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Synopsis

A wide variety of bead-spring kinetic theory models have been proposed to explain the stress
growth and hysteretic behavior of dilute polymer solutions in uniaxial extension. We analyze the
Kramers chain, a fine-scale model for polymer dynamics, in order to assess the validity of the
coarser-grained bead-spring models in these deformations. Whereas the spring force is a simple
function of the dumbbell length for the FENE spring, we find that the relationship between the
ensemble-averaged end-to-end force and the extension for a Kramers chain depends on the
kinematic history to which it has been subjected. In a quiescent fluid, the Kramers chain force–
extension relationship is identical to the FENE force law. However, during start up of elongational
flow, the ensemble-averaged end-to-end force for a given~end-to-end! length of the molecule
increases with strain until steady state is reached. If the extensional flow is suddenly stopped, the
Kramers chain force–extension relationship relaxes back to the FENE force–extension function.
For all positive strains, the FENE dumbbell force law underpredicts the ensemble-averaged
end-to-end force in the Kramers chain. For a Weissenberg number of 11.4, the end-to-end forces in
the two models can differ by three to four orders of magnitude, indicating the unsuitability of the
FENE dumbbell for modeling polymers in strong transient extensional flows. This paper also
presents a detailed analysis of the mechanisms causing stress–birefringence hysteresis. We find that
it is essential for a dumbbell model to have an end-to-end force that depends upon the deformation
history in order to capture configurational hysteresis. ©2001 The Society of Rheology.
@DOI: 10.1122/1.1357822#

I. INTRODUCTION

The advent of the filament stretching rheometer@Tirtaatmadja and Sridhar~1995!# has,
for the first time, enabled quantitatively reliable measurements of transient stress growth
as a function of strain and strain rate in uniaxial elongational flows of Boger fluids. The
polymer concentrations of the Boger fluids were selected such that they were good
approximations to dilute polymer solutions. The quality of the data has allowed direct
comparisons of experiments with predictions of molecular models of polymers and has
led to some interesting findings. James and Sridhar~1995! and Tirtaatmadja and Sridhar
~1995! were able to elongate filaments of Boger fluids to Hencky strains as large as seven
and thereby measure the steady-state elongational viscosity. In contrast to the finite,
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steady-state extensional viscosity exhibited by the Boger fluids for a Weissenberg num-
ber Wi greater than 0.5, the Hookean dumbbell model, which is infinitely extensible,
predicts unbounded stress growth. The FENE and FENE-P dumbbell models, which
incorporate finite extensibility through a nonlinear spring, predict a finite extensional
viscosity but underestimate the rate of stress growth at low strains@Herrchen and O¨ ttinger
~1997!#. In contrast to the response of FENE dumbbell models, Doyle and Shaqfeh
~1998! demonstrated that a finer scale model, the ten-spring FENE-PM chain@Wedge-
woodet al. ~1991!#, describes well the experimentally observed stress growth for the first
two units of Hencky strain. This analysis suggests that dumbbell models are inadequate
for describing rheological behavior in the start up of an extensional flow. Doyle sug-
gested that a dumbbell could not capture internal configurations or the conformation
dependence of drag exhibited in a real polymer.

It is the goal of this paper to understand the origins of these deficiencies. More
specifically, we examine whether the spring force in a dumbbell model can be a simple
function of end-to-end distance, or whether it must have a more complicated form if the
dumbbell model is to capture the behavior of a polymer molecule in a strongly deforming
flow such as the sudden inception of a steady elongational flow. An additional objective
is to understand why the FENE dumbbell model poorly describes the experimentally
observed stress–birefringence hysteresis of a Boger fluid@Doyle et al. ~1998!#.

The short length scale behavior of individual molecules must be examined to under-
stand the origins for the deficiencies of a coarse-grained model, such as the FENE
dumbbell. Although the visualization techniques of Perkinset al. ~1997! and Smith and
Chu ~1998! provide information about molecular conformations of individual molecules
in an extensional flow, no existing experimental technique can measure intramolecular
forces at the segmental level in an individual molecule subjected to extensional flow.
Information about intramolecular forces along the backbone of a molecule is essential in
order to predict accurately conformational changes in the molecule as well as the contri-
bution of these forces to the total stress in the fluid. Since this information cannot be
obtained experimentally, we obtain it through simulation of a fine-scale molecular model,
the Kramers chain.

It is shown by Ghosh~2000! that the Kramers chain gives excellent agreement with
the experimental observations for stress and birefringence in the start up of extensional
flow up to Hencky strains of three to four. A direct comparison between experiments and
the Kramers chain is not possible, because of the excessive computational expense in-
volved in simulating Kramers chains of sufficient length to represent the molecules used
in experiments. Instead, we show that for a given Weissenberg number, the stress in the
Kramers chains of different lengths follows a universal curve until the chains approach
their maximum extension. Longer chains follow this universal curve to larger strains
before leveling off to a steady-state value. The universal curve gives excellent agreement
with the experiments, particularly at low strains. A universal curve also was found for the
transient birefringence growth for Kramers chains, and this also agreed well with the
experimental data. Doyle and Shaqfeh~1998! also have shown that the evolution of
molecular conformations of individual Kramers chains agrees well with observations of
individual DNA molecules made by Perkinset al. ~1997!, Smith and Chu~1998!, and
Larsonet al. ~1999!. They demonstrated that Kramers chains exhibit the same rich array
of internal configurations~kinks, dumbbells, half-dumbbells, etc.! as real polymer mol-
ecules. The investigations referenced above suggest that the Kramers chain accurately
describes the internal dynamics and internal forces within a polymer molecule. Hence,
Brownian dynamics simulations of Kramers chains are used here to explore the reasons
for the inadequacies of FENE dumbbells.
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Previous efforts to understand the inadequacies of dumbbell models have resulted in
conclusions that are not consistent with our findings. The existing literature is discussed
here, and differences are highlighted with our conclusions in later sections. Rallison and
Hinch ~1988!, Hinch ~1994!, and Rallison~1996! have tried to reconcile the differences
between a Kramers chain and a dumbbell model by using the concept of a dissipative
stress. They postulate that dissipative stress is an additional contribution to the stress
tensor that is proportional to the rate-of-strain tensor and, therefore, drops instantaneously
to zero when the rate of strain suddenly becomes zero. However, recent work by Rallison
~1996! and Doyleet al. ~1997! has shown that purely dissipative stresses are exhibited
only by very short Kramers chains that are stretched at unrealistically high bead Peclet
numbers. For longer chains, under more realistic flow conditions, the rapid stress growth
simply results from the saturation of very short length scale elastic modes. Rallison
~1996! recognized that elasticity acting on short enough length scales could have a very
similar appearance to a dissipative stress. Hence, the modified dumbbell models of Hinch
~1994! and Rallison~1996! contain dissipative stress terms in an attempt to approximate
short length scale elasticity in a simple way. Their models possess an evolution equation
for the distribution function that is the same as that for the FENE-P dumbbell model, but
the polymer contribution to the stress consists of an elastic contribution, which is
Hookean, and a dissipative contribution of the form (k:^QQ&)^QQ&. Here, Q is the
end-to-end vector of a spring that has a maximum extensibility ofQ0 , and k is the
transpose of the velocity gradient tensor. In this formulation, the stress tensor is incon-
sistent with the standard Kramers expression containing the spring force for the dumbbell
@Bird et al. ~1987!#. An unphysical consequence of this dissipative stress is that it leads to
stress jumps in the polymer contribution to the stress during instantaneous inception and
cessation of flow; of course, such discontinuities are already present in the total stress due
to the solvent contribution to the stress.

Verhoefet al. ~1999! present a model that is closely related to the Hinch and Rallison
models. The connector force of the dumbbell consists of a term that is a function ofQ
and a dissipative force term similar to that in the Hinch model. The model is more
consistent with kinetic theory, because the dissipative stress is related directly to a com-
ponent of the connector force. As a result, both the evolution equation for the conforma-
tion tensor and the equation for the stress tensor possess a dissipative term. Interestingly,
this model results in a spring force that is not a simple function of the end-to-end distance
but is also an explicit function of strain rate. In Sec. III, we present Brownian dynamics
simulations that imply that the dumbbell connector force indeed varies with deformation
history but its response is even more complex than that suggested by the Verhoef model.
Although finite extensibility is not explicitly introduced through a Warner spring, finite
extensibility results from the interaction of the two components of the force law. Conse-
quently, the model is capable of accurately modeling steady-state behavior as well as
transient stress growth. However, like the Hinch and Rallison models, the Verhoef model
predicts a stress jump, in addition to the solvent contribution, upon instantaneous incep-
tion or cessation of extension. Although these models can approximate experimental data
for stress growth in the start up of elongational flow, it should be remembered that they
all contain at least one adjustable parameter that is not directly set by the physical model.

In addition to the prediction of stress, it is also important for a molecular model to
capture the conformational changes of the molecules. In applications such as fiber spin-
ning, film formation, and the production and film coating of pressure-sensitive adhesives,
the chain conformation critically influences the material properties. Important informa-
tion about molecular conformation also is obtained from measurements of birefringence.
Doyle et al. ~1998! adapted the filament stretching rheometer to measure birefringence,
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and they were able to study directly the relationship of structure to stress of polymer
solutions undergoing uniaxial elongational flow. By plotting stress versus birefringence,
these researchers demonstrated the breakdown of the stress optical law in situations
where the molecules become appreciably extended. Similar observations have been made
by Li et al. ~2000!. Doyle showed that the breakdown of the stress-optical law was
predicted by Kramers chains and by bead-spring models with nonlinear, finitely exten-
sible springs~e.g., FENE dumbbells, FENE-P dumbbells, and FENE-P and FENE-PM
chains!. Doyle et al. also noticed that the stress–birefringence diagram for relaxation of
fully stretched Kramers chains or finitely extensible bead-spring models is a universal
curve.

A striking hysteretic behavior is observed when the extension and relaxation phases of
the filament stretching experiment are considered together. Although all the above mod-
els predict the same universal relaxation curve, only the FENE dumbbell and Kramers
chain display hysteresis. In contrast, Doyleet al. ~1998! and Sizaireet al. ~1999! dem-
onstrated that the FENE-P dumbbell and the FENE-PM chain do not show hysteresis. We
explain why some bead-spring models capture hysteresis whereas others do not. In ad-
dition, the paper provides a detailed understanding of the dynamics of polymer chains in
the start up of elongational flow and of the mechanisms that lead to stress–birefringence
hysteresis. This understanding will be helpful in constructing and evaluating new mo-
lecular models.

Sizaire et al. ~1999! already have made some progress in understanding stress–
birefringence hysteresis in dumbbell models. They put forward the hypothesis that hys-
teresis is always the result of coupled ‘‘nonlinearity and dispersity;’’ the force–extension
relationship for the dumbbell must be nonlinear, and the distribution function must have
dispersity~i.e., not be a delta function!. For example, the FENE-P constitutive equation
can be derived in two ways. First, the closure approximation may be interpreted as
imposing a Gaussian form on the distribution function. In this case, the FENE-P spring
force is linear in the end-to-end vectorQ. However, the FENE-P dumbbell is distin-
guished from the Hookean dumbbell, another model with a Gaussian distribution and a
spring force linear in the end-to-end vectorQ, because the FENE-P spring force includes
a denominator that is a function of the trace of the configuration tensor^QQ&. In this view
the model has dispersity but not nonlinearity. Second, if the distribution function is
assumed to be a delta function, then the FENE-P spring force is nonlinear inQ. This is
because the trace of the configuration tensor^QQ&, which appears in the denominator of
the FENE-P force law, is simply equal to the square of the extension of the molecules for
a delta-function distribution function. With this approach, the FENE-P dumbbell model
has nonlinearity but not dispersity. The FENE-P dumbbell model can have these two
different interpretations, because the Peterlin closure approximation ensures that the evo-
lution equation of the model depends only on^QQ&. Since two different distribution
functions can have the same second moment, the FENE-P constitutive equation can be
derived by assuming a distribution function that is either Gaussian or a delta function.
However, the FENE-P dumbbell model never can be interpreted to have both nonlinearity
and dispersity; and, hence, it does not predict hysteresis.

Lielenset al. ~1999! further show that closure approximations of the FENE dumbbell
model that assume disperse distribution functions and nonlinearitydo predict hysteresis.
They propose a FENE-L model that approximates the distribution function as a compos-
ite of a delta function and a rectangular segment. The addition of the rectangular segment
adds dispersity to the distribution function. According to this picture, hysteresis in dumb-
bell models based on the Warner spring arises because the distribution function evolves
through a different set of profiles during extension and relaxation. The birefringence is
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only related to the second moment of the configuration tensor^QQ&, whereas the stress
depends on other moments as well. Thus, during extension and relaxation distribution
functions can assume different shapes that possess the same second moment, but do not
predict the same stress. Therefore, hysteresis is possible in these formulations.

The model developed by Verhoef with a Peterlin closure approximation is an excep-
tion to the above framework of nonlinearity and dispersity as prerequisites for hysteresis.
Before the closure approximation is applied, the spring force in the Verhoef dumbbell
model is given byHh(Q2)Q1K(k:QQ)Q, whereH scales the spring modulus,h is a
linear function ofQ2, and the coefficientK is also constant. Following a Peterlin closure
approximation, the spring force is given byH^Q2&Q1K(k:^QQ&)Q; and the distribu-
tion function for the end-to-end distance is a delta function. The model is neither non-
linear in Q, nor does it possess dispersity. Nevertheless, it predicts hysteresis because,
unlike the FENE models considered previously, the Verhoef model possesses a connector
force with a term that depends on the strain history. During extension, the dissipative
component of the end-to-end force law is nonzero and depends on the strain history
through ^QQ&. In contrast, the dissipative component of the spring force expression is
always zero during relaxation. Therefore, hysteresis arises in the Verhoef model because
the end-to-end force law is different during extension and relaxation. However, the shape
of the hysteresis curve predicted by the Verhoef model differs from those of the FENE
dumbbell or Kramers chain in one important way. Since there is a stress jump in the
polymer contribution to the stress for the Verhoef model when the flow is turned off, the
relaxation response begins with a vertical segment that is proportional in magnitude to
the strain rate immediately prior to the cessation of the flow. Thus, as the strain rate is
increased, the relaxation arm of the hysteresis curve does not tend to the universal curve
observed by Doyleet al. ~1998!.

The Verhoef model belongs to a class of models with connector forces that depend on
the current strain rate as well as the current end-to-end vectorQ. Another example is the
Hookean dumbbell model with internal viscosity. The internal viscosity in this model is
described by an extra term in the equation for the connector force, which is proportional
to the rate of change of the end-to-end vector. Since the rate of change of the end-to-end
vector is different during extension and relaxation, the Hookean dumbbell model with
internal viscosity will display hysteresis. This is seen more easily by considering the
expression for the stress tensor. Schieber and O¨ ttinger~1994! demonstrated that inclusion
of internal viscosity leads to an extra term in the stress tensor that is proportional to the
velocity gradient tensor. Hence, the Hookean dumbbell with internal viscosity will dis-
play hysteresis because when the extension is stopped, there will be a stress jump and the
relaxation arm of the hysteresis curve will be vertically displaced from the extension arm.

Neither the concept of a dissipative stress, as in the Verhoef model, nor the concept of
internal viscosity, has rigorously been shown to be consistent with the physics embedded
in finer grain models, such as the Kramers chain. In Sec. III, we show that the stress
growth of a Kramers chain in an extensional flow is not consistent with an end-to-end
force that depends only on the instantaneous strain rate. A more general model of the
end-to-end connector force is required, one that depends on the entire deformation his-
tory. We will also show that the variation of the connector force with strain leads to a
phenomenon that Doyleet al. ~1998! referred to as ‘‘configurational hysteresis.’’ Con-
figurational hysteresis is postulated to be an additional contribution to stress–
birefringence hysteresis that is not captured by the evolution of the distribution function
of the end-to-end distance. Instead, configurational hysteresis arises from configurational
effects at a submolecular length scale that are not captured in current dumbbell models,
such as the FENE dumbbell. For example, Kramers chain simulations show that the
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molecules assume conformations with taut kinks or midsections during elongation,
whereas they are crinkled and bear less stress for a given end-to-end distance during
relaxation. In the previous work by Doyleet al. ~1998!, neither a method to quantify the
magnitude of the configurational hysteresis nor a way to distinguish it from the hysteresis
in the distribution function of the end-to-end distance was proposed. In Sec. V, we
develop a method to achieve both of these objectives.

The shortcomings of dumbbell models have led several researchers to investigate
multiple-mode alternatives. The FENE-P and FENE-PM chains show a more rapid stress
growth than the FENE dumbbell at low strains due to the improved resolution of shorter
time and length scales. As the number of modes is increased the transient stress growth
at low strains better approximates a Kramers chain. Although multiple-mode models can
always be relied upon to resolve shorter time-scale behavior, the addition of extra modes
does not necessarily improve the description of hysteresis. For example, both the FENE-P
and FENE-PM chains have been shown to predict the breakdown of the stress-optical
rule, but only the FENE-P chain leads to hysteresis@Wiest ~1998!#.

Closure approximations can have a very important effect on finitely extensible bead-
springchain models. The FENE-P chain can be derived from the FENE chain model by
assuming that the distribution functions for the end-to-end distances for each spring are
separate delta functions whose evolutions are coupled due to the connectivity of the
springs. Dispersity is introduced into the model by having several delta functions. Hys-
teresis arises because therelative behavior of these distribution functions is different
during extension and relaxation. In contrast, the extra mode decoupling introduced in a
FENE-PM chain model results in identical delta functions for the distribution functions of
the end-to-end distance of each of the springs. Since dispersity has been removed from
this model, it fails to predict hysteresis. Although several approximations to the FENE
chain have been considered in the literature, the hysteresis of the FENE chain itself has
not been investigated. In Sec. VI, we present a comparison of FENE chains with Kramers
chains.

The paper is organized as follows. In Sec. II, various polymer models are discussed
and the numerical techniques used to simulate their behavior are presented. The mecha-
nisms that lead to stress growth during extension of Kramers chains and FENE dumbbells
are explored in Sec. III. A comparison of the two models suggests ways in which dumb-
bell models should be modified in order to capture the finer scale dynamics of the
Kramers chain. In Sec. IV, the relaxation behavior of the two models is described. Both
models obey a universal relaxation curve during relaxation from fully stretched configu-
rations. The more complex relaxation mechanisms that operate if relaxation begins from
steady state or following an intermediate strain are explored. In Sec. V, the physical
understanding of the extension and relaxation phases is combined to analyze hysteresis.
A new method is presented to decouple configurational and distributional hysteresis and
estimate the relative magnitude of each effect. Finally, the transient elongational rheo-
logical behavior and hysteresis of a FENE chain are examined in Sec. VI. It is shown that
as more modes are added to a FENE chain, the agreement with the response of the
corresponding Kramers chain improves.

II. POLYMER MODELS AND NUMERICAL SIMULATION TECHNIQUES

A. Freely draining Kramers chain model

The Kramers chain models a polymer molecule asN beads connected byN21 rigid
rods. The rods are each of lengtha, which corresponds to a Kuhn step@Flory ~1953!#.
The chains do not experience excluded volume interactions, i.e., the beads and rods can
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move freely through one another. The rods rotate freely about the beads and are not
subject to bending potentials. The solvent molecules are modeled as a continuum, which
is described as an incompressible Newtonian liquid of viscosityhs . This solvent imparts
a deterministic Stokes law hydrodynamic drag and a stochastic Brownian force on each
bead. The Stokes’ drag on beadn is proportional to the momentum space-averaged
velocity of the bead relative to the solvent

Fn
~h! 5 2z•~ v ṙnb2v~rn ,t !! ~1!

wherern is the position of thenth bead,z is the drag tensor, andv is the velocity of the
incompressible Newtonian solvent. In this work, the drag is taken to be isotropicz
5 zd, and the scalar drag coefficientz is related to the bead radiusr and solvent

viscosityhs , by

z 5 6phsr. ~2!

The Brownian-motion force due to the bombardment of the beads by the thermal
motion of the solvent molecules is given by

Fn
~b! 5 A2kTfn~ t !, ~3!

wherefn is a Gaussian white noise that is fully characterized by expressions for its mean
and a two-time correlation function@Gardiner~1985!#:

^fn~ t !& 5 0, ~4!

^fn~ t !fm~ t8!& 5 dnmdd~ t2t8!. ~5!

The presence of rigid rods requires that the equations of motion for the beads be
solved subject to the constraint that the interbead separations remain constant. If we
neglect the inertia of the beads, the equation of motion for beadn reduces to

Fn
~h!1Fn

~b!1Fn
~c! 5 0, ~6!

whereFn
(c) is the constraint force arising from the tensions in the rods that are connected

to beadn. The constraint force is given by

Fn
~c! 5 2 (

i 5 1

N21

g i

]

]rn
s i , ~7!

where the$g i% refer toN21 undetermined Lagrange multipliers, and$s i% are defined by

si 5 ~r i 112r i !
22a2 5 0. ~8!

If the flow field is homogeneous on the length scale of the polymer, then the solvent
velocity may be rewritten as

v~rn ,t ! 5 v01@k~ t !–rn~ t !#, ~9!

wherev0 is the solvent velocity at the arbitrary fixed origin, andk is the transpose of the
velocity gradient tensor“v. In this paper, we focus on transient elongational flows, for
which the velocity field is given by

vx 5 21
2 ė x, vy 5 21

2 ė y, vz 5 bė z ~10!

whereė 5 ė(t) is the time-dependent elongation rate. For the stress growth in a filament
stretching experiment,ė is a constantė0 ; and the Hencky strain« is defined asė0t. For
the relaxation part of the experiment,ė is zero. Since the fluid is assumed to be incom-
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pressible,k is traceless. Substituting Eq.~9! into Eq. ~1! gives the Stratonovich-sense
stochastic differential equations for the bead motions

ṙn 5 v01@k–rn#1
1

z
Fn

~c!1
1

z
Fn

~b! , ~11!

where the momentum-space-averaged bead velocityv ṙnb is written simply asṙn .
The polymeric contribution to the stress tensor is calculated by using the Giesekus

form of the stress tensor

tp 5 1
2 npz (

n
^RnRn&~1! , ~12!

wherenp is the number density of polymer molecules andRn is the position of beadn
with respect to the center of mass of the molecule. The angled brackets^ & represent an
average with respect to the configurational distribution function, and the subscript~1!
denotes the upper convected derivative.

The end-to-end vector of the molecule is important for understanding the configura-
tional behavior of the polymer molecule. In terms of the bead vectors for the Kramers
chain, the end-to-end vector is defined asQ 5 rN2r1 . The end-to-end length of the
molecule is given by the magnitude ofQ.

For analysis of stress–birefringence hysteresis, the birefringence of a polymer solution
extended in thez direction is calculated from the expression used by Doyle~1997!:

Dn 5 nzz2nxx 5 5Cnp kT (
n 5 1

N21

^unzunz2unxunx&, ~13!

where

C 5
2p

45kT

~n212!2

n
~a12a2!.

n 5 1
3 tr n is the isotropic part of the refractive index tensor,a1 anda2 are the polariz-

abilities parallel and perpendicular to a rod, respectively, andunx andunz are thex and
z components of the unit vector in the direction of the connector vector (rn112rn).

It remains to define the appropriate dimensionless groups used in the simulations. The
characteristic quantities used to nondimensionalize the equations are the characteristic
lengtha, the characteristic diffusive time for an individual rod,lR 5 za2/kT, and the
characteristic Brownian force,kT/a. The bead Peclet number is defined as the product of
the time constant of an individual rod multiplied by the extension rate

Pe[
za2

kT
ė0 5 lRė0 . ~14!

From simulations of Kramers chains in relaxation following the cessation of shear
flow, Doyle et al. ~1997! found that the longest time scale,ld , of the polymer is related
to the time constant of a rod by

ld 5 0.0142N2
za2

kT
. ~15!
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The Weissenberg number is defined asld multiplied by the extension rate. Hence, by
combining Eqs.~14! and ~15!, the Weissenberg number is related to the rod Peclet
number by

Wi [ 0.0142N2 Pe. ~16!

It would take a Kramers chain of approximately 2850 rods to represent the polystyrene
Boger fluid ofMw 5 2.253106 g/mol used by Spiegelberget al. @Ghosh~2000!; Chap.
7#. Due to limits on computational resources, chains of this length cannot presently be
simulated. The simulations in this study were conducted with chains of 40 rods in order
to test whether the Kramers chain model could qualitatively capture the experimental
observations. We use the iterative scheme developed by Liu~1989! to integrate the
stochastic differential equations@Eq. ~11!# subject to the constraints. The dimensionless
time step is taken to be 1.031025 in the simulations and the constraints are satisfied to
a relative tolerance of 1.031026.

B. Bead-spring models

Bead-spring models are coarse-grained versions of the Kramers chain in which the
entropic elasticity of subsections of the chain are represented by springs. Assuming no
bead inertia, we write the balance between hydrodynamic, Brownian, and spring forces
(Fn

(s)) on beadn as

Fn
~h!1Fn

~b!1Fn
~s! 5 0. ~17!

The Brownian and hydrodynamic forces have the same form as for the Kramers chain.
Therefore, Brownian dynamics simulations of these models can be readily performed
without the complications of imposing constraints, as described by O¨ ttinger ~1996!. In-
formation about the configurational distribution function can then be built up from an
ensemble of Brownian trajectories. The evolution of the distribution function also can be
predicted by solving the equivalent Fokker–Planck equation for the bead-spring models:

]c

]t
5 2 (

j 5 1

M
]

]Qj
–H @k–Qj #c2

1

z
(

k 5 1

M

AjkFkT
]

]Qk
c1Fk

~s!cG J , ~18!

where c(QM ,t) is the probability of finding a chain with the set of spring vectors
$QM 5 Q1 ,Q2 ,...,QM% at time t, M is the number of springs, andAjk is the Rouse
matrix as defined in Birdet al. ~1987!. Although, a formal mathematical equivalence
exists between the Brownian dynamics and Fokker–Planck formulations, it is easier to
see how the spring force affects the evolution of the distribution function in the Fokker–
Planck formulation.

The spring force is also required in the calculation of the stress. The stress tensor for
a bead-spring model is given by the Kramers expression

tp 5 MnpkTd2np (
i 5 1

M

^QiFi
~s!&. ~19!

The birefringence of bead-spring models is calculated by using the expression in Eq.
~20!, which is taken from Wiest~1998!, as

Dn 5 5CnpkT
ns

Q0
2 (

i 5 1

M

^QizQiz2QixQix&, ~20!
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whereQ0 is the maximum extension of a spring and each spring corresponds tons rods
in the Kramers chain representation of the polymer. A similar expression is also used by
Li and Larson~2000!. The remainder of this section focuses on the origin and the form of
the spring force for these models.

C. FENE dumbbell

The FENE dumbbell model consists of two beads connected by an elastic spring. The
spring force is directed along the vectorQ connecting the two beads; and the magnitude
of the force is a function of the bead separation. For small extensions, the spring force is
linear in the bead separation. The proportionality constantHd is related to the parameters
of the Kramers chain by

Hd 5
3kT

~N21!a2. ~21!

For larger extensions, the force law becomes nonlinear, and Flory~1953! has shown that
the force required to hold the ends of the chain at a fixed separation is given by the
inverse Langevin function. An approximation to this function, which is computationally
more tractable, was developed by Warner and is referred to as the FENE force law. The
FENE force law is given by

F~s!~Q! 5
HdQ

~12Q2/Q0d
2 !

, ~22!

whereQ0d is the maximum extension of the dumbbell and is given by

Q0d 5 ~N21!a. ~23!

The maximum extension of the spring is often expressed by the dimensionless parameter
b, which is defined as

b [
HdQ0d

2

kT
. ~24!

Substituting Eqs.~21! and ~23! into Eq. ~24! yields

b 5 3~N21!. ~25!

The inverse Langevin force law~and the FENE approximation to it! is obtained from
equilibrium statistical mechanics and is based on the assumption that for a given end-to-
end distance a Kramers chain has had sufficient time to sample its entire configuration
space and that the internal conformational distribution function has reached equilibrium.
This force law should be used with caution in nonequilibrium situations. Only when the
time scale of the deformation is much longer than the relaxation time scale of the entire
chain will the chain unravelreversibly, i.e., the internal conformation distribution of the
chain will be able to equilibrate at each stage of the stretching. Smith and Chu~1998!
have shown that during the nonergodic dynamics of a rapid elongation, kinked confor-
mations are very common; however, these conformations are very uncommon in slow
flows. These observations provide a micromechanical basis for anticipating that the
FENE force law will not be applicable under rapid stretching conditions. This is indeed
seen in Sec. III, where the reversible stretching condition is shown to be violated in a
strong extensional flow and the FENE force law is shown no longer to be applicable.
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The time constantld for a FENE dumbbell iszd/4Hd so that the Weissenberg number
is

Wi 5 ldė 5
zdė

4Hd
, ~26!

wherezd is the drag coefficient of a bead in the FENE dumbbell model. By combining
Eqs.~15! and ~21!, zd is related to the drag coefficient on a bead in a Kramers chain as

zd 5 0.1704
N2

N21
z. ~27!

D. FENE chain

A FENE chain models a polymer molecule as a set of beads connected by FENE
springs. We begin with a molecule of a given time constantld and discretize it into a
chain with an increasing number of sections. An individual spring now represents a short
section of the Kramers chain instead of the chain as a whole. ForM springs, the maxi-
mum extension of each spring is@(N21)/M #a, and the spring constant of an individual
spring is

Hs 5
3MkT

~N21!a2. ~28!

As M increases and each spring represents a shorter fragment of the molecule, each
spring becomes stiffer.

The time constantls for an individual spring iszs/4Hs . In order to relate this time
constant to the time constant of a FENE dumbbell that represents the same molecule, a
scaling relationship must be developed betweenzs and zd . The scaling relationship is
chosen so that the transient extensional viscosity of the FENE chains approaches the
profile predicted by the Kramers chain asM becomes large. We show in Sec. VII that this
condition can be satisfied by a scaling relationship that makes the zero-shear-rate first
normal stress coefficient independent ofM. Using the result for the zero-shear-rate first
normal stress coefficient presented by Wiest and Tanner~1989! gives the relationship
betweenzd andzs as

ls 5
zs

4Hs
5

~~bs15!/bs!~bd /A~bd15!~bd17!!~zd/4Hd!

H ~2~M11!217!~~M11!221!

45
2

12~~M11!211!~~M11!221!

45~M11!~bs17!
J 1/2,

~29!

where the parameterbs in Eq. ~29! is the finite extensibility parameter of an individual
spring in the FENE chain. Since each spring now represents a section of the Kramers
chain,bs is proportional to the number of rods allocated to each section of the Kramers
chain and is related toN andM by

bs 5
3~N21!

M
. ~30!

Other scaling relationships do not satisfy condition~29! mentioned above. In particular, a
scaling relationship that makes the zero-shear-rate viscosity independent ofM results in
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an expression for the steady-state extensional viscosity of the FENE chains that deviates
from the Kramers chain prediction forM @ 1.

For the FENE force law to hold for the individual springs, the time scale of the
deformation must be much longer than the relaxation time of a section. Since the time
constant of an individual spring scales withM22, for chains consisting of 10–20 iden-
tical springs, strain rates needed to violate this condition cannot be physically realized.
Thus, we expect the transient extensional behavior and hysteretic properties of FENE
chains to be in better agreement with Kramers chain predictions than those for FENE
dumbbells. This expectation will be confirmed in Sec. VII. The Brownian dynamics
algorithm used to simulate the FENE chains and the FENE dumbbell was identical to that
of van den Brule~1993!.

III. UNIAXIAL EXTENSIONAL FLOW

In the kinetic theory of bead-spring polymer models, the spring force law appears in
two places: in the evolution equation for the distribution function@Eq. ~18!# as the
intramolecular force and in the equation for the stress tensor@Eq. ~19!#. In this section the
evolution of the end-to-end distribution function and the end-to-end force are compared
for a Kramers chain and an equivalent FENE dumbbell. A FENE dumbbell model is a
coarse-grained approximation to a Kramers chain under the reversible stretching condi-
tions described in Sec. II. In extensional flows at large strain rates, however, Kramers
chains are stretched out very rapidly; and the reversible stretching condition is not satis-
fied. We show that the violation of the reversible stretching condition leads to a deviation
of the FENE force law from the effective ensemble-averaged end-to-end force in the
Kramers chain. We then consider the implications of a modification to the FENE force
law in Eqs.~18! and ~19! for the prediction of transient stress growth.

Table I shows the simulations that were conducted in order to compare Kramers
chains and FENE dumbbells. Simulations~1!–~3! were conducted at Wi5 11.4 for
Kramers chains of 24, 40, and 62 rods in order to assess the effects of chain length.
Simulations ~4! and ~5! examine the effects of varying Wi for a chain of 40 rods.
Simulations~2! and ~5! were also performed for an equivalent FENE dumbbell at the
same Wi.

The growth of stress, birefringence, and root-mean-square end-to-end distance,
^Q2&1/2, with Hencky strain in start up of elongational flow are compared in Figs. 1–3.
As noted by Doyleet al. ~1998!, the Kramers chain and the FENE dumbbell predict the
same steady-state values for stress and birefringence; however, the Kramers chain pre-
dicts faster growth of these properties at low strains than does the FENE dumbbell model.
Both transient stress and birefringence depend upon the configuration of the entire mol-
ecule. Therefore, it is not surprising that the Kramers chain, which has many shorter
length scale~and, therefore, shorter time scale! modes available to it, responds more

TABLE I. Simulation parameters.

Simulation
No. NKramers Wi

Maximum
strain

Kramers
ensemble

b
~FENE!

FENE
ensemble

1 25 11.4 5 25 000 ¯

2 41 11.4 5 25 000 120 100 000
3 63 11.4 5 15 000 ¯

4 41 4.5 5 15 000 ¯

5 41 11.4 2.5 25 000 120 100 000
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quickly to the inception of extensional flow. In contrast, the overall size of the polymer
molecule,̂ Q2&1/2, evolves more slowly for the Kramers chain than for the FENE dumb-
bell. This is because a dumbbell model can only stretch through an increase inQ. In
contrast, a Kramers chain can stretch without the ends being pulled apart. It seems,
therefore, that the end-to-end distance may not be the most meaningful measure of
conformation for Kramers chains in transient extensional flow. Nevertheless, in this paper
we useQ as the measure of the conformation of an entire Kramers chain because we wish
to compare the end-to-end force in Kramers chains with that in FENE dumbbells for
which the entropic spring force is defined strictly in terms ofQ.

In order to compare the response of the end-to-end distance of the molecules as
described by the FENE dumbbell and Kramers chain models, we construct two con-
tracted distribution functions which give the probability of finding a molecule with a
specific end-to-end distanceQ. For the FENE dumbbell, the distribution function for the
end-to-end distance is the following contraction ofc(Q,t):

c~Q,t! 5 EEc~Q,u,f,t!dudf, ~31!

whereQ, u, andf are the length and spherical polar angles describing the end-to-end
vector Q. We definecK(Q,t) as the contraction of the full configurational distribution
function of the Kramers chain over the end-to-end distance:

ck~Q,t! 5 EcKramers~x,t !dS Q2Ua (
i 5 1

N21

uiU D dx. ~32!

FIG. 1. Dependence of stress on strain forN 5 41 Kramers chains and equivalent FENE dumbbells in uniaxial
extension at Wi5 11.4.
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Thus,cK gives that fraction of Kramers chains that have end-to-end distanceQ, inde-
pendent of the detailed internal configuration.

The contracted distribution functioncK(Q,t) is determined from Brownian dynamics
simulations of an ensemble of Kramers chains by calculating the fraction of molecules
with a specified end-to-end distance. The evolution ofcK(Q,t) for a Kramers chain of 41
beads andc(Q,t) for the equivalent FENE dumbbell@simulation~2!# during start up of
uniaxial extension are compared in Figs. 4 and 5. The shapes of the distribution functions
over the entire domain ofQ are shown in Fig. 4 up toe 5 1.5. The peak that forms near
the maximum extension for strains between 2.5 and 5 is the focus of Fig. 5. Both the
FENE dumbbell and Kramers chain models exhibit qualitatively similar behavior. At low
strains, the peak of the distribution function gradually migrates from its equilibrium value
to higher extensions with increasing strain~see Fig. 4!; the tail of the distribution function
for largeQ broadens out and eventually reaches the maximum extension. Once the tail
has reached maximum extension, a peak begins to form nearQ0 . At e 5 1.5, the peak
near maximum extension is already very prominent for the FENE dumbbell, whereas it is
not yet clearly distinguished for the Kramers chain. An exchange of probability density
then ensues between the peaks at low extension and high extension. The shapes of the
end-to-end distribution functions for the two models for strains between 2.5 and 5 are
illustrated in Fig. 5. Ate 5 2.5, c(Q,t) for the FENE dumbbell is close to its final
steady-state shape; however, the peak incK(Q,t) for the Kramers chain has only grown
to 25% of its final height. The maximum in the peak ate 5 5 is located at a slightly
higher value ofQ for the Kramers chain; this peak is also broader than the peak for the
FENE dumbbell, but is only half the height. Keunings~1997! also investigated the evo-

FIG. 2. Dependence of birefringence on strain forN 5 41 Kramers chains and equivalent FENE dumbbells in
uniaxial extension at Wi5 11.4.
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lution of the distribution function of a FENE dumbbell in uniaxial extensional flow. His
observations are in agreement with the results for the FENE dumbbell presented here.

The most noticeable difference between the evolutions of the end-to-end distribution
functions for the two models is thatc(Q,t) of the FENE dumbbell shifts to larger
extensions much more quickly thancK(Q,t) for the Kramers chain. This can be seen in
the larger peak near maximum extension ate 5 1.5 for the FENE dumbbell in Fig. 4.
Based on this observation, if the end-to-end force of the Kramers chain were well de-
scribed by the FENE force law~as is assumed whenever the FENE dumbbell model is
used as a rheological model!, the stress growth predicted at low strains would be larger
for the FENE dumbbell than the Kramers chain. However, the results in Fig. 1 show the
opposite effect. This result suggests that the effective end-to-end force of the Kramers
chain is poorly approximated by the FENE expression, at least under transient, rapid
stretching conditions. In the rest of this section, we outline a procedure to estimate the
ensemble-averaged end-to-end force profile for a Kramers chain, and we demonstrate that
this result deviates markedly from the FENE force law in extensional flows.

For an ensemble ofNs dumbbells with an arbitrary force lawF(s)(Q,t) that is a
function ofQ and time only, the polymer contribution to the stress tensor is given by the
Kramers form of the stress tensor@Bird et al. ~1987!# as

tp~ t ! 5 npkTd2
np

Ns
(

n 5 1

Ns

QnFn
~s!~Qn ,t !, ~33!

FIG. 3. Dependence of̂Q2&1/2 on strain forN 5 41 Kramers chains and equivalent FENE dumbbells in
uniaxial extension at Wi5 11.4.
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in which the ensemble average is expressed as a summation. The subset ofNQ molecules
with end-to-end distances betweenQ andQ1dQ, will contribute to thezzcomponent of
the stresstpzz,Q approximately as

tpzz,Q ' npkT
NQ

Ns
2np

Qz

Ns
(

n 5 1

NQ

Fzn. ~34!

Since the summation is over all molecules with a given end-to-end distanceQ, the z
component ofQ cannot strictly be factored out of the summation since not all molecules
with a given end-to-end distanceQ have the sameQz . However, in a uniaxial elongation
the approximation thatQz ' Q is a good one, except for very small strains. In our
simulations, effective forces are calculated for strains of unity or greater. For the lowest
strain rates investigated,Qz was already 95% of the overall end-to-end distance of the
molecule at a strain of unity. As a result, in the rest of the paper, whenever an expression
for force or stress containingQ is presented, it is implicitly assumed that the approxima-
tion Qz ' Q was used during the calculations.

The contribution of the subset ofNQ molecules with end-to-end distances betweenQ
andQ1dQ to thezzcomponent of the stress in an ensemble of Kramers chains can also
be given by the Giesekus expression

FIG. 4. Evolution of the end-to-end distribution function up to« 5 1.5 for N 5 41 Kramers chains and
equivalent FENE dumbbells in uniaxial extension at Wi5 11.4.
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tpzz,Q 5
1

2

npz

Ns
(

n 5 1

NQ H d

dt S (
n 5 1

N

RnRnD
n

2k–S (
n 5 1

N

RnRnD
n

2S (
n 5 1

N

RnRnD –k†J
zz

. ~35!

Equating Eqs.~34! and ~35! gives thez component of the effective ensemble-averaged
spring force in the Kramers chainFz,effective as

Fz,effective~Q,t ! 5
1

NQ
(

n 5 1

NQ

Fzn 5
kT

Q
2

1

2

z

NQQ
(

n 5 1

NQ H d

dt S (
n 5 1

N

RnRnD
n

2k–S (
n 5 1

N

RnRnD
n

2S (
n 5 1

N

RnRnD –k†J
zz

.

~36!

If the end-to-end force of the Kramers chain were accurately described by the inverse
Langevin function,Fz,effective would equal the inverse Langevin function. In general,
however, we find thatFz,effective varies with end-to-end distance and time.

From the simulations, the effective force profile at a given strain is determined in the
following way. The range of possible end-to-end distances of a Kramers chain@0 < Q

FIG. 5. Evolution of the end-to-end distribution function between strains of 2.5 and 5 forN 5 41 Kramers
chains and equivalent FENE dumbbells in uniaxial extension at Wi5 11.4.
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< (N21)a# is divided into 25~N21! bins of equal width 0.04a. An ensemble of Kramers
chains is frozen at a given strain, and the molecules are placed into bins according to their
end-to-end distance. The effective force for the value ofQ at the midpoint of a bin is
calculated according to Eq.~36!. Even with ensembles of 15 000 and higher, the number
of molecules in some bins is not large enough to ensure a low error in the average value
of the effective force. Therefore, molecules are collected in bins over 100 time steps
instead of at a single time step. At Wi5 10, this is equivalent to a Hencky strain of 0.01
if the dimensionless time step is 1.031025. Time averaging introduces a small error,
because the molecules in each bin do not all correspond to exactly the same strain. For
intermediate strains, at moderate values ofQ, there is approximately a 2% difference
between the effective force at the beginning and end of the time interval. However, time
averaging reduced the statistical error in the estimate of the mean effective force from
50% to 4%. Rallison~1996! used a similar noise reduction technique.

Effective force profiles constructed at various strains for simulations~1!, ~2!, and~3!
are shown in Fig. 6 with Wi5 11.4. The effective force is not a function ofQ alone, but
changes with strain. At equilibrium, the effective force profile agrees well with the FENE
force law except for very smallQ. The deviation for smallQ at equilibrium is due to
numerical error that arises when a small statistical error in the stress of the Kramers

FIG. 6. Evolution of the effective end-to-end force profiles up to« 5 5 for N 5 41 Kramers chains in uniaxial
extension at Wi5 11.4.
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chains is divided by a very small value ofQ. In addition, part of the error may also be
attributed to the fact that the approximationQz ' Q is used, and the end-to-end distance
Q of a molecule is approximated byQz , which has a smaller value. For all nonzero
strains, the effective force profiles lie above the FENE curve except nearQ0 . Addition-
ally, the force profiles move upwards with increasing strain. The upward movement of
the entire forceprofile with increasing strain will be referred to in the rest of the paper as
‘‘strain hardening’’ of the effective end-to-end force. The results in Fig. 6 also demon-
strate that, for a given strain, the force profile is independent ofN for Kramers chains
with N . 25. This suggests that the behavior of Kramers chains long enough to repre-
sent the high molecular weight Boger fluids typically used in filament-stretching experi-
ments can be adequately probed by simulating much shorter chains.

It is not a numerical artifact that at nonzero strains, the effective force becomes
unbounded asQ → 0. A Kramers chain in a strongly extensional flow may make a large
contribution to the fluid stress if it has unraveled a great deal and possesses a large
number of kinks. However, its ends may be close to one another. In the equation for the
effective force@Eq. ~36!#, the last term has a large numerator and a small denominator.
Hence, the effective force is very large. The effective forces at lowQ increase with strain,
because the rest of the chain can unravel and contribute a larger stress to the fluid, even
though the end points of a Kramers chain may remain close together.

The evolution of the effective force profiles for a 41-bead Kramers chain at
Wi 5 4.5 @simulation ~4!# is shown in Fig. 7. The effective force profiles still move
upwards with increasing strains, but to a much smaller extent than at Wi5 11.4. As the
extension rate decreases, the deviation of the effective force from the FENE force de-

FIG. 7. Evolution of the effective end-to-end force profiles up to« 5 5 for N 5 41 Kramers chains in uniaxial
extension at Wi5 4.5.
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creases, because the system more nearly satisfies the reversible stretching condition.
Hence, the FENE force law better approximates the end-to-end force law, as expected.

The effective forces shown in Figs. 6 and 7 are always better approximated by the
FENE force law at largerQ. The convergence of the effective force and the FENE force
occurs because the configuration space of the chain contracts as the chain is extended.
Consequently, the chain can sample a larger portion of its configuration space at a given
Q before it is stretched further. In the limit of full extension, the configuration space has
shrunk so much that the chain can manage to sample it all, despite the presence of a
strong underlying flow. Hence, the reversible stretching criterion is met in these extreme
conditions, and the FENE force law is a good approximation of the end-to-end force in
the Kramers chain.

The behavior of the effective force observed above indicates that the entire end-to-end
forceprofile depends on both the strain and the strain rate for strong, transient extensional
flows. Consequently, the end-to-end force profile has been shown to be dependent upon
the deformation history, unlike the inverse Langevin or FENE force expressions.

Having demonstrated the deviation of the effective end-to-end force of the Kramers
chain from the predictions of the FENE model, the impact of this deviation on the stress
growth is now considered. The stress in the Kramers chain is split into a FENE and a
non-FENE contribution. The FENE contribution to the stress is given by

tp
FENE 5 npkTd2npE QKramersFFENEcK~QKramers,t !dQKramers, ~37!

where the ensemble average is taken with respect tocK(QKramers,t) of the Kramers
chain, the end-to-endvector, QKramers, is that of the Kramers chain, and the end-to-end
force is assumed to be the FENE force evaluated forQKramers. The contracted distribu-
tion functioncK(QKramers,t) is defined similarly to Eq.~32!. The zzcomponent of this
stress is given by

tpzz
FENE 5 npkT2npE Qz

KramersFz
FENEcK~QKramers,t !dQKramers. ~38!

The orientation of molecules along the stretching direction in a uniaxial elongational flow
allows us to approximate this three-dimensional integral by a one-dimensional integral.
We assume thatcK(QKramers,t) is identically zero everywhere except along thez axis,
and therefore, Eq.~38! may be approximated by

tpzz
FENE > npkT2npE Qz

KramersFz
FENEcK~Qz

Kramers,t !dQz
Kramers, ~39!

wherecK(Qz
Kramers,t) is the distribution function of thez component of the end-to-end

distance. This is not a good approximation at very low strains when most of the mol-
ecules are not yet aligned in thez direction. However, for« . 0.5 in our uniaxial
elongation simulations, the majority of the moleculesdo become aligned with the stretch-
ing direction, as evidenced by the fact that values ofQz are an order of magnitude greater
thanQx or Qy . Therefore, molecular orientations are limited to a narrow range around
the stretching direction, justifying the use ofcK(Qz

Kramers,t). The FENE contribution
derived above is the stress that would be obtained if there were no strain hardening in the
effective end-to-end force, so that the end-to-end force of Kramers chains in strong flows
could be described by the FENE force law. The non-FENE contribution is simply defined
as the difference between the total stress contribution from the Kramers chains, given by
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Eq. ~12!, and the FENE contribution. In Fig. 8, (tpzz2tpxx)/npkT is plotted against
strain for simulation~2!, for which Wi 5 11.38 andN 5 41. It should be noted that with
the approximation in Eq.~39!, tpxx is zero at all strains. The evolution of the two
components and the ratio of the non-FENE contribution to the total also are shown in Fig.
8.

At « 5 5, the non-FENE component has nearly vanished, and yet the maximum strain
hardening is observed at the highest strains in Figs. 6 and 7. This apparent contradiction
is easily resolved by recalling that at« 5 5 the distribution function has a large, narrow
peak near maximum extension. At that extension, the effective force is almost equal to
the FENE force law; and thus, the stress is well approximated by the FENE component.
Although there is substantial strain hardening at lower values ofQ, there are so few
molecules in that part of the configuration space that they contribute very little to the
overall stress. In contrast, the non-FENE contribution accounts for 90% of the total stress
at « 5 0.5 when the approximation in Eq.~39! becomes valid. The non-FENE contribu-
tion in this rapid stretching flow remains high up to strains of approximately 2 when it
still accounts for 60% of the total stress. Because the non-FENE contribution to the stress
is dominant at low strains, strain hardening in the force law must drive stress growth at
these strains. It is possible that a strain-hardening spring force may provide an alternative
to a multiple-mode model for capturing the rapid stress growth of a Kramers chain at low
strains.

Having established that the effective end-to-end force for a Kramers chain strain
hardens, the validity of recent models that modify the force law, stress expression, or
both, can be assessed. For example, the force law in the Verhoef model contains an
‘‘elastic’’ term, H(Q2)Q, for which the spring constant is a function of the square of the

FIG. 8. Partitioning of stress inN 5 41 Kramers chains into FENE and non-FENE contributions up to«
5 5 in uniaxial extension at Wi5 11.4.
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end-to-end distance, and a dissipative term, proportional to (k:QQ)Q. The quadratic
term is a substitute for the FENE force law, because the authors of this model believe that
the nonlinear behavior of the FENE force begins at values ofQ that are too large. This
leads to the result that the majority of the stress growth occurs at intermediate strains for
the FENE dumbbell. The FENE force law also results in an overly sharp knee in the
stress–strain curve as it approaches steady state. The use of the quadratic force term
removes the sharp knee and gives a smoother approach to steady state. The dissipative
term in the force is designed to give more rapid stress growth at low strains. To our
knowledge, this is the only kinetic theory model for dilute solutions that contains a force
law that depends explicitly on the flow field. However, the Verhoef model predicts a
unique value for the force given values forQ andk. In contrast, the simulations in this
section reveal that the end-to-end force is not a unique, instantaneous function ofk and
Q, but thatF(s) depends on the history of these macroscopic and microscopic quantities.

IV. RELAXATION

Doyle et al. ~1998! noticed that the relaxation of fully stretched Kramers chains and
FENE dumbbells, regardless of their maximum length, could be described by a universal
curve on a stress–birefringence diagram. We first explain why a universal curve exists
for relaxation from full stretch. Next, relaxation dynamics of Kramers chains, FENE
dumbbells, and FENE-P dumbbells are explored following extension to a large strain at
high Wi. This is not the same as relaxation from full stretch, because relaxation does not
start with all the molecules possessing the same~maximum! extension. Instead, it begins
from a narrow distribution~e.g., a delta function for the FENE-P dumbbell model! of
molecules nearQ0 . Nevertheless, the behavior of all three models is demonstrated to be
well described by the universal relaxation curve, and an explanation for the agreement of
the three models is given. Finally, relaxation is studied following extension up to inter-
mediate strains. At an intermediate strain, there is still a significant number of molecules
that are not part of the peak in the distribution function that occurs near maximum
extension. The roles of different relaxation mechanisms exhibited by the three models are
examined, and an explanation is offered for deviation from the universal relaxation curve.

An ensemble of Kramers chains relaxing from full stretch begins with all of the
molecules near maximum extension. In this limit, the end-to-end force is well approxi-
mated by the FENE force expression. Since there is no underlying strong flow, the
straight chain molecules sample the entire configuration space as they relax. Therefore,
the effective force is well approximated by the FENE force law throughout the entire
relaxation process, as confirmed in Fig. 9. Figure 9 presents the effective profiles for
times 0.2, 0.4, and 0.6lR after the onset of relaxation. In each case, the profile extends
over only one or two units of length because at each point in time, the molecules are
distributed over a narrow range of lengths. Additionally, the distribution functions for all
the models are either Gaussian~for FENE-P! or nearly Gaussian~for the Kramers chain
and FENE dumbbell! during relaxation from the fully stretched state, as shown in Fig. 10.

Thus the Kramers chain, FENE dumbbell, and FENE-P dumbbell models share two
features: the end-to-end distribution functions are Gaussian, and the end-to-end force is
well described by the FENE force law. These conditions aresufficient for universal
relaxation behavior to be exhibited. If the distribution function is always Gaussian, then
the polymer stress can be described by the expression for the FENE-P model@Öttinger
~1987!, ~1996!#. Because a Gaussian distribution is fully characterized by its first and
second moments, the expression for the FENE force law becomes a function of the
configuration tensor,̂QQ&, as given by
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tp 5 npkTd2npHd

^QQ&

~12tr~^QQ&!/Q0d
2 !

. ~40!

The birefringence is proportional to the difference in the normal components of^QQ&,
as expressed by Eq.~20!. In a uniaxial extensional flow, thezz component of̂ QQ& is
much larger than thexx andyy components when the extension of the dumbbell is much
greater than the equilibrium end-to-end distance. Thus, in this limit, the normal stress
difference, the birefringence, and tr(^QQ&) may all be approximated by thezzcomponent
of the ^QQ& tensor. This leads to the one-to-one, oruniversal, relationship between stress
and birefringence given by

Dtp > npHd

Dn/K

~12Dn/KQ0d
2 !

, ~41!

whereK 5 5CnpkT(N21)/Q0d
2 is the prefactor to the summation in Eq.~20!.

A comparison of the stress–birefringence relaxation behavior of the Kramers chain,
FENE dumbbell, and the FENE-P dumbbell models following an extension to« 5 5 at
Wi 5 11.4 @simulation~2!# is shown in Fig. 11. The relaxation~and extension! behavior
of the FENE-P chain is given by the universal relaxation curve, because its distribution
function is always Gaussian and its end-to-end force law is always given by the FENE
spring expression. The relaxation behaviors of the FENE dumbbell and Kramers chain
also are well described by the universal relaxation curve. The evolution of the distribution
functions for the three models is compared in Fig. 12 to understand why the FENE
dumbbell and the Kramers chain follow the universal relaxation curve. At the instant the

FIG. 9. Evolution of the effective end-to-end force ofN 5 41 Kramers chains and equivalent FENE and
FENE-P dumbbells in relaxation from a fully stretched state.
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flow is turned off, all three models have very narrow, peaked distributions near maximum
extension. The distribution function for the FENE-P model is represented as a delta
function in this plot. However, as noted by O¨ ttinger ~1996!, the FENE-P dumbbell model
also can be derived by assuming a Gaussian distribution. Thus, the distribution function
of the FENE-P dumbbell in Fig. 12 can be interpreted as being a Gaussian function with
a maximum value that corresponds to the delta functions shown in Fig. 12. During
relaxation, the peaks for all three models migrate to equilibrium. As the relaxation
progresses, the distribution functions for the FENE dumbbell and Kramers chain become
shorter and broader, but always assume a symmetric Gaussian shape. The distribution
function of the FENE dumbbell remains higher and narrower than that of the Kramers
chain, because the peak of the FENE distribution function is higher at the end of the
extension phase, and the difference persists during relaxation. Because an ensemble of
FENE dumbbells is identical to an ensemble of FENE-P dumbbells when the end-to-end
distribution function is Gaussian, we expect the FENE dumbbell model to relax accord-
ing to the universal relaxation curve.

The end-to-end distribution function of the Kramers chain also appears Gaussian
during relaxation, but for this model to relax according to the universal relaxation curve,
the effective end-to-end force must be near the FENE result for the majority of the
chains. After extension at Wi5 11.4 up to« 5 5, the narrow peak of the end-to-end
distribution function of the Kramers chains extends from 38.8a < Q < 39.5a as shown
in Fig. 13~a!. This peak contains over 95% of the molecules, and over this range the
effective force in the Kramers chain is very close to the FENE value. As the relaxation
progresses, the effective force at a givenQ must relax to its FENE value before the peak

FIG. 10. Evolution of the end-to-end distribution function ofN 5 41 Kramers chains and equivalent FENE
and FENE-P dumbbells in relaxation from a fully stretched state.
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of cK(Q,t) reaches thatQ. If this occurs, then the majority of the Kramers chains will
experience an effective force that is FENE-like, and the Kramers chain will relax accord-
ing to the universal relaxation curve. The relaxations of the distribution function and
effective force profile for the Kramers chain up to 0.3lR after the cessation of flow are
shown in Figs. 13~a! and 13~b!, respectively. Notice that the effective force has relaxed
approximately to the level of the FENE level for values ofQ at which the peak of
cK(Q,t) is located. The effective force profile dips below the FENE force profile at the
largest values ofQ. This is not surprising because the FENE force law is an approxima-
tion to the inverse Langevin function. As expected, the effective force profiles tend to the
inverse Langevin limit for large extensions.

It should be emphasized that the relaxation of the effective force profiles is extremely
fast relative to the rate for strain hardening@Orr and Sridhar~1996!#. The rapidity of the
relaxation is crucial in order for the Kramers chain behavior to be described by the
universal relaxation curve. Snapshots of the effective force profiles during relaxation
following an extension to« 5 5 at Wi 5 11.4 are shown in Fig. 14. The effective force
profile at the instant the flow is turned off is shown by the uppermost curve; it takes a
time of 10lR to strain harden the force profile to this extent. However, in the relaxation
portion of the experiment, the strain-hardened force profile has relaxed very close to the
FENE force law within a time of 2lR from the cessation of the stretching phase of the
experiment. Thus, the chains that are not fully stretched out, e.g., the kinked configura-
tions that build up during stretching and lead to large effective forces, relax very quickly.

In relaxation following stretching to an intermediate strain, the relaxation of the ef-
fective forces plays a far more important role. The evolution of the distribution functions
of 40-rod Kramers chains and equivalent FENE dumbbells following an extension to

FIG. 11. Dependence of stress on birefringence forN 5 41 Kramers chains and equivalent FENE and FENE-P
dumbbells in relaxation following uniaxial extension to« 5 5 at Wi 5 11.4.
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« 5 2.5 at Wi5 11.4 is shown in Fig. 15. For FENE dumbbells, about 80% of the
ensemble are part of the peak at large extensions. Because 20% of the dumbbells have not
undergone the coil–stretch transition, the overall distribution is not Gaussian. Thus, the
relaxation behavior of the FENE dumbbell is expected to deviate from the universal
curve; this is confirmed in Fig. 16. For Kramers chains, 60%–70% of the molecules have
Q , 30a at the beginning of relaxation. The shape of the distribution function forQ
, 30a also does not change significantly for times less than 0.5lR following the onset

of relaxation; however, as shown in Fig. 17, the effective forces forQ , 30a decay
dramatically in that time period. Thus, the relaxation of the Kramers chain from
« 5 2.5 is different than the relaxation from« 5 5 for two reasons. First, at the begin-
ning of the relaxation, there are many molecules that have not undergone the coil–stretch
transition. Second, the effective end-to-end forces in the molecules that have not unrav-
eled completely deviate markedly from the FENE force law and also decrease during the
relaxation. The result is that the stress–birefringence behavior of the FENE dumbbell and
of the Kramers chain both deviate significantly from the universal curve.

V. STRESS–BIREFRINGENCE HYSTERESIS

Lielens et al. ~1999! have discussed sources of hysteresis for an ensemble of FENE
dumbbells. Here, we examine the hysteresis of FENE chains and Kramers chains. The
hysteresis of a Kramers chain is composed of two components that we refer to asdistri-
butional hysteresisandconfigurational hysteresis. The distributional component of hys-
teresis arises becausecK(Q,t) has a non-Gaussian shape during extension~Fig. 4!. As
was shown in Sec. IV, a non-Gaussian distribution leads to a deviation from the universal

FIG. 12. Relaxation of the end-to-end distribution ofN 5 41 Kramers chains and equivalent FENE and
FENE-P dumbbells in relaxation following uniaxial extension to« 5 5 at Wi 5 11.4.
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FIG. 13. ~a! Relaxation of the end-to-end distribution functions forN 5 41 Kramers chains and equivalent
FENE and FENE-P dumbbells in relaxation following uniaxial extension to« 5 5 at Wi 5 11.4. ~b! Relax-
ation of the effective end-to-end force profiles forN 5 41 Kramers chains and equivalent FENE and FENE-P
dumbbells in relaxation following uniaxial extension to« 5 5 at Wi 5 11.4.
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relaxation curve. If the extensional arm of the stress–birefringence diagram is different
from the universal relaxation curve, the model will predict hysteresis. The hysteresis of
the FENE dumbbell is due to thisdistributionalcomponent alone. However, the Kramers
chain has an addedconfigurationalcomponent to hysteresis. The notion of configura-
tional hysteresis was first described by Doyleet al. ~1998! to be associated with the fact
that molecules assume different configurations during extension and relaxation. However,
no method has been provided to separate the two types of hysteresis or to estimate their
relative magnitudes. We describe below a methodology that can achieve both of these
objectives. The effective end-to-end force in Kramers chains was shown in Fig. 14 to
evolve at different rates during extension and relaxation. The calculation of the effective
end-to-end forces involves dividing the total stress in a bin by the number of molecules
in that bin. Thus, the effective force contains no information about the distribution func-
tion, and any difference in the evolution of the effective force during extension and
relaxation will contribute additional hysteresis to the system independent of distributional
effects. This additional component of hysteresis is identified as configurational in origin
because the deviation of the effective force from the FENE force law is driven by the
formation of kinked internal configurations that arise from the underlying strong flow.

The relative magnitudes of configurational and distributional hysteresis are estimated
by comparing the stress–birefringence plot for Kramers chains with that whichwould be
generated if the end-to-end force in the Kramers chains were always of FENE character.
These plots are shown in Fig. 18 for a system that was elongated at Wi5 11.4 up to

FIG. 14. Relaxation of the end-to-end effective force inN 5 41 Kramers chains in relaxation following
uniaxial extension to« 5 5 at Wi 5 11.4.
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« 5 5. The difference between the enclosed areas of the two plots for Kramers chains is
the configurational contribution to hysteresis and is a major contributor to the overall
hysteresis.

The shapes of the stress–birefringence hysteresis loops for FENE dumbbells and
Kramers chains are very similar, but the hysteresis is slightly greater for the FENE
dumbbell model. This contrasts with hysteresis in stress and the root-mean-square end-
to-end distancêQ2&1/2. Figure 19 shows that the extension arm of the stress versus
^Q2&1/2 plot rises more steeply for the Kramers chain model at small values of^Q2&1/2;
and the Kramers chain shows more hysteresis than the FENE dumbbell. This is because
the root-mean-square end-to-end distance^Q2&1/2, which is closely related to birefrin-
gence for the FENE dumbbell, grows faster for FENE dumbbells than for Kramers chains
~Fig. 3!, but stress grows more slowly~see Fig. 1!. To understand why the FENE dumb-
bell model exhibits more hysteresis in stress versus birefringence but less hysteresis in
stress versuŝQ2&1/2, the hysteresis of the two models in birefringence versus^Q2&1/2 is
considered in Fig. 20. The Kramers chain exhibits hysteresis in the birefringence versus
^Q2&1/2 diagram, whereas the FENE dumbbell cannot because birefringence is a unique
function of ^Q2&1/2.

The FENE dumbbell does not exhibit hysteresis in the behavior of birefringence with
^Q2&1/2 because both birefringence and^Q2&1/2 are closely approximated by thezzcom-
ponent of ^QQ& for large extensions. Hence, there is a one-to-one mapping between
^Q2&1/2 and birefringence. The birefringence of the Kramers chain, on the other hand,
displays extremely rapid initial growth witĥQ2&1/2. This is because birefringence mea-
sures the degree of alignment of the chain segments with the stretching direction.For

FIG. 15. Relaxation of the end-to-end distribution functions ofN 5 41 Kramers chains and equivalent FENE
dumbbells in relaxation following uniaxial extension to« 5 2.5 at Wi5 11.4.
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FIG. 16. Dependence of stress on birefringence forN 5 41 Kramers chains and equivalent FENE dumbbells
during relaxation following uniaxial extension to« 5 2.5 at Wi5 11.4.

FIG. 17. Relaxation of the end-to-end effective force inN 5 41 Kramers chains in relaxation following
uniaxial extension to« 5 2.5 at Wi5 11.4.
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FIG. 18. Dependence of stress on birefringence in uniaxial extension to« 5 5 at Wi 5 11.4 and in subsequent
relaxation forN 5 41 Kramers chains andN 5 41 Kramers chains whose end-to-end forces are set equal to the
FENE force law.

FIG. 19. Dependence of stress on^Q2&1/2 for N 5 41 Kramers chains and equivalent FENE dumbbells in
uniaxial extension to« 5 5 at Wi 5 11.4 and in subsequent relaxation.
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Kramers chains, alignment at the segmental level begins immediately and can occur
independently of any growth in̂Q2&1/2.

Another important difference between the hysteresis behavior of FENE dumbbells and
Kramers chains is the rate at which the stress–birefringence hysteresis loops are tra-
versed. The stress–birefringence curve shown in Fig. 21 is traversed more quickly for the
Kramers chain. Thus, if the extension is terminated at an intermediate strain, the Kramers
chain will exhibit more hysteresis because it has climbed to a higher point on the exten-
sion arm of the curve. For the short chains examined in this study, there is a significant
difference between the rates at which the hysteresis loops are traversed up to« . 2.5.

The rate at which the hysteresis loops are traversed is very important for comparison
with experimental data. Doyleet al. showed that a FENE dumbbell greatly underpredicts
the experimentally observed hysteresis in an experiment conducted to a strain of about 4.
The results in this paper suggest that if a 2850-rod Kramers chain could be simulated, it
would predict much more hysteresis than the FENE dumbbell and might agree more
closely with experiments.

VI. FENE CHAINS

In strong extensional flows, the deviation of the effective end-to-end force for a Kram-
ers chain from the FENE force law was attributed to the entire chain’s inability to sample
its full configuration space before being deformed by the underlying flow. However, if a
Kramers chain consisting ofN rods were approximated by a FENE chain consisting ofM
springs, each spring would now represent a far smaller segment of the Kramers chain,
N/M rods. Since these segments have a smaller configuration space to sample, we expect
that the FENE force law is a better approximation for these segments than for the full
Kramers chain. Hence, the FENE chain should be a better approximation than a FENE
dumbbell to the Kramers chain in terms of describing transient stress growth and hyster-
esis. The validity of this claim is examined in this section.

Plots of stress and birefringence as functions of strain for FENE chains are shown in
Figs. 22 and 23, respectively, for calculations with 2, 3, and 6 springs. The uniaxial
extension is conducted at Wi5 11.4, and the productM3bs is kept constant at 120.
Hence, these FENE chains represent a 40-rod Kramers chain, according to Eq.~30!. The
behavior of the Kramers chain and FENE dumbbell also are included on Figs. 22 and 23
for comparison. As more modes are added, there is faster growth in stress and birefrin-
gence at low strains. In fact, the 6-spring FENE chain agrees well with the predictions of
the Kramers chain over the entire range of strains. All the models predict the same
steady-state values of stress and birefringence.

The dynamics of the stress and birefringence of a 6-spring FENE chain, a Kramers
chain, and a FENE dumbbell are compared in Fig. 24 for uniaxial elongation up to
« 5 5 at Wi 5 11.4, followed by relaxation. The hysteresis curve of the 6-spring FENE
chain coincides with that for the Kramers chain. The FENE chain also traverses its
hysteresis loop at a similar rate to the Kramers chain, but much faster than the FENE
dumbbell.

Plots of birefringence as a function of^Q2&1/2 are shown in Fig. 25 for the 6-mode
FENE chain, Kramers chain, and FENE dumbbell. As for the Kramers chain, the multiple
modes of the FENE chain enable it to exhibit hysteresis in birefringence versus^Q2&1/2.
Overall, the FENE chain predicts transient rheology and hysteresis that agree more
closely with the Kramers chain than do the predictions of the FENE dumbbell.
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VII. CONCLUSIONS

This work highlights the inability of the inverse Langevin function~or the FENE
approximation to it! to describe the effective end-to-end force in a Kramers chain in
strong, transient uniaxial elongational flows. As strain increases in such flows, theentire
effective end-to-end forceprofile of the Kramers chain assumes larger values than those
given by the FENE force law. We refer to this effect as strain hardening. Moreover, we
find that the rate of strain hardening increases with the strain rate. The percentage of
deviation of the effective force from the FENE force decreases with increasing end-to-
end length and tends to zero at maximum extension. When the extensional flow is turned
off, the rate at which the effective force relaxes back to the FENE force law is much
greater than the rate at which it strain hardens. Consequently, it has been demonstrated
that the effective end-to-end forceprofile depends strongly on the deformation history.
This behavior is far more complex than is reflected in any single-mode molecular model
currently in use.

The effective end-to-end force of the Kramers chain deviates from the inverse Lange-
vin function, because the latter function assumes that the polymer chain is always locally
equilibrated. However, this is not the case for Kramers chains in a rapid stretching flow
for which a large fraction of molecules possess conformations such that the end-to-end
force is not described by the inverse Langevin function. These nonlocally equilibrated
conformations disappear very rapidly during relaxation, and consequently, the effective
end-to-end force returns to the FENE force law very soon after the cessation of an
extensional flow.

The strain-history dependence of the effective force profile measured for a Kramers
chain also helps to clarify several effects associated with extensional flows. First, the
nature of this strain-history-dependent effective force profile allows us to characterize
fully the previously qualitative notion of configurational hysteresis. The FENE dumbbell
model, which has a force law that is a function of molecular end-to-end distance only,
can exhibit distributional hysteresis but not configurational hysteresis. However, if a
dumbbell model possesses a strain-history-dependent end-to-end force profile, as ob-
served for the Kramers chain, configurational hysteresis can be generated because the
force profile evolves differently during extension and relaxation. Second, we show that
the evolution of the effective force profile following the cessation of extension is not
consistent with the stress jumps that are a feature of the Hinch, Rallison, and Verhoef
models. Though rapid, the relaxation of the effective force profile of the Kramers chain
following the cessation of elongational flow is not instantaneous. Therefore, a dumbbell
model that possesses this type of strain-history-dependent force law does not exhibit
stress jumps. Third, we show that a strain-hardening effective force profile accounts for
the rapid stress growth in start up of steady elongational flow that is observed for the
Kramers chain but not for the FENE dumbbell. A dumbbell model with an end-to-end
force profile that strain hardens in the same way as that observed for the effective force
of the Kramers chain will predict a more rapid rate of stress growth in the start up of
elongation than a model with a constant force law, such as the FENE dumbbell.

The end-to-end distribution functions of the Kramers chain and FENE dumbbell
evolve through a qualitatively similar set of shapes during extension and relaxation. The
peak of the FENE dumbbell distribution function migrates to full extension faster than
that of the Kramers chain, suggesting that the FENE spring force is too small. However,
if the FENE force were replaced by a strain-hardening force as observed for the Kramers
chain, it is likely that the larger force would slow the migration of the peak of the
end-to-end distribution function to larger extensions for the FENE dumbbell. Hence, the
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evolution of the end-to-end distribution function would be more closely matched for the
two models. Consequently, it appears that using the same force law in the Fokker–Planck
equation and in the stress tensor expression is not only consistent with the kinetic theory
framework, but may also yield a better match between the Kramers chain and a dumbbell
model in the description of the evolution of the end-to-end distribution function. This
contrasts with the model used by Rallison~1996! that employs different force expressions
in the Fokker–Planck and stress equations.

This paper also demonstrates that FENE chains better predict the transient stress
growthandhysteresis of Kramers chains than do FENE dumbbells. This is in contrast to
the FENE-PM approximation to the FENE chain, which does not predict hysteresis. Li
and co-workers~2000! have further validated the FENE chain as a good model for dilute
polymer solutions by demonstrating that it agrees well with experimental observations of
transient stress growth and hysteresis.

To place this work in the context of complex flow simulations of polymer solutions,
this paper has shown two ways to coarse grain the Kramers chain. First, we show that if
the model is restricted to a single configurational variable, such as the end-to-end vector,
then the spring forceprofile must vary with deformation history. If such a model were
used in a complex flow simulation, computational effort could be saved since short
time-scale behavior could be captured with a model with only one configurational vari-
able. However, although we characterize the behavior of the deformation-history-
dependent force profile in the start up of and the relaxation following elongational flow,
we are unable to describe the evolution of the effective force profiles in a simple math-
ematical formulation. We suspect that any mathematical description of the behavior of

FIG. 20. Dependence of birefringence on^Q2&1/2 for N 5 41 Kramers chains and equivalent FENE dumbbells
in uniaxial extension to« 5 5 at Wi 5 11.4 and in subsequent relaxation.
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FIG. 21. Dependence of stress on birefringence forN 5 41 Kramers chains and equivalent FENE dumbbells
in uniaxial extension to« 5 5 at Wi 5 11.4 and in subsequent relaxation. The points along the extension
segment reached at various strains are marked for both models.

FIG. 22. Dependence of stress on strain forN 5 41 Kramers chains and equivalent 1-, 2-, 3-, and 6-spring
FENE chains in uniaxial extension at Wi5 11.4.
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FIG. 23. Dependence of birefringence on strain forN 5 41 Kramers chains and equivalent 1-, 2-, 3-, and
6-spring FENE chains in uniaxial extension at Wi5 11.4.

FIG. 24. Dependence of stress on birefringence forN 5 41 Kramers chains, equivalent FENE dumbbells, and
6-spring FENE chains in uniaxial extension up to« 5 5 at Wi 5 11.4 and in subsequent relaxation.
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the force profiles for general flows will be too complicated to be numerically tractable in
a complex flow calculation. The second method for coarse graining is to use a multimode
bead-spring model in which the spring force is given by the FENE force law. However,
although the FENE chain is conceptually simple, the simulation of multiple-mode models
is currently too computationally expensive in complex flow calculations. Therefore, there
is a great need for a dumbbell model that captures fine length scale physics without
requiring a complicated deformation-dependent force law.
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