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A new model for dilute polymer solutions in flows
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Synopsis

Ghosh et al. ~2001! demonstrated that the Kramers chain captures the optical and rheological
properties of dilute polymer solutions in rapidly varying elongational flows better than the finitely
extensible nonlinear elastic dumbbell model. A new model, based on introducing an adaptive length
scale~ALS! as an internal variable, is developed to reproduce the fine scale physics of the Kramers
chain. The resulting ALS-model describes the polymer molecule as a set of identical segments in
which each segment represents a fragment of the polymer that is short enough so that it can samp
its entire configuration space on the time scale of an imposed deformation and, therefore, stretc
reversibly. As the molecule unravels, the number of segments decreases, but the maximum lengt
of each segment increases, so that the constant maximum contour length of the molecule i
preserved. The ALS model gives very good predictions of stress growth in startup of uniaxial
elongation and stress-birefringence hysteresis in a uniaxial elongational flow followed by
relaxation. A closed form of the constitutive equation, the ALS-C model, is proposed. The
rheological predictions of the ALS-C model resemble those of the ALS equation. This coupled with
its small number of internal degrees of freedom suggests that this constitutive equation may be
useful in modeling complex flows. ©2002 The Society of Rheology.@DOI: 10.1122/1.1501963#

I. INTRODUCTION

Several researchers@for example Coateset al. ~1992!, Purnodeet al. ~1996!, Liu et al.
~1998!, and Talwar and Khomami~1995!# have demonstrated disagreement between flow
simulations and experimental measurements in complex geometries. They have suggeste
that the discrepancies may be due to inadequacies of the constitutive equations that a
used in the flow simulations. The most commonly used constitutive equations are derived
from elastic dumbbell models, such as the Hookean dumbbell and finitely extensible
nonlinear elastic~FENE! dumbbell models. Constitutive equations based on dumbbell
models are inexpensive to use in numerical simulations, because these models have on
one configurational variable, namely, the end-to-end vector of the dumbbell. However,
evidence suggests that these one-mode models poorly predict the experimentally ob
served behavior of polymer solutions in the startup of extensional flow@Jameset al.
~1995!; Tirtaatmadjaet al. ~1995!; Herrchenet al. ~1997!; Doyle et al. ~1998a!; and
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1058 GHOSH ET AL.
Ghoshet al. ~2001!#. These results demonstrate the great need for a molecular m
with a small number of configurational variables that accurately mimics the multim
behavior of a polymer chain in numerical simulations of complex flows. In this paper
develop such a model.

The new model is built by first understanding the dynamics of a fine grain model,
Kramers chain, and then incorporating the physical insights from this model into
simpler framework of a bead-spring model. Through this systematic approach to co
graining, we develop a model that is consistent with the fine scale physics of a poly
chain subjected to a wide range of flows. Several important aspects of Kramers c
dynamics in a uniaxial extensional flow have already been presented in Ghoshet al.
~2001!. Through simulations of the Kramers chain, we demonstrated that the effec
end-to-end force in a polymer chain deviates from the previously proposeddumbbell
force laws in strong extensional flows. In particular, for a given value of the end-to-
distance, the effective force varies with strain and strain rate. This is dramatically di
ent from a dumbbell with an inverse Langevin force law@Flory ~1953!#. The inverse
Langevin force law~or the Warner approximation to it! describes the entropic elasticity in
a slowly stretching polymer chain and is independent of the strain or strain rate impa
by the flow. Even the force law in the Verhoef dumbbell@Verhoefet al. ~1999!#, which
depends on strain rate, does not describe the complex behavior of the effective end-t
force of the Kramers chain because it does not contain the correct strain dependen
Ghoshet al. ~2001!, it was concluded that the complexity of the effective force would b
very difficult to capture in a simple, analytical form. It was suggested that alterna
strategies be attempted to improve upon existing dumbbell models.

In this paper, we do not try to derive a new force law for a bead-spring dumbb
Instead, we observe that there is a maximum number of segments that may be mo
accurately as an entropic spring in any given deformation and that this number dep
upon the strain rate and strain. We use this information to develop a one-mode b
spring model with a length scale that evolves adaptively with the kinematical history.
small strains, the adaptive length scale is small and allows the model to capture
length scale effects that are missed by the FENE dumbbell. Conversely, at large st
the adaptive length scale approaches the maximum contour length in order to repr
chains that are almost fully unraveled. The new model, referred to as the adaptive le
scale~ALS! model, is formulated as a set of stochastic differential equations, which
solved by using standard Brownian dynamics methods@Öttinger ~1996!#.

This paper is organized as follows. Section II summarizes existing models, such a
Kramers chain and FENE chain; the behavior of the ALS model is compared extens
with these models. The new model is developed in Secs. III to V, and is tested in a
variety of kinematics in Secs. VI and VII. Finally, a closed form constitutive equati
based on the Peterlin approximation, the ALS-C model is reported in Sec. VIII. This fo
may be particularly useful in numerical simulations of complex flows.

II. EXISTING MODELS AND SIMULATION TECHNIQUES

The principal ideas behind some common polymer models are briefly reviewed in
section. A more detailed discussion is found in Ghoshet al. ~2001!. Here we present the
most important relations and introduce the notation that is used in the remainder o
paper.

A flexible, linear polymer molecule of molecular weightMw and characteristic ratio
factor C` can be represented by a bead-rod or Kramers chain that consists ofN beads
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1059NEW MODEL FOR DILUTE POLYMER SOLUTIONS
connected by (N21) rods each of lengtha. Flory @~1953!; cf. pp. 411–414, Chap. X#
shows that the number of rods is given by

N21 5
2Mw sin2~u/2!

M0C`
~1!

whereM0 is the monomer molecular weight and the length of each rod is given by

a 5
C`l

sin~u/2!
, ~2!

wherel is the length of a carbon–carbon bond andu is the angle between carbon–carbon
bonds in the polymer backbone. The time constantld of the polymer molecule is found
by measuring the ratio of the zero-shear-rate first normal stress coefficient to the z
shear-rate polymer contribution to viscosity as

C1,0

2~h02hs!
5 ld . ~3!

The time constant is related to the number of rods in a Kramers chain representation
@Doyle ~1997!#

ld 5 0.0142N2
za2

kT
, ~4!

wherez represents the drag coefficient of a bead. Since it is difficult to estimate the d
coefficient on a beada priori, it can be calculated from Eq.~4!, if required.

The equation of motion for thenth bead in the chain is given by

ṙn 5 v01@k•rn#1
1

z
Fn

~c!1
1

z
Fn

~b! , ~5!

wherev0 is the velocity of the solvent field at a fixed, arbitrary origin,ṙn is the velocity
of the nth bead,k is the transpose of the velocity gradient tensor, andrn is the bead
position vector. The first two terms on the right-hand side derive from the hydrodynam
drag felt by thenth bead, andFn

(b) andFn
(c) represent the Brownian and constraint forces

respectively. The constraint forces are calculated to keep the rods of fixed lengtha.
The stress is calculated from the Giesekus equation~Bird et al., 1987! as

tp 5
1

2
npz (

n 5 1

N

^RnRn&~1! , ~6!

whereRn is the position of beadn with respect to the center of mass of the molecule, th
subscript~1! denotes the~upper! convected derivative, andnp is the number density of
the polymers in solution. The expression for the birefringence@Doyle ~1997!# is

Dn 5 5CnpkT (
n 5 1

N21

^un zun z2un xun x&, ~7!

where

C 5
2p

45kT

~n212!2

n
~a12a2! ~8!
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1060 GHOSH ET AL.
and n is the isotropic part of the refractive index tensor, (a1 ,a2) are the~parallel,
perpendicular! components of the polarizability tensor, and (unx ,unz) are the ~x, z!
components of the unit vector pointing from thenth to the (n11)th bead.

An important dimensionless quantity in a uniaxial elongational flow is the Weisse
berg number, which is the product of the time constant of the molecule and the elonga
rate

Wi 5 0.0142N2
za2

kT
«̇. ~9!

Brownian dynamics simulations of the Kramers chains were conducted by using
algorithm of Liu ~1989!.

Bead-spring models are coarse-grained approximations to the Kramers chain in w
the entropic elasticity of subsections of the chain is represented by springs. The sp
force is directed along the vectorQ connecting two adjacent beads, and the magnitude
the force is a function of the bead separation. For small extensions of the spring, the f
is linear in the bead separation, the proportionality constantH being related to the pa-
rameters of the Kramers chain by

H 5
3MkT

~N21!a2, ~10!

whereM is the number of equal length springs used to represent the Kramers chain.
large extensions, the force law becomes nonlinear. Flory~1953! has shown that the force
required to hold the ends of the chain at a fixed separation is given by the inve
Langevin function. It has been experimentally verified by direct measurements on flex
polystyrene molecules that the inverse Langevin function is a good approximation to
entropic elastic force in a flexible chain@Ortiz et al. ~1999!#. An approximation to this
function, which is more computationally tractable, was developed by Warner and
referred to as the FENE~finitely extensible nonlinear elastic! force law. The FENE force
law is given by the simple analytical form

F~FENE!~Q! 5
HQ

12~Q/Q0!2 , ~11!

whereQ0 is the maximum extension of each spring and is given by

Q0 5
~N21!

M
a. ~12!

The maximum extensibility of each spring is often expressed by the parameteb,
which is defined as

b 5
HQ0

2

kT
~13!

and gives the square of the ratio of the maximum to equilibrium length of the sprin
Substituting Eqs.~10! and ~12! into Eq. ~13! yields the relationship

b 5
3~N21!

M
. ~14!
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Thus, a Kramers chain of (N21) rods can be compared with a FENE chain withM
springs, each with a value ofb given by Eq.~14!.

The inverse Langevin force law~and the FENE approximation! assumes that for a
given end-to-end distance, a Kramers chain has sufficient time to sample its entire con-
figuration space and that the internal conformational distribution has reached equilibrium.
This force law should, therefore, be used with caution in nonequilibrium situations. Only
when the time scale of the deformation is much longer than the relaxation time scale of
the entire chain does the chain unravel reversibly~i.e., the internal conformation distri-
bution of the chain is able to equilibrate at each stage of the stretching!.

The spring forceF(s) is required to calculate the stress for bead-spring models with the
Kramers expression for the stress tensor

tp 5 MnpkTd2np (
i 5 1

M

^QiFi
~s!&, ~15!

where for FENE chainsF(s) is set toF(FENE). The birefringence of bead-spring models
is calculated from the expression of Wiest~1999! as

Dn 5 np~a12a2!
2p

9

~n212!2

n

ns

Q0
2 (

i 5 1

M

^QizQiz2QixQix&, ~16!

where each spring corresponds tons rods in the Kramers chain representation of the
polymer. The time constantl, for an individual spring iszs/4H, wherezs is the hydro-
dynamic drag on a bead in the FENE chain. This time constant can be related to the time
constant of the entire molecule through the scaling relationship suggested in Ghoshet al.
~2001!:

ls 5
zs

4H
5

ld

K
, ~17!

where

K 5 S b

b15DSA~bmax15!~bmax17!

bmax
D H@2~M11!217#@~M11!221#

45

2
12@~M11!211#@~M11!221#

45~M11!~b17!
J 1/2

~18!

andbmax is the finite extensibility of a FENE dumbbell representing the entire molecule.
The Brownian dynamics algorithm used to simulate the FENE chains is identical to that
of van den Brule~1993!.

III. REPRESENTATION OF POLYMER MOLECULES BY THE NEW MODEL

Figure 1 compares the stress growth in uniaxial extension at Wi5 11.4 for a 40-link
Kramers chain and a FENE spring chain that represent a polymer molecule of the same
maximum extension. The time constant of the overall moleculeld is assumed to be the
same for each of the FENE chains, independent of the number of segments used to
represent the polymer. Accordingly, the time constant of each spring in the FENE chain
is scaled according to Eq.~17!. Since the spring constant is inversely proportional to the
number of Kramers rods the spring represents, as indicated in Eq.~10!, Eq. ~17! also
describes the scaling of the drag coefficient of a bead in the FENE chain withM. Figure
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1062 GHOSH ET AL.
1 is reproduced from Ghoshet al. ~2001! where it was used to support the scaling of the
drag presented in Sec. II. In this paper it is used to guide us in developing an efficien
way to model the dynamics of a polymer chain.

Though a Kramers chain is arguably the best mesoscale molecular model for descri
ing the physics of a dilute polymer solution, its many internal degrees of freedom make
it a computationally expensive model in complex flow simulations. In contrast, a FENE
dumbbell is much more tractable computationally, but as shown in Fig. 1, it predicts th
short time scale behavior poorly. Since a FENE chain with six springs can capture th
short length scale behavior with much less computational effort than the Kramers chai
the FENE chain may seem to be the most efficient way to model a polymer molecule
However, there are two reasons why this is not the case. First, multiple springs a
required to describe the polymer for the first unit of strain, but for« . 3, the FENE
dumbbell performs adequately. Therefore, the use of FENE chains at large strains
inefficient because a single spring would suffice. Second, we know of no systematic wa
to map between FENE chains with different numbers of springs. For example, if we wan
to switch from a 6-mode model to a 1-mode model at« 5 3, we lack the methodology to
do so. In a complex flow, the problem is more severe, because the strength of deformati
varies spatially. In slowly deforming regions, only a few modes are needed, but a larg
number of modes might be needed throughout the geometry in order to resolve th
behavior in parts of the domain where the polymer experiences rapid deformations.
more efficient way to model polymer dynamics, therefore, would be to develop a mode
with a single spring whose length scale adapts according to the kinematical history. I
this paper, we develop a new adaptive length scale model motivated by a mechanis
understanding of the behavior of a Kramers chain rather than develop a systematic theo
to map between fine and coarse-grained models.

We define the adaptive length scale as the contour length of a fragment of the polym
chain over which the inverse Langevin function describes the end-to-end force of th
fragment. Let us consider the evolution of the adaptive length scale in the startup of
rapid uniaxial elongation. We first describe the behavior of the adaptive length scale
low strains. Ifc(xuQ,t) represents the configurational distribution function of Kramers
chains with end-to-end distanceQ at time t, then the end-to-end force of these Kramers

FIG. 1. Uniaxial extension at Wi5 11.4 for a 40-rod Kramers chain and equivalent FENE chains.
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1063NEW MODEL FOR DILUTE POLYMER SOLUTIONS
chains is given by the inverse Langevin function ifc(xuQ,t) 5 ceq(xuQ). Here, x
5 $r1 ,r2 ,...,rN% is the full set of configurational variables specifying the locations of

all of the beads. By definition,c(xuQ,t) is equal toceq(xuQ) in a quiescent fluid.
Consequently, the inverse Langevin function describes the end-to-end force for the ov
all molecule, and the adaptive length scale equals the contour length of the entire m
ecule. If a rapid elongational flow~largeė! is suddenly applied for a small strain«1 then
the distribution functionc(xuQ,t) is different from that corresponding to equilibrium,
because the internal configurations of the molecules are distorted so rapidly by the fl
that they are unable to re-equilibrate on the time scaleė21 of the deformation. As
demonstrated by Ghoshet al. ~2001!, the discrepancy betweenc(xuQ,t) andceq(xuQ),
results in the inability of the inverse Langevin function to describe the end-to-end forc
of the molecules in this flow situation. As the fluid is elongated to a larger strain,«2
. «1 , the deviation ofc(xuQ,t) from equilibrium increases, as does the deviation of

the end-to-end force from the inverse Langevin function.
Let us now consider a fragment of the above Kramers chains, say from the first to t

pth bead. We denote the configurational distribution function for molecules which hav
end-to-end distanceQ and for which the distance between the first andpth beads isQf as
c f (xf uQf ,Q,t), wherexf 5 $r1 ,r2 ,...,r p%. At equilibrium, this contracted distribution
function assumes its equilibrium valuec f ,eq(xf uQf ,Q,t), but when the fluid is elongated
to strain«1 at largeė, c f (xf uQf ,Q,t) deviates from equilibrium. However, since this
fragment of the molecule has a smaller time constant than the overall molecule, it is a
to re-equilibrate to a greater extent than the entire molecule on the time scale of t
deformation ė21. Consequently, the difference betweenc f (xf uQf ,Q,t) and
c f ,eq(xf uQf ,Q,t) is smaller than that betweenc(xuQ,t) and its corresponding equilib-
rium distribution function at strain«1 . Therefore, the inverse Langevin function better
approximates the end-to-end force of this segment than the end-to-end force of the en
molecule.

Following this argument,there exists a fragment of the molecule that is sufficiently
small such that it is locally equilibrated when undergoing rapid elongation at strain rate
ė up to straine1 . We postulate that a fragment of the polymer that satisfies the conditio
l f ė 5 1, wherel f is the time constant of the fragment,is locally equilibrated. The
contour length of the fragment is defined as the adaptive length scale at straine1 ,
because the inverse Langevin function can describe the end-to-end force over this len
scale. Since the configurational distribution function of the moleculec(xuQ,t) does not
change discontinuously upon the sudden inception of rapid elongational flow, the ada
tive length scale similarly decreases continuously from the maximum contour length
lower values.

Assume that the contour length (p21)a of the fragment defined byxf of the above
molecules corresponds to the adaptive length scale at straine1 . Then, at straine2
. e1 , the configurational distribution function,c f (xf uQf ,Q,t) may deviate from the

corresponding equilibrium distribution function by a greater extent because the config
ration of the molecules has been distorted further by the flow. In this case the inver
Langevin function no longer applies over the length (p21)a, and the adaptive length
scale decreases further.

Next consider the evolution of the adaptive length scale at large strains where t
molecules become increasingly unraveled until almost all have an end-to-end distan
near the maximum contour length. There exists a subset of Kramers chainswith end-to-
end distance Qc close toQ0 whose internal configurations are described by the distribu
tion functionc(xuQc ,t). Such molecules have a rodlike shape and have a configuratio
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1064 GHOSH ET AL.
space that is a narrow tube surrounding the molecule. Since the configuration space
small, the molecules are able to sample it on a time scale much smaller thanld despite
the presence of a strong underlying flow. Consequently,c(xuQc ,t) does not deviate
much from the corresponding equilibrium distribution function and the inverse Langev
function approximates well the end-to-end force of the entire molecule. Hence, the ad
tive length scale approaches the maximum contour length.

Finally, we consider the evolution of the adaptive length scale averaged over
ensemble of molecules that represents the polymer solution. Ate 5 0, the average adap-
tive length scale isQ0 for a quiescent fluid. For small strains, the ensemble-averag
adaptive length scale decreases, because most of the molecules have end-to-end dis
close to the equilibrium value, and the adaptive length scale of such molecules decre
with increasing strain. However, at large strains the ensemble-averaged adaptive le
scale increases and approachesQ0 as the majority of molecules become almost fully
extended, and the adaptive length scale of such molecules is close toQ0 . The evolution
of the ensemble-averaged adaptive length scale in the start-up of rapid uniaxial elon
tion is summarized schematically in Fig. 2. For elongation at small strain rates, t
average adaptive length scale does not deviate very much fromQ0 at any strain, because
the configurational distribution functionc(xuQ,t) deviates little from its equilibrium
value for any value ofQ.

In the remainder of this section, we develop equations that describe the adap
length scale in the limit that instantaneous changes in the flow field lead to instantane
changes in the molecular parameters. The quantities so derived are denoted with
asterisk to signify this idealization; for example, the adaptive length scale in this limit
denoted byL* . The fact that a molecule requires a finite time to react to a sudden chan
in the flow is incorporated in Sec. IV. The asterisk is dropped for the quantities calcula
with this correction, so that the adaptive length scale following the correction is deno
by L.

Since the adaptive length scaleL* is the largest length scale for which the inverse
Langevin function~or FENE force law approximation! applies, we model the polymer as
a set of segments, each represented by a FENE springwhose maximum length equals L* .
The force law of a segment with a maximum length ofL* is given by

FIG. 2. Qualitative evolution of the adaptive length scaleL with strain for a rapid, uniaxial extensional flow.
The adaptive length is scaled by the contour length of the complete moleculeQ0 .
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1065NEW MODEL FOR DILUTE POLYMER SOLUTIONS
Fseg* ~s! 5
Hseg* Q

12~Q2/L* 2!
. ~19!

In order for the model always to represent a polymer of the same maximum contou
length, the number of segments is set to equal the contour length of the entire molecu
divided byL* or

Mseg* 5
~N21!a

L*
. ~20!

Equation~20! allows the existence of a fractional number of segments. The number of
beads also can be fractional and is defined to be one greater than the number of segme

Nbead* 5 Mseg* 11. ~21!

In order to minimize the complexity of the model, we assume thatthe orientations and
lengths of all segments are identical. Without this assumption, it would be necessary to
know how to map two FENE spring chains with different numbers of springs onto one
another. As discussed above, we choose to avoid this problem.

The spring constant and the drag coefficient are functions of the number of segment
As the number of segments increases, each segment represents a smaller number of lin
of the Kramers chain. The spring constantHseg* is inversely proportional to the number of
links in a segment and is thus proportional to the number of segments

Hseg* 5
3Mseg* kT

~N21!a2 . ~22!

As the number of segments increases, each segment represents a smaller fragment of
polymer, and, therefore, the drag on each of the beads attached to the segment decrea
according to

lseg* 5
zseg*

4Hseg*
5

ld

K*
, ~23!

where

K* 5 S bseg*

bseg* 15
D SA~bmax15!~bmax17!

bmax
D H@2~Mseg* 11!217#@~Mseg* 11!221#

45

2
12@~Mseg* 11!211#@~Mseg* 11!221#

45~Mseg* 11!~bseg* 17!
J 1/2

. ~24!

Equation~23! is similar to Eq.~17! because we assume the time constant of a segment
lseg* 5 zseg* /4Hseg* scales with the longest relaxation time of the polymerld 5 zd/4Hd
in the same way that the time constantls of a spring in a FENE chain scales withld .
The parameterbseg* is the dimensionless finite extensibility parameter for a segment with
maximum extension equal to the adaptive length scaleL* and is defined as

bseg* 5
Hseg* L* 2

kT
. ~25!
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1066 GHOSH ET AL.
Substituting Eqs.~20! and ~22! into Eq. ~25! yields a relationship betweenbseg* and

Mseg* as

bseg* Mseg* 5 3~N21! 5 bmax. ~26!

Since the middle term of Eq.~26! equals the value that the finite extensibility parameter
bseg* would take if the polymer were represented by a single FENE spring~or FENE
dumbbell!, we denote it asbmax.

The relationship between the adaptive length scale and the number of segment
illustrated in Fig. 3. Here some characteristic configurations of a polymer molecule, su
as an equilibrium coil, a polymer molecule stretched to small strains in a rapid exte
sional flow, and a fully stretched polymer, are represented by a FENE model and by
ALS model. The FENE dumbbell represents well the equilibrium coil and fully stretche
polymer. Similarly, the ALS model represents both of these conformations by a sing
segment with the adaptive length scale equal toQ0 . In contrast, the ALS model repre-
sents the kinked conformation by several identical segments, each with a maxim
extension given by the adaptive length scale. The adaptive length scale equalsQ0 divided
by the number of segments.

Having defined and developed a qualitative understanding for the adaptive leng
scale, it remains to propose an equation for it. To do this, we assert that a fragment o
polymer chain can sample its configuration space if the time constant for the fragmen
similar in magnitude to the time scale of the underlying flow. Near equilibrium, th
relaxation time scale of a spring islseg* 5 zseg* /4Hseg* . However, when the segment
stretches close to its maximum extension, the relaxation time scale of the spring
creases because the spring modulus stiffens as@12(Q2/L* 2)#21. For steady uniaxial
extension, the time scale of the flow isė21. Equating these time scales yields

FIG. 3. ALS model representations of an equilibrium coil, a polymer stretched to small strains in a rap
extensional flow, and a fully stretched polymer. HereL is the adaptive length scale,Q0 is the maximum length

of the molecule, andQ08 is the maximum length of a segment.
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1067NEW MODEL FOR DILUTE POLYMER SOLUTIONS
Z

ė
5

zseg*

4Hseg* Y S 12
Q2

L* 2D . ~27!

The time constants of the flow and of the segment of the molecule are required to
similar in Eq.~27!, but not identical. That is,Z should be an order one constant, but its
precise value is not set by the theory. If a value less than unity is chosen, then t
adaptive length scaleL* decreases for given flow conditions, and this will lead to even
more rapid growth in the extensional stress. On the other hand, the FENE dumbb
model can be conveniently recovered from the ALS model by lettingZ → `.

In the remainder of this paper, equations are expressed in dimensionless form
making time dimensionless with the longest time constant of the moleculeld and by
making length dimensionless withAkT/Hd. The spring constantHd is that for a dumb-
bell representing the entire molecule and is defined by Eq.~10! with M 5 1. All dimen-
sionless quantities are henceforth denoted with the symbol∧. In the process of making
the equations dimensionless, the ratioHseg* /Hd frequently appears. By dividing Eq.~22!
by Eq. ~10! with M set to unity, this ratio can be written as

Hseg*

Hd
5 Mseg* . ~28!

By using Eq.~28! and recalling thatMseg* andbseg* are inversely related through Eq.~26!,

Eq. ~27! is written in dimensionless form as a nonlinear equation inbseg* :

Wi

K* S 12
Q̂2

bseg*
bmax

bseg* D 5 Z, ~29!

where

Wi 5 ldė. ~30!

We definebseg* to have a piecewise description such that it equals the value given by E

~29! if that value is less thanbmax. Otherwise,bseg* is set tobmax. Oncebseg* has been

calculated, the number of segmentsMseg* is easily found by using Eq.~26!. Finally, the

adaptive length scaleL* is obtained by substitutingMseg* into Eq. ~20!.

Figure 4 shows the relation betweenMseg* andQ̂2 for a variety of Weissenberg num-

bers as given by Eq.~29!. For Wi , 1, Mseg* is equal to unity for all values ofQ̂2. This
is because at low Wi a polymer chain is stretched reversibly, and the FENE force law

valid for the overall chain. For Wi. 1, Mseg* is greater than unity for low values ofQ̂2.
This reflects the fact that at low strains, when the molecules have still not unraveled, t
time constant of the flow is equal to the time constant of only a small fragment of th
polymer. Hence the adaptive length scale is small, and the number of segments is gre
than unity. AsQ approaches the maximum contour length of the molecule, the tim
constant of the molecule decreases and approaches the time constant of the flow. Co
quently, the adaptive length scale tends to the maximum contour length, and a sin
segment may represent the entire molecule. Thus, the criterion in Eq.~27! correctly
represents all the aspects of polymer chain behavior that seem to be important in str
elongational flows.
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In order to generalize Eq.~27! for an arbitrary flow, the elongation rateė must be
replaced by a more general quantityėg that measures the local deformation rate in the
vicinity of the polymer chain. The transpose of the velocity gradient tensork can be
decomposed into the rate-of-strain tensorġ, which describes the rate-of-deformation of a
fluid element~and, therefore, the polymer contained within it!, and the vorticityv, which
describes the rigid rotation of the fluid element. The direction of the principal axis of the
deformation-rate tensor is given by the eigenvectorn, which corresponds to the largest
absolute eigenvalue ofġ. In accordance with Tanner~1976! and Olbrichtet al. ~1982!,
we chooseėg to be the maximum absolute eigenvalue of the rate-of-strain tensorġ as
indicated by

ėg 5 1
2 umax@Eig~ ġ!#u. ~31!

For uniaxial elongational flow,ėg simply reduces to the elongation rate.
It is important to note that the parameters of the ALS model can be derived solel

from knowledge of two molecular properties~the molecular weight and characteristic
ratio of the polymer! and from measurement of the ratio of the zero-shear-rate first
normal stress coefficient to the zero-shear-rate polymer contribution to viscosity. From
the molecular weight and characteristic ratio, the number of rodsN in the equivalent
Kramers chain can be calculated by using Eq.~1!. SubstitutingN into Eq.~26! yields the
value of bmax, and the number of segmentsMseg* can be expressed asbmax/bseg* . The
time constant of the polymer is determined from the ratio of the zero-shear-rate firs
normal stress coefficient to the zero-shear-rate polymer contribution to viscosity in Eq
~3!. Once the flow kinematics are given, the dimensionless adaptive lengthbseg* in the
ALS model can be determined by solving Eq.~29!.

IV. EVOLUTION EQUATION FOR THE ADAPTIVE LENGTH SCALE

In the development in Sec. III, the adaptive length scaleL* and the other asterisked
quantities have been assumed to adjust instantaneously to changes in the flow. Howev
such instantaneous changes inL* lead to instantaneous changes in the number of seg-
ments and, therefore, to ‘‘jumps’’ in the polymer contribution to the stress. For flexible

FIG. 4. The dependence ofMseg* on Q̂2 in elongational flow for various Wi.
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1069NEW MODEL FOR DILUTE POLYMER SOLUTIONS
polymers, there have been no conclusive experimental observations of jumps in th
polymer contribution to the stress upon the sudden inception of a flow. Additionally, it
has been argued earlier in this paper that instantaneous jumps in the adaptive length sc
do not occur. Instead, the adaptive length scaleL* as derived from Eq.~29!, should be
thought of as a pseudosteady state value that the system tends toward, but which is n
reached instantaneously. In the rest of this section, relations are developed to describe
behavior of microstructural properties, without the approximation that molecular change
occur instantaneously upon a sudden change in flow. The absence of this approximati
is reflected in our notation by the removal of the asterisks.

The first task is to develop an evolution equation for the adaptive length scaleL that
describes its approach toL* . We emphasize that our approach is not a rigorous deriva-
tion in a kinetic theory framework. However, our evolution equation is fundamentally
motivated by simulations of Kramers chain behavior. The evolution equation should hav
a stiffening term that causesL to decrease towardsL* when the flow is initiated and a
relaxation term that makes the adaptive length scale return toQ0 when the flow is
stopped. We propose that the relaxation of the segment be proportional to the differen
betweenL andQ0 and occur on a time scale equal tolseg5 zseg/4Hseg, which varies as
the relaxation occurs. This gives the following description of the relaxation process

SdL

dt D
relax

5
~Q02L !

lseg
5

~Q02L !

ld /K
, ~32!

where the expressions forHseg, K, L, andQ0 are given by Eqs.~22!, ~24!, ~25!, and~12!,
respectively, except that the asterisks are removed from all quantities.

The stiffening term deserves more detailed consideration. First, Rallison~1996!
showed that in a uniaxial elongational flow, the rate at which a molecule is compresse
into a one-dimensional structure that can exhibit kinks is proportional to Wi. The seg
ments of the ALS model crudely represent these kinks. This kink formation is expected t
decrease as the segment stretches close to its maximum extension. In shear flow,
stiffening is also associated with the finite extensibility parameter. Since the value o
shear rate for the onset of shear thinning in the viscosity is proportional toQ0 and thus
bmax

1/2 @Bird et al. ~1987!#, the stiffening in shear flow is inversely proportional tobmax
1/2 .

Hence, for an arbitrary flow, we propose that the stiffening is proportional to Wieff, which
is defined as

Wieff 5 ldė
eff 5 1

2 ld max@Eig~ ġeff!#, ~33!

where

ġeff 5 S 2k11 s~k211k12!

s~k211k12! 2k22
D ; s 5 ~b0 /bmax!

1/2 ~34!

and b0 is a fitting parameter that governs the onset of shear thinning behavior. The
components of the transpose of the velocity gradient tensork are expressed in Protean
coordinates@Adachi ~1983!# in which basis vectors are the unit tangent and unit normal
vectors to the streamlines for a two-dimensional flow.

Second, the evolution of the configuration of a particular polymer molecule depend
on its initial conformation. Thus, the evolution equation for the adaptive length scale
should reflect this, since the adaptive length scale is closely related to the conformation
molecule assumes. Larsonet al. ~1999! examined the influence of initial configuration on
the configurational evolution of wormlike chains in a planar elongational flow. They
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1070 GHOSH ET AL.
noted that polymers whose end-to-end vectors lie initially in the plane of stretching
unravel rapidly to their maximum extension. However, molecules that are initially ori-
ented perpendicular to the flow direction stretch out much more slowly and display a
prominent knee in plots of extension versus strain. We have performed a similar analysis
for uniaxial elongational flow. We also investigate the dependence of stress growth on the
initial end-to-end orientation of the macromolecule with respect to the flow direction and
model this dependence through the stiffening term of the evolution equation for the
adaptive length scale.

The relationship between the initial end-to-end orientation and stress growth is ana
lyzed by using a 40-link Kramers chain selected from an ensemble of Kramers chains a
equilibrium whose terminal beads are at opposite extremities of the polymer coil. The
configuration of the polymer, which is shown in Fig. 5, is dumbbell-prone according to
the terminology of Larsonet al. ~1999!. This Kramers chain is subjected to startup of
steady uniaxial elongational flow with the principal direction of stretching parallel to the
initial end-to-end vector. A total of 1000 trajectories are computed with the chain starting
from the same initial configuration, but experiencing different sequences of random num-
bers. Finally, the ensemble-averaged stress and end-to-end distance are calculated
functions of strain. The effect of initial orientation is investigated by repeating the cal-
culations with the initial configuration of the Kramers chain rotated by an increment of
10° further away from the axis of elongation in each set of calculations.

Figures 6 and 7 show the evolution of the end-to-end distance and stress for molecule
that are initially oriented 0°, 20°, 40°, 50°, 70°, and 90° to the principal axis of elonga-
tion. The end-to-end distance and stress increase most rapidly for the molecules that a
initially aligned parallel to the flow and most slowly for the molecules that are initially
perpendicularly aligned. The rates of growth of stress and end-to-end distance decreas
monotonically with increase of the initial angle made by the molecule with the principal
stretching direction. The decreases in rates of growth of stress and end-to-end distanc
are particularly dramatic as this initial angle is increased from 40° to 50°. This prediction

FIG. 5. Configuration of the ‘‘dumbbell prone’’ polymer used to study the effects of initial configuration on
subsequent stress growth in a uniaxial extensional flow.
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1071NEW MODEL FOR DILUTE POLYMER SOLUTIONS
is consistent with the results of Larsonet al. ~1999! who show that a molecule becomes
‘‘kink prone’’ rather than ‘‘dumbbell prone’’ as its end-to-end vector is rotated away fro
the stretching direction.

The calculation is repeated for an equivalent FENE dumbbell (b 5 120) with initial
end-to-end vector equal to that of the Kramers chain. Figure 8 shows that the FE
dumbbell that is initially aligned parallel to the stretching direction adequately describ
the stress growth of the Kramers chain. However, the FENE dumbbell initially align
perpendicular to the flow direction greatly underpredicts the stress of the correspon
Kramers chain up toe 5 5. It appears that the inability of the FENE dumbbell to de
scribe the stress growth of the Kramers chain at low strains is due largely to the du
bells that are initially aligned perpendicular to the flow. This is because molecules that

FIG. 6. Effect of initial orientation on the evolution of thez component of the end-to-end distance of polymer
molecules in startup of steady uniaxial elongational flow at Wi5 45.6.

FIG. 7. Effect of initial orientation on stress growth in startup of steady uniaxial elongational flow at W
5 45.6.
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1072 GHOSH ET AL.
initially aligned perpendicular to the flow evolve into kinked structures whose adaptiv
length scale is less thanQ0d , whereQ0d is the maximum length of the entire polymer
molecule. It is for these molecules that the adaptive length scale has to evolve towa
L* .

In summary, studies of Rallison~1996! show that the rate of molecular stiffening is
proportional to the Weissenberg number of the flow. The stiffening process, which
represented by allowingL to tend towardsL* , decreases as the segment stretches clos
to its maximum extension. We propose that this process occurs on a time scale of
segment equal tolseg* 5 zseg* /4Hseg* . Finally, the rate of the stiffening increases with the
angle the molecule makes with the stretching direction. Based on these observations,
propose a stiffening term in the evolution equation forL of the form

SdL

dt D
stiffen

5 2Un3
Q

uQuU Wieff@12~Q2/L*2!#~L2L* !

lseg*

5 2Un3
Q

uQuU Wieff@12~Q2/L*2!#~L2L* !

ld /K*
, ~35!

where n is the unit vector parallel to the eigenvector of the rate-of-strain tensor tha
corresponds to its largest eigenvalue.

Combining the relaxation and stiffening terms gives the evolution equation for th
adaptive length in dimensionless form

~36!

FIG. 8. Comparison of the effect of initial orientation on stress growth in polymer molecules represented b
Kramers chains and FENE dumbbells in startup of steady uniaxial elongational flow at Wi5 45.6.
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1073NEW MODEL FOR DILUTE POLYMER SOLUTIONS
The termsK* andK on the right-hand side of Eq.~36! are ratios of the longest relaxation
time of the polymer (ld) to the time constants~l* and l! of a single segment. After
incorporating Eq.~36! into the new model, two realizations of the new model~one
initially perpendicular and one initially parallel with the flow direction! are simulated in
order to compare the dependence of stress growth upon initial orientation with the Kram
ers chain and FENE dumbbell. The results are shown in Fig. 9. Molecules initiall
aligned parallel to the stretching direction behave identically to the corresponding FEN
dumbbell. However, the stress associated with the molecules initially aligned perpendic
lar to the stretching direction grows more quickly than that for the FENE dumbbell at low
strains and behaves very similarly to the stress associated with the corresponding Kra
ers chain.

The reason for the better agreement of the ALS model with the Kramers chain
understood from Fig. 10, which shows the evolution of^bseg& and^bseg* & in the startup of
steady uniaxial elongational flow at Wi5 11.4 for the ALS model after the incorporation
of Eq. ~36!. Here,^bseg& and^bseg* & are ensemble averages ofbsegandbseg* , respectively,

at a given strain. When the flow is started,^bseg& decreases rapidly towards^bseg* &. At

e 5 1.0, ^bseg& is still greater than̂ bseg* & but begins to increase towardsbmax as the
relaxation term in Eq.~36! begins to dominate the stiffening term. The increase in^bseg&
for e . 1.0 is also driven by the increase in^bseg* &. The rise in^bseg* & is due to the
increase inL* at large strains due to the mechanisms described in Sec. III. Although Eq
~36! was derived from a consideration of uniaxial elongational flow, we propose that
can be generalized to arbitrary flows by defining the magnitude of the deformation rate b
Eq. ~33!.

FIG. 9. Comparison of the effect of initial orientation on stress growth in the startup of steady uniaxia
elongational flow for polymer molecules as represented by a Kramers chain, FENE dumbbell, and the AL
model at Wi5 45.6.
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V. EQUATIONS OF MOTION, STRESS, AND BIREFRINGENCE FOR THE ALS
MODEL

Assuming that the configurations of all segments are identical, it follows that the
motion of each segment is described by the same stochastic differential equation. Thu
the dynamical equation for the motion for the ALS model is similar to that for a FENE
dumbbell except that the drag coefficient, the spring constant, and the maximum exten
sibility of the spring all vary with the number of segments, where the drag coefficient of
a bead attached to this segment is related to the drag on a bead in a FENE dumbbe
according to Eq.~23! ~with the asterisks removed from the quantities!. This formulation
assumes that the time constant of a segment is related to the longest relaxation time of th
molecule in the same way that the time constant of a spring in the FENE chain is related
to the longest relaxation time of the chain. Hence, the dynamical equation for the motion
for the ALS model is written in dimensionless form as

dQ̂ 5 F Wi@ k̂•Q̂#2
1

2
K

Q̂

F 12
Q̂2

bseg
S bmax

bseg
D G G d t̂1S K

bseg

bmax
D1/2

dŴ, ~37!

whereK is given by Eq.~24! with the asterisks removed, and the evolution ofbseg is
governed by Eqs.~29! and ~36!.

The polymer contribution to the stress for the ALS model is derived in a manner
similar to that presented for the general dumbbell in Chapter 12 of Birdet al. ~1987!.
However, whereas there is only one spring in a classical dumbbell, the ALS model may
have several segments. Therefore, the stress contribution of one segment must be mul
plied by the number of segments to give the contribution of the macromolecules to the
stress. If the polymer contribution to the stress is made dimensionless bynpkT, then the
total polymeric stress is expressed in dimensionless form as

FIG. 10. Evolution of ^bseg* &, ^bseg&, and^Mseg& for the ALS model for startup of steady uniaxial elongational
flow at Wi 5 11.4.
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1075NEW MODEL FOR DILUTE POLYMER SOLUTIONS
t̂p 5 K bmax

bseg
L d2K ~bmax/bseg!

2Q̂Q̂

F 12
Q̂2

bseg
S bmax

bseg
D G L . ~38!

The contribution to the birefringence from a single segment of the ALS model is
identical to that for a FENE dumbbell and is obtained by settingM equal to unity in Eq.
~16! and recognizing that the maximum extension of a segment is given byL. The total
birefringence predicted by the ALS model is found by multiplying the birefringence from
one segment by the number of segments. A segment of maximum extensionL corre-
sponds tons rods in the Kramers chain representation of the polymer; hence,ns is equal
to (N21)/Mseg. To generate a dimensionless expression for birefringence, the end-to
end vector is again made dimensionless with the characteristic length,AkT/Hd. The
characteristic length is written as (N21)a2/3 by substituting forHd from Eq. ~10! with
M set to unity. Recalling thatL is given by (N21)a2/Msegand substituting forns gives
the dimensionless expression for the birefringence of the ALS model as

Dn 5
5

3
CnpkTKSbmax

bseg
D 2

~Q̂zQ̂z2Q̂xQ̂x!L , ~39!

whereC is given by Eq.~8!.

VI. BEHAVIOR OF THE ALS MODEL AT LOW DEFORMATION RATES

Since the FENE spring forceis applicable if a polymer is slowly stretched, it is
important to demonstrate that the ALS model reduces to the FENE dumbbell in the lim
of low deformation rates. As shown in Fig. 4, the value ofbsegis equal tobmax for all Q2

when Wi , 1. Additionally, if a polymer molecule has not been subjected to flow
stronger than Wi5 O(1) in its recent flow history, thenbseg is also equal tobmax. In
this limit, both terms on the right-hand side of Eq.~36! are zero, andbsegremains equal
to bmax. When bseg equalsbmax, the ALS model behaves identically to the FENE
dumbbell. Therefore, the ALS model exhibits the same behavior as the FENE dumbb
in weak flows.

Since the ALS model reduces to the FENE dumbbell model for low Weissenber
numbers, it duplicates an important success of the FENE dumbbell, which is to captu
the universal stress-birefringence relaxation behavior of fully stretched Kramers chai
@Doyle et al. ~1998b!#. The new model represents a fully stretched chain as a single
segment whose extensibility parameterbsegis equal tobmax. If the chains are allowed to
relax in a quiescent solvent, the zero deformation rate rendersbseg* equal tobmax through

Eq. ~27!, and both terms on the right-hand side of Eq.~36! equal zero. Therefore,bseg* is
constant and equal tobmax during the entire relaxation process, ensuring that the new
model exhibits the universal stress-birefringence curve generated by the FENE dumbb
and Kramers chain.

VII. RHEOLOGICAL PREDICTIONS OF THE ALS MODEL

The mathematical formulation of the ALS model is now used to predict its rheologica
properties in simple shear and elongational flows. Results for steady and transient flo
are presented in this section.
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1076 GHOSH ET AL.
A. Steady state elongational properties

In steady uniaxial elongational flow, polymer molecules are fully unraveled into rod
like structures at Weissenberg numbers large enough to induce the coil-stretch transit
In the unraveled state, the adaptive length scale of the ALS model equals the maxim
extension of the molecule. Consequently,bseg is equal to its maximum valuebmax and
the ALS model predicts the same elongational viscosity as the FENE dumbbell. This
confirmed in Fig. 11, which illustrates the dependence of the elongational viscosity on
for a 100-link Kramers chain, the equivalent FENE dumbbell, and the equivalent form
the ALS model. The data for the Kramers chain are taken from Doyleet al. ~1997!.

All three models have the identical elongational viscosity for Wi@ 1. Each exhibits
the coil-stretch transition at Wi' 0.5. The only difference among the predictions is that
the Kramers chain has a higher elongational viscosity than the FENE dumbbell or t
ALS model at values of Wi below the coil-stretch transition. This disagreement amon
the models for Wi! 1 arises because, as shown by Doyleet al. ~1997!, the Kramers
chain and the FENE dumbbell cannot predict the same values for the following pairs
properties if the FENE dumbbell has a constant drag coefficient:~a! the steady-state
elongational viscosity at zero and infinite elongation rates and~b! the zero-shear-rate
viscosity and zero-shear-rate first normal stress coefficient. Doyleet al. ~1997! chose the
bead drag coefficient for the FENE dumbbell to be (2/3)Nz in order to match the zero-
shear-rate viscosity of the Kramers chain. With this choice, the FENE dumbbell predic
the zero-shear-rate first normal stress coefficient to be twice that of the Kramers cha
Additionally, the FENE dumbbell predicts the same elongational viscosity as the Krame
chain at low Wi. However, for Wi@ 1, the steady-state elongational viscosity is twice
the value given by the Kramers chain.

Our analysis is primarily concerned with comparing the models for representations
molecules far from equilibrium. Therefore, the drag coefficient of a bead for the FEN
dumbbell is related to the drag on the bead of a Kramers chain by assuming that
longest relaxation times of the Kramers chain and FENE dumbbell are identical a
given by Eq.~4!. This method of relating the drag coefficient results in matching the
elongational viscosities of the Kramers chain and FENE dumbbell in the limit W

FIG. 11. Dependence of elongational viscosity on Wi for a 100-rod Kramers chain and the equivalent forms
the FENE dumbbell and ALS model. The results of the FENE-P dumbbell and ALS-C models are also show
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→ `, as shown below. Liu~1989! notes that the polymer contribution to the zero-shear-
rate viscosity of a Kramers chain is given by

~h02hs! 5 1
36 npza2~N221!. ~40!

Rewriting z in terms ofld by using Eq.~4! gives the zero-shear-rate viscosity forN
@ 1 as

~h02hs! 5 1.956npkTld . ~41!

This result demonstrates that the Kramers chain predicts approximately twice the poly
mer contribution to the zero-shear-rate viscosity as the FENE dumbbell. Furthermore, Liu
also notes that the elongational viscosity in the limit of very high extension rates is

lim
«̇ → `

F h̄23hs

3~h02hs!
G 5 N. ~42!

By substituting forh02hs according to Eq.~41!, Eq. ~42! is rewritten as

lim
«̇ → `

F h̄23hs

3npkTld
G 5 1.956N, ~43!

which is very similar to the prediction for a FENE dumbbell given by Birdet al. ~1987!,
namely,

lim
«̇ → `

F h̄23hs

3npkTld
G 5 2S bmax13

3 D . 2N. ~44!

Despite the agreement between the FENE dumbbell and Kramers chain models fo
Wi @ 1, the choice of drag coefficient for the FENE dumbbell leads to different values of
elongational viscosity for Wi! 1. This discrepancy is understood by analyzing the ana-
lytical results for the elongational viscosity in the limit of low elongation rates. Forė
! 1, Hassager~1974! gives h̄( ė) as

h̄23hs

3~h02hs!
; 11

N2za2«̇

90kT
. ~45!

Rewriting z in terms ofld and substituting forh02hs according to Eq.~41! gives

h̄23hs

npkTld
; 5.87~110.782Wi! ~Wi → 0!. ~46!

In contrast, Eqs.~13.5-45! of Bird et al. ~1987! gives the elongational viscosity of the
FENE dumbbell at low elongation rates as

h̄23hs

npkTld
;

3bmax

bmax15 S11
bmax

bmax17
WiD ~Wi → 0!. ~47!

This analysis explains why the elongational viscosity of the Kramers chain is twice that
of the FENE dumbbell asė → 0 ~Fig. 11!.

B. Viscometric properties

Figures 12 and 13 show the dependence of the viscosity and first normal stress coe
ficient of a 100 link Kramers chain, the equivalent FENE dumbbell, and the equivalent
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form of the ALS model on Wi for steady shear flow. The results for the Kramers chain
were obtained from Doyleet al. ~1997!.

The Kramers chain has twice the zero-shear-rate viscosity of the other two model
The zero-shear-rate viscosity of the FENE dumbbell isnpkTld , whereash0 for the
Kramers chain is almost twice as large as shown by Eq.~41!. The zero-shear-rate first
normal stress coefficientC1,0 of the Kramers chain is about 1.5 times greater than that of
the FENE dumbbell. For the FENE dumbbell,C1,0 5 2npkTld

2. By using Eq.~4! to
replaceld in this expression, we find thatC1,0 5 40328npz2a4/kT for a FENE dumb-
bell that represents a 100-link Kramers chain. On the other hand, by approximatingC1,0
for the Kramers chain with the analytical result for a Fraenkel chain of infinitely stiff
springs@Eqs. ~16.5-13! of Bird et al. ~1987!#, the zero-shear-rate first normal stress co-

FIG. 12. Dependence of viscosity on Wi for a 100-rod Kramers chain and the equivalent forms of the FENE
dumbbell, FENE-P dumbbell, ALS, and ALS-C models. The parameterb0 in Eq. ~34! is chosen to be 120.

FIG. 13. Dependence of first normal stress coefficient on Wi for a 100-rod Kramers chain and the equivalen
forms of the FENE dumbbell, FENE-P dumbbell, ALS, and ALS-C models. The parameterb0 in Eq. ~34! is
chosen to be 120.
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efficient of a Kramers chain is found to be 61003npz2a4/kT. Hence, although the rela-
tion between the drag on a bead in a Kramers chain and a FENE dumbbell used in th
ALS model results in the sameh̄` for the two models, it results in a mismatch inh0 ,
C1,0, andh̄0 .

Compared with the FENE dumbbell model, the onset of shear thinning in viscosity for
the ALS model occurs at slightly larger Wi and the onset of shear thinning in first normal
stress coefficient at slightly lower Wi.

The evolution of the internal configurational variable affects the shear flow properties
of the new model in two important ways. First, as^bseg& decreases in the ALS model, the
contributions to the shear and normal stresses from a segment of the model are lower tha
if ^bseg& remained equal tobmax. This is because a segment with a reduced maximum
extensibility a segment becomes fully stretched more readily. Once fully stretched, the
segment rotates to align with the flow, thereby reducing its projected length perpendicula
to the shearing direction. The decreased projected distance reduces the shear stress
well known phenomenon that has a similar origin is that the onset of shear thinning in the
FENE dumbbell model occurs at lower Wi for smaller values ofb. Second, aŝbseg&
decreases,̂Mseg& increases, and this increases the stress contribution from the polymer
molecules. Thus, a decrease in^bseg& initiates two opposing effects. The relative magni-
tude of these effects determines the precise shear-flow response of the new model.

Figure 14 showŝbseg& as a function of Wi for steady shear flow. The quantity^bseg&
decreases rapidly from 300~or bmax! to 150 in the range of Wi of 1 to 100. For larger
values of Wi,^bseg& continues to decrease, though more slowly. The relationship of the
shear flow properties as a function Wi to the behavior of the internal configurational
variable can be understood in greater detail by examining the evolution of the distribution
function forbsegwith Wi. As shown by Fig. 15, the distribution function forbsegevolves
from a delta function centered onbmax at Wi , 1 ~not shown!, to a more dispersed
function centered on lower values ofbseg at larger Wi. At Wi5 5, the distribution
function has an asymmetric invertedV shape. For 5, Wi , 10, the height of the
invertedV decreases, the distribution function is shifted towards lower values ofbseg,
and grows a progressively longer tail that extends to high values ofbseg. The shift of the
distribution function is largely responsible for the reduction in^bseg& in this range of Wi.
The shift of the peak and the growth of the tail continue, and for larger Wi the distribution

FIG. 14. Variation of ^bseg& with Wi in steady shear flow for the ALS and ALS-C models.
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function forbsegconverges to one that has an M shape. This implies that a polymer chain
is in continuous tumbling-stretching motion at larger Wi, as predicted by Kramers chain
simulations@Liu ~1989!#. This prediction in steady shear flow has been experimentally
verified by using video fluorescence microscopy@Smith et al. ~1999!#.

C. Start-up of steady uniaxial elongational flow

The normal stress difference (tpzz2tpxx) is displayed in Fig. 16 as a function of
strain for a 40-link Kramers chain, the equivalent FENE dumbbell, and the equivalent
ALS model in startup of steady uniaxial elongational flow. All three models give identical

FIG. 15. Distribution functionp of bsegin steady shear flow for Wi5 5, 10, and 50. The vertical lines indicate
the average valueŝbseg& corresponding to the three distribution functions shown.

FIG. 16. Dependence of stress on strain for a 40-rod Kramers chain and the equivalent forms of the FENE
dumbbell, FENE-P dumbbell, ALS, and ALS-C models in startup of steady uniaxial extensional flow at Wi
5 11.4.
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predictions for the stress at large strains, as pointed out in Sec. VI, although steady state
is reached slightly more slowly for the ALS model. However, at low strains~up to e
5 2.5!, the FENE dumbbell greatly underpredicts the stress growth in comparison with

the Kramers chain. The ALS model corrects this low strain deficiency and is in good
agreement with the Kramers chain over the entire range of strains. As argued in Sec. III,
the use of the adaptive length scale captures the short length scale dynamics of the
Kramers chain that cannot be modeled by the FENE dumbbell.

D. Start-up of steady shear flow

The ability of the ALS model to predict transient rheological properties of a flow
containing vorticity is assessed by examining the startup of steady shear flow. Figure 17
shows the evolution of the polymer contribution to the transient shear stress growth
coefficient of a 40-link Kramers chain, the equivalent FENE dumbbell, and the equivalent
ALS model in startup of steady shear flow at Wi of 11.4. The viscosity of the Kramers
chain is twice that of the FENE dumbbell; but even accounting for this difference, the
rate of growth of the polymer contribution to the transient viscosity at low strains is much
greater for the Kramers chain than for the FENE dumbbell. The ALS model shows a rate
of stress growth at low strains that is much greater than that for the FENE dumbbell and
much closer to that of the Kramers chain. The overshoot in the polymer contribution to
the viscosity of the ALS model also occurs in the same range of strain (2, g [ ġt
, 20) as for the Kramers chain. In contrast, the overshoot in the polymer contribution

to the viscosity of the FENE dumbbell occurs at much larger strains (10, g , 28).
The similarity of the transient behavior between the new model and Kramers chain at low
strains shows that the ALS model captures effects due to submolecular length scales in
flows with vorticity. This is because the flow strengthėg is equal to 5.7 for a shear flow
at Wi 5 11.4 according to Eq.~31!. Substituting this value ofėg into Eq. ~29! yields a
value ofbseg* , bmax. Therefore, the ALS model behaves as though it possesses shorter
length scale modes than the equivalent FENE dumbbell, and this leads to a more rapid
growth of shear stress at low strains.

FIG. 17. Dependence of the polymer contribution to the shear stress growth coefficient on shear straing
[ ġt for a 40-rod Kramers chain and the equivalent forms of the FENE dumbbell, FENE-P dumbbell, ALS,

and ALS-C models in startup of steady shear flow at Wi5 11.4.
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E. Stress-conformation hysteresis

Stress-birefringence hysteresis is plotted in Fig. 18 for a 40-link Kramers chain, the
equivalent FENE dumbbell, and the equivalent ALS model. A uniaxial extensional flow
with Wi 5 11.4 was applied up toe 5 5 before the flow was stopped and the polymer
solution allowed to relax. The overall shape of the hysteresis loop is similar for all three
models, although the size of the loop is slightly smaller for the ALS model than for the
FENE dumbbell or the Kramers chain. This is because the ALS model slightly underpre
dicts the rate of stress growth at intermediate strains (3< e < 5) compared to the other
two models. Additionally, for a given birefringence, the ALS model predicts a larger
stress than the other two models.

As pointed out in Ghoshet al. ~2001!, an important factor for comparison with ex-
periments is the speed with which the loop is traversed. It can be seen in Fig. 18 that th
ALS model traverses its hysteresis loop at a rate very similar to the Kramers chain up t
e 5 4. In the same range of strains, the FENE dumbbell traverses its hysteresis loop at
much slower rate.

F. Planar elongational flow

Planar elongation flow (nx 5 2 ėx,ny 5 0,nz 5 1 ėz) deserves consideration, be-
cause it arises in many important, complex geometries such as near the forward and re
stagnation points of flow around a cylinder and in extrusion of films. Stress growth for a
40-link Kramers chain and equivalent FENE dumbbell and ALS models were compared
for inception of steady planar elongational flow at Wi5 11.4. As in uniaxial elongational
flow, the FENE dumbbell model predicts a much lower rate of stress growth than the
Kramers chain, whereas the ALS model gives much better agreement with the Kramer
chain.

VIII. AN APPROXIMATE FORM OF THE ALS MODEL

A closed form approximation of the ALS model is next developed in order to make use
of the improved description of extensional rheology feasible in the numerical simulation

FIG. 18. Stress-birefringence hysteresis plots for a 40-rod Kramers chain and the equivalent forms of the FENE
dumbbell, FENE-P dumbbell, ALS, and ALS-C models for startup of a uniaxial extensional flow at Wi
5 11.4 up toe 5 5 and subsequent relaxation.
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of complex flows. A closed form version of the ALS model that is consistent with kinetic
theory would ideally be developed as follows. First, the Fokker–Planck equation that is
equivalent to the governing equations of the ALS model@Eqs.~29!, ~36!, and~37!# would
be derived by using the Fokker–Planck/stochastic differential equation equivalence theo-
rem outlined in Öttinger ~1996!. The equivalence theorem states that a stochastic differ-
ential equation of the form

dXt 5 A~ t,Xt!dt1B~ t,Xt!•dWt ~48!

is equivalent to the Fokker–Planck equation

]

]t
c~x,t ! 5 2

]

]x
•@A~x,t !c~x,t !#1

1

2

]

]x

]

]x
:@D~x,t !c~x,t !#, ~49!

where

D~x,t ! 5 B~x,t !•BT~x,t !. ~50!

For the ALS model, the set of dependent variables denoted byXt consists of the three
components of the end-to-end vector and the scalar variablebseg. Next, an evolution
equation for the configuration tensor would be obtained by multiplying the Fokker–
Planck equation byQQ and integrating over the configuration space.

It is difficult to find the Fokker–Planck form of the ALS model by using this proce-
dure, becauseB(x,t) for the ALS model will contain the coefficient of the Wiener process
in Eq. ~37!, AKbseg/bmax, which is a complicated function of the variablebseg. Second
derivatives of this drag coefficient are taken in the second term on the right side of the
Fokker–Planck equation, Eq.~49!, and yield a series of yet more complicated terms. An
evolution equation for the configuration tensor that is derived from this Fokker–Planck
equation would be cumbersome as a result of these terms.

In this paper, we avoid the above procedure by proposing closed form versions of each
of the governing equations, such that the properties of the approximate and original forms
of the ALS model are similar. First, in the equation for the adaptive length scale@Eq.
~29!#, the square of the end-to-end distance of an individual molecule is replaced by the
trace of the configuration tensor,^QQ&, andbseg* is replaced bŷ bseg* & to give

Wi

K* S 12
tr^Q̂Q̂&

^bseg* &
S bmax

^bseg* &
D D 5 Z. ~51!

This approximation is in the same spirit as the Peterlin approximation for the FENE
dumbbell, because the distribution function of the end-to-end vectorQ and the distribu-
tion of bseg* are approximated by delta functions. Consequently, the behavior of each
individual molecule is not important. Instead, the behavior of the configuration tensor and
the average quantitŷbseg* & is computed. A similar Peterlin-type approximation may be
applied to the evolution equation for the adaptive length scale@Eq. ~36!#. In this case, the
distribution function forbsegis assumed to be a delta function, and instead of considering
the evolution ofbseg for individual molecules, the evolution of the ensemble-averaged
quantity^bseg& is computed. In addition, the components of the end-to-end vectorQ are
approximated by the square root of the diagonal elements of the configuration tensor
^QQ& in a Cartesian coordinate system. After incorporating these simplifications, the
evolution equation for the adaptive length scale in dimensionless form is
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d^bseg&

d t̂
5 2Un3S ^Q̂1Q̂1&1/2

^Q̂2Q̂2&1/2

^Q̂3Q̂3&1/2
D 1

~ tr^Q̂Q̂&!1/2UWieffS12
tr^Q̂Q̂&

^bseg* &

bmax

^bseg* &
D

3~^bseg&2^bseg* &!K* 1~bmax2^bseg&!K. ~52!

An alternative approximation of the end-to-end vectorQ is the eigenvector of the con-
figuration tensor̂QQ& that corresponds to the largest eigenvalue. We do not choose th
approach, because a vector composed of the diagonal elements of^QQ& in a Protean
coordinate system provides a better interpretation of the average orientation of the m
ecules in several situations. For example, once the system is perturbed from equilibri
in startup of steady uniaxial elongational flow, the principal eigenvector of^QQ& is
always directed along the principal stretching direction, regardless of the degree of o
entation of the molecules with the stretching direction. However, a vector composed
the diagonal elements of̂QQ& expressed in a Protean coordinate system, is initially
oriented at 45° to each of the coordinate axes, butsystematicallyrotates towards the
principal stretching direction as the molecules become oriented in that direction. Th
better describes the actual response of the molecules during startup of steady elongati
flow.

Finally, an evolution equation for the configuration tensor is derived from the stocha
tic differential equation for the motion of a segment@Eq. ~37!# by simplifying the two-
stage procedure outlined above. The first simplification is made during the transformat
of the stochastic differential equation into a Fokker-Planck equation. In this step, th
length of the segmentL is assumed constant, and therefore, the drag coefficientzsegand
the spring constantHseg are also constant. Following this approximation, the Fokker–
Planck equation for a segment of the ALS model is identical to that for the FEN
dumbbell except that in the term for the spring force, the maximum extension of th
molecule,Qod, is replaced byL. This Fokker–Planck equation is then multiplied byQQ
and integrated over the configuration space. Finally, the Peterlin approximation is appl
to obtain an expression for the evolution of^QQ& in dimensionless form

d^Q̂Q̂&

d t̂
5 Wi$k̂•^Q̂Q̂&1^Q̂Q̂&•k̂†%2

K^Q̂Q̂&

S 12
tr^Q̂Q̂&

^bseg&
S bmax

^bseg&
D D 1KS ^bseg&

bmax
Dd.

~53!

Although the length of the segment is assumed constant in transforming the stocha
differential equation for the motion of the segment,L is taken to be a variable. Hence, the
governing equations of the closed form of the ALS model, which consist of Eqs.~51!,
~52!, and ~53!, allow the adaptive length scale to evolve according to the kinemati
history in a similar fashion to the unapproximated version of the ALS model. We refer t
the closed form of the ALS model as the ALS-C model.

Expressions for the stress and the birefringence of the ALS-C model are obtained
applying the same approximations that are used to simplify the governing equations
the microstructure as outlined above. Therefore, Eq.~38! for the stress is simplified to
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t̂p 5
bmax

^bseg&
d1S bmax

^bseg&
D 2 ^Q̂Q̂&

S 12
tr^Q̂Q̂&

^bseg&
S bmax

^bseg&
D D ~54!

and Eq.~39! for birefringence becomes

Dn 5
5

3
CnpkTS bmax

^bseg&
D 2

^~Q̂zQ̂z2Q̂xQ̂x!&. ~55!

In the remainder of this section, the properties of the ALS-C model are compared with the
results of the unapproximated version. First, the uniaxial elongational viscosity of the
closed and unapproximated versions of the ALS model is presented in Fig. 11. For large
Wi, the elongational viscosity of the ALS-C model agrees with the 100-link Kramers
chain, equivalent FENE dumbbell, and equivalent ALS model. Below the coil-stretch
transition, the ALS-C model is also in good agreement with the ALS and FENE dumbbell
models.

The viscometric properties of the ALS-C model are compared in Figs. 12 and 13 with
a 100-link Kramers chain and the equivalent FENE dumbbell and ALS models. These
figures demonstrate that the ALS-C model predictions for these properties tend to those
of the FENE-P model for Wi@ 1. To understand how closure leads to this behavior, the
dependencies of̂bseg& on Wi for the ALS-C and ALS versions of the model are com-
pared in Fig. 14. Whereaŝbseg& for the ALS model decreases rapidly for 2, Wi
, 100 before leveling off to a value of^bseg& 5 150 at large Wi, for the ALS-C model

^bseg& decreases rapidly to a minimum for 2, Wi , 10 before increasing back to
bmax at large Wi. As a result, the values of the polymer contribution to the viscosity and
the first normal stress coefficient for the ALS-C model approach the predictions of the
FENE-P dumbbell model in the shear-thinning regime.

The predictions for the startup of steady uniaxial elongational flow of the ALS-C
model are compared in Fig. 16 with those of a 40-link Kramers chain, the equivalent
FENE dumbbell, and the equivalent ALS model. The ALS-C model behaves similarly to
the ALS model; the only difference is that the ALS-C model displays a knee as the stress
approaches steady state. The knee is characteristic of the Peterlin closure approximation
@van den Brule~1993!#; and it is prominent for the FENE-P dumbbell, which also is
shown in Fig. 16.

Figure 17 compares stress growth in the startup of steady shear flow for a 40-link
Kramers chain with the equivalent FENE dumbbell, ALS, and ALS-C models at a Weis-
senberg number of 11.4. The polymer contribution to the shear stress growth coefficient
hp

1 of the ALS-C model is very similar to those of the Kramers chain and the ALS model
up to a shear strain of 2. This demonstrates that closure does not affect the ability of the
ALS model to describe short length scale behavior in a flow with vorticity. As observed
for the Kramers chain and the ALS model, the ALS-C model exhibits overshoot between
shear strains of 2 and 20. However, the ALS-C model reaches a steady-state value
slightly greater than those of the FENE dumbbell and ALS models. The relation of the
viscometric properties of 40-link Kramers chains to the equivalent FENE dumbbell and
ALS models is similar to the relation of the viscometric properties of 100-link Kramers
chains to the equivalent FENE dumbbell and ALS models. Thus the viscosity for the
ALS-C model at Wi5 11.4 in Fig. 17 is consistent with the results presented in Fig. 12.
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The predictions for stress-conformation hysteresis are shown in Fig. 18 for the ALS-C
model. For a FENE dumbbell, hysteresis arises solely because of hysteresis in the distr
bution function. The distribution function assumes very different shapes during extension
and relaxation, which leads to multiple values of stress for a given birefringence@Lielens
et al. ~1999!#. When the Peterlin approximation is used with the FENE dumbbell equa-
tions, the distribution function is approximated as a delta function, leading to a one-to-
one relationship between stress and birefringence and the elimination of hysteresi
@Sizaireet al. ~1999!#. However, the ALS model exhibits configurational hysteresis as
well as hysteresis in the distribution function. The latter hysteresis arises for the same
reasons as in the FENE dumbbell. Configurational hysteresis arises because polyme
molecules with given end-to-end distances assume different internal configurations dur
ing extension and relaxation. The FENE dumbbell cannot capture configurational hyster
esis, because its internal configuration is completely described by the end-to-end vecto
In contrast, for a given end-to-end distance as shown in Fig. 19, the ALS model can
predict a range of possible adaptive length scales, specified bybseg, which is a crude
representation of internal configuration. Configurational hysteresis arises in the ALS
model, because the evolution of^bseg& is different during extension and relaxation. Ap-
plying a closure approximation to obtain the ALS-C model approximates the distribution
function for the end-to-end distance with a delta function and removes the hysteresis in
the distribution function. However, applying a closure approximation to the new model in
this way very nearly removes stress-birefringence hysteresis as shown in Fig. 18. Appar
ently configurational hysteresis in the closed form of the model is not sufficient to pro-
duce significant stress-birefringence. This may be due to the fact that the total birefrin-
gence of the molecule is a sum of segmental contribution as seen in Eqs.~39! and ~55!;
two different configurations~such as highly kinked or fully unraveled! could lead to
similar birefringence. If the mean square extension, which could be more sensitive to
configuration of the molecules, is used, however, the closed version of the new mode
displays hysteresis. This hysteretic behavior is strictly due to the different configurations
during stretching or relaxation, because the distributional hysteresis is removed due to th
closure approximation.

FIG. 19. Stress-confirmation hysteresis plots for a 40-rod Kramers chain and the equivalent forms of the FENE
dumbbell, ALS, and ALS-C models for inception of steady uniaxial extensional flow at Wi5 11.4 up toe
5 5 and subsequent relaxation. Stress is plotted against mean square extension.
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1087NEW MODEL FOR DILUTE POLYMER SOLUTIONS
Finally, the behavior of the ALS-C model in planar elongational flow at Wi5 11.4 is
compared with that of a 40-link Kramers chain and the equivalent FENE dumbbell an
ALS models. We find that the ALS-C model is in close agreement with the Kramers cha
and ALS model. All three models predict much faster stress growth up toe 5 2.5 than
given by the FENE dumbbell model.

IX. CONCLUSIONS

A new model for dilute polymer solutions has been developed that captures much
the physics of the Kramers chain in a wide range of flows through the addition of on
one additional configurational variable, anadaptive length scale bseg. This model is
tractable because of several important simplifications inspired by insights into importa
aspects of polymer dynamics found by studying the behavior of Kramers chains.
particular, the definition of an adaptive length scale allows the model to capture behav
across a range of length scales, while using only one configuration variableQ to describe
molecular extension and orientation.

The ALS model successfully replicates the behavior of Kramers chains in steady a
transient extensional flows. It also describes the stress-birefringence hysteresis of
Kramers chain in the startup of and relaxation following steady uniaxial elongation
flow. Other coarse-grained models such as the FENE dumbbell@Doyle et al. ~1998a,
1998b!; Ghoshet al. ~2001!# or the Verhoef model@Verhoefet al. ~1999!# do not describe
simultaneously both sets of features. Although not done within a rigorous kinetic theo
framework, a closed form of the ALS model—the ALS-C model—is also developed tha
is convenient for complex flow calculations; the steady and transient extensional prop
ties of the ALS model are nearly unchanged by the closure approximation. Moreover,
contrast to the FENE-P dumbbell model, stress-conformation hysteresis is preserved
the ALS-C model. This is because the ALS model can account for configurational hy
teresis through the variablebsegas well as capture hysteresis in the distribution function
@Keunings~1997!# of the kind present in the FENE dumbbell. Since the Peterlin closur
eliminates hysteresis in the distribution function, the FENE-P dumbbell shows no hy
teresis. However, the ALS-C model exhibits hysteresis due to the configurational hyst
esis remaining after the closure approximation is applied.

In steady shear flow, the ALS and ALS-C models shear thin in a fashion similar to th
Kramers chain and the FENE or FENE-P dumbbell models. In the startup of steady sh
flow, both the original and closed forms of the ALS model show rapid growth in the she
stress at low shear strains that are similar to the corresponding result for the Kram
chain. Hence the new model gives superior descriptions of rheological properties to
FENE and FENE-P dumbbells in a broader class of flows than simply uniaxial and plan
extensional flow. The success in predicting transient shear flow properties demonstra
that the ALS model captures short length scale behavior in flows with vorticity.

The ALS model may be a significant improvement for simulating complex flows. In it
closed form, the model provides a better physical description of the polymer than
FENE-P dumbbell, with little extra computational effort. Without closure, it is superior to
the FENE dumbbell for use in hybrid Brownian dynamics/continuum calculations. I
addition, some of the concepts introduced here, such as the adaptive length scale, ma
useful in attempts to develop rigorous mapping techniques between fine-grained a
coarse-grained models.
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