reference temperatureT0

5298 K.

Notation Description of parameter

Value of parameter

SM2 SM3

c1 WLF constant 20.1 36.9
c2 WLF constant~K! 90.4 160
DH/R̃ Arrhenius constant~K! 20 200 19 900

TABLE V. Thermophysical properties of SM2 and SM3 polystyrene so
tions.

Notation Description of parameter

Value of parameter

SM2 SM3

r Density ~kg/m3! 997 997
k Thermal conductivity~W/m•K! 0.11 0.11
Cp Heat capacity~J/kg•K! 2.043103 2.043103

a Thermal diffusivity ~m2/s! 5.431028 5.431028
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tPP(r 5R0)5T /pR0
3. The resulting experimentally mea

sured shear rate was averaged over the course of one r
ation time,l2 , and then compared with subsequent avera
until the values were within a61% tolerance for two con-
secutive averages. The fluid was allowed to equilibrate o
a maximum period of ten relaxation times, at which point t
applied torque was incremented and the fluid was again
lowed to reach equilibrium. This protocol was established
ensure that at each test point the fluid microstructure
reached equilibrium. By using a controlled stress device,
possible to follow the complete flow curve corresponding
the steady two-dimensional base flow and the thr
dimensional, time-dependent flow that bifurcates subcr
cally in the shear rate.3,4,14 The shear rate is a single-value
function of stress and with careful experimentation it is po
sible to accurately determine the linear neutral stability c
dition by identifying the shear rate at which the slop
dġ/dt, changes sign.

The time-dependent nature of the purely elastic flow
stability is demonstrated in Fig. 5. A constant shear str
is applied to the SM2 test fluid between a rotating co
and plate with $R0 ,u0%5$2 cm,2°% at a temperature o

of

-

FIG. 5. Transient first normal stress difference and shear rate measurem
of the flow between a rotating$2 cm, 2°% cone-and-plate geometry with th
SM2 fluid at 25 °C taken at constant applied shear stresses of 250
500 Pa.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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T525 °C and the resulting shear rate,ġ, and first normal
stress difference,N1 , are observed over time. At a she
stress oft5250 Pa (t,100 s), the flow is stable, exhibitin
an initial overshoot and then becoming steady in time. Af
100 s, the shear stress is increased to a value oft5500 Pa.
Subsequent measurements of normal stress and shea
deviate sharply from the expected equilibrium values and
not reach a steady state, but instead demonstrate the
dependent behavior and apparent antithixotropy seen in
vious studies.3,14 The duration of this experiment was chos
to be much larger than both the polymer relaxation ti
(lz>32 s) and the time scale for thermal diffusion
(t thermal>9 s) to ensure that kinematic and thermal equil
rium were achieved. A more detailed discussion of the
portance of test protocol can be found in Sec. III C.

In Fig. 6, the experimental results for the SM3 Bog
fluids at very low Nahme number, Na<1023, are compared
with the multimode isothermal linear stability analysis
Avagliano and Phan-Thien.43 The experimentally observe
critical Deborah number is presented both as the produc
the angular frequency and the average relaxation timel̄,
evaluated in the limit of zero shear rate and as the produc
the angular rotation rate and the shear-rate-dependent r
ation time,l(ġ). As noted in Table I, when the free surfac
effects in the parallel-plate geometry are considered at s
aspect ratios, the linear stability theory predicts that the c
cal Deborah number for the onset of the elastic instabi
should have a linear dependence on aspect ratio.6,43 Through
careful experimental techniques, McKinleyet al.3 were able
to very closely approach the linear neutral stability condit
and minimize the amplitude of the disturbance, which fo
subcritical Hopf bifurcation must be finite. In fact, both O¨ z-
tekin et al.44 and Avagliano and Phan-Thien43 were able to
quantitatively match their linear stability analysis predictio
to the experimental neutral stability data of McKinleyet al.3

The solid line in Fig. 6 is the linear stability analysis pr
vided by Avagliano for the multimode Rouse–Zimm spe
trum of fluid SM3. Although neither value of the critica
Deborah number quantitatively matches the theory over
entire range of aspect ratios tested, both measures de
strate the predicted linear dependence on aspect ratio.
stability locus for the multimode model was calculated us
the approximation proposed by McKinleyet al.,2

S Demultimode

Desingle mode
D

crit

'F (
j 51

n
l jU

Rc

t11j

h0ġ

l̄U

Rc

t11

h0ġ

G 1/2

, ~18!

whereU is the local velocity along a streamline with radiu
of curvatureRc . The tensile stress along the streamline
each mode ist11j and the local shear rate isġ. Calculations
show that this equation allows one to estimate the results
the analysis of any multimode spectrum from the results o
single-mode analysis to within ten percent of the tr
value.43 For torsional flows in the parallel plate geometr
Equation ~18! can be simplified by substitutingU5rV,
Rc5r , t11j52cR̄Tl j

2ġ2/Mw , andġ5V/a to yield
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lrms

l̄
, ~19!

where

l rms5S ( j 51
Nm h jl j

2

( j 51
Nm h j

D 1/2

. ~20!

The predictions of the isothermal linear stability analy
for flow in a rotating cone and plate have also been co
pared against experimentally determined critical conditio
for both the SM2 and SM3 fluids in other geometries w
$R0 ,u0%5$3 cm,1°%, $2 cm, 2°%, and$1 cm, 4°%. These tests
were performed at low temperatures and vanishingly sm
Nahme numbers, Na<1023. The results of these tests can b
found in Fig. 7. The experimental and theoretical critic
Deborah numbers are presented as the product of the cr
angular frequency and the average or Oldroyd relaxa
time evaluated in the limit of zero shear rate, De5l̄V. The
predictions of the FENE-PM and the Bird–DeAguiar mo
els, computed using the scaling approach discussed
McKinley et al.,2 are presented along with the Rouse–Zim
multimode analysis. Recalling the results of the linear sta
ity theory of Olagunju.26 presented in Table I, one expec
the critical Deborah number for the onset of the elastic
stability to scale with the square root of the cone angle an
appear as a straight line in Fig. 7. As one quickly observ
this is only true for the shear-rate-independent Rouse–Zi
model. The modifications to the multimode FENE-PM curv
the Bird–DeAguiar curve, and the experimental data at sm
cone angles are the result of the shear-rate dependence o
viscometric properties caused by the polymer’s fin
extensibility3 and by hydrodynamic interactions.38 For very
small cone angles, the shear rate at the onset of instabili
very high and the true relaxation time of the fluid is mu
smaller than the Oldroyd relaxation time used in the form
lation of the Deborah number. For example, choosing a m
erately large cone angle ofu0

1/250.5 (u0>14°), which for

FIG. 6. Effect of aspect ratio on the critical Deborah number for the onse
the purely elastic flow instability between a rotating parallel plate for
SM3 test fluid at 25 °C.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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the SM2 fluid and the Rouse–Zimm model corresponds
critical Deborah number of Decrit52.08, results in a critica
shear rate ofġcrit5Decrit /(u0l̄SM2)50.47 s21. It is clear
from Fig. 3 that an appreciable decrease in the fluid elasti
has already occurred at this shear rate. A quantitative ag
ment can only be achieved when evaluating the criti
Deborah number with the~constant! average relaxation time
l̄, provided the constitutive model accurately represents
viscometric properties of the fluid. This requirement can
clearly seen in Fig. 7 by examining the two broken lines t
represent the stability boundaries for the FENE-PM a
Bird–DeAguiar models. The FENE-PM model qualitative
captures the onset of shear thinning inC1(ġ) at very high
shear rates~low cone angles! but seriously overpredicts th
fluid elasticity at intermediate shear rates, as shown in Fig
By contrast, the Bird–DeAguiar model captures, at le
semiquantitatively, the decrease inC1(ġ) arising from hy-
drodynamic interactions and much more accurately pred
the observed stability boundaries.

Although it cannot be seen in Fig. 7, at low enough sh
rates~high enough cone angles!, the Bird–DeAguiar model
does asymptotically approach the Rouse–Zimm stab
curve. Without continuing the abscissa of Fig. 7 to lar

FIG. 7. The effect of the cone angle on the critical Deborah number for
onset of the purely elastic flow instability between a rotating cone and p
for the ~a! SM2 and~b! SM3 test fluids.
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cone angles, we can easily validate this statement by insp
ing the viscometric data presented in Fig. 3. The Bir
DeAguiar model satisfies simple fluid theory, and so, in
limit of low shear rates, the rate-dependent relaxation time
the model will become constant and equal to the ra
independent relaxation time of the Rouse–Zimm mod
However, at these rates (ġ<1022 s21) the cone angles re
quired (u0>170 rad) would be completely unphysical.

If the shear-rate-dependent relaxation time is used in
formulation of the critical Deborah number, De5l(ġ)V,
instead of the Oldroyd relaxation time, all three models w
follow the same square root dependence on cone angle a
shear-rate-independent Rouse–Zimm model in Fig. 7. If
experimental measurements of the critical rotation rate
also reported as a critical value of the shear-rate-depen
Deborah number@using Eq.~16! to compute the relaxation
time#, quantitative agreement with all three of the mode
can be obtained. This lends additional credence to the us
the shear-rate-dependent relaxation time when compa
experiments with linear stability theory2,6,41 and is the only
way to accurately fit the neutral stability data if the visc
metric data of the viscoelastic test fluid cannot be accura
modeled by the chosen constitutive equation.

B. Nonisothermal modifications to stability of elastic
torsional flow

If Eq. ~9! is evaluated for fluid SM2 in the$2 cm, 2°%
cone-and-plate geometry, the thermoelastic number beco

QSM25
1

AaT

R0

l̄~T0!
Ah0~T0!b~T0!

kT0
5

0.011

AaT

. ~21!

For temperatures greater than the reference tempera
T.T0 , the shift factor is smaller than 1 and the thermoel
tic numberQ will increase. We show below that when th
thermoelastic number is equal toQ'0.061 (T'43 °C), vis-
cous heating results in significant modifications to the fl
stability curves. For temperatures less than the refere
temperatureT,T0 , the shift factoraT.1 and the ther-
moelastic number decreases, lowering the slope of the tra
tory followed by experiments in the three-dimensional spa
shown in Fig. 2.

Similar calculations of the thermoelastic number for fl
ids SM3 and SM1 described by Annaet al.33 show that
QSM350.0024aT

21/2 and QSM150.092aT
21/2. Viscous heat-

ing is therefore not important until temperatures
T'70 °C for fluid SM3, while it is important for all tem-
peratures greater thanT*10 °C for fluid SM1. Indeed, ex-
periments with fluid SM1 showed no elastic instability f
any temperatures or shear rates studied. Fluid SM2 was
chosen for the nonisothermal tests described below bec
its thermophysical properties allow for excellent control
the purely elastic instability at reasonable temperatures
cone angles.

Using the same testing protocol outlined in the previo
section, the effect of viscous heating was systematically
amined by performing torque sweeps on the SM2 fluid in
cone-and-plate geometry over a wide range of temperat
15 °C<T<50 °C. In Fig. 8, we show the form of the flow

e
te
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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transition for fluid SM2 using a cone-and-plate geome
with $R0 ,u0%5$2 cm,2°%. As observed by Magda an
Larson14 and by McKinleyet al.,3 the instability is subcriti-
cal in the shear rate. At a temperature of 43 °C, a str
deviation in the shear stress from a linear dependence
shear rate indicates the onset of viscous heating in
sample. Simultaneous measurement of the first normal s
difference shows that there is an even more dramatic los
elasticity, as is shown in Fig. 11. The result is a dras
reduction in the shear-rate-dependent relaxation time a
consequently, a failure to reach the critical conditions for
onset of the elastic instability.

In the isothermal linear stability theory, the critic
Deborah number for the onset of the purely elastic flow
stability is determined to be a constant, independent of t
perature~see Table I!. When represented in terms of dime
sional parameters, time–temperature superposition of
material properties leads to a linear dependence of the c
cal flow conditions on the test temperature. If the stabi
theory is expressed in terms of a critical shear stress,
obtains

tcrit[hġcrit5
h

l̄
S l̄Vcrit

u0
D . ~22!

Substituting Eq.~6! into Eq. ~22! one finds that the critica
shear stress varies linearly with temperature,

tcrit~T!5tcrit~T0!
T

T0
, ~23!

wheretcrit(T0) is the critical stress for the onset of instabili
at the reference temperature,T0 . The dotted line in Fig. 8
represents the prediction of Eq.~23! for the critical shear
stress. This decoupled isothermal approximation corre
predicts the weak modulation in the critical conditions f
the onset of instability at low thermoelastic numbers, b
does not take into account the strong coupling that arise
large thermoelastic numbers.

FIG. 8. The onset of an elastic flow instability as observed in shear s
sweeps of the SM2 test fluid at various temperatures using the$2 cm, 2°%
cone-and-plate geometry.
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The data in Fig. 8 can be collapsed by plotting the m
sured shear stress nondimensionalized by the shear stres
pected for the steady base flow,h0ġ, against the control
parameter expected from the linear stability theo
De/u0

1/2.26 In Fig. 9, we plot the stability data for both th
$1 cm, 4°% and the$2 cm, 2°% cone-and-plate geometries fo
the SM2 fluid over a wide range of temperatures. Althou
the data from the two cone angles do not superimpose
actly, the general agreement is very good. If the shear-r
dependent relaxation time is used in the formulation of
Deborah number, the results for different cone angles wo
very nearly superimpose. The data show that increasing
temperature of the test fluid, and thus the Nahme num
delays the onset of the purely elastic flow instability, but h
little effect on the amplitude of the fully developed time
dependent nonlinear state until the thermoelastic number
proaches its critical value. At that point, the instabili
is completely suppressed by viscous heating. This tra
tion happens over a very small range of temperatu
(37 °C<T<43 °C) and we now proceed to study this regi
in more detail.

To highlight the effect of viscous heating on the ba
flow, in Fig. 10 we show the progressive variation in t
dimensionless time scale for viscous heating, Na1/25theatġ,
against the dimensionless viscoelastic time scale, De,
fluid SM2 in the$2 cm, 2°% cone-and-plate rheometer as th
deformation rate is increased. The filled symbols in Fig.
represent steady two-dimensional flow while hollow symb
represent the unstable regime. A dashed line denoting
neutral stability curve has been superimposed on the da
guide the reader’s eye, but is not meant to be inferred
quantitative. At very low Nahme numbers, viscous heating
not significant and the resulting delay in the onset of
elastic instability, although clearly evident, is quite small a
in agreement with Eq.~23!. At a temperature of 40 °C, vis
cous heating begins to strongly stabilize the flow, shifting
onset of the instability upward to a Deborah number tha
15% above the value obtained at a low Nahme numb
When the temperature is increased still further to 43 °C,

ssFIG. 9. Normalized shear stress as a function of the linear stability con
parameter Deu21/2.
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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flow becomes stable at all shear rates. At this temperat
the critical thermoelastic number isQcrit50.061 correspond-
ing to Nacrit

1/250.45 and Decrit57.3. In order to obtain quanti
tative agreement with the results of linear stability analys
it is necessary to report values of critical conditions in ter
of the shear-rate-dependent relaxation time,l(ġ), rather
than the average relaxation time,l̄. If the fluid properties~in
particular, the fluid relaxation time! are allowed to vary with
shear rate, the critical thermoelastic number increases
more than an order of magnitude to a value very close to
Qcrit(ġ)50.92.

The coupling of viscous heating effects and the onse
flow instability is also manifested in a profound way in th
normal stress data. We show in Fig. 11 the shear stress
first normal stress difference as a function of shear rate
torque sweeps performed with the$2 cm, 2°% cone-and-plate
rheometer on the SM2 fluid for temperatures of 40 °C, 42
and 43 °C. As the temperature is increased from 40 °C

FIG. 10. Stability diagram for the flow between a rotating$2 cm, 2°% cone-
and-plate geometry. As the Deborah number is increased, the flow
from stable flow conditions represented by filled symbols ‘‘d’’ to unstable
flow conditions represented by hollow symbols ‘‘s.’’

FIG. 11. Viscometric properties for flow of SM2 fluid between a rotating$2
cm, 2°% cone-and-plate geometry at three temperatures showing the effe
viscous heating on the purely elastic flow instability.
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43 °C, the magnitude and duration of the elastic instability
diminished while the onset is delayed to a larger critic
Deborah number by viscous heating. The onset of visc
heating is characterized by a sharp decrease in the first
mal stress difference and is differentiable from simple sh
thinning by the nonmonotonic nature of the curves. This c
be seen most clearly in measurements of the shear stres
first normal stress difference taken at 43 °C. At low she
ratesġ&60 s21 ~Na'0.008!, the viscometric data is consis
tent with the predictions of the Rouse–Zimm and Bird
DeAguiar models. A maximum in the shear stress cor
sponding to a ‘‘thermal blowup’’ is reached at a shear rate
ġ'2700 s21 ~Na'12!. In a controlled stress experiment, n
steady values of the shear rate above this maximum s
stress are attainable.42 The first normal stress difference als
goes through a local maximum, but at a much lower sh
rate ġ'320 s21 ~Na'0.17!. This degradation of fluid elas
ticity results in the complete suppression of the elastic fl
instability. In the experiments at 40 °C and 42 °C, the flo
becomes unstable before viscous heating can begin to
nificantly degrade the elasticity. However, the instability
quickly suppressed after a critical value of the Nahme nu
ber Nacrit'0.23 is reached. The shear stress does begi
show noticeable nonlinear effects at these moderate s
rates, but the normal stress is clearly a much better indic
of viscous heating. These viscous heating trends are in
cellent agreement with the recent measurements of sim
polystyrene- and polyisobutylene-based Boger fluids p
formed by Arigo.42

C. Effect of test protocol on stability observations

Since there are a number of important time scales ch
acterizing different physical processes in the fluid~see Table
I!, the choice of experimental test protocol and the associa
observation window can have a significant impact on
observed results of the experiments. Theoretical stab
analyses19,21 of nonisothermal viscoelastic flows assume th
the base flow on to which perturbations are impos
is steady and fully developed. For the cone-and-pl
geometries the timescale for thermal diffusion
5 s&t thermal&10 s ~depending on cone geometry! and the
time scale for the stress to reach steady state islz(T0)
531.1 s. If the experiment ramps in torque are imposed
quickly, then the fluid may not be able to reach thermal
structural equilibrium, resulting in the observation of a pse
dosteady state, which is, in fact, dependent on the spee
which one probes the material. The issue of structural eq
librium is most pertinent at low temperatures where the
laxation time is much longer than the time scale for therm
diffusion. Ramping the torque too quickly at low temper
tures will result in the observation of a critical Deborah nu
ber much higher than expected because the fluid stresses
not be fully developed. At higher temperatures, the rel
ation time,l(T)5lz(T0)/aT , decreases rapidly and it is th
thermal diffusion time that becomes important.

When both scales are equally important, very comp
dynamics may ensue. In Fig. 12, we show measurement
the SM2 fluid in a cone-and-plate geometry wi

es

of
 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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$R0 ,u0%5$2 cm, 2°% at a test temperature ofT543 °C. On
the basis of the steady-state experiments described in
III B, using step changes in the applied shear stress and a
relaxation time observation window, viscous heating
found to completely stabilize the flow. The correspondi
data for the shear stress and normal stress are shown as
symbols. As the shear rate increases, viscous heating re
in an apparent shear thinning in the shear stress and a
matic decrease in the normal force exerted on the co
However, if a continuous stress ramp with rate of increase
dt/dt55 Pa/s is imposed, the data corresponding to
filled symbols is obtained and the flow appears to exhibit
elastic instability. When the underlying steady on
dimensional shear flow is stable (ġ<110 s21), the two
curves closely parallel each other and the shear stress pr
tions of the Rouse–Zimm bead spring model. The depar
in the first normal stress data from the predictions of
quasilinear Rouse–Zimm model is the result of shear th
ning caused by hydrodynamic interactions and can be c
tured by the Bird–DeAguiar model. At higher shear rates
transient subcritical instability is observed. As the stress
increased, the shear rate initially decreases and the no
stress increases dramatically, as previously observed in
11 for lower test temperatures. However, as the thermal
file in the fluid begins to develop through the rapid a
muthal, and slower radial, diffusion of thermal energy, t
effective elasticity of the fluid decreases. Eventually, the
stability is effectively eliminated and the shear rate returns
a steady, stable value monotonically increasing with the
posed stress.

IV. CONCLUSIONS

In this study, we have systematically demonstrated
importance of nonisothermal flow effects on the stability
torsional flows of highly elastic polymer solutions. Tw
monodisperse polystyrene test fluids of different molecu
weight have been used to investigate the role of the fl
rheology. The agreement with isothermal linear stabi

FIG. 12. Viscometric properties for flow of SM2 fluid between a rotating$2
cm, 2°% cone-and-plate geometry atT540 °C, showing the effect of tes
protocol. The predictions of the Rouse–Zimm bead spring model are plo
as dashed lines ‘‘–––’’ for low shear rates.
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analyses for the Rouse–Zimm and Bird–DeAguiar const
tive models in both cone-and-plate and parallel-plate geo
etries was found to be good, especially if shear thinning
the fluid relaxation time is accounted for. It was then sho
that the proper dimensionless groups to consider when in
tigating purely elastic instabilities in viscoelastic flows a
the Deborah number and the thermoelastic num
Q5Na1/2/De, which measures the importance of coupli
between the fluid elasticity and the nonlinearities aris
from viscous heating. The thermoelastic number can be
fluenced by changes in geometry, molecular weight, a
temperature. By varying the ambient temperature of the
fluid through a fairly narrow range, it was possible to pr
gressively delay the onset of the purely elastic flow insta
ity through a decrease in elasticity caused by tempera
gradients across the gap. At thermoelastic numbers gre
thanQ.Qcrit'0.062, the flow instability can be eliminate
entirely by the same mechanism.

When the effects of energetics on the linear stability
the viscoelastic flow within a Taylor–Couette device we
investigated by Al-Mubaiyedhet al.,21 a new mode of differ-
ent spatiotemporal character to the mode arising from
thermal linear stability analysis was predicted to be the m
unstable. The critical conditions for onset of this new statio
ary mode of instability are much lower than those requir
for the isothermal mode and are also in better agreem
with the experimental observations. By contrast, in ear
investigations of the viscoelastic torsional flow between
rotating cone and plate or between two coaxial para
plates, the critical conditions for the onset of spiral seco
ary flows were observed to be consistent with the predicti
of isothermal linear stability analysis.3,4,27This has been con
firmed by our present experiments when the thermoela
number is small. No new mode of instability is observed a
viscous heating effects~corresponding to an increasing the
moelastic number! are found to progressively stabilize th
subcritical bifurcation. These two studies thus do not app
to be consistent. However, very recently, Al-Mubaiye
et al.45 extended their linear stability analysis of nonisothe
mal viscoelastic flows to the case of pressure-driven Tayl
Dean flow. In this geometry they found that, as in t
present torsional flow experiments, the dominant mode of
instability does not change with the addition of viscous he
ing, but is instead dramatically stabilized. The thermal mo
is still present, but is not the dominant mode until Pe@1.

The differences observed between the stability charac
istics of viscoelastic flow in the Taylor–Couette, Taylor
Dean, and torsional geometries must be the result of dif
ences in the symmetries of the base velocity, temperat
and stress fields. When the temperature at both walls is
same and the fluid is heated through viscous dissipation,
local fluid temperature achieves a maximum at the cente
the gap. It is easy to physically understand how viscous h
ing can stabilize any of these flows. As discussed in McK
ley et al.,2 purely elastic instabilities arise from an interpla
between streamline curvature and elastic normal stres
When a critical Deborah number is reached, the followi
dimensionless parameter exceeds a critical value:

d

 AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.
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S lU

Rc

t11

h0ġ D 1/2

>M crit , ~24!

and the flow becomes unstable. The temperature incr
caused by viscous heating leads to a decrease of both
viscosity and the elasticity of the test fluid and thus results
a decrease in the elastic hoop stress. The critical cond
expressed in Eq.~24! is no longer exceeded along loc
streamlines, even though the critical conditions would ha
been reached globally for an isothermal flow at the sa
rate. This thermoelastic mechanism has been found to s
lize the isothermal elastic modes of all the flows examin
including the Taylor–Couette geometry for Pe,104.21

In the base flow of the Taylor–Couette geometry t
shear stress is uniform across the gap. Viscous hea
breaks the base flow symmetry in the gradient direction
new temporal mode of instability is caused by radial conv
tion of thermal gradients across streamlines. It appears
the symmetry of the base stress field in Taylor–Couette fl
may shift the onset of this new thermoelastic instability
much smaller Peclet numbers (Pe*104), than is found in the
case of Taylor–Dean flow (Pe*105), in which the base-state
stress field is already inhomogeneous.21,45

If one applies this same reasoning to the two torsio
flow geometries, then one would expect that because of
homogeneity of the stress field in the base state of the c
and-plate geometry, the effect of viscous heating should l
to a new mode of instability, as observed in the linear sta
ity calculations for the Taylor–Couette geometry. By co
trast, one would reason that the parallel-plate geometry
which the stress field is already radially inhomogeneo
would more closely resemble the Taylor–Dean flow geo
etry. However, these symmetry arguments do not agree
our experimental observation. Viscometric flow in the con
and-plate geometry does not appear to exhibit a new mod
instability when viscous heating is included, but rather onl
stabilization of the isothermal elastic spiral instability. T
magnitude of viscous heating in a flow scales with t
Nahme number, which for the cone-and-plate geometry
be written as Na5br 2V2/kT0 . Thus, even though the she
rate, ġ5V/u0 , is constant in the cone-and-plate geomet
the velocity, and the resulting viscous dissipation, increa
radially. Therefore, unlike the Taylor–Couette geomet
viscous heating results in nonhomogeneous tempera
variations in both the gradient and the neutral direction
the cone-and-plate geometry. In the parallel-plate geom
the gap between the plates is constant, but both the temp
ture field and shear rate~or in dimensionless terms, th
Nahme–Griffiths number and the Weissenberg number,
spectively! will exhibit radial variations. The two torsiona
flows thus seem to have more in common with the Taylo
Dean geometry. Such base flow symmetry arguments
help to rationalize these differences in thermoelastic effe
however, what is ultimately required is a detailed compa
son of the linearized disturbance equations for viscoela
flow in the Taylor–Couette, Dean, and torsional flow geo
etries.

The subcritical bifurcation in shear rate observed in
present experiments is different from the turning point in
Downloaded 26 Jan 2001  to 18.80.3.118.  Redistribution subject to
se
the
n
n

e
e
bi-
,

ng
A
-
at
w

l
he
e-
d

l-
-
in
s,
-
th
-
of
a

n

,
s

,
re
r
ry
ra-

e-

–
ay
s,
i-
ic
-

e
e

shear stress—shear rate curve corresponding to the ‘‘the
blowup’’ seen in similar Boger fluids and highly viscou
Newtonian fluids42 at large Nahme numbers. This instabilit
which can be seen in both the shear stress and the no
stress data presented in Fig. 11 atT543 °C, corresponds to
the point at which viscous heating reduces the viscosity
significantly that increases in applied shear rate result i
decrease of the measured shear stress necessary to driv
flow.17

The effects of viscous heating will always be present
some extent in the shear flow of highly elastic fluids. The
effects will be especially important in shear flows wi
closed streamlines in which the heat from viscous dissipa
can be accumulated in the device over long periods of tim
In this work, we have shown that the effect of viscous he
ing can be minimized by considering the functional depe
dence of the thermoelastic parameter in Eq.~5! and by de-
creasing the ambient temperature of the test or by utiliz
small devices. Such an approach has been used to mini
thermal noise in detailed studies of other hydrodynamic fl
instabilities.46
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