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Previous experimental measurements and linear stability analyses of curvilinear shearing flows of
viscoelastic fluids have shown that the combination of streamwise curvature and elastic normal
stresses can lead to flow destabilization. Torsional shear flows of highly elastic fluids with closed
streamlines can also accumulate heat from viscous dissipation resulting in nonuniformity in the
temperature profile within the flow and nonlinearity in the viscometric properties of the fluid.
Recently, it has been shown by Al-Mubaiyeéhal. [Phys. Fluids11, 3217 (1999] that the
inclusion of energetics in the linear stability analysis of viscoelastic Taylor—Couette flow can
change the dominant mode of the purely elastic instability from a nonaxisymmetric and
time-dependent secondary flow to an axisymmetric stationary Taylor-type toroidal vortex that more
closely agrees with the stability characteristics observed experimentally. In this work, we present a
detailed experimental study of the effect of viscous heating on the torsional steady shearing of
elastic fluids between a rotating cone and plate and between two rotating coaxial parallel plates.
Elastic effects in the flow are characterized by the Deborah number, De, while the magnitude of the
viscous heating is characterized by the Nahme—Griffith number, Na. We show that the relative
importance of these two competing effects can be quantified by a new dimensionless thermoelastic
parameter® = Na'’¥De, which is a material property of a given viscoelastic fluid independent of
the rate of deformation. By utilizing this thermoelastic number, experimental observations of
viscoelastic flow stability in three different fluids and two different geometries over a range of
temperatures can be rationalized and the critical conditions unified into a single flow stability
diagram. The thermoelastic number is a function of the molecular weight of the polymer, the flow
geometry, and the temperature of the test fluid. The experiments presented here were performed
using test fluids consisting of three different high molecular weight monodisperse polystyrene
solutions in various flow geometries and over a large range of temperatures. By systematically
varying the temperature of the test fluid or the configuration of the test geometry, the thermoelastic
number can be adjusted appreciably. When the characteristic time scale for viscous heating is much
longer than the relaxation time of the test fli@l<1) the critical conditions for the onset of the
elastic instability are in good agreement with the predictions of isothermal linear stability analyses.
As the thermoelastic number approaches a critical value, the strong temperature gradients induced
by viscous heating reduce the elasticity of the test fluid and delay the onset of the instability. At even
larger values of the thermoelastic parameter, viscous heating stabilizes the flow completely.
© 2001 American Institute of Physic§DOI: 10.1063/1.1338540

I. INTRODUCTION has been well documented in reviews by Petrie and Denn
and Larsof while a detailed review of purely elastic flow
The torsional motion of a fluid between a rotating coneinstabilities in viscometric flows can be found in Shagfeh.
and plate and between two rotating coaxial parallel plates i1 the present study, we will focus on the latter class of
used extensively in rheometry to measure the material propsiscometric motion with closed streamlines in which inertial
erties that characterize non-Newtonian fluids. For highlyeffects are vanishingly small and the purely elastic instability
elastic fluids, the combination of streamline curvature ands strictly a result of the interaction between the viscoelastic-
large normal stresses in a torsional shear flow results in &y of the fluid and the curvature of the flow streamlines.
streamwise tension that can destabilize the fidigeyond a In any shear flow with closed streamlines, the test fluid
critical rotation rate, experimental observations and lineacan be exposed to high shear rates over an extended period
stability analyses show that the steady, two-dimensional, toref time. As a result of the poor thermal conductivity of typi-
sional shearing motion becomes unstable to a threesal polymeric materials, the accumulating heat from viscous
dimensional, time-dependent flow with a spiral plan foffh.  dissipation can have a significant effect on the temperature
The occurrence of instabilities in the processing of polymerprofile and, hence, on the measured viscometric properties of
melts and solutions has been understood for many years atlde fluid. For a fluid undergoing a steady shearing deforma-
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tion, the Nahme number quantifies the relative importance of

viscous heatintf and is given by %) |
70BH?Y ( | D
Na= T (1) |
where 74 is the viscosity in the limit of zero shear rate, | R,
Hy=U is the characteristic velocity is the thermal con- q >
ductivity, T is the absolute temperature, afds the thermal ! )
sensitivity of the fluid viscosity, defined as % |
|
T (|dy :
o ellet ) ? |

Recognizing the onset of viscous heating is important in
the study of polymer solutions and melts because the thermal
sensitivity of the fluid tends to increase monotonically as the b)
molecular weight and the viscosity of the fluid are
increased! Polymer melts are typically very viscous and, in
highly elastic dilute polymer solutions, the solvent is often
chosen to have a very large viscositienotedss) in order to
increase the relaxation time of the polymer and reduce iner-
tial effects'? Therefore, it is to be expected that viscous heat-
ing in polymeric fluids may significantly affect the stability
of viscoelastic flows. In fact, some of these effects have al-
ready been observed. Nonpermanent reductions in the mea-
sured first normal stress difference after long periods of con- !
tinuous shearing between a rotating cone and plate anglG. 1. Schematic diagram of the cone-and-plate and the parallel-plate ge-
parallel plate under unstable conditions were reported bymetries.
both MacDonald and Mulléf and Magda and Larsdf.This
long time stabilization of the flow is indicative of the accu-
mulation of energy as a direct result of viscous dissipationthe form of the secondary flow observed experimentally can
despite careful control of the thermal boundary conditionsbe predicted theoretically through inclusion of viscous heat-
Nonisothermal effects on the stability conditions of moreing terms in the linear stability analysis of the viscoelastic
complex viscoelastic flows have also been investigdtadd — Taylor—Couette flovi* The resulting critical conditions are
the possibility of using thermal modulation for optimal con- also much closer to the experimental observations. The effect
trol of viscoelastic flow has recently been considefed. of viscous heating on the stability boundaries of other tor-
A number of theoretical studies have investigated thesional shear flows such as the flow between a rotating cone
effect of viscous heating on the stability of shear flows. Inand plate and rotating coaxial parallel plates remain to be
the linear stability analyses of Newtonian planar Couettdnvestigated. In the current work we address these issues.
flow, viscous stratification induced by temperature gradients  Schematic diagrams of the cone-and-plate and parallel-
resulting from viscous heating was found to destabilize theplate geometries are shown in Fig. 1. In these devices, it is
flow at finite values of the Reynolds numdér® However,  possible to alter the flow geometry by varying the radius,
at zero Reynolds number, the Newtonian plane shear flow,, cone anglef,, and gap height separating the test fix-
was shown to be stabfé. The addition of viscoelasticity tures,h. The corresponding dimensionless parameter charac-
does not destabilize the inertialess flow because of the poaerizing the flow geometry can be written a8”=h/R, for
coupling between théstablg energy modes and thstablg  the parallel-plate configuration and a&°= 6, for the cone-
eigenmodes of the viscoelastic isothermal shear #bl8o-  and-plate configuration. For smadl<1, the base flow for
thermal viscoelastic Taylor—Couette flow, however, iseach geometry is steady, two dimensional, and leads to mea-
unstablé even at zero Reynolds number because of the adsured values of torqud, and normal thrust\, which in turn
dition of streamline curvature. Detailed experimental invescan be used to compute the deformation-rate-dependent vis-
tigations using highly viscous polymer solutions have re-cosity, (), and the first normal stress coefficiedt; ().
ported the appearance of steady axisymmetric toroidals the differential angular velocity), between the upper
vortices following the loss of flow stabilit}? These obser- and lower plates is increased, experiments have shown that
vations directly contradict the nonaxisymmetric and time-the flow can become unstable. The critical flow conditions
dependent form of the secondary flow predicted by isotherfor the onset of this instability are typically reported in terms
mal linear stability analysi® Furthermore, the critical of a critical Deborah number,
conditions for the onset of instability can differ by more than
an order of magnitude from those observed experimentally. Deerit=Meiit, )
Recent work by Al-Mubaiyedtet al. has demonstrated that where\ is the characteristic relaxation time of the fluid and

of
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TABLE I. Summary of analytical and numerical solutions to the isothermal cone-and-plate and parallel-plate
linear stability problem. Note that WiDe/a with a"P=h/R, and o= 6,.

Description of Parallel-plate Cone-and-plate
Contributor work result result
Phan-Thien * Oldroyd-B/UCM - 2
(1983,1985 Deyii= ———= Dei=7"\/ 7—a77 5a
1-5)(1-2
(Refs. 22 and 28  « Similarity solution (1-9(1-29 (1=9) S
Olagunju « Oldroyd-B/UCM Dgy=4.604f(S)a’?  Dey;=4.604f(S) 032
(1994,199% « Short-wavelength f(S)~(1—S) Y2 for f(S)~(1—S) Y2 for
(Refs. 4 and b solution S—1 S—1
Avagliano and * Oldroyd-B/UCM De,ii=K i+ aK,
Phan-Thien
(1996 (Ref. 6 « Short-wavelength solution 0=K;=<2 ?
5=<K,=<10
Renardy and « Finite edge effects
Renardy

(1998 (Ref. 29

the characteristic residence time in the flow is equal to theshear rate whereas in the small solvent viscosity limit,
inverse of the angular velocity). Alternatively, the critical S<0.02, the flow transition was found to be supercritical.
conditions can be reported in terms of a critical Weissenberghe results of these analyses are in good agreement with the
number, work of McKinley et al>?’ for the cone-and-plate geometry,
(4) but do not agree with the radially localized flow structure
. experimentally observed in the parallel-plate geometry be-
where yct is the critical deformation rate at which the flow cayse the analysis fails to include the influence of the free
becomes unstable. For both test geometrjes(}/a. surface and the effect of shear thinning in the nonhomoge-
The stability of inertialess viscoelastic flows in cone- oqus shearing flo#? The presence of a free surface at the
and-pl_ate and parallel-platezgeometries was first inves_tigateéldge of the parallel-plate geometry and the weak secondary
analytically by Phan-Thieff:** Using the von Karman simi- 4,y that it induces were later included by Avagliano and
larity form for long-wavelength disturbances in an ppan Thierf The analysis of Avagliano and Phan-Thien im-
Oldroyd-B fluid, Phan-Thien was able to calculate critical roved agreement between theory and experiment and
Deborah numbers that were, for both cases, dependent oni%owed that, when edge effects were considered, the critical

on the rgtlo of solvent to total ViSCositg= »s/ 7o, although Deborah number scaled linearly with the geometric param-
the precise form of the dependence $ffor the cone-and- PP . . ;
eter o™ ". Using an analytical model equation developed by

plate geometry was later corrected by Olaguijoon after, Olagunji® that is valid in the limit of small gaps, Renardy

Magda and Larsdit made the first quantitative experimental ;

. oo : . . o and Renard¥’ were able to closely approximate the two-

investigation of an elastic torsional flow instability. They ob- . . . .
mensional numerical results of Avagliano and

served the onset of a time-dependent increase in viscosi . o599 ) "
and first normal stress difference in tests run in both a cone- han-Thiert>**The effect of a free surface on the instability

and-plate and a parallel-plate rheometer when the shear rafecone-and-plate flow has yet to be investigated. A summary
was increased above a critical value. Visual observations df' (€ Predicted forms of the critical conditions given by the
the induced secondary flow by McKinlest al® indicated theorencal and numerical |sothe'rmal linear stability analyses
that the flow transition was nonaxisymmetric, overstable indiscussed above can be found in Table I. _

time, and subcritical in shear rate. These observations con- The primary objective of the present experimental work
tradicted the theoretical analysis of Phan-Thien. This disWill be to systematically characterize the effect of viscous
crepancy was later resolved by Olaguffif,who showed heating and the resulting nonisothermal fluid temperature
that the most unstable disturbance is not the long-wavelengtrofiles on the onset conditions of purely elastic torsional
solution of Phan-Thien, but a short-wavelength mode of diflow instabilities. We have chosen the cone-and-plate and
mensionless wave numb&(a). He went on to show that parallel-plate geometries because they allow for precise tem-
the critical Deborah number is not simply a functionsbut ~ perature control of the boundary, sensitive shear stress and
scales witha’2. A weakly nonlinear stability analysis for the first normal stress difference measurements and the flexibil-
small cone-angle limit of the viscoelastic flow between aity to easily make significant changes in the dimensionless
cone and plate was also performed by Olagifjiihe rhe- ~ geometric parametet.

ology of the test fluid was found to have a strong influence  The isothermal stability analyses presented in Table |
on the temporal form of the instability. F&>0.02, the flow  suggest that the stability boundary can be represented on a
transition was found to be a subcritical Hopf bifurcation in two-dimensional plot of the Deborah number against the di-

Wi crit:)\:)’crit )
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TABLE II. Governing timescales of nonisothermal polymeric flows. Note 1B
that the characteristic length scate=h for parallel-plate geometries and VNa = QR, A
H=46, R for cone-and-plate geometries. The time scale for viscoelastic A <4
stress relaxation is indicated generically yhowever, in reality, a poly- ized by

; S - 8 : / hilize
meric fluid is characterized by a spectrum of time scales. A number of : Ste Heating
different average measures may therefore be (ised the text and Egs. & & / vis“’“s
(11)—(16) for details. § K

Dimensionless group 9 K
Time scale (scaled withtggn= "1 Typical value % Q\s/
o
2 2

@ t F@ Peclet number Pe= pCoH7y >1 / 1

ermal K K ‘6@) o

H2 H2: Q\& Elasticity —»
® tdiﬁusion:p— Reynolds number Rg,tp 4 <1
7o De = A2
® tpolymer=\ Weissenberg Wi=\y ~0(1) &
number &
7178 oH?B7? &
@ thea T Nahme number  Nag= T ~0(1) / Stable
Natural ratios
(material functions independent of kinemajics Unstable
o = E g2
® t 70C - "
thermal p

— =———=Prandtl number, R >1
@ tdiffusion k
® tpolymer A7
— = —— =elasticity number, E= >1
@ tdiffusion y pHZ . . . - . . .
@ t 7B FIG. 2. Three-dimensional schematic stability diagram for a typical vis-
= — " _thermoelastic number, ©®= AR, \/——~0(1) coelastic fluid.
® Epolymer® kT

ues that depend on the shear rate; éndntrinsic or mate-
mensionless geometric parameter. Such diagrams have be@dl ratios that are independent of kinematics. This table sug-
presented in previous publicatioh$®?” Incorporating the gests that a self-consistent set of dimensionless groups to use
effects of viscous heating leads to the study of the stabilityvhen considering the stability of viscoelastic flows are the
boundary off this plane. However, the proper dimensionlesyVeissenberg number, which is a direct measure of the flow
group to represent this third dimension is unclear. We exstrength, in conjunction with the elasticity numbé, and
plore possible three-dimensional representations of the stdhermoelastic numbef), which measure the intrinsic impor-
bility diagram in Sec. IlA and introduce a dimensionlesstance of the additional nonlinearities arising from inertia
thermoelastic paramete®, characterizing viscous heating in and/or viscous heating. Baumert and Muifenave reported
a polymeric fluid. In Sec. 1B, we briefly summarize the extensively on the effect of varying the elasticity number on
rheological characteristics of our test fluids and the actuathe stability boundaries of viscoelastic Taylor—Couette flow
values of the thermoelastic parameter for the dilute polystyby preparing a set of fluids with differing solvent viscosities.
rene solutions used in these experiments. In Sec. Ill, we firshl-Mubaiyedhet al** report their results in terms of a élet
compare our experimental results for flow within a cone-andhumber(which will always be very large since $4 for all
plate and parallel-plate rheometer to isothermal linear stabilPolymer melts and organic solutionand a Brinkman num-
ity analyses. The effect of viscous heating on the purely elasPer Br=Na/g (which is always very small becaug1).
tic flow instability is then demonstrated through experimentsTo our knowledge no one has yet experimentally investi-
performed over a wide range of temperatures. Finally, in Secgated the importance of the thermoelastic number, which
IV, we present our conclusions. may be ofO(1) for elastic fluids undergoing a rapid shearing
deformation. Systematic investigation of thermoelastic ef-
fects can be performed by preparing a set of viscoelastic
fluids of different viscosities and/or relaxation timéy
varying the molecular weight of the polymer or the viscosity
of the solvenk and then conducting tests while varying the

By nondimensionalizing the governing partial differen- flow geometry and ambient temperature.

tial equations for momentum and energy, one can identify The combined effect of these variations on the ther-
the time scales that characterize nonisothermal polymerimoelastic number on the stability boundary for a typical elas-
flows. These values are tabulated in Table Il and include théc flow instability is shown graphically in Fig. 2. Here we
time scales for thermal and viscous diffusion, the polymericselect the Deborah number as a measure of the elastic effects
time scale for stress relaxation and the time scale for viscouand the Nahme number as a measure of the importance of
heating. These time scales can be used to construct two typescous heating. When flow stability experiments are per-
of dimensionless groupgi) dynamical ratios that use the formed with a given fluid in a fixed flow geometry by slowly
convective time as the characteristic scale and thus have vahcrementing the deformation rate, the slope of the trajec-

Il. EXPERIMENT

A. Stability diagrams for nonisothermal viscoelastic
flows
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tory in this three-dimensional space is given by the therSubstituting back into E(5), the thermoelastic number be-

moelastic parameter
o WNa_ R 70(T M) B(T) ©
De A (T,M) kT '

For very low values of the thermoelastic parametersl

comes

o Ro AH 1 [1
~MT9To V kR ar ar

Since the shift factoa;<1 for temperature$>T, there is

C)

(corresponding ideally to fluids of low viscosity and high a monotonic increase in the thermoelastic number with in-
relaxation time the stability boundary is expected to col- creasing temperature. This can be seen clearly by taking the
lapse to the form given in Table |. However, quite generally,ratio of the value of the thermoelastic numbers for a given
we expect that when the two time scales are of comparabluid and test geometry at any two temperatures:
magnitude, viscous heating will affect the critical conditions
for onset of the elastic instability. ar, AH 1

For dilute polymer solutions, the Rouse—Zimm kinetic ar PR Ty T
theory model predicts that the viscosity and the relaxation fest
time are differing functions of the molecular weight!For ~ As the test temperature is decreased from the reference tem-
example, in the non-free-draining limit the Zimm model pre- perature, the thermoelastic number will decrease and the
dicts that the polymeric contribution to the viscosity scales aselative importance of viscous heating compared to elastic
np*CcnMykeT and A=M3/?, wherec is the concentra- effects in the fluid will diminish.
tion, M, is the molecular weight of the chain, amg is
Boltzmann’s constant. Thus, decreasing the moleculaB. Fluid rheology

weight of the polymer will increase the relative importance Two different test fluids are used in these experiments in

Olf V|sEous heatmfg..The g(ra]omgtry can "?‘ISO %e ;dju;‘ted Brder to investigate the effects of fluid rheology and thermo-
Ster; € ﬁxtﬁnt.g_rwsfcous eating at a given Det orlg .mémbhysical properties on the elastic flow instability. These vis-
er, but the flexibility for geometric variation is quite limited ., o|5qtic fluids consist of 0.05 wt.% solutions of monodis-

for standard test fixtures because the analytical form of th‘f)erse polystyrendPS (Scientific Polymer Products, Inc
base flow assumes<1. with a polydispersities of 1.03 and 1.2 and mass-average

Another altematlve, and the avenue down which We olecular weights of 681 g/mol (SM2) and 2.0< 107
have proceeded, is to vary the experimental test temperatugj
;

O(Tees) _ 1

0(Ty)

. (10

g . /mol (SM3), respectively. In each case, the polystyrene is
.T' As the temge;]ature_ 1 'Pgegsedﬁ the tk;)ern}oelahstlc numb issolved in oligomeric styrenglercules Piccolastjovith a
Increases and the critical Deborah number for the onset gf,,qcyjar weight oM ,,~500 g/mol. The resulting solutions

the purely elastic instability occurs at progressively Iqrgerfall into a class of fluids first described in detail by Boger
Nahf“e ngmbers. At these large Nahme numbers, visco d co-worker¥ that are highly elastic with an almost con-
hea_tlng W.'I.I delay or even completely Suppress t_he onset.o tant viscosity. The large viscosities and long relaxation
the mstabt;hty.IThlsflS indicated schematically |r}F|g. ZIE butit yimes of these fluids eliminate inertial effects and permit the
may not be clear from a cursory |n§pect|on of ER). For study of viscoelastic flows at high Deborah numbers.
am(.)r.phous viscoelastic materials, tlme'—temperature SUPET™ " These two test fluids were initially prepared by Professor
position (TTS) can be use_d o chara_cterlze the temperaturesan J. Muller as part of an interlaboratory comparison of
d_epenfjence of the ’.“ate.“a' properties O_f _the ﬁﬂl%f:'l’_he filament stretching rheometers. A detailed analysis of the
viscosity and relaxation time can be explicitly determined atsteady and transient shear and extensional rheology is pre-

a tgmhpeLatureT, n tem:s ofa tlme—temp(farature shift factor sented elsewher®.The rheological properties of importance
and the known material properties at a reference temperaturg, present study of elastic flow instabilities will be briefly

To, by summarized here and are tabulated in Table III.
7o(T)  NMT In Fig. 3 a master curve of the rheological properties for
ar(T,To)= = (6)  fluid SM2 at T,=25°C is shown, measured with a con-

70(To)  NTo)To’

A common functional form for the shift factor is given by the
Arrhenius relationship,

_ AH[1 1
R U

whereAH is known as the “activation energy for flow'° R
is the universal gas constant, amg is the reference tem-
perature. For this form, the thermal sensitivigyof the ma-
terial given in Eq.(2) is given by

trolled stress devic€TA Instruments, Model AR1000N A
similar master curve can be generated for fluid SM3. The
viscoelastic properties of the fluid are characterized in small-
amplitude oscillatory shear flow by the dynamic viscosity
7' (w) and the dynamic rigidity 2"(w)/0=2G'(w)/w?
which are both functions of the frequency of oscillation. The
linear viscoelastic properties are well described by the
Rouse—Zimm bead-spring kinetic theory for dilute
solutions®* as indicated by the solid lines in Fig. 3. Over an
intermediate range of frequencies) 1k o <1/\ s the slope

of the dynamic rigidity allows an approximate determination
of the hydrodynamic interaction parameteérh*, which
plays a large role in determining the spectrum of relaxation
times2° given by

: ()

_AH

B—ﬁ- (8)

Downloaded 26 Jan 2001 to 18.80.3.118. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



Phys. Fluids, Vol. 13, No. 2, February 2001 Thermoelastic instabilities of flows of polymeric fluids 387

TABLE lll. Parameters characterizing the viscometric properties of the dilute polystyrene solutions denoted

SM2 and SM3.
Parameter value
Notation Description SM2 SM3
Known: c Concentration of high molecular 0.05% 0.05%
weight polystyrene

My /M, Polydispersity 1.03 1.2
M,y Molecular weight(g/mol) 6.5x 10° 2.0x 107
b=L2 Extensibility parameter 25000 76700
To Reference temperatufi) 298 298

Fitted: Mo Zero shear rate viscositPa s) 46.1 55.5
UR Solvent viscosity(Pas) 34.0 34.0
Nps Solvent relaxation timés) 2.7x1074 2.7x10°%
h* Hydrodynamic interaction parameter 0.15 0.18
Ogp Extent of anisotropy in Stokes’ law 0.59 0.79
Bep Extent of anisotropy in Brownian 1.0 1.0

motion forces

Calculated: A, Zimm (longes} relaxation time(s) 32.1 155
A Oldroyd relaxation times) 17.7 81.7
Vo First normal stress coefficient (PA) 428 3510

A, limit h*~0.25 and Z"/w~w ¥ At low frequencies
N =TZreys (1) (@=0.01 radfs the fluid is essentially Newtonian with a

: _ ) ) _ constant viscositypo=>1/j2*°cRT\ /M, + 7. However,
whereg~ —1.40(1)*". The linear viscoelastic moduli can 4 high frequenciesw=1000 rad/s the predictions of the
then be conveniently expressed in the following compact;imm model deviate from the experimental measurements
form: due to the small but finite elasticity of the oligomeric solvent.
2 (\,w)? . 7s ()\psw)Z 12 This additional elasticity can be. modeled. by an extra Max-

122501 (\ w)? )\pSlJr()\psw)zy well element for the solverthe final term in Eqs(12) and

Nm
!

_ CET

M, =
wi=t (13)] with a relaxation time)\pswz.?XlO*“s, which is in
cRT Nm \,wj2t New good agreement with the range of values reported by Mackay
G"= 2, e 7+ 7, (13)  and Boger® Table Il lists the parameters used to compute
My =1 | +(\w) 1+()\psL0) . . .
the material properties for both fluids.
whereN,, is the number of modes used to fit the linear vis- In steady shear flow, the viscometric properties of the

coelastic data. In the limih* =0, the free-draining Rouse fluids are characterized by the first normal stress coefficient
model intzorporates no hydrodynamic interactiprj andwy, () =[r11(¥) — 722(¥) 1/ ¥? and viscosityz(y), each of
27'lo~w~ ¥, whereas in the Zimmnon-free-draining  which are functions of the shear rate. As shown in Fig. 3, the
viscosity of the solution is approximately constant over sev-
eral decades of shear rate. The fluid is strongly elastic and
the first normal stress coefficient shear thins monotonically
throughout the entire range over which data can be obtained.
By contrast, the Rouse—Zimm bead-spring model predicts a
constant value of the first normal stress coefficient as a con-
sequence of the preaveraging of hydrodynamic inter-
actions®’ The dashed lines in Fig. 3 represent the predictions
of a single-mode FENE-P model for the steady shear data.
The value of the extensibility parametér, is derived from
molecular quantities for both fluids and can be found in
Table Ill. This value is consistent with measurements of the
107 iy transient extensional viscosityput clearly leads to an over-
00 100 100 1 100 100 10 prediction of the steady shear properties. An improved de-
scription requires a more detailed treatment of hydrodynamic
interactions between segments of a polymer chain undergo-
FIG. 3. Rheological material functions of the SM2 fluid. The data includeing a steady shearing deformation. One such model that ac-
“PO,” S}fe:f{ydshear 'viS_qu?:w(z 1/) (P/aS):P“ 082 (j}/gf{[\ﬁfic :/iscositxll n;(w) counts for the anisotropy in the hydrodynamic drag forces in
f:ozf?(’:ientllf1();??Pm:szr)l?laln)(; tr:]e((clz)()Jr(;)e(s,pind)i’r]g Bi,rd—lrliegglrjri]:rl, Is:I;?\ISEP approxmate for.m és the encap.SUIat.ed d umbbell model of
and Rouse—Zimm model fits plotted as dotted lines “---,” dashed IinesBlrd and DeAgwaF’. The dotted lines in Fig. 3 represent the
“— ——” and solid lines “—,” respectively. predictions of a single-mode Bird—DeAguiar model fit and

Material Property

sm2
T,=25C

% ols']
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are in good agreement with both the viscosity and first nor- AL R B
mal stress difference measurements of the SM2 fluid. The o :ﬁg '
Bird—DeAguiar model contains two parameters;n and — Anthenius Fit
Bep, Which specify the extent of anisotropy in the viscous To o WHRR
drag on the beads and in the velocity distribution arising
from anisotropic Brownian motion, respectively. When
osp=RBesp=1, the FENE-P model is recovered. Our explor-
atory calculations suggest that to quantitatively describe the
viscometric properties of dilute polymer solutions in viscous
solvents, the anisotropy in the viscous drag is the primary
effect of importance. The Brownian motion of the beads can
thus be assumed to be isotropic wigk-1. To determine the
proper values ofrgp, the Bird—DeAguiar model was fit to
the viscometric properties of the two fluids by minimizes the UT [1/K]

mean square error between the predicted and CqmpUted Vz?ilI_G. 4. Steady shear viscosityy) as a function of fluid temperature. The
ues of bothy(y) and¥,(y). The results of these fits can be yata include '0,” SM3 test fluid; “0,” SM2 test fluid; and the corre-
found in Table . sponding WLF and Arrhenius model fits plotted as dashed lines “~——" and

When defining a Deborah number for reporting the ex-solid lines “—" respectively.
perimental measurements of the critical rotation rate for the
onset of the purely elastic instability, a representative mea-
sure of the spectrum of relaxation times of the fluid must bedependent relaxation time when calculating the effective
chosen. The simplest choice for this fluid time scale is thevalue of the critical Deborah number for the onset of elastic
longest or Zimm relaxation timey,, determined from the instabilities>®***'The disadvantage of this approach is that
linear viscoelastic measurements and tabulated in Table lithe precise functional form of Eq16) becomes model de-
An alternative measure commonly used is the “average” oendent. Therefore, for convenience and clarity the average
Oldroyd relaxation time, which is a viscosity weighted aver-relaxation time evaluated in the limit of zero shear rate,
age of the relaxation spectrum, will be used for reporting critical Deborah numbers unless
explicitly indicated otherwise.

The viscoelastic properties of the test fluids will also
change as the temperature of the experiments is varied. In
order to compare tests performed at different temperatures, it
For the Rouse-Zimm spectrum, in which the time constanfs necessary to adjust the relaxation time, normal stress dif-
and viscosity of each relaxation mode is related to the longference, and viscosity to their values at a reference tempera-
est mode by a simple recursion relation, this becomes ture of Ty=25°C. This is accomplished by employing
time—temperature superposition with a shift face(T,T,)

. - (15) defined in Eq.(6). In this paper we will use the Williams—
Sim (2t 2 Landel-FerrWLF) equation to specify the functional form
of a1(T,Ty), as it has been found to accurately describe the
Theoretical stability analys#* and scaling argumerits  thermorheological behavior of a wide variety of polymer so-
show that both the longest and the average value of the rggtions and melt§? However, we will also present results for
laxation spectrum are important in determining the criticaline Arrhenius formulation ob(T,T,) because of its sim-

conditions for flow stability. . plicity and widespread use in previous analyses of flow
Even though the shear viscosities of these dilute solustapility 171921 The WLF equation has the forth

tions do not have a strong rate dependence, Fig. 3 demon-
strates that, at the shear rates investigated in this research, the gar= —Cu(T—To) (17)
first normal stress coefficient shear thins quite heavily. This T e+ (T-To)’

initial onset of shear thinning is primarily the result of hy- wherec, andc, are constants to be determined. Figure 4
drodynamic interaction while more drastic shear thinning alyemonstrates how the viscosity of the SM2 and SM3 test
higher shear rates can be attributed to, among other eﬁeCtﬁuids changes as the temperature is raised from 15°C to
the finite extensibility of the polymer chain. The true relax- 40°C. Over the span of 25°C the zero shear rate viscosity
ation time of the fluid, which can be calculated from the yo . eases by a factor of 100. Superimposed on these data are
viscometric properties of the fluid previously determined, iISfits of the Arrhenius and WLE models for each fluid. The
thus a strong function of the shear réte, values of the constants used to fit the temperature depen-
Wi(Y) dence of the fluid viscosity of both SM2 and SM3 can be
(16)  found in Table IV. When represented on a semilogarithmic
scales of viscosity as a function ofTl/the Arrhenius equa-
It has been found in a number of studies of viscoelastic flowtion [Eq. (7)] predicts a linear relationship that accurately
instabilities that to achieve quantitative agreement with thedescribes the experimental measurements close to the refer-
oretical predictions it is necessary to use this shear-rateence temperatur€,. However, the data in Fig. 4 show clear

2

Viscosity [Pa s]

—_
o

0.0033 0.0034 0.0035

N
— ¥ DI/
10 _ Zj=1"] 1. (14)

— -
270 TM

Nm i —2(2
—_2]:11 (2+0)

N=g2, 5
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TABLE IV. Parameters used to describe the temperature dependence of 10 ——— IS I e e e o o o e
SM2 and SM3 polystyrene solutions with a reference temperaiyre F H 1
=298 K. i ! ]
8 | -
Value of parameter L ! 4
Notation Description of parameter SM2 SM3 P - i 4
— 1 —
Cy1 WLF constant 20.1 36.9 = F i k
Cy WLF constant(K) 90.4 160 o) r i ]
AH/R Arrhenius constantk) 20 200 19 900 ; 4L i ]
L : ]
i : |
. 2 sM2
nonlinear trends for large values pf—T| that are better ! (2em. 2] 1
described by the WLF model. For temperatures close to : T=25C |
Ty, linearizing the WLF equationEq. (17)] suggests ol o by w1 1 1
B(Te)=AH/RTy~c,Ty/c,. Both the WLF and Arrhenius
models predict a thermal sensitivity @68 for both SM2 R )
and SM3. By contrast, the thermal sensitivityds-20 for a r ! i
typical PIB Boger fluid* 10 b J
The density, thermal conductivity, and heat capacity of [ ]
fluid SM2 and SM3 can be found in Table V and are as- 8 4
sumed to be identical to the thermophysical properties of the - [ =
oligomeric solvent. Additionally, the properties of both fluids g 6 L h
are assumed to be constant over the range of temperatures at V_ ]
which they are tested in this stués. Wl i ]
1
C ! i
Il. EXPERIMENTAL RESULTS L Stable Unstable
. . . . 2 [Cz=250Pa! £=500Pa |
Our goal is to construct an experimental stability dia- L | ]
gram such as the one shown in Fig. 2. We first investigate oLl N I T B

the horizontal(e, De) plane by using the SM3 fluid to per-
form essentially isothermal experiments, all of which have a
thermoelastic number smaller th@n<10 2.

[=-]

100 200 300 400 500
time [s]

FIG. 5. Transient first normal stress difference and shear rate measurements

A. Comparison with isothermal theory of the flow between a rotatinf2 cm, 2¢ cone-and-plate geometry with the
SM2 fluid at 25°C taken at constant applied shear stresses of 250 and

The experiments were performed using a controllecb00 Pa.
stress rheomete(TA Instruments, AR1000N capable of
torque and normal force measurement as well as precise tem-
perature control of the bottom plate using a Peltier devicerPP(rzRO):T/TrRS. The resulting experimentally mea-
Each measurement was performed using a fresh sample eéired shear rate was averaged over the course of one relax-
Boger fluid. After carefully loading the rheometer, the fluid ation time,\,, and then compared with subsequent averages
was allowed to reach thermal and structural equilibrium at auntil the values were within a&1% tolerance for two con-
test temperaturé before the testing commenced. A constantsecutive averages. The fluid was allowed to equilibrate over
torque, 7, was then applied to the upper fixture. The sheama maximum period of ten relaxation times, at which point the
stress acting on the fluid is given b= 37727TR8 for the  applied torque was incremented and the fluid was again al-
homogeneous shear flow in the cone-and-plate geometry. Ftawed to reach equilibrium. This protocol was established to
the nonhomogeneous torsional flow in the parallel-plate geensure that at each test point the fluid microstructure had
ometry we report results in terms of the rim shear ratereached equilibrium. By using a controlled stress device, it is
Y Hr=Ry)=QR,/h and the shear stress at the rim possible to follow the complete flow curve corresponding to
the steady two-dimensional base flow and the three-
dimensional, time-dependent flow that bifurcates subcriti-

TABLE V. Thermophysical properties of SM2 and SM3 polystyrene solu- caIIy in the shear ratd®*4 The shear rate is a single-valued

tions. . . . . o

function of stress and with careful experimentation it is pos-

Value of parameter sible to accurately determine the linear neutral stability con-

Notation Description of parameter SM2 SM3 d|_t|on by |dent|fy|!'1g the shear rate at which the slope,

- dvy/dr, changes sign.
P Density (kg/m) 997 997 The time-dependent nature of the purely elastic flow in-
E Lherma' conductivityW/m-K) - 0.11 0.11 stability is demonstrated in Fig. 5. A constant shear stress
» eat capacity(J/kg-K) 2.04x 10° 2.04x 10° ) . A ;
o Thermal diffusivity (m?/s) 54x10¢ 54x10¢ IS applied to the SM2 test fluid between a rotating cone

and plate with{Ry,6p}={2 cm,2% at a temperature of
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T=25°C and the resulting shear ratg, and first normal W71
stress differenceN,, are observed over time. At a shear ; gefmg
stress ofr=250 Pa {<100s), the flow is stable, exhibiting R;;i‘}m o

an initial overshoot and then becoming steady in time. After 15
100 s, the shear stress is increased to a value=&00 Pa.

Subsequent measurements of normal stress and shear rate
deviate sharply from the expected equilibrium values and do = 10
not reach a steady state, but instead demonstrate the time-
dependent behavior and apparent antithixotropy seen in pre-
vious studies:** The duration of this experiment was chosen

to be much larger than both the polymer relaxation time 05 o

De_,

(A,=32s) and the time scale for thermal diffusion is - ° Paralle Plate

(tierma=9 S) to ensure that kinematic and thermal equilib- L T=25C
rium were achieved. A more detailed discussion of the im- ooL——r 1 s 1

portance of test protocol can be found in Sec. Il C. 0.00 0.02 0.04 0.06

In Fig. 6, the experimental results for the SM3 Boger a=H/R,
fluids at very low Nahme number, Ral0 3, are compared _ 3
with the multimode isothermal linear stability analysis of FIG. 6. Effect of.aspect.ratlo on the critical Debora_h number for the onset of
. . . the purely elastic flow instability between a rotating parallel plate for the
Avagliano and Phan-Thief. The experimentally observed gys tect fiuid at 25 °C.
critical Deborah number is presented both as the product of

the angular frequency and the average relaxation time,

evaluated in the limit of zero shear rate and as the product of D€y \
. ultimode rms
the angular rotation rate and the shear-rate-dependent relax- Do | = , (19
ation time,\(¥). As noted in Table |, when the free surface Ssingle modecry A
effects in the parallel-plate geometry are considered at smal|ihere
aspect ratios, the linear stability theory predicts that the criti- Ny, o\ 112
cal Deborah number for the onset of the elastic instability N = TRy 20)
should have a linear dependence on aspect t4ti@hrough ms gj“‘pl 7 '

careful experimental techniques, McKinley al® were able o _ . ._ .
to very closely approach the linear neutral stability condition ~ The predlct|on§ of the isothermal linear stability analysis
and minimize the amplitude of the disturbance, which for afor flow in a rotating cone and plate have also been com-
subcritical Hopf bifurcation must be finite. In fact, botrzO  Pared against experimentally determined critical conditions
tekin et al** and Avagliano and Phan-Thi&hwere able to for both the SM2 and SM3 fluids in other geometries with
quantitatively match their linear stability analysis predictions{Ro 6o} ={3 cm,1%, {2 cm, 2%, and{1 cm, 45. These tests

to the experimental neutral stability data of McKinleyal® ~ Wwere performed at low temperatures and vanishingly small
The solid line in Fig. 6 is the linear stability analysis pro- Nahme numbers, Na10™°. The results of these tests can be

vided by Avagliano for the multimode Rouse—Zimm spec-found in Fig. 7. The experimental and theoretical critical
trum of fluid SM3. Although neither value of the critical Deborah numbers are presented as the product of the critical
Deborah number quantitatively matches the theory over th@ngular frequency and the average or Oldroyd relaxation
entire range of aspect ratios tested, both measures demdifime evaluated in the limit of zero shear rate,-De&. The
strate the predicted linear dependence on aspect ratio. Thgedictions of the FENE-PM and the Bird—DeAguiar mod-
stability locus for the multimode model was calculated usingels, computed using the scaling approach discussed by

the approximation proposed by McKinley al.? McKinley et al,? are presented along with the Rouse—Zimm
multimode analysis. Recalling the results of the linear stabil-

" NU Ty w2 ity theory of Olagunju® presented in Table I, one expects

D _ ~ R ﬂ the critical Deborah number for the onset of the elastic in-
(Mj | 1= e 7o , (18  stability to scale with the square root of the cone angle and to
De€single modd it H T appear as a straight line in Fig. 7. As one quickly observes,
Re 70y this is only true for the shear-rate-independent Rouse—Zimm

model. The modifications to the multimode FENE-PM curve,
whereU is the local velocity along a streamline with radius the Bird—DeAguiar curve, and the experimental data at small
of curvatureR.. The tensile stress along the streamline forcone angles are the result of the shear-rate dependence of the
each mode isjy; and the local shear rate i Calculations  viscometric properties caused by the polymer's finite
show that this equation allows one to estimate the results fagxtensibility and by hydrodynamic interactiori.For very
the analysis of any multimode spectrum from the results of amall cone angles, the shear rate at the onset of instability is
single-mode analysis to within ten percent of the truevery high and the true relaxation time of the fluid is much
value®® For torsional flows in the parallel plate geometry, smaller than the Oldroyd relaxation time used in the formu-
Equation (18) can be simplified by substituting =r(, lation of the Deborah number. For example, choosing a mod-
Re=r, 713=2CRTA%*/M,,, andy=Q/a to yield erately large cone angle @f;>=0.5 (,=14°), which for
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T cone angles, we can easily validate this statement by inspect-
; B ing the viscometric data presented in Fig. 3. The Bird—
I unsiable DeAguiar model satisfies simple fluid theory, and so, in the

bl limit of low shear rates, the rate-dependent relaxation time of

] the model will become constant and equal to the rate-
_ independent relaxation time of the Rouse—Zimm model.

® Rowe

=== FENE-PM
----- Bird-DeAguiar

However, at these ratesy&10 2s 1) the cone angles re-
quired (Ap=170rad) would be completely unphysical.

If the shear-rate-dependent relaxation time is used in the
formulation of the critical Deborah number, Be (y)(Q,
instead of the Oldroyd relaxation time, all three models will
follow the same square root dependence on cone angle as the
shear-rate-independent Rouse—Zimm model in Fig. 7. If the
experimental measurements of the critical rotation rate are
also reported as a critical value of the shear-rate-dependent
R A B AR B R A Deborah numbefusing Eq.(16) to compute the relaxation
: ) Cone-Plate | time], quantitative agreement with all three of the models
7,=25C + can be obtained. This lends additional credence to the use of
. 1 the shear-rate-dependent relaxation time when comparing
wnstable { - experiments with linear stability thed§*! and is the only

I 2 way to accurately fit the neutral stability data if the visco-

- 4 metric data of the viscoelastic test fluid cannot be accurately

.'I‘ | modeled by the chosen constitutive equation.

crit

De
w

Name =z = stable SM2

\
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R o giﬁ%‘;fgm If Eq. (9) is evaluated for fluid SM2 in th¢2 cm, 29
ol v v cone-and-plate geometry, the thermoelastic number becomes
0.0 0.1 0.2 03 0.4 0.5

o L R [m0(To)A(Ty) 0.011
0 M2 Jar M(To) kT, N

FIG. 7. The effect of the cone angle on the critical Deborah number for the
onset of the purely elastic flow instability between a rotating cone and platé-Of temperatures greater than the reference temperature

for the (a) SM2 and(b) SM3 test fluids. T>T,, the shift factor is smaller than 1 and the thermoelas-
tic number® will increase. We show below that when the
thermoelastic number is equal &~=0.061 (T~43°C), vis-
the SM2 fluid and the Rouse—Zimm model corresponds to @ous heating results in significant modifications to the flow
critical Deborah number of Rg=2.08, results in a critical ~ stability curves. For temperatures less than the reference
shear rate ofygi=Deyit/(Oohsm) =0.47S . It is clear temperatureT<T,, the shift factora;>1 and the ther-
from Fig. 3 that an appreciable decrease in the fluid elasticitynoelastic number decreases, lowering the slope of the trajec-
has already occurred at this shear rate. A quantitative agreeory followed by experiments in the three-dimensional space
ment can only be achieved when evaluating the criticakhown in Fig. 2.
Deborah number with theconstant average relaxation time, Similar calculations of the thermoelastic number for flu-
\, provided the constitutive model accurately represents thiels SM3 and SM1 described by Anret al3® show that
viscometric properties of the fluid. This requirement can be® gy;3=0.0024; ¥ and O g;=0.092; 2. Viscous heat-
clearly seen in Fig. 7 by examining the two broken lines thaing is therefore not important until temperatures of
represent the stability boundaries for the FENE-PM andl'~70°C for fluid SM3, while it is important for all tem-
Bird—DeAguiar models. The FENE-PM model qualitatively peratures greater thah=10 °C for fluid SM1. Indeed, ex-
captures the onset of shear thinningWn(y) at very high  periments with fluid SM1 showed no elastic instability for
shear rateglow cone anglesbut seriously overpredicts the any temperatures or shear rates studied. Fluid SM2 was thus
fluid elasticity at intermediate shear rates, as shown in Fig. hosen for the nonisothermal tests described below because
By contrast, the Bird—DeAguiar model captures, at leasits thermophysical properties allow for excellent control of
semiquantitatively, the decreasen,(vy) arising from hy- the purely elastic instability at reasonable temperatures and
drodynamic interactions and much more accurately predictsone angles.
the observed stability boundaries. Using the same testing protocol outlined in the previous
Although it cannot be seen in Fig. 7, at low enough sheasection, the effect of viscous heating was systematically ex-
rates(high enough cone anglgshe Bird—DeAguiar model amined by performing torque sweeps on the SM2 fluid in the
does asymptotically approach the Rouse—Zimm stabilit)cone-and-plate geometry over a wide range of temperatures
curve. Without continuing the abscissa of Fig. 7 to largel5°C<T=<50°C. In Fig. 8, we show the form of the flow

(21)
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FIG. 8. The onset of an elastic flow instability as observed in shear stresgIG. 9. Normalized shear stress as a function of the linear stability control
sweeps of the SM2 test fluid at various temperatures using2toen, 24 parameter D&~ Y2,
cone-and-plate geometry.

The data in Fig. 8 can be collapsed by plotting the mea-
transition for fluid SM2 using a cone-and-plate geometrysyred shear stress nondimensionalized by the shear stress ex-
with {Ro,6p}={2cm,2%. As observed by Magda and pected for the steady base flow,y, against the control
Larsort* and by McKinleyet al,’ the instability is subcriti- parameter expected from the linear stability theory,
cal in the shear rate. At a temperature of 43°C, a strongDe/gé/ZIZG In Fig. 9, we plot the stability data for both the
deviation in the shear stress from a linear dependence 0N cm, 4% and the{2 cm, 23 cone-and-plate geometries for
shear rate indicates the onset of viscous heating in thghe SM2 fluid over a wide range of temperatures. Although
sample. Simultaneous measurement of the first normal stregge data from the two cone angles do not superimpose ex-
difference shows that there is an even more dramatic loss cgcﬂy, the genera' agreement is very good_ If the shear-rate-
elasticity, as is shown in Fig. 11. The result is a drasticjependent relaxation time is used in the formulation of the
reduction in the shear-rate-dependent relaxation time anghehorah number, the results for different cone angles would
consequently, a failure to reach the critical conditions for the,ery nearly superimpose. The data show that increasing the
onset of the elastic instability. temperature of the test fluid, and thus the Nahme number,

In the isothermal linear stability theory, the critical delays the onset of the purely elastic flow instability, but has
Deborah number for the onset of the purely elastic flow in4jttle effect on the amplitude of the fully developed time-
stability is determined to be a constant, independent of temgependent nonlinear state until the thermoelastic number ap-
perature(see Table)l When represented in terms of dimen- proaches its critical value. At that point, the instability
sional parameters, time—temperature superposition of thg completely suppressed by viscous heating. This transi-
material properties leads to a linear dependence of the Crittion happens over a very small range of temperatures

cal flow conditions on the test temperature. If the stability(37 °C<T<43°C) and we now proceed to study this region
theory is expressed in terms of a critical shear stress, ong more detail.

obtains To highlight the effect of viscous heating on the base
O flow, in Fig. 10 we show the progressive variation i_n the
Terit= Wmit:l( C”‘) (22) dimensionless time scale for viscous heating™Rat;q.,
A o against the dimensionless viscoelastic time scale, De, for

fluid SM2 in the{2 cm, 2% cone-and-plate rheometer as the
deformation rate is increased. The filled symbols in Fig. 10
represent steady two-dimensional flow while hollow symbols
represent the unstable regime. A dashed line denoting the
Teril T) = Teri(To) 7= (23)  neutral stability curve has been superimposed on the data to
0 guide the reader’s eye, but is not meant to be inferred as
whereri(To) is the critical stress for the onset of instability quantitative. At very low Nahme numbers, viscous heating is
at the reference temperaturg;. The dotted line in Fig. 8 not significant and the resulting delay in the onset of the
represents the prediction of E¢R3) for the critical shear elastic instability, although clearly evident, is quite small and
stress. This decoupled isothermal approximation correctlyn agreement with Eq(23). At a temperature of 40 °C, vis-
predicts the weak modulation in the critical conditions for cous heating begins to strongly stabilize the flow, shifting the
the onset of instability at low thermoelastic numbers, butonset of the instability upward to a Deborah number that is
does not take into account the strong coupling that arises dt5% above the value obtained at a low Nahme number.
large thermoelastic numbers. When the temperature is increased still further to 43 °C, the

Substituting Eq(6) into Eqg. (22) one finds that the critical
shear stress varies linearly with temperature,
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s oo e ol ' 0 43 °C, the magnitude and duration of the elastic instability is
| p|» T e 1w “;.".'_: diminished while the onset is delayed to a larger critical
F : ;“;g : ;j)g “;'».‘.-' ] Deborah number by viscous heating. The onset of viscous
: 2 et 1 heating is characterized by a sharp decrease in the first nor-
I “;i‘lég% * ] mal stress difference and is differentiable from simple shear
L e “;::,-‘;fz};o@ o i thinning by the nonmqnotonic nature of the curves. This can
S ;'»“:"'*;’8 [)O © bl be seen most clearly in measurements of the shear stress and
z 01F “;‘:..-*',:,*J‘ P RN 3 first normal stress difference taken at 43°C. At low shear
:::‘:-" o+ o oY ratesy<=60s * (Na~0.008, the viscometric data is consis-
< - vvvv - tent with the predictions of the Rouse—Zimm and Bird—
i o ,vTv ConoPlatc | DeAguiar models. A maximum in the shear stress corre-
i {2em, 2°) | sponding to a “thermal blowup” is reached at a shear rate of
0.01 T SM2 y~2700s ! (Na~12). In a controlled stress experiment, no
1 10 steady values of the shear rate above this maximum shear
De stress are attainabté The first normal stress difference also

goes through a local maximum, but at a much lower shear

FIG. 10. Stability diagram for the flow between a rotat{2gcm, 2¢ cone- rate ’y% 32051 (Na~0.17). This degradation of fluid elas-
and-plate geometry. As the Deborah number is increased, the flow goes R

from stable flow conditions represented by filled symbo@™to unstable _“City r_e.SUItS in the com.plete suppression of the elastic flow
flow conditions represented by hollow symbol©:” instability. In the experiments at 40 °C and 42 °C, the flow

becomes unstable before viscous heating can begin to sig-

nificantly degrade the elasticity. However, the instability is
flow becomes stable at all shear rates. At this temperaturguickly suppressed after a critical value of the Nahme num-
the critical thermoelastic number &,;;=0.061 correspond- ber Na,;~0.23 is reached. The shear stress does begin to
ing to Naﬂﬁ: 0.45 and Dg;;=7.3. In order to obtain quanti- show noticeable nonlinear effects at these moderate shear
tative agreement with the results of linear stability analysestates, but the normal stress is clearly a much better indicator
it is necessary to report values of critical conditions in termsof viscous heating. These viscous heating trends are in ex-
of the shear-rate-dependent relaxation timé¢y), rather cellent agreement with the recent measurements of similar
than the average relaxation time, If the fluid propertiegin polystyrene- and polyisobutylene-based Boger fluids per-
particular, the fluid relaxation timere allowed to vary with  formed by Arigo?
shear rate, the critical thermoelastic number increases by
more than an order of magnitude to a value very close to on€. Effect of test protocol on stability observations
Ocrir( y) =0.92.

The coupling of viscous heating effects and the onset Ogct
flow instability is also manifested in a profound way in the )
normal stress data. We show in Fig. 11 the shear stress ar&%
first normal stress difference as a function of shear rate fo
:ﬁreqoun:}ei\évfgrﬁ)?h%egﬁ/lgnﬁgi(J\II\:‘I;T :ﬁ;g}jﬁrggﬁfg?&pli;eo Canalyse%f"21 of nonisotherma_ll viscoelastic_flows assume that

' the base flow on to which perturbations are imposed

and 43°C. As the temperature is increased from 40°C t(lgS steady and fully developed. For the cone-and-plate

geometries the timescale for thermal diffusion is
T — 5 s<tierma= 10's (depending on cone geomelrand the
[ 7, 43°C ] time scale for the stress to reach steady state,{d,)
5 42°C =31.1s. If the experiment ramps in torque are imposed too
7, 40°C . .
N. a3c quickly, then the fluid may not be able to reach thermal or
N o structural equilibrium, resulting in the observation of a pseu-
dosteady state, which is, in fact, dependent on the speed at
which one probes the material. The issue of structural equi-
librium is most pertinent at low temperatures where the re-
laxation time is much longer than the time scale for thermal
diffusion. Ramping the torque too quickly at low tempera-
tures will result in the observation of a critical Deborah num-
{2cm, 2°) ber much higher than expected because the fluid stresses will
13 T IR B P not be fully developed. At higher temperatures, the relax-
10 100 1000 ation time,\(T) =\,(Ty)/ar, decreases rapidly and it is the
yis™] thermal diffusion time that becomes important.

FIG. 11. Viscometric properties for flow of SM2 fluid between a rotafiag When both scales are equally important, very complex

cm, 2% cone-and-plate geometry at three temperatures showing the effect (gynamlcs may_ens_ue- In Fig. 12, we show measuremen_ts of
viscous heating on the purely elastic flow instability. the SM2 fluid in a cone-and-plate geometry with

Since there are a number of important time scales char-
erizing different physical processes in the fl(sde Table

the choice of experimental test protocol and the associated
servation window can have a significant impact on the

Observed results of the experiments. Theoretical stability
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CoePle 1 T T analyses for the Rouse—Zimm and Bird—DeAguiar constitu-
(2cm, 2°) tive models in both cone-and-plate and parallel-plate geom-
o etries was found to be good, especially if shear thinning in
the fluid relaxation time is accounted for. It was then shown
that the proper dimensionless groups to consider when inves-
tigating purely elastic instabilities in viscoelastic flows are
the Deborah number and the thermoelastic number
©=Na"?De, which measures the importance of coupling
between the fluid elasticity and the nonlinearities arising
: from viscous heating. The thermoelastic number can be in-
. N, ontinsons oy N Zﬁ‘;ﬁ;ﬁﬁ‘; fluenced by changes in geometry, molecular weight, and
10 - = = Zimm Model i temperature. By varying the ambient temperature of the test
el el fluid through a fairly narrow range, it was possible to pro-
gressively delay the onset of the purely elastic flow instabil-
ity through a decrease in elasticity caused by temperature
FIG. 12. Viscometric properties for flow of SM2 fluid between arotafidg ~ gradients across the gap. At thermoelastic numbers greater
cm, 23 cone-and-plate geometry at=40°C, showing the effect of test than@ > @, ~0.062, the flow instability can be eliminated
protocol. The predictions of the Rouse—Zimm bead spring model are plotted .. .
as dashed lines “——-" for low shear rates. entirely by the same mechanism.
When the effects of energetics on the linear stability of
the viscoelastic flow within a Taylor—Couette device were
{Rg,60}={2 cm, 2% at a test temperature G=43°C. On investigated by Al-Mubaiyedbt al,”* a new mode of differ-
the basis of the steady-state experiments described in Segnt spatiotemporal character to the mode arising from iso-
[11 B, using step changes in the applied shear stress and a téhermal linear stability analysis was predicted to be the most
relaxation time observation window, viscous heating isunstable. The critical conditions for onset of this new station-
found to completely stabilize the flow. The correspondingary mode of instability are much lower than those required
data for the shear stress and normal stress are shown as ogden the isothermal mode and are also in better agreement
symbols. As the shear rate increases, viscous heating resultéth the experimental observations. By contrast, in earlier
in an apparent shear thinning in the shear stress and a drivestigations of the viscoelastic torsional flow between a
matic decrease in the normal force exerted on the coneotating cone and plate or between two coaxial parallel
However, if a continuous stress ramp with rate of increase oplates, the critical conditions for the onset of spiral second-
d7r/dt=5 Pals is imposed, the data corresponding to theiry flows were observed to be consistent with the predictions
filled symbols is obtained and the flow appears to exhibit arof isothermal linear stability analysis:?’ This has been con-
elastic instability. When the underlying steady one-firmed by our present experiments when the thermoelastic
dimensional shear flow is stabley€110s'), the two  number is small. No new mode of instability is observed and
curves Closely paraIIeI each other and the shear stress predlﬁscous heating eﬁec@orresponding to an increasing ther-
tions of the Rouse—Zimm bead spring model. The departurghoelastic numbgrare found to progressively stabilize the
in the first normal stress data from the predictions of thesypcritical bifurcation. These two studies thus do not appear
quasilinear Rouse—Zimm model is the result of shear thinyg pe consistent. However, very recently, Al-Mubaiyedh
ning caused by hydrodynamic interactions and can be capst 514 extended their linear stability analysis of nonisother-
tured by the Bird—DeAguiar model. At higher shear rates, gy) viscoelastic flows to the case of pressure-driven Taylor—
transient subcritical instability is observed. As the stress i$ean flow. In this geometry they found that, as in the
increased, the shear rate initially decreases and the normﬁ#esent torsional flow experiments, the dominant mode of the
stress increases dramatically, as previously observed in Fighsiapility does not change with the addition of viscous heat-
11 for lower test temperatures. However, as the thermal propg byt is instead dramatically stabilized. The thermal mode
file in the fluid begins to develop through the rapid azi-iq g present, but is not the dominant mode untiRe

muthal, and slower radial, diffusion of thermal energy, the g gifferences observed between the stability character-

effective elasticity of the fluid decreases. Eventually, the ingtics of viscoelastic flow in the Taylor—Couette, Taylor—

stability is effectively eliminated _and the shea_r rate_returns_ tcbean, and torsional geometries must be the result of differ-
a steady, stable value monotonically increasing with the IM4nces in the symmetries of the base velocity, temperature,
posed stress. and stress fields. When the temperature at both walls is the
same and the fluid is heated through viscous dissipation, the
local fluid temperature achieves a maximum at the center of

In this study, we have systematically demonstrated théhe gap. It is easy to physically understand how viscous heat-
importance of nonisothermal flow effects on the stability ofing can stabilize any of these flows. As discussed in McKin-
torsional flows of highly elastic polymer solutions. Two ley et al,? purely elastic instabilities arise from an interplay
monodisperse polystyrene test fluids of different moleculabetween streamline curvature and elastic normal stresses.
weight have been used to investigate the role of the fluidVhen a critical Deborah number is reached, the following
rheology. The agreement with isothermal linear stabilitydimensionless parameter exceeds a critical value:
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(24 blowup” seen in similar Boger fluids and highly viscous
Newtonian fluid4? at large Nahme numbers. This instability,
and the flow becomes unstable. The temperature increag¢hich can be seen in both the shear stress and the normal
caused by viscous heating leads to a decrease of both tis¢ress data presented in Fig. 11Tat 43 °C, corresponds to
viscosity and the elasticity of the test fluid and thus results ithe point at which viscous heating reduces the viscosity so
a decrease in the elastic hoop stress. The critical conditiogignificantly that increases in applied shear rate result in a
expressed in Eq(24) is no longer exceeded along local decrease of the measured shear stress necessary to drive the
streamlines, even though the critical conditions would havdlow.*’
been reached globally for an isothermal flow at the same The effects of viscous heating will always be present to
rate. This thermoelastic mechanism has been found to stabsome extent in the shear flow of highly elastic fluids. These
lize the isothermal elastic modes of all the flows examinedgffects will be especially important in shear flows with
including the Taylor—Couette geometry forP&0*.%* closed streamlines in which the heat from viscous dissipation
In the base flow of the Taylor—Couette geometry thecan be accumulated in the device over long periods of times.
shear stress is uniform across the gap. Viscous heatini this work, we have shown that the effect of viscous heat-
breaks the base flow symmetry in the gradient direction. Ang can be minimized by considering the functional depen-
new temporal mode of instability is caused by radial convecdence of the thermoelastic parameter in Ef).and by de-
tion of thermal gradients across streamlines. It appears thareasing the ambient temperature of the test or by utilizing
the symmetry of the base stress field in Taylor—Couette flovsmall devices. Such an approach has been used to minimize
may shift the onset of this new thermoelastic instability tothermal noise in detailed studies of other hydrodynamic flow
much smaller Peclet numbers ¢2&0%), than is found in the  instabilities*®
case of Taylor—Dean flow (Rel0°), in which the base-state
stress field is already inhomogenedté®
If one applies this same reasoning to the two torsiona
flow geometries, then one would expect that because of the The authors wish to acknowledge financial support from
homogeneity of the stress field in the base state of the condhe Lord Foundation and from NASA under Grant No.
and-plate geometry, the effect of viscous heating should leaNCC3-610, Professor Susan Muller for supplying the fluids
to a new mode of instability, as observed in the linear stabilused in this paper, Dr. Shelley Anna for performing the ini-
ity calculations for the Taylor—Couette geometry. By con-tial rheological characterization of the fluids, and Dr. Aaron
trast, one would reason that the parallel-plate geometry, ilvagliano for providing the isothermal linear stability analy-
which the stress field is already radially inhomogeneoussis of the parallel-plate geometry.
would more closely resemble the Taylor—Dean flow geom-
etry. However, these symmetry arguments do not agree Witq
; ; ; ; ; _"R. G. Larson, E. S. G. Shagfeh, and S. J. Muller, “A purely elastic insta-
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