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Abstract

The effect of viscous heating on the linear stability of torsional flow of a viscoelastic fluid is analyzed. We consider
an Oldroyd-B fluid subjected to a steady shearing motion in a cone–plate system with small gap. Previous experi-
mental and analytical results show that in the isothermal case the flow is unstable to short wavelength disturbances
for values of the Deborah number greater than some critical value. In this paper we show that viscous heating, which
is characterized by a radially averaged Nahme number,Ña, has a stabilizing effect on both long wave and short
wave disturbances. This is in qualitative agreement with experimental results of Rothstein and McKinley [Phys.
Fluids 13 (2001) 382]. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper the effect of viscous heating on the stability of viscoelastic cone-and-plate flow is inves-
tigated. The analysis assumes that the cone angle,α is small as is typical in rheometric devices. In order
to make the analysis tractable we also assume that the Nahme–Griffith numberNa (which provides a
dimensionless measure of the viscous heating relative to conduction) is small. Although this assumption
is made for mathematical convenience, the small Nahme number limit has some practical significance as
well. For example Turian and Bird [2] showed that the calculated values of the torque on the plate showed
appreciable deviation from experimentally measured values ifNa � 0.1. In some recent experimental
work conducted by Rothstein and McKinley [1], the Nahme number spanned the range from 10−3 to
1.0. Our analysis shows that viscous heating has a stabilizing effect on the cone-and-plate flow of a vis-
coelastic fluid governed by the Oldroyd-B constitutive equation. In addition, the nature of the instability
is found to be unchanged from the isothermal case. This is the same conclusion arrived at experimentally
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by Rothstein and McKinley [1]. In [3], Becker and McKinley found that although plane Couette flow is
always stable, viscous heating tended to destabilize moderate to long wave length disturbances, while
short wavelength disturbances tended to be stabilized.

This conclusion is quite different from that obtained in both numerical and experimental investigations
of Taylor–Couette flow. In this curvilinear geometry, viscous heating is found to destabilize the flow as a
result of a coupling between velocity perturbations and radial temperature gradients arising from viscous
dissipation in the base flow [4]. This coupling results in a lower critical Deborah number and also leads to
a different mode of instability. In contrast to the time-dependent non-axisymmetric disturbances expected
from isothermal analysis, the most unstable perturbations are found to be axisymmetric and steady in
time, in better agreement with experimental observations using ideal elastic fluids [5]. Non-linear analysis
further shows that the new thermoelastic mode of instability is typically overstable in time, in contrast to
the subcritical Hopf bifurcation predicted from isothermal analysis [6]. These findings are robust for a
wide range of rheological parameters and constitutive models [7]. However, the existence and parametric
location of this new thermoelastic mode is very sensitive to other features such as the symmetry of the
base flow. For example, in pressure-driven Taylor–Dean flow of elastic fluids, viscous heating is predicted
to monotonically stabilize the isothermal viscoelastic instability and computations suggest that the new
disturbance mode is only important at very large values of the Peclet number [8]. The experimental
measurements with elastic fluids in torsional flows in [1] also demonstrate a strong monotonic stabilizing
effect arising from internal viscous dissipation. As a consequence of the rheometric importance of the
cone-and-plate geometry, the effects of viscous heating on both steady [2,9] and oscillatory shear flows
[10] of inelastic fluids have been studied analytically in some detail; however, the impact of thermal
effects on the purely elastic instabilities that also arise in this torsional flow have not been considered
to date. In the present paper we analyze this interaction of fluid viscoelasticity, streamline curvature and
viscous dissipation using a non-isothermal formulation of the Oldroyd-B constitutive model.

2. Governing equations

We consider the non-isothermal flow of an incompressible viscoelastic fluid in the gap between a flat
plate and an inverted cone with angleα. The fluid is subjected to a shearing motion by rotating the cone at
a constant angular speedω. For smallα, the effect of inertia is negligible and the dimensionless equations
governing the flow are the continuity equation,

∇ · v = 0, (2.1)

and the momentum equation

0 = −∇p + ∇ · {(1 − β)e−ϑ γ̇ + τ}, (2.2)

whereγ̇ is the rate of strain tensor andτ is the extra stress arising from the polymer. The retardation
parameterβ is the ratio of polymer viscosity to the zero-shear rate viscosity at some reference temperature.
For non-isothermal flows described by the Oldroyd-B constitutive model, the pseudo time hypothesis [11]
can be used to show that the extra stressτ, satisfies the equation

τ + De0
e−ϑ

(1 + ϑ/δ)

(
Dτ

Dt
− L · τ − τ · LT − τ

D

Dt
ln

(
1 + ϑ

δ

))
= β e−ϑ γ̇, (2.3)
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whereL is the dimensionless velocity gradient tensor, while the energy equation is

Pe
Dϑ

Dt
= ∇2ϑ + Na0[(1 − β)e−ϑ γ̇ + τ] : ∇v. (2.4)

The boundary conditions are no-slip on the solid plates, and constant temperature,T̂ = T̂p at the flat
plate andT̂ = T̂c at the cone. We use carets to explicitly denote a dimensional quantity. In the following
analysis we will ignore the effect of the free surface; for analysis of free surface effects in torsional flow
see [12–15]. In the equations above, we have non-dimensionalized length by the plate radiusR, velocity
by Rω, time by 1/ω, pressure and stresses byη0ω, and temperature by a reference temperatureT̂0. The
quantityη0 is the zero-shear rate viscosity at the reference temperatureT̂0 while the variableϑ is related
to the dimensionless temperatureT by

ϑ = δ(T − 1).

Here,δ is the dimensionless thermal sensitivity

δ = T̂0

η0

∣∣∣∣ ∂η
∂T̂

∣∣∣∣
T̂=T̂0

. (2.5)

This thermal sensitivity is typically large for polymeric fluids so that even small variations inT lead
to O(1) changes inϑ . For polyisobutylene-based liquids experiments [16] suggestδPIB � 20 and for
polystyrene-based elastic fluids [1],δPS � 60. Due to viscous heating, the viscosities and fluid relaxation
time are both strongly temperature dependent. In this paper these have been modeled as in [3] by a Nahme
type law. The solvent and polymer viscosities are given, respectively, by

ηs = ηs0e−ϑ, ηp = ηp0 e−ϑ,

and the relaxation time by

λ = λ0
e−ϑ

(1 + ϑ/δ)
,

whereηs0, ηp0 andλ0 are, respectively, the solvent viscosity, polymer viscosity and relaxation time at the
reference temperaturêT0.

The parameters in Eqs. (2.1)–(2.4) are the retardation parameterβ = ηp0/η0, the Nahme numberNa0 =
η0δR

2ω2/(k̂T̂0), and the Deborah numberDe0 = λ0ω, at the reference temperature, and the Peclet number
Pe = cpρR

2ω/k̂. Herek̂ is the thermal conductivity of the fluid andη0 = ηs0 + ηp0. Another parameter
of interest that is sometimes used in the analysis of non-isothermal flows is the Brinkman numberBr,
which is related to the Nahme number byBr = Na/δ. In later sections we introduce another parameter
P which is the ratio of the Peclet number to the Deborah number.

A principal reason why the cone–plate system is a popular rheometric design is the fact that forα

small, the shear rateτφθ is approximately constant. IfNa �= 0, the shear rate is no longer homogeneous.
However, if the Nahme number is small the deviation from homogeneity is also small and O(Na). Since we
are principally interested in rheometric flows, and also to simplify the analysis, we will assume thatNa is
small. Some of the experiments of Rothstein and McKinley [1] were conducted at very low temperatures
and spanned Nahme numbers from 10−3 to 1.0, so this restriction is a reasonable one. For these elastic
fluids the parameterP is also small (typically of the order O(10−1)), therefore we will assume thatP is
negligible in most of our numerical computations.
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3. Base flow

We use a spherical coordinate system (r, φ, θ ) and for convenience we scaleφ as follows:

φ = 1
2π − αψ,

so thatψ = 0 at the plate andψ = 1 on the surface of the cone. We assume that the cone angleα is small
enough that terms of order O(α2) can be neglected. Nominally, the thermal boundary conditions at the
upper cone and lower plate are held at a fixed temperature, sayϑw. However in most rheometric devices
only the stationary (lower) fixture is actually thermostated (using for example a Peltier element). The
freely-rotating upper fixture is assumed to be close to constant temperature due to the large thermal mass
and high thermal conductivity of the constituent material. Al-Mubaiyedh et al. [6,7] show that even small
changes in the thermal boundary condition (±1 ◦C) can have large changes in the stability characteristics
of non-isothermal viscoelastic Taylor–Couette flow. To investigate the sensitivity of viscoelastic torsional
flow to non-homogeneous thermal boundary conditions, we consider boundary conditions of the form
ϑ = ϑw at the plate, andϑ = ϑw + r2 Na0 e−ϑwµ at the cone. Note thatϑw is not necessarily the same as
the reference conditionϑ = 0. Also, note that these conditions correspond not to an externally imposed
temperature difference�T̂ but rather an induced temperature difference arising from viscous heating
in the torsional base flow. The magnitude ofµ in reality would be determined from modeling of the
heat transfer from the fluid to the cone and the resulting conduction and convection through the rotating
fixture. Although we present results for positive and negative values ofµ, in practice we would only
expectµ > 0.

As in [2,3], forµ = 0 a steady torsional solution is given by

υr = υφ = 0, υθ = r

2

(
1 + [tanhc(2ψ − 1)]

tanhc

)
, (3.1)

τrr = τrφ = τφφ = 0, (3.2)

τrθ = β e−ϑ
(
∂υθ

∂r
− υθ

r

)
, (3.3)

τθφ = −β

α
e−ϑ

(
1

r

∂υθ

∂ψ

)
, (3.4)

τθθ = 2βDe0

α2

e−2ϑ

(1 + ϑ/δ)

(
1

r

∂υθ

∂ψ

)2

, (3.5)

and

ϑ = ϑw + ln

(
sech2[c(2ψ − 1)]

sech2 c

)
, (3.6)

where

c = sinh−1

(
r

√
Na

8

)
.
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Here, the rescaled Nahme number at the wall tempϑw is defined by

Na = e−ϑwNa0,

andϑw = δ(T w − 1). The solution given by Eqs. (3.1)–(3.6), must satisfy the remaining momentum
equations which are

∂p

∂r
= τθθ

r
,

∂p

∂ψ
= α tan(αψ)τθθ . (3.7)

If De = 0 so thatτθθ = 0, Eq. (3.7) is compatible and the solution reduces to those obtained by Turian
and Bird [2]. ForDe �= 0, Eq. (3.7) is not compatible in general. In order for these two equations to be
compatible however, the Nahme number must be small. Specifically, it is necessary that terms of O(Na2),
and O(Br) be negligible.

Neglecting terms of order O(α2; Na2; αNa) and O(Br), the solution forµ �= 0 obtained by a regular
expansion is given by,

υθ = rψ
[
1 + 1

12r
2 Naψ(1 − ψ)(2ψ − 1 − 6µ)

]
, (3.8)

p = −2β e−ϑwDe

α2

(
ln r − 1 + 6µ

12
r2Na

)
, (3.9)

τrθ = 1
6r

2β e−ϑw Naψ(1 − ψ)(2ψ − 1 − 6µ), (3.10)

τφθ = e−ϑw
β

α

(
1 − 1 + 6µ

12
r2 Na

)
, (3.11)

τθθ = 2e−ϑwβ De

α2

(
1 − 1 + 6µ

6
r2 Na

)
, (3.12)

and

ϑ = ϑw + 1
2r

2 Naψ(1 − ψ + 2µ). (3.13)

The scaled perturbations to the base velocity and temperature fields due to viscous heating are shown in
Fig. 1. Specifically, we have plottedw andχ defined byw = Na−1〈υφ−rψ〉andχ = Na−1〈ϑ−ϑw〉where
〈·〉 denotes a radially averaged quantity. Viscous heating in the base shear flow leads to a spatially varying
tangential velocity with a cubic correction of O(Na) as in plane Couette flow [2,3]. The temperature
perturbation consists of a quadratic variation across the gap due to viscous heating in the fluid superposed
with a linear variation of magnitudeµ arising from the possible non-homogeneity in the thermal boundary
conditions. The temperature dependent Deborah number at the wall reference temperature is given by

De = e−ϑw
De0

(1 + ϑw/δ)
. (3.14)

It can be seen from Fig. 1(b) that forµ < 0 the average temperature across the gap will be significantly
lower thanϑw and thus the Deborah number will be higher than this value. The converse is true forµ > 0.
These changes in the effective measure of elasticity in the fluid affect the stability boundaries as we show
below.
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Fig. 1. Deviation of base velocity (a) and temperature profiles (b) from their isothermal values for selected values ofµ.
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SettingDe = 0 andβ = 0 in Eqs. (3.8)–(3.13), we obtain to order O(Na) the perturbation result of
Turian and Bird [2]. They showed that the calculated values of the torque on the plate showed appreciable
deviation from experimentally measured values even atNa � 0.1. This is further justification for taking
Na � 1. Similar perturbation solutions were obtained by Turian [9] for non-Newtonian fluids governed
by the power law and the Ellis constitutive equation.

4. Linear stability

We now proceed to study the linear stability of the base flow given by Eqs. (3.8)–(3.13). Denote byq,
the vector of unknowns

q = [υr,υφ,υθ,p, τrr, τrφ, τrθ , τφφ, τφθ , τθθ , ϑ ],

and byq̄, the base flow obtained in the previous section. Let

q = q̄ + q′,

whereq′ is a small perturbation. We then linearize about the base flow and obtain equations for the
perturbations. A solution of the linearized equations is sought in the form

q′ = exp(σ t)[υ ′
r , υ

′
φ, υ

′
θ , . . . , ϑ

′],

whereυ ′
r , υ

′
φ, . . . , ϑ

′ are functions ofr andψ . The resulting equations can be solved for the stresses.
Substituting these in the continuity and momentum equations, and eliminating the pressure, we are left
with four equations for the velocity disturbances,υ ′

r , υ
′
φ, υ

′
θ , and the temperature perturbationϑ ′. These

equations depend on the local value of the Nahme numberr2 Na at a radial locationr and hence are not
separable. However, if Na is small, then the variation in the local Nahme number will also be small.
Therefore, in order to facilitate the analysis, we will replace the local Nahme number with its average
valueÑa = ∫ 1

0 r
3 Na dr/

∫ 1
0 r dr, then the coefficients are independent ofr.

We then seek solutions in the form
υ ′
r

υ ′
φ

υ ′
θ

ϑ ′

 = r ik


rQ′

0

rQ′
1

r DeQ′
2

DeQ′
3

 ,

where we have denoted perturbed quantities with a tilde andQ′
j = Q′

j (ψ) for j = 0 − 3. The equation
of continuity to leading order inα is given by

α(3 + ik)Q′
0 − ∂Q′

1

∂ψ
= 0. (4.1)

For α � 1, we see from Eq. (4.1) that the two limits of interest arek = O(1), andk = O(α−1). For
the casek = O(1), we scaleQ′

1 = αQ1, and for the short wavelength case we scale the wave number
k = κ/α whereκ = O(1). Solving Eq. (4.1) forQ′

0 and substituting in the remaining three equations
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and dropping all the primes, we obtain to leading order inα the following coupled system of equations
for Q1, Q2, andQ3.

A4
∂4Q1

∂ψ4
+ A3

∂3Q1

∂ψ3
+ A2

∂2Q1

∂ψ2
+ A1

∂Q1

∂ψ
+ A0Q1 + B2

∂2Q2

∂ψ2
+ B1

∂Q2

∂ψ
+ B0Q2

+C1
∂Q3

∂ψ
+ C0Q3 = 0, (4.2)

D2
∂2Q2

∂ψ2
+D1

∂Q2

∂ψ
+D0Q2 + E2

∂2Q1

∂ψ2
+ E1

∂Q1

∂ψ
+ E0Q1 + F1

∂Q3

∂ψ
+ F0Q3 = 0, (4.3)

and

H2
∂2Q3

∂ψ2
+H0Q3 +G1

∂Q1

∂ψ
+G0Q1 +K1

∂Q2

∂ψ
= 0. (4.4)

The boundary conditions are

dQ1

dψ
= Q1 = 0, forψ = 0,1, (4.5)

Q2 = Q3 = 0, forψ = 0,1. (4.6)

The coefficients in the above equations are given in Appendix A. In addition to the parametersβ, De, and
Ña, the equations also depend on the new parameterP defined as

P = ρcp(r̂α)
2

k̂λ0

= tthermal

tpolymer
,

a ratio of the thermal diffusion time scale to the polymeric time scale. This parameter is purely a function
of material and geometric quantities and can also be written asP = Pr/E wherePr is the Prandtl
number andE is the elasticity number.P can also be expressed as theP = Pe/De wherePe is the
Peclet number andDe is the Deborah number. For the elastic fluids studied by Rothstein and McKinley
[1], P ∼ O(10−1). Note thatP scales quadratically with the geometric size; for large geometries or
moderately elastic fluidsP ≥ 1 as in the experiments of White and Muller [5]. This ratio is important in
transient problems and governs which thermophysical property approaches steady state most rapidly. The
temperature field evolves on the time scaletthermaland the viscoelastic stresses on the time scaletpolymer.
Exploratory stability calculations for 0< P < 100 show that the value ofP does not qualitatively
affect the stability characteristics of the steady non-isothermal viscoelastic torsional flow; therefore in
the subsequent analysis we will typically setP = 0 when computing numerical results.

4.1. Moderate wave numbers, k = O(1)

As mentioned above, for this caseQ′
1 = O(α). Thus, we introduce the scalingQ′

1 = αQ1 in the
momentum equations to obtain Eqs. (4.2)–(4.4) above. For the isothermal case,Na = 0, Eq. (4.4)
reduces to

∂2Q3

∂ψ2
− PΩQ3 = 0, (4.7)
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together with the boundary conditionsQ3(0) = Q3(1) = 0 whereΩ is related to the dimensionless growth
rateσ byΩ = De σ . If P �= 0, this problem has non-trivial solutions if and only ifΩ = −(nπ)2P where
n is an integer. SinceΩ < 0, these solutions are always stable. This is to be expected sinceQ3 represents
perturbations to the temperature field. With no viscous heating the heat equation is unconditionally stable.
On the other hand ifPΩ = 0, then we have thatQ3 ≡ 0 and the energy equation decouples from the
momentum and constitutive equations. Solving Eq. (4.3) forQ2 and substituting in Eq. (4.2) we obtain
for the tangential velocity perturbationQ1 the following eigenvalue problem:

∂4Q1

∂ψ4
= Λ

∂2Q1

∂ψ2
, (4.8)

where the eigenvalueΛ depends onΩ and the parametersDe, β andk. It can be shown that the smallest
eigenvalue of the problem is given byΛ = 4π2 [17]. Fork = 0 the neutral stability curve corresponds
toΩ = 0 and is given by

Dec = π

√
2

β(3 + 2β)
. (4.9)

This is the critical Deborah number obtained for the class of von Karman similarity solutions by Olagunju
and Cook [17]. The linear stability of similarity solutions of isothermal, viscoelastic cone-and-plate flow
was first studied by Phan-Thien [18] who showed that for a given value of the parameterβ the flow
became unstable as the Deborah number increases beyond some critical value. The value of the critical
Deborah that he found was later corrected by Olagunju and Cook [17].

To obtain the neutral curve fork �= 0, and for the non-isothermal case we use a Chebychev collocation
method as developed by Zebib [19,20] to solve Eqs. (4.2)–(4.4). First, we introduce a new variable
z = 2ψ − 1 so that the domain is transformed to the interval−1 ≤ z ≤ 1. We then expand the highest
derivative for each variable in terms of Chebychev polynomials

∂4Q1

∂z4
=

N−1∑
n=0

anTn(z), (4.10)

∂2Q2

∂z2
=

N−1∑
n=0

bnTn(z), (4.11)

∂2Q3

∂z2
=

N−1∑
n=0

cnTn(z). (4.12)

HereTn(z) is the Chebychev polynomial of ordern. The expansions forQ1,Q2, andQ3 are obtained by inte-
grating the derivatives given above the required number of times and choosing the constants of integration
so that boundary conditions (4.5) and (4.6) are satisfied. The requirement that the problems (4.1)–(4.6)
should have non-trivial solutions leads to a generalized eigenvalue problem for the eigenvalueΩ.

AC = ΩBC, (4.13)

whereC is a 3N vector of the unknown coefficientsan, bn andcn. The matricesA andB are complex and
depend on the parametersDe, β, Ña, P and the wave numberk. The eigenvalue problem is solved using
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the IMSL package DGVCCG. The base torsional flow is stable ifR(Ω) < 0, unstable ifR(Ω) > 0, and
neutrally stable ifR(Ω) = 0. We fix the parametersβ, Ña andP and obtain for each wave numberk,
the eigenvalue of Eq. (4.13) with the largest real part as a function of the Deborah number. The critical
value of the Deborah number is that at which the real part of the most unstable eigenvalue crosses the
imaginary axis into the right half of the complex plane. This gives the neutral stability curve in theDe–k
plane.

4.2. Short wave length limit k = O(α−1)

In [21], it was shown that for short wavelength perturbations the critical Deborah number scales like√
α. Therefore, we scale the wave number ask = κ/α and the Deborah number as

De = D√
α.

In addition, we scale the radial and meridional components of velocity asQ̃0 = αQ0, andQ̃1 = αQ1.
Neutral stability curves were obtained as explained above. In the isothermal limit, we recover the results
of Olagunju [21].

5. Discussion

Stability results for the moderate wavelength calculations are shown in Fig. 2 for selected values ofβ

andÑa. These graphs show that the least unstable perturbations are given by the wave numberk = 0.
As the wave number increases, the critical Deborah number decreases monotonically. In Fig. 3, we plot
I(Ωc), the imaginary part of the scaled growth rateΩ at criticality, as a function of wave numberk.
For k = 0, I(Ωc) = 0 but ask increases,I(Ωc) also increases monotonically from zero. In addition,
for the values of̃Na considered, we see that for any given wave number, the critical Deborah number
increases with̃Na, thus showing that moderate to long wave length perturbations are stabilized by viscous
heating.

Corresponding results for short wavelength disturbances are depicted in Fig. 4 for selected values of
the averaged Nahme number̃Na, and the retardation parameterβ. From these graphs, we see that for each
value of the wave numberκ there is a value ofD below which the flow is stable and above which it is
unstable. The most unstable perturbation corresponds to the minimum point on the neutral stability curve
which we will denote (κc,Dc). The critical Deborah number is then given byDec = Dc

√
α. For both the

isothermal and non-isothermal cases considered the critical wave number is approximately(αk)c � 3.1.
The isothermal result is in agreement with both experimental and analytical results in [21–23]. As in
the moderate wave number case, the critical Deborah number increases withÑa, indicating that viscous
heating also tends to stabilize short wavelength disturbances in good agreement with experiments [1].
For both the upper convected Maxwell and the Oldroyd-B model withβ = 0.5, we findDc = 4.602 for
the isothermal case. This agrees with the result in [21] in which the critical elasticity number was given
asEc ≡ De2

c/α = 21.179. Computed values ofDc for β = 1.0 andβ = 0.5 for selected values of̃Na are
shown in Table 1. While viscous heating tends to stabilize the flow for both values ofβ considered, the
degree of stabilization is greater forβ = 1 than forβ = 0.5. In all casesI(Ωc) �= 0, but changes very
little as a function of the wave number and is an increasing function ofÑa. For these calculations, terms
of orderα andδ−1 have been neglected.
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Fig. 2. Neutral stability curve forP = 0 and selected values of̃Na. (a)β = 1.0 and (b)β = 0.5.
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Fig. 3.I(Ωc) vs. wave numberk for P = 0, and selected values of̃Na. (a)β = 1.0 and (b)β = 0.5.
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Fig. 4. Neutral stability curve forP = 0, and selected values of̃Na. (a)β = 1.0 and (b)β = 0.5.



334 D.O. Olagunju et al. / J. Non-Newtonian Fluid Mech. 102 (2002) 321–342

Table 1
Computed values ofDc for selected values of̃Na andβ

Ña Dc

β = 0.5 β = 1.0

0 4.602 4.602
0.5 4.840 4.901
0.75 4.967 5.082

In Fig. 5 we show the variation in the stability boundary for cases in which viscous heating leads to
differences in the temperature of the two walls. Forµ > 0 the curve is shifted upwards corresponding
to a further stabilization in the flow with respect to purely elastic instability. Forµ < 0, however, the
effects of a linear spatial gradient in the temperature (superimposed on the quadratic variation across
the gap due to local viscous dissipation) leads to a destabilization in the flow. A simple interpretation
of this phenomenon is to recognize that although the effects of variations in wall temperature on the

Fig. 5. Neutral stability curve forβ = 0.5,P = 0, Ña = 0.25, and selected values ofµ.
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Deborah number are incorporated (through Eq. (3.14)), the effective or gap-averaged Deborah number
will be higher or lower depending on the direction of the temperature variation between the walls. This
will lead to an O(µ) correction, which can be seen in Fig. 5. Very recently, Al-Mubaiyedh et al. [6] have
found that small (±1 ◦C) temperature changes in the wall boundary conditions can dramatically change
the bifurcation structure (from transcritical to sub- or supercritical Hopf); however we do not see such
dramatic changes here. This is because there does not appear to be a new thermoelastic mode for the
torsional flow geometry studied here. Viscous heating serves simply to stabilize the isothermal elastic
modes that lead to the purely elastic spiral disturbances observed experimentally.

In experimental observations of non-isothermal elastic instabilities, changes in the rotation rate of the
fixtures lead to changes in both the Deborah number and the Nahme number. However, the ratio

√
Ña/De

is independent ofω and is only a function of the thermophysical properties of the fluid and the flow
geometry. Rothstein and McKinley [1] defined this dimensionless ratio as a thermoelastic numberΘ

and varied it by performing measurements at different imposed temperaturesϑw for a fixed cone angle
α = 2◦(= π/90 rad). In Fig. 6, we plot

√
Ña versusDc for selected values ofβ. Trajectories for different

Fig. 6. Plot ofDc vs. Ña1/2 for P = 0, and selected values ofβ. Insert givesDc vs. Ña.
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values of the thermoelastic parameter correspond, in this space, to lines of slope
√
αΘ passing through

the origin. Qualitatively, this plot shows very good agreement with that in Rothstein and McKinley [1]
with a progressive stabilization as the effects of viscous heating become increasingly important. Although
the results reported here are forP = 0, our calculations show that increasing the value up toP = 100
did not change the stability results. Calculations with other values of the retardation parameterβ, give
similar results as those reported here. In terms of the conditions at the reference temperature, the critical
Deborah number is given by

Dc ≡ λ(T̂w)ωc√
α

= (λ0 e−ϑw)ωc

(1 + ϑw/δ)
√
α
, (5.1)

where the numerical value ofDc depends on bothβ andΘ and can be obtained from Fig. 6. For a given
value ofDc, the critical rotation rate for the onset of instability depends on the wall temperatureT w.

The results in Fig. 6 show that viscous heating monotonically stabilizes the torsional flow of elastic
liquids in cone-and-plate rheometers. Careful examination of the coefficients in Appendix A and the
shape of the computed profiles suggest that the critical Deborah number in fact varies with the parameters
plotted on the axes in Fig. 6 as

√
Ña = K

√
Dc −Dc0. This can be expressed more simply as̃Na =

K2(Dc − Dc0) where the constantK is, in fact, also a weak function of the retardation parameterβ.
The inset to Fig. 6 shows that this linear relationship betweenÑa andDc holds true for all values ofβ
considered. Re-examination of the data in [1] shows that experimental stability measurements in ideal
elastic fluids also follow a linear relationship betweenNa andDec. In terms of the original dimensional
variables, the critical rotation rate for onset of elastic instability in the presence of viscous heating effects
is thus given by

λ(T̂w)ωc√
α

= Dc0 + 1

K2

(
η0(T̂0)e−ϑwδR2ω2

c

k̂T̂0

)
, (5.2)

whereDc0 specifies the critical conditions for onset of the elastic instability under isothermal conditions
andK captures the sensitivity of the stability boundary to the effects of viscous dissipation. Values ofDc0

andK for representative values ofβ can be determined from Table 1.
As we have noted above, experimental trajectories through the parameter space of Fig. 6 are straight

lines passing through the origin with slope
√
αΘ. For a given cone angle, there is thus a critical value

of the thermoelastic parameterΘmax beyond which the flow is completely stabilized. Assuming that the
relationship above remains valid for moderatẽNa ≥ 1, this maximum value ofΘ can be obtained from a
tangency condition to be

√
αΘmax = K/(2

√
Dc0). For the UCM model (β = 1) our computations give

K = 1.234 and hence we find
√
αΘmax ≈ 0.29.

It should be noted that the value ofΘmax obtained here is related to that defined in [1] (which we denote
Θ [RM]

max for clarity) byΘ [RM]
max = Θmax

√
2/(1 + θw/δ). The differences arise because of the radial averaging

involved in Ña and because the dimensionless thermal sensitivity (δ) of the Nahme model used in the
present analysis is constant for allT̂w, whereas for the Arrhenius model used in [1] the thermal sensitivity
is a weak function of the absolute temperature.

In Fig. 7 we show the expected variation in the stability boundary computed for conditions corre-
sponding to the elastic fluid SM2 considered by Rothstein and McKinley [1]. For the conditions given
we obtainDc0 = 5.48 and

√
αΘmax = 0.279. The shape of the resulting stability boundary is in good

qualitative agreement with the experimental observations. A direct quantitative comparison with data is
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Fig. 7. Plot ofDc vs. Ña1/2 extrapolated to moderate values of̃Na, for P = 0, β = 0.26, δ = 68, andα = 0.035. Here
Θmax = 1.49.

not possible due to the importance of the discrete spectrum of relaxation times and the shear-thinning
in the first normal stress coefficient documented in the experimental test fluid. Shear thinning serves to
increase the critical Deborah number (orDc0) and would shift the computed stability boundary in Fig. 7
to the right. This leads to a significant difference (typically a factor of 5 or more) between the value of the
critical Deborah number obtained experimentally and theoretically, even under isothermal conditions (see
Fig. 7 of Rothstein and McKinley [1]). For a cone angle ofα = 0.035 andβ = 0.26 the isothermal short
wavelength theory givesDec0 = 5.48×√

0.035= 1.03. In contrast, linear regression of the experimental
data using the form shown in the inset to Fig. 6 givesDec0

∼= 4.84. If we assume that the parameterK is
relatively unaffected by shear thinning in the fluid elasticity then the value of the parameterΘ [RM]

max may
be estimated from the present analysis to be

Θ [RM]
max ≈ 0.279

√
2

1.057α

(
Detheory

c0

Deexpt
c0

)1/2

� 0.94.
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This compares very favorably with the experimentally reported value of 0.92 computed by Rothstein and
McKinley for the measured critical conditions and the appropriate (shear rate dependent) relaxation time
λ(γ̇crit).

To summarize, we have considered the effects of viscous heating on the linear stability of axisymmetric
disturbances in torsional flow of an Oldroyd-B fluid. The thermal sensitivity of the fluid is characterized
by a dimensionless parameterδ (see Eq. (2.5)) which is typically large for polymeric fluids. The relevant
dimensionless parameters governing the relative roles of viscoelasticity and viscous heating are the
Deborah number and Nahme number, respectively. The asymptotic analysis in this paper is valid for the
limits Re � Na � 1, α � 1; and we neglect terms of orderα2; Na2; α Na; Na/δ, δ−1. Exploratory
calculations for moderate Peclet numbers (corresponding toP = Pe/De < 100) did not reveal the
presence of additional new disturbance modes and the numerical results in this paper have been presented
forP = 0 which closely approximates the experiments in [1]. In contrast to experiments and computations
in the viscoelastic Taylor–Couette flow, the present computations show that viscous heating monotonically
stabilizes the torsional base flow to both small and long wavelength disturbances. The magnitude of
this stabilization increases the critical Deborah number approximately linearly withNa and is in good
qualitative agreement with experimental observations [1]. Taking the ratio of these controlling parameters
leads to a new thermoelastic parameterΘ = √

Na/De. This parameter is independent of the imposed
kinematics and governs how significantly the results deviate from existing isothermal stability analyses
of viscoelastic torsional flows (corresponding toΘ = 0). The parameterΘ can be controlled by varying
the fluid material properties or by varying the temperature imposed at the boundaries. This ability to
systematically eliminate flow-induced elastic instabilities through control of additional thermophysical
variables such as the imposed wall temperature may ultimately be of use in controlling the stability of
polymer processing operations.
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Appendix A

The coefficients appearing in Eqs. (4.2)–(4.4) are defined below, respectively, for the wave number
k = O(1), andk = O(α−1). For the sake of brevity terms of order O(α), O(δ−1) and O(µ) have been
omitted. Note thatΩ is related to the growth rateσ byΩ = σDe.

A.1. Moderate wave number

For the wave numberk = O(1), the coefficients are

A4 = (βΩ −Ω − 1)+ 1

2
Ña

[(β − 1)(Ω2 + 2Ω)− 1](ψ2 − ψ)

(Ω + 1)
, (A.1)

A3 = −1

3
β De2 Ña

(Ω + 3)ψ(ψ − 1)(2ψ − 1)

(Ω + 1)2
+ Ña

[(β − 1)(Ω2 + 2Ω)− 1](2ψ − 1)

(Ω + 1)
, (A.2)
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A2 = −2β De2 3(1 + ik)− 2Ω2 +Ω(−3 + ik)

(Ω + 1)2
+ 1

3
β De2 Ña

(1 + ik)(Ω + 3)

(Ω + 1)2

+βDe2Ña
[Ω2 + 4Ω(1 + ik)− 3(3 + ik)]ψ(ψ − 1)

(Ω + 1)3
+ Ña

(β − 1)(Ω2 + 2Ω)− 1

(Ω + 1)
, (A.3)

A1 = β De2 Ña
[(Ω2 + 4Ω)(3 + ik)− 3(1 + ik)](2ψ − 1)

(Ω + 1)3
, (A.4)

A0 = 0. (A.5)

The remaining coefficients are

B2 = 2β De2 (Ω + 2)

(Ω + 1)
+ 1

6
β De2 Ña

(12ψ2 − 12ψ −Ω2 − 3Ω − 2)

(Ω + 1)2
, (A.6)

B1 = 2β De2 Ña
(2ψ − 1)

(Ω + 1)2
, (A.7)

B0 = 0, (A.8)

C1 = −2β De2 (Ω + 2)

(Ω + 1)
+ 1

3
β De2 Ña

[(3ψ2 − 3ψ + 1)(Ω2 + 3Ω)+ 2]

(Ω + 1)2
, (A.9)

and

C0 = β De2 Ña
Ω(Ω + 3)(2ψ − 1)

(Ω + 1)2
. (A.10)

The coefficients in Eq. (4.3) are

D2 = (βΩ −Ω − 1)+ 1

2
Ña

[(β − 1)(Ω2 + 2Ω)− 1]ψ(ψ − 1)

(Ω + 1)
, (A.11)

D1 = 1

2
Ña

[(β − 1)(Ω2 + 2Ω)− 1](2ψ − 1)

(Ω + 1)
, (A.12)

D0 = 0, (A.13)

E3 = 1

6
β Ña

ψ(ψ − 1)(2ψ − 1)

(Ω + 1)
, (A.14)

E2 = β
(ik − 1 − 2Ω)

(Ω + 1)
− 1

12
βÑa

(ik−5 − 2Ω)

(Ω + 1)
−1

2
βÑa

[3 − ik +Ω(1 + ik)](ψ2 − ψ)

(Ω + 1)2
, (A.15)

E1 = −1

2
βÑa

(Ω(3 + ik)− 5 − 3ik)(2ψ − 1)

(Ω + 1)2
, (A.16)

E0 = 0, (A.17)

F1 = −(1 +Ω − βΩ)− 1

12
Ña

[Ω2(1 − β)+Ω(2 − β + 6βψ2 − 6βψ)+ 1]

(Ω + 1)
, (A.18)
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and

F0 = −1

2
βÑa

Ω(2ψ − 1)

(Ω + 1)
. (A.19)

Lastly, the coefficients of Eq. (4.4) are

H2 = −1, (A.20)

H0 = −Ña
(βΩ −Ω − 1)

Ω + 1
+ PΩ, (A.21)

G1 = βÑa
[3 + 3ik +Ω(−3 + ik)− 2Ω2]

(Ω + 1)2
+ P Ña(ψ − ψ2), (A.22)

G0 = 1
2P Ña(3 + ik)(2ψ − 1), (A.23)

and

K1 = Ña
(βΩ − 2Ω − 2)

Ω + 1
. (A.24)

A.2. Short wavelength limit

Here we have definedk = κ/α, andDe = D√
α. The coefficients of Eq. (4.2) are

A4 = βΩ −Ω − 1

Ω + 1
+ 1

2
Ña

[(β − 1)(Ω2 + 2Ω)− 1]ψ(ψ − 1)

(Ω + 1)2
, (A.25)

A3 = Ña(1 − 2ψ)+ βÑa
Ω(Ω + 2)(2ψ − 1)

(Ω + 1)2
, (A.26)

A2 = −κ2

[
2
βΩ −Ω − 1

Ω + 1
+ Ña

[(β − 1)(Ω2 + 2Ω)− 1](ψ2 − ψ)

(Ω + 1)2

]
+ iκβD2

[
−2

(Ω + 3)

(Ω + 1)3
+ 1

3
Ña

[(1 + 3ψ2 − 3ψ)(Ω2 + 4Ω − 3)+ 6]

(Ω + 1)4

]
+ Ña

(β − 1)(Ω2 + 2Ω)− 1

(Ω + 1)2
, (A.27)

A1 = β ÑaD2iκ
(Ω2 + 4Ω − 3)(2ψ − 1)

(Ω + 1)4
− κ2 Ña

((β − 1)(Ω2 + 2Ω)− 1)(2ψ − 1)

(Ω + 1)2
, (A.28)

A0 = Ña κ2 ((β − 1)(Ω2 + 2Ω)− 1)(ψ2 − ψ)

(Ω + 1)2

− κ4

[
βΩ −Ω − 1

Ω + 1
+ 1

2
Ña

((β − 1)(Ω2 + 2Ω − 1))(ψ2 − ψ)

(Ω + 1)2

]
. (A.29)
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The others are

B2 = 2iκβD2 Ω + 2

(Ω + 1)2
+ 1

6
iκβD2Ña

(12ψ2 − 12ψ −Ω2 − 3Ω − 2)

(Ω + 1)3
, (A.30)

B1 = 2iκβD2Ña
2ψ − 1

(Ω + 1)3
, (A.31)

B0 = 0, (A.32)

C1 = −2iκβD2 Ω + 2

(Ω + 1)2
+ iκβD2 1

3
Ña

[(3ψ2 − 3ψ + 1)(Ω2 + 3Ω)+ 2]

(Ω + 1)3
, (A.33)

and

C0 = iκβD2Ña
Ω(Ω + 3)(2ψ − 1)

(Ω + 1)3
. (A.34)

The coefficients of Eq. (4.3) are

D2 = βΩ −Ω − 1

Ω + 1
+ 1

2
Ña

((β − 1)(Ω2 + 2Ω)− 1)(ψ2 − ψ)

(Ω + 1)2
, (A.35)

D1 = 1

2
Ña

((β − 1)(Ω2 + 2Ω − 1)(2ψ − 1)

(Ω + 1)2
, (A.36)

D0 = −κ2

[
βΩ +Ω − 1)

(Ω + 1)
+ 1

2
Ña

[(β − 1)(Ω2 + 2Ω)− 1]

(Ω + 1)2

]
, (A.37)

E3 = 0, (A.38)

E2 = β

(Ω + 1)2
− β

1

12
Ña

[(6ψ2 − 6ψ)(Ω − 1)+Ω + 1]

(Ω + 1)3
, (A.39)

E1 = −β 1

2
Ña

(Ω − 3)(2ψ − 1)

(Ω + 1)3
, (A.40)

E0 = βκ2

[
1

12
Ña

(6ψ2 − 6ψ)(Ω − 1)+Ω + 1

(Ω + 1)3
− 1

(Ω + 1)2

]
, (A.41)

F1 = −βΩ −Ω − 1

Ω + 1
− 1

12
Ña

(1 +Ω)2 − β(Ω2 +Ω)+ 6βΩ(ψ2 − ψ)

(Ω + 1)2
, (A.42)

and

F0 = −1

2
βÑa

Ω(2ψ − 1)

(Ω + 1)2
. (A.43)

Finally, the coefficients of Eq. (4.4) are given by

H2 = −1, (A.44)

H0 = κ2 − Ña
βΩ −Ω − 1

Ω + 1
+ PΩ, (A.45)
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G1 = β Ña
Ω + 3

(Ω + 1)2
, (A.46)

G0 = 1
2P Ña(2ψ − 1), (A.47)

and

K1 = Ña
βΩ − 2Ω − 2

Ω + 1
. (A.48)
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