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Synopsis

Ghoshet al. (200) demonstrated that the Kramers chain captures the optical and rheological
properties of dilute polymer solutions in rapidly varying elongational flows better than the finitely
extensible nonlinear elastic dumbbell model. A new model, based on introducing an adaptive length
scale(ALS) as an internal variable, is developed to reproduce the fine scale physics of the Kramers
chain. The resulting ALS-model describes the polymer molecule as a set of identical segments in
which each segment represents a fragment of the polymer that is short enough so that it can sample
its entire configuration space on the time scale of an imposed deformation and, therefore, stretch
reversibly. As the molecule unravels, the number of segments decreases, but the maximum length
of each segment increases, so that the constant maximum contour length of the molecule is
preserved. The ALS model gives very good predictions of stress growth in startup of uniaxial
elongation and stress-birefringence hysteresis in a uniaxial elongational flow followed by
relaxation. A closed form of the constitutive equation, the ALS-C model, is proposed. The
rheological predictions of the ALS-C model resemble those of the ALS equation. This coupled with
its small number of internal degrees of freedom suggests that this constitutive equation may be
useful in modeling complex flows. @002 The Society of RheologyDOI: 10.1122/1.1501963

I. INTRODUCTION

Several researcheffor example Coatest al. (1992, Purnodeet al. (1996, Liu et al.
(1998, and Talwar and Khoman{iL995] have demonstrated disagreement between flow
simulations and experimental measurements in complex geometries. They have suggested
that the discrepancies may be due to inadequacies of the constitutive equations that are
used in the flow simulations. The most commonly used constitutive equations are derived
from elastic dumbbell models, such as the Hookean dumbbell and finitely extensible
nonlinear elastidFENE) dumbbell models. Constitutive equations based on dumbbell
models are inexpensive to use in numerical simulations, because these models have only
one configurational variable, namely, the end-to-end vector of the dumbbell. However,
evidence suggests that these one-mode models poorly predict the experimentally ob-
served behavior of polymer solutions in the startup of extensional flameset al.
(1995; Tirtaatmadjaet al. (1995; Herrchenet al. (1997; Doyle et al. (1998g; and
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Ghoshet al. (2001)]. These results demonstrate the great need for a molecular model
with a small number of configurational variables that accurately mimics the multimode
behavior of a polymer chain in numerical simulations of complex flows. In this paper we
develop such a model.

The new model is built by first understanding the dynamics of a fine grain model, the
Kramers chain, and then incorporating the physical insights from this model into the
simpler framework of a bead-spring model. Through this systematic approach to coarse
graining, we develop a model that is consistent with the fine scale physics of a polymer
chain subjected to a wide range of flows. Several important aspects of Kramers chain
dynamics in a uniaxial extensional flow have already been presented in @hash
(2003). Through simulations of the Kramers chain, we demonstrated that the effective
end-to-end force in a polymer chain deviates from the previously propdsetbell
force laws in strong extensional flows. In particular, for a given value of the end-to-end
distance, the effective force varies with strain and strain rate. This is dramatically differ-
ent from a dumbbell with an inverse Langevin force Iglory (1953]. The inverse
Langevin force law(or the Warner approximation to itlescribes the entropic elasticity in
a slowly stretching polymer chain and is independent of the strain or strain rate imparted
by the flow. Even the force law in the Verhoef dumbi&lerhoefet al. (1999], which
depends on strain rate, does not describe the complex behavior of the effective end-to-end
force of the Kramers chain because it does not contain the correct strain dependence. In
Ghoshet al. (2001, it was concluded that the complexity of the effective force would be
very difficult to capture in a simple, analytical form. It was suggested that alternative
strategies be attempted to improve upon existing dumbbell models.

In this paper, we do not try to derive a new force law for a bead-spring dumbbell.
Instead, we observe that there is a maximum number of segments that may be modeled
accurately as an entropic spring in any given deformation and that this number depends
upon the strain rate and strain. We use this information to develop a one-mode bead-
spring model with a length scale that evolves adaptively with the kinematical history. For
small strains, the adaptive length scale is small and allows the model to capture short
length scale effects that are missed by the FENE dumbbell. Conversely, at large strains,
the adaptive length scale approaches the maximum contour length in order to represent
chains that are almost fully unraveled. The new model, referred to as the adaptive length
scale(ALS) model, is formulated as a set of stochastic differential equations, which are
solved by using standard Brownian dynamics metH@ttinger (1996)].

This paper is organized as follows. Section Il summarizes existing models, such as the
Kramers chain and FENE chain; the behavior of the ALS model is compared extensively
with these models. The new model is developed in Secs. lll to V, and is tested in a wide
variety of kinematics in Secs. VI and VII. Finally, a closed form constitutive equation
based on the Peterlin approximation, the ALS-C model is reported in Sec. VIII. This form
may be particularly useful in numerical simulations of complex flows.

II. EXISTING MODELS AND SIMULATION TECHNIQUES

The principal ideas behind some common polymer models are briefly reviewed in this
section. A more detailed discussion is found in Gheshl. (2001). Here we present the
most important relations and introduce the notation that is used in the remainder of the
paper.

A flexible, linear polymer molecule of molecular weight,, and characteristic ratio
factor C.. can be represented by a bead-rod or Kramers chain that consistbedids
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connected by N—1) rods each of length. Flory [(1953; cf. pp. 411-414, Chap. X
shows that the number of rods is given by

2M,, Sin?(6/2)
N-1= ———— 1)
MoC.
whereMg is the monomer molecular weight and the length of each rod is given by
C.l
a=——, 2
sin(0/2)

wherel is the length of a carbon—carbon bond &hid the angle between carbon—carbon
bonds in the polymer backbone. The time constgpbf the polymer molecule is found

by measuring the ratio of the zero-shear-rate first normal stress coefficient to the zero-
shear-rate polymer contribution to viscosity as

Yio
2(m9— ms)

The time constant is related to the number of rods in a Kramers chain representation by
[Doyle (1997)]

= )\d. (3)

(a?

kT @

Ag = 0.014N?

where( represents the drag coefficient of a bead. Since it is difficult to estimate the drag
coefficient on a bead priori, it can be calculated from Eg4), if required.
The equation of motion for theth bead in the chain is given by

1 1
P, = v0+[:<.rv]+EF§,C)+EF(Vb), )

wherevy is the velocity of the solvent field at a fixed, arbitrary origip,is the velocity
of the vth bead,« is the transpose of the velocity gradient tensor, apds the bead
position vector. The first two terms on the right-hand side derive from the hydrodynamic
drag felt by thevth bead, amﬂis,b) andFS,C) represent the Brownian and constraint forces,
respectively. The constraint forces are calculated to keep the rods of fixed Ength

The stress is calculated from the Giesekus equdfm et al, 1987 as

N

1
= 5Mé 2 (RR), ©)

whereR,, is the position of bead with respect to the center of mass of the molecule, the
subscript(1) denotes théuppe) convected derivative, anal, is the number density of
the polymers in solution. The expression for the birefringdideyle (1997)] is

N—1
An = 5Cnka 21 <U,,2Uyz_uvxuvx>’ (7)
y=

where
21 (n%+2)2

CTmT o ©®
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and n is the isotropic part of the refractive index tensos1(ay) are the(parallel,
perpendiculdr components of the polarizability tensor, and, {,u,,) are the(x, 2
components of the unit vector pointing from thth to the (v+1)th bead.

An important dimensionless quantity in a uniaxial elongational flow is the Weissen-
berg number, which is the product of the time constant of the molecule and the elongation
rate

(a®
Wi = 0.014N%"—¢. 9
KT © ©

Brownian dynamics simulations of the Kramers chains were conducted by using the
algorithm of Liu (1989.

Bead-spring models are coarse-grained approximations to the Kramers chain in which
the entropic elasticity of subsections of the chain is represented by springs. The spring
force is directed along the vect@ connecting two adjacent beads, and the magnitude of
the force is a function of the bead separation. For small extensions of the spring, the force
is linear in the bead separation, the proportionality congthbeing related to the pa-
rameters of the Kramers chain by

3MKT

H= (N——l)a' (10

whereM is the number of equal length springs used to represent the Kramers chain. For
large extensions, the force law becomes nonlinear. Rit®$3 has shown that the force
required to hold the ends of the chain at a fixed separation is given by the inverse
Langevin function. It has been experimentally verified by direct measurements on flexible
polystyrene molecules that the inverse Langevin function is a good approximation to the
entropic elastic force in a flexible chaj@rtiz et al. (1999]. An approximation to this
function, which is more computationally tractable, was developed by Warner and is
referred to as the FENEHinitely extensible nonlinear elasjitorce law. The FENE force

law is given by the simple analytical form

HQ
FFENS(Q) = ————, (11)
1-(Q/Qo)
whereQg is the maximum extension of each spring and is given by
(N—-1)
= . 12
o Vil (12)

The maximum extensibility of each spring is often expressed by the paraimeter
which is defined as

= it (13
kT

and gives the square of the ratio of the maximum to equilibrium length of the spring.
Substituting Eqs(10) and(12) into Eq. (13) yields the relationship

3(N-1)
b= ——. (14)
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Thus, a Kramers chain ofN—1) rods can be compared with a FENE chain with
springs, each with a value @fgiven by Eq.(14).

The inverse Langevin force lavand the FENE approximatigrassumes that for a
given end-to-end distance, a Kramers chain has sufficient time to sample its entire con-
figuration space and that the internal conformational distribution has reached equilibrium.
This force law should, therefore, be used with caution in nonequilibrium situations. Only
when the time scale of the deformation is much longer than the relaxation time scale of
the entire chain does the chain unravel reversibb., the internal conformation distri-
bution of the chain is able to equilibrate at each stage of the strejching

The spring force=(®) is required to calculate the stress for bead-spring models with the
Kramers expression for the stress tensor

M
7 = MngkTé—n, ;1 (QiF'®)y, (15)

where for FENE chain&(® is set toF(FENE). The birefringence of bead-spring models
is calculated from the expression of Wi€4099 as

2m(n2+22n, M
An = np(al—az)—ﬂ aszigl (QizQiz— QixQix): (16
i =

9

where each spring correspondsrtg rods in the Kramers chain representation of the
polymer. The time constamt, for an individual spring i< ¢/4H, where(y is the hydro-
dynamic drag on a bead in the FENE chain. This time constant can be related to the time
constant of the entire molecule through the scaling relationship suggested in &tadsh
(2002:

where
[ b} V(Braxct5)(Bmaxt7) | [[2M+12+ 7] (M+1)*~1]
b+5 Brmax 45
B 12[(M+1)2+1][(M+1)2—1]]1/2 a8
45M+1)(b+7)

andbpnax is the finite extensibility of a FENE dumbbell representing the entire molecule.
The Brownian dynamics algorithm used to simulate the FENE chains is identical to that
of van den Brulg(1993.

IIl. REPRESENTATION OF POLYMER MOLECULES BY THE NEW MODEL

Figure 1 compares the stress growth in uniaxial extension at\Wi.4 for a 40-link
Kramers chain and a FENE spring chain that represent a polymer molecule of the same
maximum extension. The time constant of the overall moleaylés assumed to be the
same for each of the FENE chains, independent of the number of segments used to
represent the polymer. Accordingly, the time constant of each spring in the FENE chain
is scaled according to E@Ll7). Since the spring constant is inversely proportional to the
number of Kramers rods the spring represents, as indicated ifi1Bg.Eq. (17) also
describes the scaling of the drag coefficient of a bead in the FENE chaiMwitigure
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FIG. 1. Uniaxial extension at W= 11.4 for a 40-rod Kramers chain and equivalent FENE chains.

1 is reproduced from Ghosit al. (2001 where it was used to support the scaling of the
drag presented in Sec. Il. In this paper it is used to guide us in developing an efficient
way to model the dynamics of a polymer chain.

Though a Kramers chain is arguably the best mesoscale molecular model for describ-
ing the physics of a dilute polymer solution, its many internal degrees of freedom makes
it a computationally expensive model in complex flow simulations. In contrast, a FENE
dumbbell is much more tractable computationally, but as shown in Fig. 1, it predicts the
short time scale behavior poorly. Since a FENE chain with six springs can capture the
short length scale behavior with much less computational effort than the Kramers chain,
the FENE chain may seem to be the most efficient way to model a polymer molecule.
However, there are two reasons why this is not the case. First, multiple springs are
required to describe the polymer for the first unit of strain, butdor 3, the FENE
dumbbell performs adequately. Therefore, the use of FENE chains at large strains is
inefficient because a single spring would suffice. Second, we know of no systematic way
to map between FENE chains with different numbers of springs. For example, if we want
to switch from a 6-mode model to a 1-mode modet at 3, we lack the methodology to
do so. In a complex flow, the problem is more severe, because the strength of deformation
varies spatially. In slowly deforming regions, only a few modes are needed, but a large
number of modes might be needed throughout the geometry in order to resolve the
behavior in parts of the domain where the polymer experiences rapid deformations. A
more efficient way to model polymer dynamics, therefore, would be to develop a model
with a single spring whose length scale adapts according to the kinematical history. In
this paper, we develop a new adaptive length scale model motivated by a mechanistic
understanding of the behavior of a Kramers chain rather than develop a systematic theory
to map between fine and coarse-grained models.

We define the adaptive length scale as the contour length of a fragment of the polymer
chain over which the inverse Langevin function describes the end-to-end force of the
fragment. Let us consider the evolution of the adaptive length scale in the startup of a
rapid uniaxial elongation. We first describe the behavior of the adaptive length scale at
low strains. If #/(x|Q,t) represents the configurational distribution function of Kramers
chains with end-to-end distan€g at timet, then the end-to-end force of these Kramers
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chains is given by the inverse Langevin functionyfx|Q,t) = l/fecKX|Q)- Here, x

= {rq,ro,...,rn} is the full set of configurational variables specifying the locations of
all of the beads. By definitiony/(x|Q,t) is equal toge((x|Q) in a quiescent fluid.
Consequently, the inverse Langevin function describes the end-to-end force for the over-
all molecule, and the adaptive length scale equals the contour length of the entire mol-
ecule. If a rapid elongational floWarge ) is suddenly applied for a small strain then
the distribution functiony(x|Q,t) is different from that corresponding to equilibrium,
because the internal configurations of the molecules are distorted so rapidly by the flow
that they are unable to re-equilibrate on the time scalé of the deformation. As
demonstrated by Ghosdt al. (2003, the discrepancy betweei(x|Q,t) and ¢e(x|Q),
results in the inability of the inverse Langevin function to describe the end-to-end force
of the molecules in this flow situation. As the fluid is elongated to a larger stgain,

> g4, the deviation of(x|Q,t) from equilibrium increases, as does the deviation of
the end-to-end force from the inverse Langevin function.

Let us now consider a fragment of the above Kramers chains, say from the first to the
pth bead. We denote the configurational distribution function for molecules which have
end-to-end distanc® and for which the distance between the first aiid beads i€Qs as
Pi(x¢|Qs,Q,t), wherexs = {rq,ro,....rp}. At equilibrium, this contracted distribution
function assumes its equilibrium value,ecﬁxﬂQf ,Q,t), but when the fluid is elongated
to straineq at largee, +(X¢|Qf,Q,t) deviates from equilibrium. However, since this
fragment of the molecule has a smaller time constant than the overall molecule, it is able
to re-equilibrate to a greater extent than the entire molecule on the time scale of the
deformation e 1. Consequently, the difference between(x;|Q;,Q,t) and
wf’ec£Xf|Qf ,Q,1) is smaller than that betweafi(x|Q,t) andits corresponding equilib-
rium distribution function at straim 1. Therefore, the inverse Langevin function better
approximates the end-to-end force of this segment than the end-to-end force of the entire
molecule.

Following this argumentthere exists a fragment of the molecule that is sufficiently
small such that it is locally equilibrated when undergoing rapid elongation at strain rate
€ up to straine; . We postulate that a fragment of the polymer that satisfies the condition
N¢ie = 1, where\s is the time constant of the fragmens, locally equilibrated The
contour length of the fragment is defined as the adaptive length scale at strain
because the inverse Langevin function can describe the end-to-end force over this length
scale. Since the configurational distribution function of the molegt{ldQ,t) does not
change discontinuously upon the sudden inception of rapid elongational flow, the adap-
tive length scale similarly decreases continuously from the maximum contour length to
lower values.

Assume that the contour lengtip{ 1)a of the fragment defined by; of the above
molecules corresponds to the adaptive length scale at ségainThen, at straine,

> €1, the configurational distribution functiomss (x| Qs ,Q,t) may deviate from the
corresponding equilibrium distribution function by a greater extent because the configu-
ration of the molecules has been distorted further by the flow. In this case the inverse
Langevin function no longer applies over the lengph+(1)a, and the adaptive length
scale decreases further.

Next consider the evolution of the adaptive length scale at large strains where the
molecules become increasingly unraveled until almost all have an end-to-end distance
near the maximum contour length. There exists a subset of Kramers etittinand-to-
end distance @ close toQq whose internal configurations are described by the distribu-
tion function /(x| Q¢ ,t). Such molecules have a rodlike shape and have a configuration
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FIG. 2. Qualitative evolution of the adaptive length scalevith strain for a rapid, uniaxial extensional flow.
The adaptive length is scaled by the contour length of the complete mol@gule

space that is a narrow tube surrounding the molecule. Since the configuration space is so
small, the molecules are able to sample it on a time scale much smallex jhéespite

the presence of a strong underlying flow. Consequemt(x|Q.,t) does not deviate

much from the corresponding equilibrium distribution function and the inverse Langevin
function approximates well the end-to-end force of the entire molecule. Hence, the adap-
tive length scale approaches the maximum contour length.

Finally, we consider the evolution of the adaptive length scale averaged over an
ensemble of molecules that represents the polymer solutioan.zA, the average adap-
tive length scale i9Qq for a quiescent fluid. For small strains, the ensemble-average
adaptive length scale decreases, because most of the molecules have end-to-end distances
close to the equilibrium value, and the adaptive length scale of such molecules decreases
with increasing strain. However, at large strains the ensemble-averaged adaptive length
scale increases and approacligs as the majority of molecules become almost fully
extended, and the adaptive length scale of such molecules is cl@g t6he evolution
of the ensemble-averaged adaptive length scale in the start-up of rapid uniaxial elonga-
tion is summarized schematically in Fig. 2. For elongation at small strain rates, the
average adaptive length scale does not deviate very much@ipat any strain, because
the configurational distribution functiogh(x|Q,t) deviates little from its equilibrium
value for any value of.

In the remainder of this section, we develop equations that describe the adaptive
length scale in the limit that instantaneous changes in the flow field lead to instantaneous
changes in the molecular parameters. The quantities so derived are denoted with an
asterisk to signify this idealization; for example, the adaptive length scale in this limit is
denoted byL* . The fact that a molecule requires a finite time to react to a sudden change
in the flow is incorporated in Sec. IV. The asterisk is dropped for the quantities calculated
with this correction, so that the adaptive length scale following the correction is denoted
by L.

Since the adaptive length scdl& is the largest length scale for which the inverse
Langevin function(or FENE force law approximatiorapplies, we model the polymer as
a set of segments, each represented by a FENE sghoge maximum length equal$ L
The force law of a segment with a maximum lengthLdf is given by
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Fx(o) = —2—2—H§egQ (19
seg 1_(Q /L* )

In order for the model always to represent a polymer of the same maximum contour
length, the number of segments is set to equal the contour length of the entire molecule
divided byL* or

(N=1)a
*
seg™ T % (20
Equation(20) allows the existence of a fractional number of segments. The number of
beads also can be fractional and is defined to be one greater than the number of segments

Nzead =M geg"_ 1. (29)

In order to minimize the complexity of the model, we assume thatorientations and
lengths of all segments are identic&Vithout this assumption, it would be necessary to
know how to map two FENE spring chains with different numbers of springs onto one
another. As discussed above, we choose to avoid this problem.

The spring constant and the drag coefficient are functions of the number of segments.
As the number of segments increases, each segment represents a smaller number of links
of the Kramers chain. The spring const&tﬁegis inversely proportional to the number of
links in a segment and is thus proportional to the number of segments

BM;‘ed(T
ngg= N-DZ (22

As the number of segments increases, each segment represents a smaller fragment of the
polymer, and, therefore, the drag on each of the beads attached to the segment decreases
according to

g:eg A
Noeg™ T = o (23
9 4HEL, K*
where
o [ Pseo V(Bmact 5)BOmact 7| [[2MEegt 1?4+ 7N (MEegr 1)%-1]
bgegt 5 Prmax 45

se se

45(|v|§eg+ 1)(b§eg+ 7)

14 (Mgt D2+ 1I[(MEegt 1)°— 1]] vz
- . (24)

Equation(23) is similar to Eq.(17) because we assume the time constant of a segment
Nseg= {sed4HsegScales with the longest relaxation time of the polymgr= ¢4/4Hgq
in the same way that the time constantof a spring in a FENE chain scales withy .
The parameteb?. ,is the dimensionless finite extensibility parameter for a segment with

seg
maximum extension equal to the adaptive length stdleand is defined as

b* _ H:ed-*z

seqg KT (25)
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FIG. 3. ALS model representations of an equilibrium coil, a polymer stretched to small strains in a rapid
extensional flow, and a fully stretched polymer. Heris the adaptive length scal@ is the maximum length
of the molecule, an@{) is the maximum length of a segment.

Substituting Eqs(20) and (22) into Eq. (25) yields a relationship betwednf;eg and

*
Mgeg@s

b:edvl:eg: 3(N—1) = bpyax- (26)

Since the middle term of Eq26) equals the value that the finite extensibility parameter
b;‘eg would take if the polymer were represented by a single FENE sgond-ENE
dumbbel), we denote it a®max-

The relationship between the adaptive length scale and the number of segments is
illustrated in Fig. 3. Here some characteristic configurations of a polymer molecule, such
as an equilibrium coil, a polymer molecule stretched to small strains in a rapid exten-
sional flow, and a fully stretched polymer, are represented by a FENE model and by the
ALS model. The FENE dumbbell represents well the equilibrium coil and fully stretched
polymer. Similarly, the ALS model represents both of these conformations by a single
segment with the adaptive length scale equa@tn In contrast, the ALS model repre-
sents the kinked conformation by several identical segments, each with a maximum
extension given by the adaptive length scale. The adaptive length scale @gudiisded
by the number of segments.

Having defined and developed a qualitative understanding for the adaptive length
scale, it remains to propose an equation for it. To do this, we assert that a fragment of a
polymer chain can sample its configuration space if the time constant for the fragment is
similar in magnitude to the time scale of the underlying flow. Near equilibrium, the
relaxation time scale of a spring Egeq= {sed4Hsey However, when the segment
stretches close to its maximum extension, the relaxation time scale of the spring de-
creases because the spring modulus stiffenislas(Q?/L*2)]~ 1. For steady uniaxial
extension, the time scale of the flowds 1. Equating these time scales yields
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*
E gseg

i (27)
. Q°
4HZeq / ( 1-— L_*Z)

The time constants of the flow and of the segment of the molecule are required to be
similar in Eq.(27), but not identical. That isZ should be an order one constant, but its
precise value is not set by the theory. If a value less than unity is chosen, then the
adaptive length scale* decreases for given flow conditions, and this will lead to even
more rapid growth in the extensional stress. On the other hand, the FENE dumbbell
model can be conveniently recovered from the ALS model by leffing o°.

In the remainder of this paper, equations are expressed in dimensionless form by
making time dimensionless with the longest time constant of the molegulend by
making length dimensionless wiﬂ]‘kT/Hd. The spring constarti 4 is that for a dumb-
bell representing the entire molecule and is defined by(Hg).with M = 1. All dimen-
sionless quantities are henceforth denoted with the symbti the process of making
the equations dimensionless, the r&ﬁ@ede frequently appears. By dividing EqR2)
by Eqg.(10) with M set to unity, this ratio can be written as

*
Peeg _ M* 28
Hd - seg ( )

By using Eq.(28) and recalling tham gegand b;‘egare inversely related through E@6),

Eq. (27) is written in dimensionless form as a nonlinear equatiobggb:

Wi ( 62 bmax) .,

— |1 — (29
K* bgeg bgeg
where
Wi = \ge. (30)

We definebgegto have a piecewise description such that it equals the value given by Eq.

(29) if that value is less thabmay. Otherwise,bgyyis set tobmay. Oncebge,has been

calculated, the number of segmeM%egis easily found by using Eq26). Finally, the
adaptive length scale* is obtained by substitutiniy! ;‘eginto Eq. (20).
Figure 4 shows the relation betweEe/h;'feg andQ? for a variety of Weissenberg num-

bers as given by Ed29). For Wi < 1, M is equal to unity for all values od?. This
is because at low Wi a polymer chain is stretched reversibly, and the FENE force law is

valid for the overall chain. For Wi> 1, Mg.is greater than unity for low values Q.

This reflects the fact that at low strains, when the molecules have still not unraveled, the
time constant of the flow is equal to the time constant of only a small fragment of the
polymer. Hence the adaptive length scale is small, and the number of segments is greater
than unity. AsQ approaches the maximum contour length of the molecule, the time
constant of the molecule decreases and approaches the time constant of the flow. Conse-
quently, the adaptive length scale tends to the maximum contour length, and a single
segment may represent the entire molecule. Thus, the criterion if(2Zg.correctly
represents all the aspects of polymer chain behavior that seem to be important in strong
elongational flows.
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In order to generalize Eq27) for an arbitrary flow, the elongation rate must be
replaced by a more general quantdy that measures the local deformation rate in the
vicinity of the polymer chain. The transpose of the velocity gradient temsoan be
decomposed into the rate-of-strain ten$pmwhich describes the rate-of-deformation of a
fluid element(and, therefore, the polymer contained within &nd the vorticityw, which
describes the rigid rotation of the fluid element. The direction of the principal axis of the
deformation-rate tensor is given by the eigenvectowhich corresponds to the largest
absolute eigenvalue gf. In accordance with Tannéi976 and Olbrichtet al. (1982,
we chooseey to be the maximum absolute eigenvalue of the rate-of-strain tepsar
indicated by

& = ;Ima{Eig(]l. (31)

For uniaxial elongational flowgg simply reduces to the elongation rate.

It is important to note that the parameters of the ALS model can be derived solely
from knowledge of two molecular properti€¢the molecular weight and characteristic
ratio of the polymer and from measurement of the ratio of the zero-shear-rate first
normal stress coefficient to the zero-shear-rate polymer contribution to viscosity. From
the molecular weight and characteristic ratio, the number of Mds the equivalent
Kramers chain can be calculated by using 8. SubstitutingN into Eq.(26) yields the
value of byax, and the number of segmerit&;;‘eg can be expressed d@]ax/b’;eg. The
time constant of the polymer is determined from the ratio of the zero-shear-rate first
normal stress coefficient to the zero-shear-rate polymer contribution to viscosity in Eq.
(3). Once the flow kinematics are given, the dimensionless adaptive Idarﬁg&hln the
ALS model can be determined by solving Eg9).

IV. EVOLUTION EQUATION FOR THE ADAPTIVE LENGTH SCALE

In the development in Sec. I, the adaptive length s¢dieand the other asterisked
guantities have been assumed to adjust instantaneously to changes in the flow. However,
such instantaneous changesLifi lead to instantaneous changes in the number of seg-
ments and, therefore, to “jumps” in the polymer contribution to the stress. For flexible
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polymers, there have been no conclusive experimental observations of jumps in the
polymer contribution to the stress upon the sudden inception of a flow. Additionally, it
has been argued earlier in this paper that instantaneous jumps in the adaptive length scale
do not occur. Instead, the adaptive length staieas derived from Eq(29), should be
thought of as a pseudosteady state value that the system tends toward, but which is not
reached instantaneously. In the rest of this section, relations are developed to describe the
behavior of microstructural properties, without the approximation that molecular changes
occur instantaneously upon a sudden change in flow. The absence of this approximation
is reflected in our notation by the removal of the asterisks.

The first task is to develop an evolution equation for the adaptive length lsdakt
describes its approach t6*. We emphasize that our approach is not a rigorous deriva-
tion in a kinetic theory framework. However, our evolution equation is fundamentally
motivated by simulations of Kramers chain behavior. The evolution equation should have
a stiffening term that causesto decrease towards* when the flow is initiated and a
relaxation term that makes the adaptive length scale retur@govhen the flow is
stopped. We propose that the relaxation of the segment be proportional to the difference
betweerL andQq and occur on a time scale equalNg.g= {sed4Hseq Which varies as
the relaxation occurs. This gives the following description of the relaxation process

(d_L) QL) (Q-L)
dt) . Nseg Ng/K

: (32

where the expressions fbtseg, K, L, andQg are given by Eqs22), (24), (25), and(12),
respectively, except that the asterisks are removed from all quantities.

The stiffening term deserves more detailed consideration. First, Ralli886
showed that in a uniaxial elongational flow, the rate at which a molecule is compressed
into a one-dimensional structure that can exhibit kinks is proportional to Wi. The seg-
ments of the ALS model crudely represent these kinks. This kink formation is expected to
decrease as the segment stretches close to its maximum extension. In shear flow, the
stiffening is also associated with the finite extensibility parameter. Since the value of
shear rate for the onset of shear thinning in the viscosity is proportior@ptand thus
bﬁfgx [Bird et al. (1987], the stiffening in shear flow is inversely proportionalh#ix.
Hence, for an arbitrary flow, we propose that the stiffening is proportional £ \wihich
is defined as

wie =\ = Ingma{Eig( 3], 53
where
| 2k11 S(Kprt K1)
Hoff = ; s = (bg/byan™? (34)
5( Ko7t K12) 2k22

and bg is a fitting parameter that governs the onset of shear thinning behavior. The
components of the transpose of the velocity gradient tersare expressed in Protean
coordinate§Adachi (1983] in which basis vectors are the unit tangent and unit normal
vectors to the streamlines for a two-dimensional flow.

Second, the evolution of the configuration of a particular polymer molecule depends
on its initial conformation. Thus, the evolution equation for the adaptive length scale
should reflect this, since the adaptive length scale is closely related to the conformation a
molecule assumes. Larsenhal. (1999 examined the influence of initial configuration on
the configurational evolution of wormlike chains in a planar elongational flow. They
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FIG. 5. Configuration of the “dumbbell prone” polymer used to study the effects of initial configuration on
subsequent stress growth in a uniaxial extensional flow.

noted that polymers whose end-to-end vectors lie initially in the plane of stretching
unravel rapidly to their maximum extension. However, molecules that are initially ori-
ented perpendicular to the flow direction stretch out much more slowly and display a
prominent knee in plots of extension versus strain. We have performed a similar analysis
for uniaxial elongational flow. We also investigate the dependence of stress growth on the
initial end-to-end orientation of the macromolecule with respect to the flow direction and
model this dependence through the stiffening term of the evolution equation for the
adaptive length scale.

The relationship between the initial end-to-end orientation and stress growth is ana-
lyzed by using a 40-link Kramers chain selected from an ensemble of Kramers chains at
equilibrium whose terminal beads are at opposite extremities of the polymer coil. The
configuration of the polymer, which is shown in Fig. 5, is dumbbell-prone according to
the terminology of Larsoret al. (1999. This Kramers chain is subjected to startup of
steady uniaxial elongational flow with the principal direction of stretching parallel to the
initial end-to-end vector. A total of 1000 trajectories are computed with the chain starting
from the same initial configuration, but experiencing different sequences of random num-
bers. Finally, the ensemble-averaged stress and end-to-end distance are calculated as
functions of strain. The effect of initial orientation is investigated by repeating the cal-
culations with the initial configuration of the Kramers chain rotated by an increment of
10° further away from the axis of elongation in each set of calculations.

Figures 6 and 7 show the evolution of the end-to-end distance and stress for molecules
that are initially oriented 0°, 20°, 40°, 50°, 70°, and 90° to the principal axis of elonga-
tion. The end-to-end distance and stress increase most rapidly for the molecules that are
initially aligned parallel to the flow and most slowly for the molecules that are initially
perpendicularly aligned. The rates of growth of stress and end-to-end distance decrease
monotonically with increase of the initial angle made by the molecule with the principal
stretching direction. The decreases in rates of growth of stress and end-to-end distance
are particularly dramatic as this initial angle is increased from 40° to 50°. This prediction
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FIG. 6. Effect of initial orientation on the evolution of thecomponent of the end-to-end distance of polymer
molecules in startup of steady uniaxial elongational flow at=*\45.6.

is consistent with the results of Larsehal. (1999 who show that a molecule becomes
“kink prone” rather than “dumbbell prone” as its end-to-end vector is rotated away from
the stretching direction.

The calculation is repeated for an equivalent FENE dumbliek-(120) with initial
end-to-end vector equal to that of the Kramers chain. Figure 8 shows that the FENE
dumbbell that is initially aligned parallel to the stretching direction adequately describes
the stress growth of the Kramers chain. However, the FENE dumbbell initially aligned
perpendicular to the flow direction greatly underpredicts the stress of the corresponding
Kramers chain up t& = 5. It appears that the inability of the FENE dumbbell to de-
scribe the stress growth of the Kramers chain at low strains is due largely to the dumb-
bells that are initially aligned perpendicular to the flow. This is because molecules that are
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FIG. 7. Effect of initial orientation on stress growth in startup of steady uniaxial elongational flow at Wi
= 45.6.
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FIG. 8. Comparison of the effect of initial orientation on stress growth in polymer molecules represented by
Kramers chains and FENE dumbbells in startup of steady uniaxial elongational flow atA%i6.

initially aligned perpendicular to the flow evolve into kinked structures whose adaptive
length scale is less thaQgq, whereQqq is the maximum length of the entire polymer
molecule. It is for these molecules that the adaptive length scale has to evolve towards
L*.

In summary, studies of Rallisof1996 show that the rate of molecular stiffening is
proportional to the Weissenberg number of the flow. The stiffening process, which is
represented by allowing to tend towards.*, decreases as the segment stretches close
to its maximum extension. We propose that this process occurs on a time scale of the
segment equal 3, = {ged4H5eq Finally, the rate of the stiffening increases with the
angle the molecule makes with the stretching direction. Based on these observations, we
propose a stiffening term in the evolution equation lfoof the form

(dL) Q ‘ Wi 1—(QIL* A L-L*)
S = — | nX—
stiffen |Q|

*
dt Mo

Wit 1—(QIL*?))L—L*)
Ag/K*

Q
nX———
Ql

where n is the unit vector parallel to the eigenvector of the rate-of-strain tensor that
corresponds to its largest eigenvalue.

Combining the relaxation and stiffening terms gives the evolution equation for the
adaptive length in dimensionless form

: (35

dbyey Q| 0 biux

— T W T i (i DK b K.

dt |Q| bseg bseg b c—
. , relaxing

stiffening (36)
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FIG. 9. Comparison of the effect of initial orientation on stress growth in the startup of steady uniaxial
elongational flow for polymer molecules as represented by a Kramers chain, FENE dumbbell, and the ALS
model at Wi= 45.6.

The termK* andK on the right-hand side of E436) are ratios of the longest relaxation
time of the polymer ) to the time constant&\* and\) of a single segment. After
incorporating Eq.(36) into the new model, two realizations of the new modehe
initially perpendicular and one initially parallel with the flow directjcare simulated in
order to compare the dependence of stress growth upon initial orientation with the Kram-
ers chain and FENE dumbbell. The results are shown in Fig. 9. Molecules initially
aligned parallel to the stretching direction behave identically to the corresponding FENE
dumbbell. However, the stress associated with the molecules initially aligned perpendicu-
lar to the stretching direction grows more quickly than that for the FENE dumbbell at low
strains and behaves very similarly to the stress associated with the corresponding Kram-
ers chain.

The reason for the better agreement of the ALS model with the Kramers chain is
understood from Fig. 10, which shows the evolutior{lnfeg and(b;‘ea in the startup of
steady uniaxial elongational flow at Wi 11.4 for the ALS model after the incorporation
of Eq. (36). Here,(bseg and(b’s‘eg are ensemble averagesbgtegandb;‘eg, respectively,
at a given strain. When the flow is startéthscq decreases rapidly towardb;‘ea. At
€ = 1.0, (bseg Is still greater thar(b;‘eg} but begins to increase towartg,, as the
relaxation term in Eq(36) begins to dominate the stiffening term. The increasgbigg
for e > 1.0 is also driven by the increase 4b§eg}- The rise in(b;‘eg} is due to the
increase inL* at large strains due to the mechanisms described in Sec. IlI. Although Eq.
(36) was derived from a consideration of uniaxial elongational flow, we propose that it
can be generalized to arbitrary flows by defining the magnitude of the deformation rate by
Eq. (33).
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FIG. 10. Evolution of(b;‘eg, (bseg, and{Mseg for the ALS model for startup of steady uniaxial elongational
flow at Wi = 11.4.

V. EQUATIONS OF MOTION, STRESS, AND BIREFRINGENCE FOR THE ALS
MODEL

Assuming that the configurations of all segments are identical, it follows that the
motion of each segment is described by the same stochastic differential equation. Thus
the dynamical equation for the motion for the ALS model is similar to that for a FENE
dumbbell except that the drag coefficient, the spring constant, and the maximum exten-
sibility of the spring all vary with the number of segments, where the drag coefficient of
a bead attached to this segment is related to the drag on a bead in a FENE dumbbell
according to Eq(23) (with the asterisks removed from the quantitiebhis formulation
assumes that the time constant of a segment is related to the longest relaxation time of the
molecule in the same way that the time constant of a spring in the FENE chain is related
to the longest relaxation time of the chain. Hence, the dynamical equation for the motion
for the ALS model is written in dimensionless form as

o

< ( ﬂx)
bseg bseg

whereK is given by Eq.(24) with the asterisks removed, and the evolutionbgfy is
governed by Egs(29) and (36).

The polymer contribution to the stress for the ALS model is derived in a manner
similar to that presented for the general dumbbell in Chapter 12 of &iwl. (1987.
However, whereas there is only one spring in a classical dumbbell, the ALS model may
have several segments. Therefore, the stress contribution of one segment must be multi-
plied by the number of segments to give the contribution of the macromolecules to the
stress. If the polymer contribution to the stress is made dimensionlesskdy then the
total polymeric stress is expressed in dimensionless form as
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(39
bseg

~ < bmax> (bmax/bseQZQQ
TH=\—")06- >
-2
bseg bseg
The contribution to the birefringence from a single segment of the ALS model is
identical to that for a FENE dumbbell and is obtained by setiihgqual to unity in Eq.
(16) and recognizing that the maximum extension of a segment is given Bbie total
birefringence predicted by the ALS model is found by multiplying the birefringence from
one segment by the number of segments. A segment of maximum extdnsiomne-
sponds tmg rods in the Kramers chain representation of the polymer; hangs, equal
to (N—1)/Mgeq To generate a dimensionless expression for birefringence, the end-to-
end vector is again made dimensionless with the characteristic leggfffHy. The
characteristic length is written adl¢- 1)a?/3 by substituting foHq from Eq. (10) with

M set to unity. Recalling thdt is given by (N— 1)a2/Msegand substituting fong gives
the dimensionless expression for the birefringence of the ALS model as

Pmax 2 A A A
b_ (QzQz_QxQx) ) (39)

seg

5
An = =Cn kT<
3 p

whereC is given by Eq.(8).

VI. BEHAVIOR OF THE ALS MODEL AT LOW DEFORMATION RATES

Since the FENE spring forces applicable if a polymer is slowly stretched, it is
important to demonstrate that the ALS model reduces to the FENE dumbbell in the limit
of low deformation rates. As shown in Fig. 4, the valuebgfyis equal tabmay for all Q2
when Wi < 1. Additionally, if a polymer molecule has not been subjected to flow
stronger than Wi= O(1) in its recent flow history, thebgegis also equal tdmay. In
this limit, both terms on the right-hand side of E§6) are zero, andbsegremains equal
t0 bmax- When bgeg equalsbpay, the ALS model behaves identically to the FENE
dumbbell. Therefore, the ALS model exhibits the same behavior as the FENE dumbbell
in weak flows.

Since the ALS model reduces to the FENE dumbbell model for low Weissenberg
numbers, it duplicates an important success of the FENE dumbbell, which is to capture
the universal stress-birefringence relaxation behavior of fully stretched Kramers chains
[Doyle et al. (1998h]. The new model represents a fully stretched chain as a single
segment whose extensibility paramelbgggis equal tobmay. If the chains are allowed to
relax in a quiescent solvent, the zero deformation rate rertrl‘gb'sequal tobmax through
Eq. (27), and both terms on the right-hand side of E2f) equal zero. Thereforda;‘egis
constant and equal tby,x during the entire relaxation process, ensuring that the new
model exhibits the universal stress-birefringence curve generated by the FENE dumbbell
and Kramers chain.

VIl. RHEOLOGICAL PREDICTIONS OF THE ALS MODEL

The mathematical formulation of the ALS model is now used to predict its rheological
properties in simple shear and elongational flows. Results for steady and transient flows
are presented in this section.
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FIG. 11. Dependence of elongational viscosity on Wi for a 100-rod Kramers chain and the equivalent forms of
the FENE dumbbell and ALS model. The results of the FENE-P dumbbell and ALS-C models are also shown.

A. Steady state elongational properties

In steady uniaxial elongational flow, polymer molecules are fully unraveled into rod-
like structures at Weissenberg numbers large enough to induce the coil-stretch transition.
In the unraveled state, the adaptive length scale of the ALS model equals the maximum
extension of the molecule. Consequenblyeqis equal to its maximum valuByay and
the ALS model predicts the same elongational viscosity as the FENE dumbbell. This is
confirmed in Fig. 11, which illustrates the dependence of the elongational viscosity on Wi
for a 100-link Kramers chain, the equivalent FENE dumbbell, and the equivalent form of
the ALS model. The data for the Kramers chain are taken from Detytd. (1997.

All three models have the identical elongational viscosity fors¥ViL. Each exhibits
the coil-stretch transition at W& 0.5. The only difference among the predictions is that
the Kramers chain has a higher elongational viscosity than the FENE dumbbell or the
ALS model at values of Wi below the coil-stretch transition. This disagreement among
the models for Wi< 1 arises because, as shown by Dogteal. (1997, the Kramers
chain and the FENE dumbbell cannot predict the same values for the following pairs of
properties if the FENE dumbbell has a constant drag coefficiantthe steady-state
elongational viscosity at zero and infinite elongation rates @mdhe zero-shear-rate
viscosity and zero-shear-rate first normal stress coefficient. Dayaé (1997) chose the
bead drag coefficient for the FENE dumbbell to be (RIB)in order to match the zero-
shear-rate viscosity of the Kramers chain. With this choice, the FENE dumbbell predicts
the zero-shear-rate first normal stress coefficient to be twice that of the Kramers chain.
Additionally, the FENE dumbbell predicts the same elongational viscosity as the Kramers
chain at low Wi. However, for Wi 1, the steady-state elongational viscosity is twice
the value given by the Kramers chain.

Our analysis is primarily concerned with comparing the models for representations of
molecules far from equilibrium. Therefore, the drag coefficient of a bead for the FENE
dumbbell is related to the drag on the bead of a Kramers chain by assuming that the
longest relaxation times of the Kramers chain and FENE dumbbell are identical and
given by Eq.(4). This method of relating the drag coefficient results in matching the
elongational viscosities of the Kramers chain and FENE dumbbell in the limit Wi
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— o, as shown below. Lig1989 notes that the polymer contribution to the zero-shear-
rate viscosity of a Kramers chain is given by

(0= 79 = 3sNpla’(N*~1). (40)

Rewriting ¢ in terms of Ay by using Eq.(4) gives the zero-shear-rate viscosity fdr
> 1 as

“m_ﬁ%): 1956kaKd. (4D

This result demonstrates that the Kramers chain predicts approximately twice the poly-
mer contribution to the zero-shear-rate viscosity as the FENE dumbbell. Furthermore, Liu
also notes that the elongational viscosity in the limit of very high extension rates is

7—37s

—— | = N. 42
3(70— 71s) 42

lim

g — oo

By substituting fornpg— 5 according to Eq(41), Eq. (42) is rewritten as

7—37s
3nkaAd

lim

£ — ®

= 1.956N, (43

which is very similar to the prediction for a FENE dumbbell given by Bitdal. (1987,
namely,

. 7—37s Bmaxt3
im | ———
& — oo SNpKTAg 3
Despite the agreement between the FENE dumbbell and Kramers chain models for

Wi > 1, the choice of drag coefficient for the FENE dumbbell leads to different values of
elongational viscosity for Wi 1. This discrepancy is understood by analyzing the ana-
lytical results for the elongational viscosity in the limit of low elongation rates. &or
< 1, Hassage(1974 gives 5(€) as

= 2N. (44)

7-3 N’za’e
T g4 . (45)
3(7o— 7s) 90k T
Rewriting £ in terms of\ 4 and substituting fomg— 7 according to Eq(41) gives
7—37s :
~ 5.871+0.782W) (Wi — 0). (46)
nkaxd

In contrast, Eqs(13.5-45 of Bird et al. (1987 gives the elongational viscosity of the
FENE dumbbell at low elongation rates as

b
1+ maX7Wi) (Wi — 0). (47)

bmax+

7n—3 s 3bmax

nkakd bmax+5

This analysis explains why the elongational viscosity of the Kramers chain is twice that
of the FENE dumbbell ag — 0 (Fig. 11).

B. Viscometric properties

Figures 12 and 13 show the dependence of the viscosity and first normal stress coef-
ficient of a 100 link Kramers chain, the equivalent FENE dumbbell, and the equivalent
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FIG. 12. Dependence of viscosity on Wi for a 100-rod Kramers chain and the equivalent forms of the FENE
dumbbell, FENE-P dumbbell, ALS, and ALS-C models. The parantgjen Eq. (34) is chosen to be 120.

form of the ALS model on Wi for steady shear flow. The results for the Kramers chain
were obtained from Doylet al. (1997).

The Kramers chain has twice the zero-shear-rate viscosity of the other two models.
The zero-shear-rate viscosity of the FENE dumbbelhi&TAy, whereasyq for the
Kramers chain is almost twice as large as shown by (E#). The zero-shear-rate first
normal stress coefficien¥ 1 g of the Kramers chain is about 1.5 times greater than that of
the FENE dumbbell. For the FENE dumbbel,; o = ankT)\g. By using Eq.(4) to
replace\y in this expression, we find thalt; o = 403281p§2a4/kT for a FENE dumb-
bell that represents a 100-link Kramers chain. On the other hand, by approxirdating
for the Kramers chain with the analytical result for a Fraenkel chain of infinitely stiff
springs[Egs. (16.5-13 of Bird et al. (1987)], the zero-shear-rate first normal stress co-
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FIG. 13. Dependence of first normal stress coefficient on Wi for a 100-rod Kramers chain and the equivalent
forms of the FENE dumbbell, FENE-P dumbbell, ALS, and ALS-C models. The paraingter Eq. (34) is
chosen to be 120.
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FIG. 14. Variation of(bseg} with Wi in steady shear flow for the ALS and ALS-C models.

efficient of a Kramers chain is found to be 61@@32a4/kT. Hence, although the rela-

tion between the drag on a bead in a Kramers chain and a FENE dumbbell used in the
ALS model results in the same., for the two models, it results in a mismatch i,

\I’lyo, and ﬁo.

Compared with the FENE dumbbell model, the onset of shear thinning in viscosity for
the ALS model occurs at slightly larger Wi and the onset of shear thinning in first normal
stress coefficient at slightly lower Wi.

The evolution of the internal configurational variable affects the shear flow properties
of the new model in two important ways. First, @&eg decreases in the ALS model, the
contributions to the shear and normal stresses from a segment of the model are lower than
if (bseg remained equal thmay. This is because a segment with a reduced maximum
extensibility a segment becomes fully stretched more readily. Once fully stretched, the
segment rotates to align with the flow, thereby reducing its projected length perpendicular
to the shearing direction. The decreased projected distance reduces the shear stress. A
well known phenomenon that has a similar origin is that the onset of shear thinning in the
FENE dumbbell model occurs at lower Wi for smaller valuesbofSecond, agbseq
decreaseg,Mseq increases, and this increases the stress contribution from the polymer
molecules. Thus, a decrease(leg initiates two opposing effects. The relative magni-
tude of these effects determines the precise shear-flow response of the new model.

Figure 14 showgbseq as a function of Wi for steady shear flow. The quantityeq
decreases rapidly from 30@r b5, to 150 in the range of Wi of 1 to 100. For larger
values of Wi,(bseg continues to decrease, though more slowly. The relationship of the
shear flow properties as a function Wi to the behavior of the internal configurational
variable can be understood in greater detail by examining the evolution of the distribution
function forbgegWwith Wi. As shown by Fig. 15, the distribution function fbgegevolves
from a delta function centered dm,, at Wi < 1 (not shown, to a more dispersed
function centered on lower values bfeq at larger Wi. At Wi= 5, the distribution
function has an asymmetric invertdd shape. For 5< Wi < 10, the height of the
invertedV decreases, the distribution function is shifted towards lower valudsof
and grows a progressively longer tail that extends to high valubgegf The shift of the
distribution function is largely responsible for the reductiofligeg in this range of Wi.

The shift of the peak and the growth of the tail continue, and for larger Wi the distribution
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function forbgegconverges to one that has an M shape. This implies that a polymer chain
is in continuous tumbling-stretching motion at larger Wi, as predicted by Kramers chain
simulations[Liu (1989]. This prediction in steady shear flow has been experimentally
verified by using video fluorescence microscdfynith et al. (1999].

C. Start-up of steady uniaxial elongational flow

The normal stress differencerd;,— mpxx) is displayed in Fig. 16 as a function of
strain for a 40-link Kramers chain, the equivalent FENE dumbbell, and the equivalent
ALS model in startup of steady uniaxial elongational flow. All three models give identical
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FIG. 16. Dependence of stress on strain for a 40-rod Kramers chain and the equivalent forms of the FENE
dumbbell, FENE-P dumbbell, ALS, and ALS-C models in startup of steady uniaxial extensional flow at Wi
= 11.4.
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FIG. 17. Dependence of the polymer contribution to the shear stress growth coefficient on shearystrain
= vt for a 40-rod Kramers chain and the equivalent forms of the FENE dumbbell, FENE-P dumbbell, ALS,
and ALS-C models in startup of steady shear flow at=WVi1.4.

predictions for the stress at large strains, as pointed out in Sec. VI, although steady state
is reached slightly more slowly for the ALS model. However, at low strdins to e

= 2.5), the FENE dumbbell greatly underpredicts the stress growth in comparison with
the Kramers chain. The ALS model corrects this low strain deficiency and is in good
agreement with the Kramers chain over the entire range of strains. As argued in Sec. lll,
the use of the adaptive length scale captures the short length scale dynamics of the
Kramers chain that cannot be modeled by the FENE dumbbell.

D. Start-up of steady shear flow

The ability of the ALS model to predict transient rheological properties of a flow
containing vorticity is assessed by examining the startup of steady shear flow. Figure 17
shows the evolution of the polymer contribution to the transient shear stress growth
coefficient of a 40-link Kramers chain, the equivalent FENE dumbbell, and the equivalent
ALS model in startup of steady shear flow at Wi of 11.4. The viscosity of the Kramers
chain is twice that of the FENE dumbbell; but even accounting for this difference, the
rate of growth of the polymer contribution to the transient viscosity at low strains is much
greater for the Kramers chain than for the FENE dumbbell. The ALS model shows a rate
of stress growth at low strains that is much greater than that for the FENE dumbbell and
much closer to that of the Kramers chain. The overshoot in the polymer contribution to
the viscosity of the ALS model also occurs in the same range of straig (2 = t
< 20) as for the Kramers chain. In contrast, the overshoot in the polymer contribution
to the viscosity of the FENE dumbbell occurs at much larger strains<(1§ < 28).

The similarity of the transient behavior between the new model and Kramers chain at low

strains shows that the ALS model captures effects due to submolecular length scales in
flows with vorticity. This is because the flow strengthis equal to 5.7 for a shear flow

at Wi = 11.4 according to Eq.31). Substituting this value oy into Eq.(29) yields a

value ofb;‘eg < bmax- Therefore, the ALS model behaves as though it possesses shorter

length scale modes than the equivalent FENE dumbbell, and this leads to a more rapid
growth of shear stress at low strains.
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FIG. 18. Stress-birefringence hysteresis plots for a 40-rod Kramers chain and the equivalent forms of the FENE
dumbbell, FENE-P dumbbell, ALS, and ALS-C models for startup of a uniaxial extensional flow at Wi
= 11.4 up toe = 5 and subsequent relaxation.

E. Stress-conformation hysteresis

Stress-birefringence hysteresis is plotted in Fig. 18 for a 40-link Kramers chain, the
equivalent FENE dumbbell, and the equivalent ALS model. A uniaxial extensional flow
with Wi = 11.4 was applied up te = 5 before the flow was stopped and the polymer
solution allowed to relax. The overall shape of the hysteresis loop is similar for all three
models, although the size of the loop is slightly smaller for the ALS model than for the
FENE dumbbell or the Kramers chain. This is because the ALS model slightly underpre-
dicts the rate of stress growth at intermediate strainss(8 < 5) compared to the other
two models. Additionally, for a given birefringence, the ALS model predicts a larger
stress than the other two models.

As pointed out in Ghoslet al. (2001, an important factor for comparison with ex-
periments is the speed with which the loop is traversed. It can be seen in Fig. 18 that the
ALS model traverses its hysteresis loop at a rate very similar to the Kramers chain up to
€ = 4. In the same range of strains, the FENE dumbbell traverses its hysteresis loop at a
much slower rate.

F. Planar elongational flow

Planar elongation flow iy = —ex,»y = 0,v, = +€2) deserves consideration, be-
cause it arises in many important, complex geometries such as near the forward and rear
stagnation points of flow around a cylinder and in extrusion of films. Stress growth for a
40-link Kramers chain and equivalent FENE dumbbell and ALS models were compared
for inception of steady planar elongational flow at Wil1.4. As in uniaxial elongational
flow, the FENE dumbbell model predicts a much lower rate of stress growth than the
Kramers chain, whereas the ALS model gives much better agreement with the Kramers
chain.

VIIl. AN APPROXIMATE FORM OF THE ALS MODEL

A closed form approximation of the ALS model is next developed in order to make use
of the improved description of extensional rheology feasible in the numerical simulation
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of complex flows. A closed form version of the ALS model that is consistent with kinetic
theory would ideally be developed as follows. First, the Fokker—Planck equation that is
equivalent to the governing equations of the ALS mqéejs.(29), (36), and(37)] would

be derived by using the Fokker—Planck/stochastic differential equation equivalence theo-
rem outlined in G&tinger (1996. The equivalence theorem states that a stochastic differ-
ential equation of the form

is equivalent to the Fokker—Planck equation

J B J 190 (9_
3t¢(x,t) = —5-[A(x,t)z,//(x,t)]+555.[D(x,t)w(x,t)], (49)

where
D(x,t) = B(x,t)-BT(x,t). (50)

For the ALS model, the set of dependent variables denoteX;byonsists of the three
components of the end-to-end vector and the scalar varlalle Next, an evolution
equation for the configuration tensor would be obtained by multiplying the Fokker—
Planck equation b¥QQ and integrating over the configuration space.

It is difficult to find the Fokker—Planck form of the ALS model by using this proce-
dure, becausB(x,t) for the ALS model will contain the coefficient of the Wiener process
in Eq. (37), VKbseg/bmax Which is a complicated function of the varialiigeq. Second
derivatives of this drag coefficient are taken in the second term on the right side of the
Fokker—Planck equation, E¢49), and yield a series of yet more complicated terms. An
evolution equation for the configuration tensor that is derived from this Fokker—Planck
equation would be cumbersome as a result of these terms.

In this paper, we avoid the above procedure by proposing closed form versions of each
of the governing equations, such that the properties of the approximate and original forms
of the ALS model are similar. First, in the equation for the adaptive length $Eaje
(29)], the square of the end-to-end distance of an individual molecule is replaced by the

trace of the configuration tensdQQ), andb, is replaced b)(b;‘ea to give

seg
Wi R

80 |
K (bse <bseg?

This approximation is in the same spirit as the Peterlin approximation for the FENE
dumbbell, because the distribution function of the end-to-end vé&gtand the distribu-
tion of b:eg are approximated by delta functions. Consequently, the behavior of each
individual molecule is not important. Instead, the behavior of the configuration tensor and
the average quantityb;‘eg is computed. A similar Peterlin-type approximation may be
applied to the evolution equation for the adaptive length ddzde(36)]. In this case, the
distribution function forbsegis assumed to be a delta function, and instead of considering
the evolution ofbgeq for individual molecules, the evolution of the ensemble-averaged
quantity(bseq is computed. In addition, the components of the end-to-end vertare
approximated by the square root of the diagonal elements of the configuration tensor
(QQ) in a Cartesian coordinate system. After incorporating these simplifications, the
evolution equation for the adaptive length scale in dimensionless form is
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(Q:Q"? .
dt 27 | oy 2 (bleg (bleg
(Q3Q3)Y2
X(<bseg}_<b:e )K* +(bmax_<bseg})K- (52

An alternative approximation of the end-to-end vedipis the eigenvector of the con-
figuration tensoKQQ) that corresponds to the largest eigenvalue. We do not choose this
approach, because a vector composed of the diagonal eleme(@Qdfin a Protean
coordinate system provides a better interpretation of the average orientation of the mol-
ecules in several situations. For example, once the system is perturbed from equilibrium
in startup of steady uniaxial elongational flow, the principal eigenvecto(Q®) is
always directed along the principal stretching direction, regardless of the degree of ori-
entation of the molecules with the stretching direction. However, a vector composed of
the diagonal elements dfQQ) expressed in a Protean coordinate system, is initially
oriented at 45° to each of the coordinate axes, $ygtematicallyrotates towards the
principal stretching direction as the molecules become oriented in that direction. This
better describes the actual response of the molecules during startup of steady elongational
flow.

Finally, an evolution equation for the configuration tensor is derived from the stochas-
tic differential equation for the motion of a segmégi. (37)] by simplifying the two-
stage procedure outlined above. The first simplification is made during the transformation
of the stochastic differential equation into a Fokker-Planck equation. In this step, the
length of the segmerit is assumed constant, and therefore, the drag coeffi¢iggand
the spring constanitisegare also constant. Following this approximation, the Fokker—
Planck equation for a segment of the ALS model is identical to that for the FENE
dumbbell except that in the term for the spring force, the maximum extension of the
molecule,Qqq, is replaced by.. This Fokker—Planck equation is then multiplied @®
and integrated over the configuration space. Finally, the Peterlin approximation is applied
to obtain an expression for the evolution(@Q) in dimensionless form

KQC i aa K(QQ bse
Q9 _ Wit (00 +(QQ) &'} - 2 +K(Q>a
dt ( - tr(QQ) ( bmax) ) Bmax
(Bseg | (bseg

(53

Although the length of the segment is assumed constant in transforming the stochastic
differential equation for the motion of the segments taken to be a variable. Hence, the
governing equations of the closed form of the ALS model, which consist of Gd5.
(52), and (53), allow the adaptive length scale to evolve according to the kinematic
history in a similar fashion to the unapproximated version of the ALS model. We refer to
the closed form of the ALS model as the ALS-C model.

Expressions for the stress and the birefringence of the ALS-C model are obtained by
applying the same approximations that are used to simplify the governing equations for
the microstructure as outlined above. Therefore, (B8) for the stress is simplified to
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bmax ( bmax) 2 <QQ>
= o+ — (54)
® <bse§} <bse§} ( 1— tr(QQ) ( bmax) )
<bseg> <bsea
and Eq.(39) for birefringence becomes
o S) bmax 2 A2 A A
An = écnpk <bse§;) <(Q2Q2_QxQx)>- (55)

In the remainder of this section, the properties of the ALS-C model are compared with the
results of the unapproximated version. First, the uniaxial elongational viscosity of the
closed and unapproximated versions of the ALS model is presented in Fig. 11. For large
Wi, the elongational viscosity of the ALS-C model agrees with the 100-link Kramers
chain, equivalent FENE dumbbell, and equivalent ALS model. Below the coil-stretch
transition, the ALS-C model is also in good agreement with the ALS and FENE dumbbell
models.

The viscometric properties of the ALS-C model are compared in Figs. 12 and 13 with
a 100-link Kramers chain and the equivalent FENE dumbbell and ALS models. These
figures demonstrate that the ALS-C model predictions for these properties tend to those
of the FENE-P model for W& 1. To understand how closure leads to this behavior, the
dependencies dfbseg on Wi for the ALS-C and ALS versions of the model are com-
pared in Fig. 14. Whereabsey for the ALS model decreases rapidly for 2 Wi
< 100 before leveling off to a value ¢bseg = 150 at large Wi, for the ALS-C model
(bseg decreases rapidly to a minimum for 2 Wi < 10 before increasing back to
bmax at large Wi. As a result, the values of the polymer contribution to the viscosity and
the first normal stress coefficient for the ALS-C model approach the predictions of the
FENE-P dumbbell model in the shear-thinning regime.

The predictions for the startup of steady uniaxial elongational flow of the ALS-C
model are compared in Fig. 16 with those of a 40-link Kramers chain, the equivalent
FENE dumbbell, and the equivalent ALS model. The ALS-C model behaves similarly to
the ALS model; the only difference is that the ALS-C model displays a knee as the stress
approaches steady state. The knee is characteristic of the Peterlin closure approximation
[van den Brule(1993]; and it is prominent for the FENE-P dumbbell, which also is
shown in Fig. 16.

Figure 17 compares stress growth in the startup of steady shear flow for a 40-link
Kramers chain with the equivalent FENE dumbbell, ALS, and ALS-C models at a Weis-
senberg number of 11.4. The polymer contribution to the shear stress growth coefficient
77; of the ALS-C model is very similar to those of the Kramers chain and the ALS model
up to a shear strain of 2. This demonstrates that closure does not affect the ability of the
ALS model to describe short length scale behavior in a flow with vorticity. As observed
for the Kramers chain and the ALS model, the ALS-C model exhibits overshoot between
shear strains of 2 and 20. However, the ALS-C model reaches a steady-state value
slightly greater than those of the FENE dumbbell and ALS models. The relation of the
viscometric properties of 40-link Kramers chains to the equivalent FENE dumbbell and
ALS models is similar to the relation of the viscometric properties of 100-link Kramers
chains to the equivalent FENE dumbbell and ALS models. Thus the viscosity for the
ALS-C model at Wi= 11.4 in Fig. 17 is consistent with the results presented in Fig. 12.
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FIG. 19. Stress-confirmation hysteresis plots for a 40-rod Kramers chain and the equivalent forms of the FENE
dumbbell, ALS, and ALS-C models for inception of steady uniaxial extensional flow atW1L.4 up toe
= 5 and subsequent relaxation. Stress is plotted against mean square extension.

The predictions for stress-conformation hysteresis are shown in Fig. 18 for the ALS-C
model. For a FENE dumbbell, hysteresis arises solely because of hysteresis in the distri-
bution function. The distribution function assumes very different shapes during extension
and relaxation, which leads to multiple values of stress for a given birefrindereens
et al. (1999]. When the Peterlin approximation is used with the FENE dumbbell equa-
tions, the distribution function is approximated as a delta function, leading to a one-to-
one relationship between stress and birefringence and the elimination of hysteresis
[Sizaireet al. (1999]. However, the ALS model exhibits configurational hysteresis as
well as hysteresis in the distribution function. The latter hysteresis arises for the same
reasons as in the FENE dumbbell. Configurational hysteresis arises because polymer
molecules with given end-to-end distances assume different internal configurations dur-
ing extension and relaxation. The FENE dumbbell cannot capture configurational hyster-
esis, because its internal configuration is completely described by the end-to-end vector.
In contrast, for a given end-to-end distance as shown in Fig. 19, the ALS model can
predict a range of possible adaptive length scales, specifidakdyy which is a crude
representation of internal configuration. Configurational hysteresis arises in the ALS
model, because the evolution {fiseq is different during extension and relaxation. Ap-
plying a closure approximation to obtain the ALS-C model approximates the distribution
function for the end-to-end distance with a delta function and removes the hysteresis in
the distribution function. However, applying a closure approximation to the new model in
this way very nearly removes stress-hirefringence hysteresis as shown in Fig. 18. Appar-
ently configurational hysteresis in the closed form of the model is not sufficient to pro-
duce significant stress-birefringence. This may be due to the fact that the total birefrin-
gence of the molecule is a sum of segmental contribution as seen ifd@ysnd (55);
two different configurationgsuch as highly kinked or fully unravelgaould lead to
similar birefringence. If the mean square extension, which could be more sensitive to
configuration of the molecules, is used, however, the closed version of the new model
displays hysteresis. This hysteretic behavior is strictly due to the different configurations
during stretching or relaxation, because the distributional hysteresis is removed due to the
closure approximation.
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Finally, the behavior of the ALS-C model in planar elongational flow ati1.4 is
compared with that of a 40-link Kramers chain and the equivalent FENE dumbbell and
ALS models. We find that the ALS-C model is in close agreement with the Kramers chain
and ALS model. All three models predict much faster stress growth wp=t02.5 than
given by the FENE dumbbell model.

IX. CONCLUSIONS

A new model for dilute polymer solutions has been developed that captures much of
the physics of the Kramers chain in a wide range of flows through the addition of only
one additional configurational variable, adaptive length scale 4. This model is
tractable because of several important simplifications inspired by insights into important
aspects of polymer dynamics found by studying the behavior of Kramers chains. In
particular, the definition of an adaptive length scale allows the model to capture behavior
across a range of length scales, while using only one configuration va@ablelescribe
molecular extension and orientation.

The ALS model successfully replicates the behavior of Kramers chains in steady and
transient extensional flows. It also describes the stress-birefringence hysteresis of the
Kramers chain in the startup of and relaxation following steady uniaxial elongational
flow. Other coarse-grained models such as the FENE dumpbel}le et al. (1998a,
1998h; Ghoshet al.(2001)] or the Verhoef moddlVerhoefet al. (1999 ] do not describe
simultaneously both sets of features. Although not done within a rigorous kinetic theory
framework, a closed form of the ALS model—the ALS-C model—is also developed that
is convenient for complex flow calculations; the steady and transient extensional proper-
ties of the ALS model are nearly unchanged by the closure approximation. Moreover, in
contrast to the FENE-P dumbbell model, stress-conformation hysteresis is preserved in
the ALS-C model. This is because the ALS model can account for configurational hys-
teresis through the variableegas well as capture hysteresis in the distribution function
[Keunings(1997] of the kind present in the FENE dumbbell. Since the Peterlin closure
eliminates hysteresis in the distribution function, the FENE-P dumbbell shows no hys-
teresis. However, the ALS-C model exhibits hysteresis due to the configurational hyster-
esis remaining after the closure approximation is applied.

In steady shear flow, the ALS and ALS-C models shear thin in a fashion similar to the
Kramers chain and the FENE or FENE-P dumbbell models. In the startup of steady shear
flow, both the original and closed forms of the ALS model show rapid growth in the shear
stress at low shear strains that are similar to the corresponding result for the Kramers
chain. Hence the new model gives superior descriptions of rheological properties to the
FENE and FENE-P dumbbells in a broader class of flows than simply uniaxial and planar
extensional flow. The success in predicting transient shear flow properties demonstrates
that the ALS model captures short length scale behavior in flows with vorticity.

The ALS model may be a significant improvement for simulating complex flows. In its
closed form, the model provides a better physical description of the polymer than a
FENE-P dumbbell, with little extra computational effort. Without closure, it is superior to
the FENE dumbbell for use in hybrid Brownian dynamics/continuum calculations. In
addition, some of the concepts introduced here, such as the adaptive length scale, may be
useful in attempts to develop rigorous mapping techniques between fine-grained and
coarse-grained models.
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