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ABSTRACT: The seminal ideas of de Gennes and Doi and Edwards have provided the theoretical
framework for much of the recent effort to model the rheological behavior of entangled polymer melts
and solutions. Recent theoretical work has incorporated a number of important additions to the basic
Doi—Edwards theory, including an explicit description of chain stretch and additional relaxation
mechanisms such as contour length fluctuations (CLF) and convective constraint release (CCR). However,
very little quantitative data has been published on the rheological behavior of entangled systems in strong
flows. Hence, a comprehensive examination of the theoretical developments has not been possible. The
experiments described in this paper use the filament stretching rheometer to obtain transient extensional
stress growth data and steady state uniaxial extensional viscosity data for a number of entangled, narrow
molecular weight distribution polystyrene solutions in the strain-rate regime characterized by a significant
degree of both chain alignment and stretch. These results are then compared with theoretical predictions
for a number of the current generation of reptation-based models, including mechanisms for chain
stretching, contour length fluctuations, and convective constraint release. These comparisons demonstrate
that when the model parameters are properly obtained from linear viscoelastic measurements, the recent
model due to Mead, Larson, and Doi (Macromolecules 1998, 31, 7895) provides quantitative predictions
for this class of flows for solutions spanning the complete range from very lightly to highly entangled
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solutions.

1. Introduction

Research into the behavior of polymeric fluids has
been pursued for over 50 years. The seminal work of
Doi and Edwards?® provided a conceptual framework
that has dominated theoretical research on entangled
solutions or melts for the last 20 years. The basic mean-
field model of entanglements as a tube of constraints
within which a test chain moves is widely accepted in
polymer physics and rheology. Indeed, the basic DE
model yields a number of important predictions, includ-
ing: a nonzero second normal stress difference in simple
shear flow, reasonable linear viscoelastic features up to
moderate frequencies, an approximately correct scaling
of the zero shear viscosity and longest relaxation time
with the cube of the molecular weight, and an accurate
description of stress relaxation following a step strain
deformation.

Despite these successes, however, the original DE
model incorporates a number of idealizations, and these
are responsible for some limitations and deficient
predictions. Several recent reviews are available.”~® The
most obvious limitation is the assumption that chain
retraction occurs instantaneously, so that the only effect
of chain stretch is the “snap-back” from an affine
deformation that is inherent in the universal strain
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tensor, Q. In reality, retraction occurs on time scales
up to the Rouse time, tr, and the lack of an explicit
accounting of chain stretch ensures that the original DE
model is only applicable to flows in which the strain rate
y is significantly below 7g~2.

For the range of strain rates below g1, the most well-
known failure of the basic DE model is a spurious
maximum in the shear stress at a shear rate of O(zq™%),
where 74 is the disengagement time that characterizes
the reptation process. This corresponds to the fact that
the viscosity in simple shear flow decreases faster than
771 in the range O(zq™!) < y <O(zr1). Another widely
known inaccuracy in the DE model predictions is the
fact that the longest relaxation time, as well as the zero
shear viscosity, are experimentally observed to increase
with the molecular weight to the 3.4-power rather than
the predicted rate of M3 (where M is the polymer
molecular weight).

The various limitations and inaccuracies of the basic
DE model have led to proposals for a number of
important additions to the physics. The need for and
benefits from some of these, such as a model for chain
stretch in “fast” flows (the addition of chain stretch to
the basic DE model produces what is now known as the
DEMG model),1013 as well as chain length fluctuations
(CLF)*15 and diffusive constraint release,16-18 are well-
established, and the main uncertainties are in the
details of the actual models. Others, such as convective
constraint release (CCR)>19-23 and models that attempt
to incorporate tube deformation?*=2¢ are less well-
established, and less is known about their influence on
the predictions of the model except that they tend to
eliminate or minimize the stress maximum in shear
flow.
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Table 1. Solution Characteristics

polymer zero shear
solution name mol wt concn (wt %) solvent viscosity (Pa-s) z (Me)sol Gﬂ (Pa)
3.9M, 4.9 wt % 3900 000 4.90 DOP 600 6.6 591 000 160.4
3.9M, 7.35 wt % 3900 000 7.35 DBP 533 14.8 263 000 541
3.9 M, 10.0 wt % 3900 000 10.0 DEP 4570 27.4 142 000 1360
3.9M, 15.0 wt % 3900 000 15.0 DEP 53 000 41.1 94 900 3060
10.2 M, 6.0 wt % 10 200 000 6.00 DBP 9560 25.9 394 000 294

One important limitation to continued theoretical
development is the relatively small amount of experi-
mental data for narrow molecular weight distribution
polymer solutions or melts outside the linear viscoelastic
regime. In addition to linear viscoelastic properties,
comparisons have been made with DE theory for: step
shear strain,?®3 shear stress and first normal stress
difference during startup of steady shear flow,31-34 and
rheo-optical measurements for a number of transient
shear flows including startup,3® relaxation, double-step
change in shear rate,®® and reversing step changes in
shear rate®” (which have been compared to various
versions of the full DEMG/CLF/CCR models in a recent
Ph.D. thesis®). In addition, some rheo-optical data is
available for two-dimensional extensional and mixed-
type flows in the two- and four-roll mill.3® A key
omission from this list is uniaxial extension, a void that
this paper seeks to fill using the filament stretching
rheometer developed by Sridhar and co-workers.4%41 The
experimental data that we obtain are compared with
predictions from several versions of the reptation-based
models.

A unique feature of purely extensional flows is that
the mean orientation angle of the polymer chain is fixed,
consequently, the stress (or birefringence in the case of
rheo-optical experiments) depends only on the degree
of segmental orientation and the amount of chain
stretch. Hence, comparisons with model predictions are
simplified relative to shear and mixed-type flow data
where the mean orientation also changes with flow
strength. Since the chain stretch mechanism in the
reptation-based models has not yet been adequately
tested, the uniaxial extensional flow data reported here
provides a unique opportunity. Not only are we able to
achieve strain rates at which the data exhibit demon-
strable chain stretching, but the fixed orientation angle
inherent in the purely extensional flow also permits an
unambiguous test of the basic assumptions underlying
the chain stretching portion of the various models.
Additionally, we may evaluate the importance of the
CLF and CCR modifications for this class of flows.

2. Experimental Details

2.1. Solution Preparation. The polymers used in this
study are 3.9 x 10° (3.9 M) and 10.2 x 108 (10.2 M) molecular
weight polystyrene procured from Polymer Laboratories, Inc.
The 3.9 M sample has a polydispersity index (My/M;) of 1.05,
while the 10.2 M sample is slightly more polydisperse (My/Mp,
=1.17). The polymer was dissolved in diethyl phthalate (DEP),
dibutyl phthalate (DBP), or dioctyl phthalate (DOP) solvents.
DEP and DBP are reported to be good solvents for polystyrene
under ambient conditions (21 °C), while DOP is known to be
a O solvent for polystyrene at 22 °C.#?

Solution preparation was greatly facilitated by using meth-
ylene chloride as a cosolvent. Subsequently, the methylene
chloride was readily evaporated over the course of several days.
Table 1 lists the compositions of the solutions, which were
chosen in order to span the range from lightly entangled (with
a minimum of about six entanglements) to highly entangled
(about 40 entanglements per chain). In addition, the 3.9 M

10.0 wt % solution and the 10.2 M 6.0 wt % solution were
designed to compare results with fixed number of entangle-
ments per chain fixed but different polymer molecular weight.

2.2. Experimental Procedure. The experiments were
performed with the filament-stretching rheometer developed
by Tirtaatmadja and Sridhar‘®4! in which a sample is held
between two rigid disks and subjected to controlled uniaxial
extension. This device has been used extensively for measure-
ment of both steady and transient tensile stresses for Boger
fluids undergoing uniaxial extensional flow, where the total
strain is large enough to ensure that the polymer chains reach
a steady-state configuration.***4 Comprehensive reviews of this
technique are available,*>4¢ and details of the present system
are described by Gupta et al.*

All the experiments were conducted at a constant strain rate
based on the midpoint diameter of the filament and in a
constant temperature room maintained at 21.0 4+ 0.5 °C. The
resolution of the transducer and the characteristics of the
fluids limited the range of strain (or extension) rates that could
be investigated. At low strain rates (below approximately 0.05
s71), the measured force was below the resolution of the
transducer. In addition, gravitational effects were significant
at low strain rates, causing the fluid to sag. Consequently,
some experiments were conducted in a plateau tank, where
the filament was immersed in a fluid of comparable density
(water in this case) and the filament was stretched horizon-
tally. At strain rates above approximately 5z, the filament
either ruptured before reaching steady state or the larger
tensile forces tended to cause the liquid to peel from the end
plate. Between these extrema, the filament was observed to
be uniform and generated reproducible steady-state data.

Shear and dynamic (i.e., linear viscoelastic) properties of
the solutions were measured in a Rheometrics Fluid spec-
trometer (RFS Il) or a Rheometrics Dynamic analyzer (RDA
11) for the more concentrated fluids. Measurements in the RFS
Il were performed with a 50 mm titanium cone-and-plate
fixture (4° angle), while a 25 mm steel cone was used in the
RDA I1. All measurements were taken at 21 °C. The linear
viscoelastic (dynamic) data were used to estimate the charac-
teristic relaxation times, as explained in section 4.

Prior to discussing experimental results, however, it is
desirable to briefly review the theoretical models mentioned
in the Introduction. These will form the basis for comparisons
between the experimental data and model predictions and also
guide the determination of relaxation times from the linear
viscoelastic data.

3. Theoretical Background

As noted in the Introduction, a number of modi-
fications of the original DE theory have been pro-
posed.110-21.24-28 These changes have arisen primarily
from recognition of the need for faster relaxation of the
flow-induced chain segment orientation distribution as
well as the explicit inclusion of a mechanism for chain
stretch.

In the present work, we compare measured exten-
sional stress for uniaxial extension with predictions
from various extensions of the so-called DEMG model.
The latter adds chain stretch to the basic DE model
in the form originally suggested by Marrucci and
Grizzuti.1%11 The various generalizations of the DEMG
model that we consider include the addition of CLF
(both in the form originally proposed by Doi and
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Kuzuu'*4” and in a form adapted from the more recent
proposal of Milner and McLeish'®) and CCR [both the
form proposed by Mead, Larson, and Doi (MLD)! and a
simplified form adapted from the original proposal of
Marrucci and co-workers'®=21]. None of these models
includes a mechanism for diffusive constraint release
(DCR), which is known to have a major impact on
polydisperse systems but has generally been believed
to be relatively unimportant for narrow molecular
weight distribution polymers like those studied here.
However, we shall see a number of discrepancies
between our experimental data and model predictions
that may reflect contributions from DCR.

A complete summary of the basic DEMG model in the
form used here has been published elsewhere.'? Also, a
number of the generalizations of this model to include
CLF and CCR, as well as numerical predictions of their
rheological (or rheo-optical) response in specified steady
or time-dependent shear flows, can be found in the Ph.D.
thesis of Oberhauser.38 In the interest of brevity, we will
list the governing equations for these various models
without much discussion.

3.1. The Basic DEMG Model. The basic DEMG
model used here includes the chain stretching mecha-
nism proposed by Marrucci and Grizzuttil®! but with
a finitely extensible spring of the form introduced by
Mead and Leal'? and Mead et al.?

The equations describing the relaxation of the chain
segment orientation distribution are identical to those
originally developed by Doi and Edwards.2=% The key
is the convection-diffusion equation for the tube survival
probability function, G(s,t,t'):

G(stt) oG G
P El'(s,t)% (1)

Here, s represents the curvilinear distance along the so-
called primitive chain measured from the midpoint of
the tube, and D is the one-dimensional diffusivity for
reptation:

D = Lo/tq ot )

Lo is the equilibrium contour length of the primitive
chain, and 74 is the characteristic relaxation time scale
known as the disengagement time. It is convenient to
express 74,0 in terms of the Rouse time for the chain via
the relation

740 = 3215 = 32°¢, (3)

where Z is the average number of entanglements per
chain and 7. is the Rouse time for a single entanglement
segment.

The convection term in eq 1 is calculated using a
preaveraged approximation of the velocity of points on
the tube relative to the midpoint at s = 0.2

V()= WD) [ [m(s',t)u(s',t)m— %|] ds' =
VV(b): [ S(s'.1) ds’ (4)

The velocity gradient tensor for the flow is denoted as
VV(t). The unit vector corresponding to the orientation
of a specific primitive chain segment is u(s,t). The order
parameter tensor S(s,t) is the dyadic product uu aver-
aged over the orientation distribution function.
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The order parameter tensor S(s,t) is calculated pre-
cisely as described by Doi and Edwards? from G and
the so-called universal (strain) tensor Q:

st = [, G(s,t,t’)(%) dt

®)
The universal “strain” tensor, Q(E(t,t")), describes the
nonaffine deformation of the freely jointed chain. Al-
though other definitions of the strain tensor have
recently been proposed,*® the models considered here
all use the original DE form without the inde-
pendent alignment approximation. The method by
which values of the universal tensor are calculated is
described by Mead, Yavich, and Leal (1995).22 The
boundary conditionsonGareG=1latt=t andG =0
ats = +L/2.

Chain stretch in the DEMG model is tracked via the
one-dimensional tube strain function, s(sp,t), which maps
the deformation of a tube segment from its undeformed
reference position sp. In the DEMG model, the chain
stretch is governed by a simple deterministic equation
for the function s:

as 825(1 dLl(X))
= (OO 3ZD8Sg S

(6)

which represents a balance between frictional stretch-
ing, caused by the relative velocity between points on
the primitive chain and the tube, and chain retraction
modeled in eq 6 via a finitely extensible entropic spring.
The latter is approximated using the inverse Langevin
function L=1(x), where

L(x) = coth(x) — (%) )

s
« = \/E (Sot) ®)
N ds,

In egs 7 and 8, x is the fractional extension of a chain
segment, N is the number of Kuhn steps in a polymer
chain, and the ratio vN/Z is thus the maximum chain
segment extension. The time constant embedded in eq
6 is the Rouse time zr. As noted by Doi and Edwards,?
the disengagement time 740, which appears in eq 1 via
the diffusivity D, is larger than the Rouse time by a
factor 3Z. The boundary conditions are (9s/9S0)sy=-+(Lo/2)
=1 and (8%/9sp?)sy=0 = O.

To compare directly with experimental data, we
ultimately wish to calculate the stress in terms of the
order parameter tensor S and the tube strain function
s. As in previous work,112 the stress tensor is assumed
to have the form

0
_15[Cn | oz | \ﬁ 35(5p.t)
77 4(3|_0) Lo L0047 s St dso (9)

where GY, is the plateau modulus. It may be noted that
the factor 15/4 appears so that, in the absence of chain
stretching (i.e., ds/dsg = 1), the asymptotic value of the
shear stress in shear flow is o,y ~ Gﬂ, for shear rates y
> 140 L. The modulus G, that appears naturally in the
original DE theory is (15/4)6& (mistakenly called the

and
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plateau modulus by Mead and Leal'?). However, this
ratio depends specifically on the definition of the strain
tensor used in calculating S, as it is 6 rather than 15/4
for the strain tensor of Marrucci et al.*8

3.2. CCR and CLF Models. (a) Contour Length
Fluctuations (CLF). In addition to reptation, contour
length fluctuations (CLF) is an extremely important
relaxation mechanism, particularly for lightly or mod-
erately entangled polymeric fluids like those studied
here. The early CLF studies of Doi and co-workers#47
suggest that relaxation due to contour length fluctua-
tions becomes exponentially less probable as one moves
away from the chain ends. However, Milner and McLeish
have recently proposed an alternative scaling,'®> which
improves predictions for the high frequency asymptote
of the dynamic loss modulus and gives good agreement
with the experimentally observed 3.4-power dependence
of the zero shear viscosity and reptation time scale with
the polymer molecular weight.

To incorporate the CLF mechanism into the basic
DEMG model, we follow the lead of Mead, Larson, and
Doi® and add a simple “exponential” relaxation term to
the governing equation for the tube survival probability
function:

aG(s,t,t') o°G oG G
=DZ _(y(s,1)) - 10
ot os’ ((s0) ds  1,(s,) (10)
Contour Length

Fluctuations

Two different forms for the CLF time scale function have
been utilized in the present work. The first follows the
original work of Doi and Kuzuu,*4” assuming an
activated relaxation process according to which the CLF
relaxation time scales as

no) = 4 ep[FU - 2507

The variable 5 is the dimensionless unperturbed tube
coordinate (S0 = So/Lo), where the primitive chain end
is at 5o = 1/, and the chain center is at 5o = 0. The
constant v that appears in eq 11 is set equal to 1.5. As
noted previously by Doi, the CLF mechanism relaxes
only a fraction of the chain. The entropic barrier to
fluctuations into the tube, which is the basis of eq 11,
produces a rapid increase in 7t pk(So) as we move away
from the ends of the chain; hence, 7 pk(So) eventually
becomes larger than the relaxation time for reptation.
According to Doi, this occurs at a position 5o equal to

Suok = 0.5(1 - %) (12)

where X is a constant that is known to be larger than
1.47. An important point is that the disengagement time
for relaxation by reptation is reduced when the CLF
mechanism is active, because the primitive chain can
disengage from the tube by moving a distance Lo(254,0k)
rather than L,. Consequently, the effective disengage-
ment time for a model that includes the Doi—Kuzuu
version of CLF becomes

TapK — (ng,DK)ZTd,O (13)

Here, 740 is the original DE disengagement time that
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does not account for length scale fluctuations of the
primitive chain.

The second theory for CLF that we consider is that
due to Milner and McLeish,*® according to which the
CLF relaxation process consists of two distinct regimes.
At long times, relaxation requires the entropically
unfavorable “deep” fluctuations that formed the basis
of the earlier theory of Doi (and others). However, at
early times, the relaxation process for chain segments
near the ends of the tube requires only “shallow” Rouse
fluctuations of the tube length, a process that is
considerably faster than the activated process associated
with deep fluctuations. A formula for the relaxation time
of these early modes was derived by Milner and
McLeish.1®> In the present work, this theory is imple-
mented in an approximate form (obtained from an
unpublished work of Likhtman), where

. Tearly(go)
)zt ]«
p[ (2 0) ] Tlate(go)
=9 31\
Tearly(so) — 1—6_7'[3[2(5 - So)] Te (15)
and

. 2515 1 _\2

T|ate(30) = ‘[e 7 1 eXp[3Z(§ - SO) ] (16)
8«/§(§ - §0)

As one moves from the end of the chain toward the
center, the time scale for relaxation via CLF, 75 mm(S0),
increases [rapidly once the entropic barrier to chain
retraction is activated and ¢ mm(So) ~ Tiate(So)], and there
is again an effective “cutoff” of the CLF mechanism by
reptation. The bare reptation time (without CLF) cor-
responding to a point 5p is known from the DE theory
to be

44,
——sin(zps,) a7)
p,odd Jtp3

T4,0(S0) =

Interior segments that have not relaxed by CLF on this
time scale 740(S0) will relax by reptation.

In the Milner—McLeish picture, the transition from
CLF to reptation occurs at a value of 5y that we shall
denote as 54 mm, and the characteristic time scale for the
reptation process is reduced to

Tamm = (ng,MM)ZTd,O (18)

The point of transition from CLF to reptation is deter-
mined by equating 7q4,0(So), reduced by (254mm)? according
to eq 18, to the CLF time scale 7t mm(Sq) from eq 14:

TmmSamm) = Tamm(Samm) =
, 414, _
(254 mm) —oin (7PSymm) (19)
p.0dd 7

It can be seen from eq 14 that z: mm(So0) depends strongly
on the number of entanglements per chain Z. Indeed,
as Z increases, 7t mm(So) increases rapidly, and the CLF
mechanism contributes less to the overall relaxation
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process (e.g., the transition point So = 5S4 mm Moves closer
to the end of the chain).

It should be noted that the implementation of the
Milner—McLeish formalism in the form of eqs 10 and
14—16 is an approximation to the exact mathematical
solution of the so-called “first passage” problem. In that
case, one calculates the time required for Rouse-like
motions to achieve for the first time a configuration in
which the length of the primitive chain within the tube
is any given fraction of its equilibrium length L. A more
accurate approximation to the solution of this problem,
expressed in terms of the relaxation modulus G(t) [or
equivalently the dynamic moduli G'(w) and G"(w)], has
recently been obtained in the linear viscoelastic limit.4°
Although we can calculate G(t) from the solution of eq
10 by integration over s, it is not clear how to specify
7 mm(S0) 1N eq 10 to replicate this more recent solution
and/or achieve a closer approximation to the exact
solution of the “first passage” problem. The form we
have adopted is known to be accurate for sufficiently
large Z and is actually quite reasonable even for
moderate values like those considered here. It is also
the most advanced form that has been published until
now for application in the nonlinear regime.

(b) Convective Constraint Release (CCR). Dif-
fusive constraint release (DCR) has been postulated
as an additional mechanism for relaxation of chain
segment orientation in polydisperse polymer solu-
tions or melts for some time.16-18:50-56 More recently,
lanniruberto and Marrucci proposed that constraint
release can also be driven by the relative “convective”
motion between chains in a flowing entangled polymer
solution or melt.’®=21 This process, which they called
convective constraint release (CCR), is envisioned by
Marrucci and co-workers as operating in parallel with
reptation and other diffusion based relaxation processes.
The result is a convective disengagement time, 74 ccr(S),
of the form

1
Td,cCR

Td : ﬂ[@(s o= (20)
which produces an effective diffusion rate in eq 10 by
changing the time scale in eq 2 from 740 t0 7qccr. It is
important to note that this change in the “effective”
disengagement time applies only to the diffusive time
scale for the tube survival probability function in eq 10.
In fact, it is assumed that the chain stretching mech-
anism is unaffected by this version of CCR, in contrast
to the model of Mead et al.! that will be discussed
momentarily.

The parameter  that appears in eq 20 is an empirical
numerical coefficient. lanniruberto and Marrucci showed
that § = 2.76 eliminates the spurious shear stress
maximum that exists in the DE model without any CCR
contribution. Our implementation of eq 20 differs in one
important way from the original model of lanniruberto
and Marrucci in that the Rouse time zx is set as a lower
bound for 74 ccr(S), such that

o] @0

Equation 21 simply imposes the physically obvious
constraint that the Rouse time scale for an unentangled
chain ultimately limits the chain relaxation time.

3.3. The Mead—Larson—Doi (MLD) Model. Fi-
nally, an alternative and more comprehensive imple-

Tqccr = max{rR,rd O/(1 + 74 Oﬂ[w(s t)D— v
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mentation of the principles of convective constraint
release and contour length fluctuations, recently pub-
lished by Mead, Larson, and Doi,! incorporates the CCR
mechanism directly into the basic DEMG formalism. In
this model (which we will refer to as MLD), eqs 1 and 6
become

oG (s, tt)

at (s t)>

?[%J[L?t)( ~(v(s1))), eJ ,_ &(6;2 (22)

Contour Length
Fluctuations

Convective Constmim Release

and
% (v(s t)>+3ZD2SO(;dex(x)]

I[L(t)« (5.))- )Sg}(s_so), o)

~
Convective Constraint Release

where D is again the original diffusivity given by eq 2.

The detailed origin of this model is discussed in the
original MLD paper.! Here, we recount a few basic
points in order to better understand the model com-
parisons that will be presented later in this paper. First,
in contrast to the simplified approach of lanniruberto
and Marrucci,’® elements of a convective constraint
release mechanism are present in both the tube strain
function and tube survival probability function equa-
tions. In addition to enhancing the rate of relaxation of
chain orientation, Mead et al. argue that the loss of
entanglements also facilitates the relaxation of chain
stretch. In fact, the transition from CCR relaxation of
orientation to stretch is controlled via a so-called “switch
function” g(ds/dsp). Mead et al. present two versions of
the switch function, one that is “self-consistent”

g(0s/dsy) = 1/(9s/9sy) (24)
and a second that is “ad hoc”
g(ds/ds,) = exp[—(ds/asy — 1)] (25)

All computations presented in this paper, unless oth-
erwise noted, are performed with the self-consistent
form of the switch function, which is more appropriate
at high strain rates and somewhat more accurate when
compared with the experimental data. When chain
stretching is significant, ds/dsp > 1 and g(ds/dsg) — 0 so
that CCR preferentially relaxes chain stretch and has
virtually no effect on the tube survival probability
function; conversely, if the chain is unstretched, then
9s/dsp ~ 1 and g(ds/dsp) — 1, and the decay of the tube
survival probability function is enhanced by CCR.

It should also be noted that the version of CCR given
by eqs 22 and 23 is linear in s and G and thus
contributes equally to constraint release over the entire
length of the chain. The Marrucci approach, on the other
hand, simply replaces the reptation time scale with an
effective reptation time given by eq 21. In this case, the
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strongest effect of CCR is felt at the ends of the chain,
similar to the basic reptation process. Although the
MLD implementation is ostensibly more comprehensive,
both the Marrucci and MLD approaches are essentially
ad hoc, and we compare both with the experimental data
obtained in this study. A more fundamental, “molecular”
approach to modeling CCR has recently been proposed
by Milner et al.,?® but it has not yet been extended to
the chain stretching flow regime that is a primary focus
of the present study.

Last, none of the models discussed here incorporate
diffusive constraint release (DCR). This mechanism has
generally been assumed to play an important role only
for polydisperse systems. However, very recent work by
Likhtman and McLeish*® has shown that certain fea-
tures of the linear viscoelastic spectrum are qualita-
tively changed by DCR even for a monodisperse polymer.
Nevertheless, our purpose is a quantitative comparison
with MLD and related models that do not contain DCR.
In any case, we believe that our general conclusions
concerning chain stretch and other “strong flow” fea-
tures will remain valid whether or not the model
employed contains DCR, a point to which we will return
when we compare model predictions with extensional
flow data.

4. Parameter Estimation

A critical issue in the comparison of the experimental
data for extensional stresses with predictions from the
various versions of the reptation model is the accurate
determination of model parameters. The parameters
relevant to the various theories are the plateau modulus
G2, the relaxation times 7z and 740, and the average
number of entanglements per chain Z. Of these param-
eters, three are independent since the number of
entanglements Z determines the ratio of the relaxation
times tr and 7q0. All of the above are functions of the
concentration and molecular weight of the polymer in
solution. In the present work, we estimate these pa-
rameters via a combination of established literature
correlations and linear viscoelastic data.

4.1 Estimation of Z and GJ. In polymer melts, the
constraining tube (or the primitive chain) is described
by a contour length L and a step length (or tube
diameter) a, while the polymer chain is characterized
by the number of Kuhn steps (or statistical segments)
N of length b. The requirement that the mean square
end-to-end length of the polymer chain within the tube
be identical to the contour length of the tube leads to
the relationship L = Nb?%a. The average number of
entanglements per chain is then Z = L/a = Nb?%a2.
Finally, the length scale a is related to the plateau
modulus? as a? = 4pRTNb2/5MGY, where p is the
polymer melt density, R is the universal gas constant,
T is the absolute temperature, and M is the polymer
molecular weight. By eliminating a2 from the definition
of Z, we can relate Z and GON by the relationship Z =
M/(4pRTISG%). The denominator is usually referred to
as M, the molecular weight between entanglements.57:58
For polystyrene melts, the plateau modulus is 2 x 10°
Pa, and the value of M., defined as

M, = 4pRT/5G}, (26)

is 13 300. An alternate, commonly employed definition
for Mg (where Mg = pRT/GR,) has also been suggested
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by Ferry.®® In our analysis, we use the definition of
Fetters et al.,>” which is consistent with the ratio 740/
TR = 3Z, where

Z = MIM, 27)

The existence of two definitions for M. (and hence Z)
has led to much confusion in the literature.

We now examine the scaling of Me with concentration
for polymer solutions. For sufficiently large polymer
concentrations, the effect of solvent quality becomes
negligible, and the scaling of the molecular weight
between entanglements with concentration is well es-
tablished as®

(Mo)sor ~ (¢lp) (28)

where ¢ is the polymer concentration in solution meas-
ured in the same units as p. For polystyrene, the
crossover to this concentrated regime occurs for c
greater than 0.1 g/cm3. Thus, for the concentrated
regime (c > 0.1 g/cm3), the polymer exhibits Rouse
scaling without hydrodynamic interaction:

(M,)sor = 13 300(c/p) (29)

which is consistent with the estimate of Mg = 13 300 in
the melt.

On the other hand, for highly entangled polymers in
the “semidilute” range (concentrations below approxi-
mately 0.1 g/cm? for polystyrene), the nature of the
solvent plays a more important role as evidenced by the
dependence of the scaling law between Mg and ¢ on the
excluded volume parameter v. According to the “blob”
scaling hypothesis,®® the molecular weight between
entanglements for polymer solutions may be written as

(Me)gor = K(clp)*" (30)

where K is a constant dependent upon the polymer
concentration. If we assume that the solvent is a ©
solvent, then v = 1/,, and the constant K for this regime
can be estimated by requiring the blob estimate of M.
with v = 1/, to predict the same (Mg)so at ¢ = 0.1 g/cm?
as eq 29. Hence, for the special case of polystyrene in a
O solvent (where ¢ < 0.1 g/cm?3), we obtain

(Me)soy = 1240(clp) (31)

In the present work, we estimate (Me)so for different
concentrations using either eq 29 or 31. The parameters
GY, and Z are then calculated from egs 26 and 27 with
(Mg)sor replacing Me. The resulting estimates of Z, (Me)sol,
and G& for each polymer solution are listed in Table 1.
It is evident from the development above that solvent
quality plays an important role in the estimation of
(Mg)sol, and hence Z, for solutions in the semidilute
regime. Of the solvents used in this work, DOP is known
to be a © solvent for polystyrene at room temperature.
The solvent quality of DEP and DBP is perhaps ques-
tionable. However, this uncertainty affects Z only for
solutions with ¢ < 0.1 g/cm? (i.e., the 3.9 M, 7.35 wt %
and 10.2 M, 6.0 wt % solutions).

It should be noted that the values listed for GY in
Table 1 are qualitatively consistent with estimates that
can be made from linear viscoelastic data for these
solutions via ad hoc procedures. The available linear
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Figure 1. Linear viscoelastic data for the 3.9 M 4.9 wt %
solution, where the fits are for the DE (—), DE/Milner—
McLeish CLF (= —), and DE/Doi—Kuzuu CLF (- - -) models.
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Figure 2. Linear viscoelastic data for the 3.9 M 7.35 wt %
solution, where the fits are for the DE (—), DE/Milner—
McLeish CLF (= —), and DE/Doi—Kuzuu CLF (- - -) models.

viscoelastic data are shown in Figures 1—5. Also shown
in these plots are various theoretical predictions that
we will discuss in the next section. Here, we seek only
to contrast our estimates of G with values obtained
from ad hoc procedures. For example, one can estimate
Gy, either from the local minimum value of G", which
is approximately 1/, of G,6162 or by implementing a
qualitative version of the procedure followed by Osaki
and co-workers.®! The latter method involves equating
Gﬂ, with the value of G' at the frequency corresponding
to the initial (high frequency) upturn in G". To the
extent that the available data is sufficient to allow these
procedures to be implemented, the resulting estimates
of G are within 10% of the values given in Table 1.
However, in view of the limited range of the available
linear viscoelastic data (Figures 1—5), we view these ad
hoc estimates as less reliable than those obtained by
the well-established literature correlations presented
above.

4.2. Estimates of Relaxation Times. The other
critical parameter necessary for meaningful compari-
sons between the experimental data and model predic-
tions is a relaxation time. In the present work, we
estimate relaxation times directly from the linear visco-
elastic data shown in Figures 1—5. As noted earlier, it
is sufficient to determine either g or 74 Since they are
related via the relationship 740 = 3Ztr. The longest
Rouse time for the chain, g, is related to the Rouse time
for a single segment between entanglement points [i.e.,
the classical Rouse time, 7, for a chain with molecular
weight (Me)sol in the same solvent] via the relationship
TR = Z%7e.
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Figure 3. (a) Linear viscoelastic data for the 3.9 M 10.0 wt
% solution, where the fits are for the DE (—), DE/Milner—
McLeish CLF (— —), and DE/Doi—Kuzuu CLF (- - -) models.
(b) Linear viscoelastic data for the 3.9 M 10.0 wt % solution,
where the fits are for the LV Milner—McLeish CLF model
without Rouse modes (—), the LV Milner—McLeish CLF model
with Rouse modes (— —), the LV Likhtman—McLeish CLF
model without DCR (- --), and the LV Likhtman—McLeish
CLF model with DCR (gray line).
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Figure 4. Linear viscoelastic data for the 3.9 M 15.0 wt %
solution, where the fits are for the DE (—), DE/Milner—
McLeish CLF (— —), and DE/Doi—Kuzuu CLF (- - -) models.

In estimating relaxation times, it is important to
remember that the longest measurable relaxation time
(often called the terminal time and denoted tierm) iS
reduced significantly from the “true” reptation time, 74,
by contributions from other relaxation mechanisms such
as chain length fluctuations and diffusive constraint
release that are active at low frequency [cf. eq 13 or 18].
Since reliable data often does not exist at sufficiently
high frequencies to obtain a direct estimate of the Rouse
time, estimates of relaxation times are commonly based
on the low-frequency linear viscoelastic data. However,
the best estimates of the time scales tr and 74 are then
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Figure 5. Linear viscoelastic data for the 10.2 M 6.0 wt %

solution, where the fits are for the DE (—), DE/Milner—
McLeish CLF (= —), and DE/Doi—Kuzuu CLF (- - -) models.

model dependent, resulting in a great deal of uncertainty
about the most reliable procedures for inferring time
scales. One factor is that the predicted relationship
between term and 740 depends on the model. Indeed, in
a recent paper, Osaki showed that apparently equally
reliable parameter estimates for 7z from a single set of
data can differ by at least a factor of 5!63

In the simple DE or DEMG models, 740 is equal to
Trerm. HOWever, if we consider a model that contains CLF
(but not DCR), the longest measurable relaxation time,
Term, 1S denoted as either 74 pk or 7qmm [if One uses either
eq 13 or 18, respectively] and may be significantly
smaller than 740. Since the transition points, sqpk and
Sa,mm, Will be somewhat different for the two CLF
models, a single measured value of the terminal time
will lead to two different (model dependent) estimates
for 74,0 (and thus 7). To distinguish between the various
estimates of these time constants we will adopt the
following notation: (74.0)oemc and (7r)pemc for the values
corresponding to the basic DEMG (or DE) model; (z4,0)mm
and (tr)mm for the values when the Milner—McLeish
model for CLF is used, and (zq4,0)pox and (zr)ok When the
Doi—Kuzuu version of CLF is used.

Finally, for a model that included DCR, the difference
between the measured value trm and the estimate for
74,0 (and thus tgr) will be larger due to another “smaller
than 1” factor on the right-hand side of eq 13 or eq 18.
The value estimated for 740 by fit to a model that
contains only reptation will be smaller than that
obtained using a model that contains CLF, and the
latter will in turn be smaller than that obtained using
a model that contains both CLF and DCR. When linear
viscoelastic data do not extend to high enough frequen-
cies to allow a direct estimate of 7g, it is clearly essential
that estimates of relaxation times be derived from the
same models that will be used for calculations in the
nonlinear regime. Consequently, we have elected to
determine relaxation times for our model simulations
directly from the linear viscoelastic data in Figures 1-5
using the same reptation models we will use when
comparing with extensional flow data. We believe that
this procedure provides more reliable values for g and
74,0 than can be obtained from any current literature
correlations.

Thus, the data in Figures 1-5 were fit at low
frequency using the linear viscoelastic limit of eq 10 to
obtain the relaxation modulus for the whole chain [by
integrating G(so,t,t") over the unperturbed so from 0 to
Lo/2 and multiplying by 2GY], and then calculating G'
and G" via the standard formulas:
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G' = [wG(t) sin wtdt and
G" = [w G(t) cos wt dt (32)

These predictions are then compared with the linear
viscoelastic data and adjustments are made in the
estimated time constants until a best fit is achieved for
each case [i.e., with the last term in eq 10 neglected or
approximated by eq 11 or eq 14 depending on the model
chosen]. The resulting predictions of the linear visco-
elastic data are shown for the DE/DEMG model with
no contour length fluctuations, and for the same model
now including either the Milner—McLeish or the Doi—
Kuzuu version of CLF. It can be seen that the qualita-
tive correspondence between the DEMG/CLF models
and the data is diminished beyond the crossing point
for G' and G". We shall see shortly that this is primarily
because, in using eq 10 to calculate the relaxation
modulus, we neglect diffusive constraint release (DCR)*°
and also neglect the higher order Rouse modes, which
turn out to play a significant role at frequencies above
the crossover frequency. The parameters Z and Gﬂ,
were held fixed at the values quoted in Table 1.

One obvious question is what criteria to use in
establishing a “best fit” for data over a limited range of
frequencies. In the present study, we emphasize the
importance of a good fit for G, which makes sense in
view of the more limited accuracy of the G' data at low
frequencies where measurement limitations are rel-
evant. It may be noted that a reasonably good first
estimate of the terminal time can be obtained from the
independently measured value of the zero shear viscos-
ity (Table 1), via the approximate relationship:

2
(VR4

Mo~ GNETterm (33)

With 5o measured, and recalling that tierm is interpreted
as either tqmm or tgpk for the present model, the
approximations in egs 12 and 13 or 18 and 19 may then
be used to provide a first estimate of zq.

The resulting estimates of the relaxation times (zr)mwm,
(Td,O)MM, (TR)DK, and (Td,O)DK are given in Table 2. Also
shown is the estimate of 7,rm and the corresponding
estimates of (7r)pemc and (z4,0)pemc for the DEMG model
without any form of CLF. As explained above, twerm =
(ta,0)pemc for this case. We note that the estimated
relaxation times for the Milner—McLeish version of CLF
are actually closer to the DE/DEMG values than the
predictions from the Doi—Kuzuu model. This result may
seem surprising, as the Milner—McLeish model was
developed to allow for faster relaxation near the chain
ends where the entropic penalty for retraction does not
yet play a significant role. A comparison of the fluctua-
tion time scales as a function of position along the chain
is shown in Figure 6, based on the predicted time
constants for the 3.9 M, 10 wt % solution. Though the
short-time process is clearly much faster for Milner—
McLeish, it is restricted to the region very near the end
of the chain. Elsewhere, the roles are reversed, account-
ing for the larger estimates of the “bare” reptation time
scale for the Doi—Kuzuu model.

4.3. A Comparison with Time Scale Estimates
Using the Dedicated Linear Viscoelastic Models.
An obvious question is how the estimated time scales
obtained using our full model compare with estimates
obtained using models that are derived specifically for
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Table 2. Relaxation Times

solution Term  (Tdo)oems  (TR)oemc  (tao)ok  (TR)ok  (Taomm  (Rwm (Tao)oe  (Taodmm  (Tao)m  (Tdo)Ser
name (s) (s) (s) (s) (s) (s) (s) (s) (s) (s)
3.9M,4.9wt% 4.56 4.56 0.23 43.3 19.1 0.97 4.31 11.1 39.4 113
3.9 M, 7.35wt % 1.20 1.20 0.027 5.56 0.125 3.22 0.072 1.26 2.94 6.96 19.1
3.9 M, 10.0 wt % 4.10 4.10 0.05 12.2 0.148 8.43 0.103 4.07 8.61 14.1 36.9
3.9,M, 15.0 wt % 21.1 21.1 0.17 50.5 37.9 0.31 21.2 39.8 58.4 151.
10.2 M, 6.0 wt % 39.6 39.6 0.51 123. 83.4 1.08 39.1 83.7 201 467.2
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Figure 6. Fluctuation time scales as a function of position
along the chain based on the predicted time scales for the 3.9
M 10.0 wt % solution for the DE/Milner—McLeish CLF (—)
and DE/Doi—Kuzuu CLF (- - -) models.

the linear viscoelastic limit, such as the model of Milner
and McLeish?® or the more recent work of Likhtman and
McLeish.4®

There is not an obvious analytic way to reduce the
full, coupled model used here [i.e., eqs 10 and 14—16]
to the form of these linear viscoelastic models. On the
other hand, Likhtman and McLeish have generously
provided early access to a version of their code that
incorporates an approximate version of the Milner—
McLeish model of CLF [eqs 14—16] and Rouse modes
(but excludes DCR). We have used this code to fit the
linear viscoelastic data with the same values of GY, and
Z. Clearly, since it incorporates eqs 14—16, we should
expect it to yield estimates for the relaxation times that
are similar to those obtained using the full model as
described above. The results are shown in Table 2 for
both the DE model (without CLF), labeled as (z40)5g,
and for the same model with Milner—McLeish CLF,
denoted as (z4,0)p1y- The main point here is that the two
sets of results, with the exception of the Milner—
McLeish estimate for the 4.9% solution, are in close
agreement as expected.

Likhtman and McLeish have also used their more
recent code*® (using a more exact version of Milner—
McLeish CLF, both with and without DCR) to provide
us with time scale estimates from our linear viscoelastic
data, for the same fixed values of GON and Z. These
linear viscoelastic fits have been carried out using a
least squares criterion with equal weighting of the error
in a log—log plot over the measured range of w. The
resulting estimates for the relaxation times are shown
in Table 2. The estimate including Milner—McLeish
CLF but without DCR is denoted as (zq,0)muy, While the
result including DCR is denoted as (Td,O)I[_)’\éIR. With the
change to a more exact version of Milner—McLeish
theory and the change in weighting of the errors, the
estimate of 740 is larger than the value we obtained
using the approximate Milner—McLeish theory [(z40)mm]-
Ironically, it is actually closer to the value we obtained
using the Doi—Kuzuu version of CLF [(zq40)ok]- When

DCR is added, the estimates of 74 increase by a factor
of 2—3 for reasons discussed earlier. Since the nonlinear
models [egs 10, 14—16] do not include DCR, we provide
these results primarily for future reference.

Finally, returning to Figures 1—5, we see that the
theoretical predictions using the models from eq 10 with
their appropriate estimates of relaxation time scales
agree reasonably well with experimental data in the
fitted region (i.e., in the region prior to the crossing point
for G' and G"), but differ beyond the crossing point. The
most obvious exceptions are the 3.9 M, 4.9 wt % solution,
where there is evidently some problem with the G" data
at the lowest frequencies, and the 10.2 M, 6.0 wt %
solution, which is almost certainly affected by the higher
polydispersity of the polymer coupled with the absence
of diffusive constraint release in the model.

As noted above, the major differences between the
predictions from the nonlinear models and the experi-
mental data are in the qualitative shape of the curves
for the regime beyond the crossing point of G' and G''.
However, this is not a reflection of the time scale
estimates, but due to the fact that the nonlinear model
given by egs 10 and 14—16 neglects the contribu-
tions made by Rouse modes and the DCR mechanism,
which are important in this region. To illustrate this
point, we have included a plot in Figure 3b of the
predicted results for the 3.9 M, 10.0 wt % solution for
several different versions of the specialized linear visco-
elastic codes. Two predictions come from the approxi-
mate Milner—McLeish code described above, one with
Milner—McLeish CLF and no Rouse modes and the
other with Milner—McLeish CLF including the Rouse
modes. When we include Milner—McLeish CLF and no
Rouse modes, we obtain results that are similar to those
obtained previously with our nonlinear model also
including Milner—McLeish CLF. We have already noted
that the time constants for these two cases are nearly
identical [i.e., (ta0)mm and (za.0)mml. However, when we
include Rouse modes using exactly the same time
constant, (zao)pw, the contribution is significant even
at these relatively low frequencies, and the prediction
for G’ looks much better. The second pair of results
shown in Figure 3b are predictions from the newer
model of Likhtman and McLeish, including CLF and
Rouse modes in both cases but excluding DCR in one
case and including it in the other. We see that DCR adds
a significant upward shift in G' beyond the crossing
point. While the result including DCR does not look
much different than that obtained using the Milner—
McLeish model without DCR, we should remember that
the time constant estimates and the treatment of CLF
are different in the two cases.

We emphasize that the nonlinear models used in the
next section for comparisons with the nonlinear exten-
sional flow data contain an approximation of the Rouse
modes in the form of the chain stretching model but do
not contain DCR. Whether the neglect of DCR and the
approximation of the Rouse behavior is a significant
problem in the nonlinear flow regime remains to be seen.
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We see, however, that the estimated time constants
from our model are essentially equal to those from a
dedicated linear viscoelastic model that treats Milner—
McLeish CLF in the same approximate way, and that
a model that includes Rouse modes and/or DCR gives
reasonable predictions of the linear viscoelastic data
over the whole measured range.

We note that even when all of the mechanisms are
included in the linear viscoelastic flow models, fits to
the linear viscoelastic data are still imperfect. The
magnitude of the peak and/or the depth of the predicted
minimum following the crossover of G' and G" are both
larger in the predictions than in the data. In contrast,
linear viscoelastic data for polymer melts with a similar
degree of chain entanglement show a much more
pronounced peak in G" and a slope after the peak that
varies between —/, and —%/,° that is similar to the
model predictions. One possible contributor to the
flattening of the plateau region in the solution data is
the polydispersity of the polymer samples. Indeed, this
point is clear if we compare the results in Figure 5 with
those from Figure 3. On the other hand, the data
presented here for the low polydispersity 3.9 M molec-
ular weight polystyrene solutions is typical of the vast
majority of solution data in the literature in the sense
that, for frequencies above the crossover frequency, G"
exhibits a very shallow minimum at best, even for
nearly monodisperse polymers. These factors suggest
that there may be a more fundamental and subtle
difference between entangled solutions and melts as-
sociated with the fact that the molecular weight between
entanglements is much larger when the polymer chains
are immersed in a solvent. Such distinctions have not
yet been accounted for theoretically. We believe that this
is an important issue for future research, and we are
aware of ongoing work by McLeish that was motivated
by the results in Figures 1-5 and their similarity to
other “monodisperse” solution data.

5. Steady State Results for Uniaxial Extensional
Flow

Now that we have determined model parameters, we
are in a position to make comparisons with experimen-
tal data in the nonlinear regime. We begin with steady
state results for uniaxial extensional flow. Our presen-
tation will be split into three parts. First, in section 5.1,
we present and discuss the data. In section 5.2, we then
present and discuss model predictions without com-
menting specifically on the comparison with data. We
do this because it is ultimately helpful to first under-
stand the differences between the predictions of the
various models. Finally, in section 5.3, we discuss the
comparisons between the data and the model predic-
tions.

5.1. Experimental Data for Steady Flow. The
principal experimental results from this study are shown
in Figures 7 and 9—12, where we plot the extensional
viscosity, 7e, as a function of the uniaxial rate of strain
é(= av,/az) for steady uniaxial extensional flow. Also
shown in these figures are predictions from various
models. In this section, we focus exclusively on the
experimental data.

The extensional viscosity is the ratio of the measured
normal stress difference, g,; — oy, to é€. We use the actual
strain rates rather than a dimensionless strain rate
such as the Weissenberg number based on the Rouse
time (e.g., Wir = é1r), because we ultimately want to
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Figure 7. (a) Extensional viscosity as a function of strain rate
for the 3.9 M 10.0 wt % solution: (O) experimental data, (—)
basic DEMG model, (— —) MLD model, (- - -) DEMG/Milner—
McLeish CLF model, and (gray line) MLD/Milner—McLeish
CLF model. (b) Extensional viscosity as a function of strain
rate for the 3.9 M 10.0 wt % solution: (O) experimental data,
(—) MLD/Milner—McLeish CLF with ad hoc switch function,
(= =) MLD/Milner—McLeish CLF model with self-consistent
switch function, (- - -) MLD/Doi—Kuzuu CLF model with self-
consistent switch function, (gray line) Marrucci CCR (3 = 3.6)/
Milner—McLeish CLF model, and (gray hyphens) Marrucci
CCR (8 = 1.0)/Milner—McLeish CLF model.
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Figure 8. Dimensionless normal stress difference (0zz — o)

vs the Weissenberg number based on the Rouse times (Wir =
¢tg) for the same model predictions as in Figure 7a.

make comparisons with both DEMG models and models
that contain CLF. Since the appropriate estimate for
7r depends on the choice of models, the experimental
data would shift for each model if plotted vs Wi rather
than ¢. We note that the practice of determining
relaxation time scales independently for each version
of the model based on the low frequency viscoelastic
data (or alternatively, 7o) requires the model predictions
for the extensional viscosity to yield the expected
Trouton ratio of 370 in the limit ¢ — 0.
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Figure 9. Extensional viscosity as a function of the strain
rate for the 3.9 M 4.9 wt % solution: (O) experimental data,
(—) basic DEMG model, (— —) MLD/Milner—McLeish CLF
model, and (- - -) MLD/Doi—Kuzuu CLF model.
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Figure 10. Extensional viscosity as a function of the strain
rate for the 3.9 M 7.35 wt % solution: (O) experimental data,
(—) basic DEMG model, (— —) MLD/Milner—McLeish CLF
model, and (- - -) MLD/Doi—Kuzuu CLF model.
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Figure 11. Extensional viscosity as a function of the strain
rate for the 3.9 M 15.0 wt % solution: (O) experimental data,
(—) basic DEMG model, (— —) MLD/Milner—McLeish CLF
model, and (- - -) MLD/Doi—Kuzuu CLF model.

Examining the data in Figures 7 and 9—12, we see
that as the strain rate is increased, the extensional
viscosity at first decreases. Qualitatively, this behavior
is similar to that seen in earlier rheo-optical experi-
ments.377396465 |n the present data, however, when the
strain rate is increased to a value on the order of the
inverse Rouse time [i.e., Wigr ~ O(1)], there is a relatively
sharp upturn in the extensional viscosity reflecting the
onset of chain stretching. While chain stretching is
expected, it has not previously been experimentally
demonstrated with this degree of clarity. In the earlier
rheo-optical studies, the flow cell was either a two- or
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Figure 12. Extensional viscosity as a function of the strain
rate for the 10.2 M 6.0 wt % solution: (O) experimental data,
(—) basic DEMG model, (— —) MLD/Milner—McLeish CLF
model, and (- - -) MLD/Doi—Kuzuu CLF model.

four-roll mill, and the shear-thinning nature of the flow
in the immediate vicinity of the rollers made it difficult
to achieve the high strain rates at the central stagnation
point necessary to demonstrate the upturn in the
extensional stress so convincingly.

The data for the lowest concentration solutions (3.9
M, 4.9 wt % and 3.9 M, 7.35 wt %), shown in Figures 9
and 10, exhibit very little strain rate thinning prior to
the upturn in viscosity. It is known that the extensional
viscosity for dilute solutions of unentangled, linear,
flexible polymer increases monotonically from the limit-
ing Trouton value of 37y with increasing strain rate for
¢tr~! = O(1). Thinning at lower values of the Weissen-
berg number is characteristic of polymeric liquids with
a significant number of entanglements per chain. The
presence of a large number of entanglements leads to a
separation of the relaxation time scale for orientation
relative to that for chain stretch, which increases with
Z as 140/tr = 3Z as we have already discussed. For 74071
< ¢ < 1r 1, as ¢is increased, the polymer chains become
increasingly aligned with the principal axis of strain,
but they do not stretch, and the increase of 0,; — 0y IS
slower than the increase in strain rate, causing the
extensional viscosity to decrease. Once chain stretching
begins for ézg™1 = O(1), the extensional viscosity in-
creases. As the number of entanglements per chain
decreases, the strain rates corresponding to the onset
of chain stretch and chain alignment become closer until
they are equal in the dilute limit. It may at first seem
surprising that the 3.9 M, 7.35 wt % solution data does
not show more strain rate thinning, as it has ap-
proximately 15 entanglements per chain and hence a
large ratio of 740/tr. However, it is really the ratio of
the longest effective relaxation time for chain alignment
and the Rouse time, 7rm/Tr, that controls the separation
in ¢ between the onset of chain orientation and stretch,
and the combined effects of CLF and DCR reduce this
ratio to a rather small value for the 7.35 wt % solution.

Qualitatively, the degree of strain rate thinning
increases and the amount of chain stretching decreases
as the solutions become more entangled (holding the
molecular weight constant), and the same is true if the
number of entanglements per chain is held fixed and
the molecular weight of the polymer is increased. In
either case, the molecular weight between entangle-
ments is the key parameter. From a scaling point of
view, the maximum extension the polymer chain can

undergo is equal to ~N/Z, where N is the number of
Kuhn steps and Z is the number of entanglements per
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chain.’213 As the number of entanglements increases
for fixed molecular weight or as the molecular weight
is decreased for a fixed number of entanglements per
chain, the molecular weight between entanglements
decreases; consequently, the chain appears less exten-
sible and the tendency of the chain to experience
segmental stretching is diminished.

5.2. Steady Flow Predictions. We now consider the
model predictions for this same steady flow, which are
also plotted in Figures 7—12. In this section, we first
present and compare the theoretical predictions for the
various models. Comparison with data is then reserved
until section 5.3.

The model predictions in Figures 7—12 were obtained
using the values of 740, 7r, Z, and GON from Tables 1
and 2 for each particular model. Specifically, for the
DEMG model and the MLD model without CLF we use
the estimates (t40)pemc and (tr)oems, While for the
models with CLF we use either (z40)ox and (7r)pok Or
(za,0)mm and (Tr)mm.

The most complete set of results is shown in Figures
7 and 8 for the 3.9 M, 10.0 wt % solution. Since the other
solutions show similar behavior, we only show a reduced
set of model calculations for those cases.

Let us begin with Figure 7a. The solid black line
represents the basic DEMG predictions without either
CCR or CLF. The long-dashed line below it is the result
obtained using the Mead et al. (MLD) model for convec-
tive constraint release (CCR) but without including any
mechanism for contour length fluctuations (CLF). In
these cases, since CCR does not effect the linear
viscoelastic predictions of the model, the appropriate
values of the relaxation times are the DEMG values.
Hence, the only differences in the predicted behavior
are a direct consequence of the addition of the CCR
mechanism to the basic DEMG model. At low strain
rates where CCR is insignificant, the two results are
coincident, and both show that the onset of strain rate
thinning occurs at a strain rate that is approximately
0.5 (t4,0)pEMG. HOwever, the inclusion of CCR causes the
extensional viscosity to decrease more rapidly with
increasing strain rate. In addition, the upturn in 7,
signifying the onset of chain stretch, is predicted to occur
at a larger value of ¢.

To understand these results, we might first ask why
the extensional viscosity initially decreases with strain
rate for the DEMG model. As the strain rate is increased
above O(zq71), the polymer chains begin to align with
the principal strain rate axis, and thus the stress
difference o0,; — oy increases. However, the degree of
alignment increases more slowly than the strain rate
and eventually saturates, causing the stress to increase
more slowly than the strain rate and the extensional
viscosity to decrease. When CCR is included as an
additional relaxation mechanism, the relaxation time
for chain alignment decreases with increasing strain
rate; hence, the degree of alignment is reduced, and the
extensional viscosity decreases more rapidly than it does
without CCR. This physical description should be
contrasted with the effect of CCR on the shear stress
(or shear viscosity) for simple shear flow. In that case,
faster relaxation of segmental orientation again de-
creases the degree of alignment, but that leads to an
increase in the shear stress at any given shear rate and
a decrease in the rate of shear thinning. Finally, in the
MLD model, there is a gradual transition from CCR
causing faster relaxation of alignment to faster relax-
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ation of chain stretch when Wir = O(1). As a result, the
onset of chain stretch is delayed to larger values of the
strain rate, and the extensional viscosity curve is shifted
to the right relative to the basic DEMG prediction.

The next mechanism to consider is CLF, and for this
purpose it is useful to compare the prediction “DEMG/
Milner—McLeish CLF” in Figure 7a with the basic
DEMG prediction. In the former, we include CLF but
exclude any CCR contributions. When contour length
fluctuations are incorporated into the DEMG model,
they add another mechanism for the relaxation of chain
alignment. One would again expect the extensional
viscosity to shift to lower values when compared with
the basic DEMG model. However, in Figure 7a, we see
that the DEMG/Milner—McLeish CLF curve is actually
shifted above the DEMG prediction rather than below
it as “expected.” To understand this result, we must
remember that the estimated relaxation times (74,0)mm
and (tr)mm are significantly larger than the estimated
values for the DEMG model, (z4,0)pemc and (tr)oemc. AS
a result, the predictions at any given strain rate shift
to the left relative to those for the model without CLF.
When CCR is added back into the model (“MLD/Milner—
McLeish CLF"), the predicted values are again shifted
to lower 7e, and the onset of chain stretch is delayed
for exactly the same reason discussed in the preceding
paragraph. It should be noted that the DEMG and MLD
models with Milner—McLeish CLF use the same relax-
ation times from Table 2, (zg0)mm and (zr)mm. It is
somewhat ironic that the full MLD/Milner—McLeish
CLF model predictions are actually quite close to the
predictions for the simple DEMG model without either
CLF or CCR.

Finally, in Figure 7b, we show several additional
results, including MLD/Milner—McLeish CLF but with
the “ad hoc” form of the switch function g [see eq 22],
the MLD model with the Doi—Kuzuu version of CLF,
and the DEMG model with a combination of Milner—
McLeish CLF and the Marrucci version of CCR. We will
discuss the latter momentarily. Here, we note that there
is relatively little difference between the exact and ad
hoc switch functions, at least for this class of flows.
Hence, in all of the predictions that we have made using
the MLD version of CCR [including those in Figure 7a],
we use the “self-consistent” rather than the “ad hoc”
switch function. A more important comparison is that
between the predictions of the “MLD/Doi—Kuzuu CLF”
model [using the time constants (74,0)pk and (7r)ok] and
the “MLD/Milner—McLeish CLF” model [the same
result as in Figure 7a with time constants (zq4,0)mm and
(tr)mm]. Although these models are equivalent in terms
of fitting the linear viscoelastic data in the fitted region,
there is a nontrivial difference between the predictions
in nonlinear extensional flow, even though they differ
only in the CLF part of the model.

We have noted previously that it is impractical to plot
the data vs a dimensionless strain rate (Wigr = ¢tR),
because the estimate of 7g is model dependent, and we
would need to replot the data for each model compari-
son. However, we can reasonably plot the various model
predictions versus Wigr. Additionally, we can also plot
the dimensionless stress (0, — Orr)/G% rather than the
extensional viscosity. These changes eliminate the ef-
fects of shifts in ¢ due to changes in g and 740, and thus
allow a direct examination of the contributions of the
various physical mechanisms. Hence, we replot the
various results from Figure 7a in Figure 8 as (0,; — or)/
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Gy, vs Wig instead of 7 vs ¢, so that the role of the
various mechanisms is clearer. Beginning with the
results for DEMG, we see that as we add either CLF or
CCR alone, we shift the extensional stress to lower
values. For CLF, the shift appears for small values of
Wig, while for CCR it occurs for large values of Wig.
When both mechanisms are included (MLD/Milner—
McLeish CLF), the net effect is additive, shifting the
stress to lower values for all Wig.

Finally, as noted above, Figure 7b shows two sets of
predictions for the simpler Marrucci CCR model. One
of these uses the parameter value of g = 3.6 that was
shown in an earlier study to provide the best fit for
shear flow data3® when combined with the Milner—
McLeish version of CLF. The second Marrucci CCR
prediction uses a smaller value of the parameter, =
1. As expected, reducing 8 diminishes the effect that
CCR has on chain alignment, resulting in 7. shifting
closer to the DEMG/Milner—McLeish CLF prediction for
strain rates less than about 0.1 s™1. One fundamental
difference between the Marrucci and MLD models for
CCR is that the former assumes that the CCR mecha-
nism only affects the relaxation of chain alignment and
has no direct effect on chain stretch, whereas the MLD
model hypothesizes a transition from enhanced relax-
ation of orientation to faster relaxation of chain stretch.
As a result, when Wigr = O(1), the Marrucci CCR
predictions in Figure 7b merge with the results for the
DEMG/Milner—McLeish CLF model [Figure 7a] without
CCR.

Theoretical predictions for the other solutions are
shown in Figures 9—12 and are limited to basic DEMG
and the full MLD model that includes either the Doi—
Kuzuu or Milner—McLeish version of CLF. Because the
other results are qualitatively similar to those discussed
above in relation to Figure 7 and in accord with
expectations, we believe that there is little to be learned
by continuing to show calculations for all possible
combinations of models. The theoretical predictions in
Figures 9—12 confirm our expectations that as the
number of entanglements per chain is reduced and the
separation between g and 40 is reduced, the amount
of strain rate thinning diminishes while the degree of
chain stretching increases as the ratio N/Z increases.
These trends are particularly evident in comparing
Figures 7 and 12, where the number of entanglements
per chain is the same, but the ratio N/Z increases by a
factor of 2.6. The predicted degree of thinning with
increasing strain rate is nearly identical, but there is
clearly a larger degree of chain stretch.

We note that the distinction between the basic DEMG
model and the two versions of MLD increases as Z
decreases. This is to be expected, since CLF plays an
increasingly important role in the relaxation process for
lightly entangled chains. However, for the three cases
with the largest number of entanglements per chain (see
Figures 7, 11, and 12), the distinction between the MLD
model and the DEMG model is relatively weak. As noted
earlier, the corrections to DEMG due to CLF and CCR
largely cancel out when compared with relaxation times
that give equivalent fits to the linear viscoelastic data.

5.3. Comparison with Experimental Data. We can
now compare the model predictions with the experi-
mental data. From a qualitative point of view, the
comparison is favorable, especially for the models with
CLF included. However, quantitatively, the model pre-
dictions are uniformly low over the whole range of

Extensional Rheometry of Entangled Solutions 10143

measured strain rates. The differences decrease as the
number of entanglements per chain is increased, but
this is largely because the simple DEMG model does a
better job in this regime and the corrections due to CLF
and CCR become less important. We have noted in the
previous section that the two versions of CLF give
significantly different results in the nonlinear regime,
though they are equivalent in the linear viscoelastic
limit. Of the two, it appears that the Doi—Kuzuu CLF
model better represents the data. Indeed, on the basis
of the results in this section, if one were to simulate an
extensional flow with any of the models that we have
investigated, the MLD model with Doi—Kuzuu CLF
would seem to be the best choice provided one had linear
viscoelastic data to determine the relaxation times for
this model.

This does not mean, however, that the Doi—Kuzuu
model is a fundamentally better model for CLF than
Milner—McLeish. In fact, on the basis of the work of
Milner and McLeish?® and Lihktman and McLeish,*®
one would believe that this is not the case. The point to
keep in mind is that DCR has still not been considered
in these models. A comparison of (zqo)my and (a0)5es
derived in section 4.2 from our linear viscoelastic data
using the model of Lihktman and McLeish,*° the first
with CLF and the second with CLF and DCR, suggests
that the bare reptation time 740 (and thus the estimate
of 7r as well) will be reduced by a factor of between 2
and 3 once DCR is added to the nonlinear model. This
will improve the data fits in the chain stretching regime,
as it will shift the predictions to the left relative to the
data.

The disagreement between data and predictions is not
just a matter of shifting the time scales, however. For
the models considered here, the depth of the minimum
in the viscosity is also too large. Although this result
would likely be improved when DCR is added to the
model, it has recently been suggested®®—%° that the
simple CCR mechanisms of Marrucci and co-workers!9—21
as well as the CCR mechanism in the MLD model* are
also likely to underestimate the effect of the convective
constraint release process. Specifically, to account for
the fact that each constraint release event involves a
pair of chains, it has been proposed to model the CCR
process as a “double reptation” event. The combination
of DCR and a dual release CCR will certainly change
the shapes of the curves; thus, it is premature to
speculate further about whether a more advanced model
of the MLD form will ultimately provide quantitative
predictions for extensional flow data. Comparisons
between the data reported here and model predictions
that take account of these ideas are currently in
progress, but the requisite development of the nonlinear
models is not available at the present time.

Returning to Figures 7 and 9—12, it may seem
surprising at first to note that the most important
differences between the various models seem to appear
in the high strain rate, chain stretching regime, al-
though both CLF and CCR were originally added to the
DE/DEMG model to correct predictions for shear flow
in the low strain rate regime of validity of the original
DE theory [i.e., ¢ < O(tr™1)]. One might think that,
regardless of what is done to the model in this regime,
the model dynamics should be dominated by the chain
stretching mechanism (and higher order Rouse modes)
at strain rates in excess of g 1. Thus, one would expect
model predictions to be quite similar in this regime,
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which is clearly not the case. A primary culprit is the
model dependence of relaxation times. As we add
mechanisms that influence the dynamics at low fre-
guency, we have seen that this changes the estimated
value of the “bare” reptation time obtained from the
longest measurable relaxation time, which in turn
changes the estimated Rouse time. One could argue that
if we had an independent way to determine the Rouse
time, 7r, then we should use the same Rouse time for
all models. Unfortunately, unless the model is “com-
plete,” fixing a Rouse time and maintaining the expected
ratio of 74 0/tr would then change all of the predictions
at low strain rate, including the zero shear viscosity that
would then become model dependent.

Finally, we observe that the comparison between the
theory and experiment is least satisfactory for the 3.9
M, 7.35 wt % solution, the results of which are shown
in Figure 10. We cannot offer an explanation for this.
Of course, the number of entanglements per chain is
smaller in this case than in those shown in Figures 7,
11, and 12, but it is still large enough that we would
have expected better agreement between the theory and
the experiment. One satisfactory feature of the results
shown in Figures 9 and 10 is that the theory does
capture the qualitative feature of a transition from
entangled to “dilute” behavior. In particular, for the
lowest concentration at 4.9 wt %, both the theory and
the experiment indicate that the extensional viscosity
increases at the onset of chain stretching without any
prior thinning.

6. Transient Flow Data

In addition to the steady flow data presented above,
we have also obtained data for stress growth upon
startup of the extensional flow from rest. Typical data
are shown in Figure 13, parts a—c, for the 3.9 M, 10.0
wt % solution at three different values of the strain rate,
¢=1.12, 3.49, and 7.19 s~1. We have chosen to plot these
data in terms of an “extensional viscosity” in order to
provide a direct comparison with the steady state results
presented above, though it is well-known that the
concept of an extensional viscosity is ambiguous in
transient flow conditions. The “extensional viscosity”
reported here is simply the instantaneous extensional
stress difference (o,; — orr) scaled by the instantaneous
strain rate. Since the latter is constant and independent
of time, the results are equivalent to plotting the stress
difference vs time. For all three strain rates, the
extensional viscosity grows monotonically to the steady-
state values reported in Figure 7. The total strain, ét,
for ¢ = 1.12 st is 2.24, for ¢ = 3.49 s ! it is 5.24, and
for 7.19 s71 it is 6.83. The latter two values are well
into the steady-state regime, while the value at ¢ = 1.12
s~1 appears to be marginal.

Figure 13 also shows predictions for three models: the
basic DEMG model using (tr)oemc and (74,0)oemc; and
the full MLD model with, respectively, the Milner—
McLeish version of CLF using (tr)mm and (zq4.0)mm, and
the Doi—Kuzuu version of CLF using (tr)ok and (z4,0)pk-
Since the predicted response to the startup flow is a
monotonic rise from the initial value of zero to the final
steady-state value for all versions of the model, there
is not much to be learned beyond what we already
observed in Figure 7 as far as the magnitudes of 7, are
concerned.

Of more interest and importance is the qualitative
shape of the predictions and particularly the time scale
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Figure 13. “Extensional viscosity” vs time in startup flow for
the 3.9 M 10.0 wt % solution for (a) ¢ = 1.12 s7%, (b) ¢ = 3.49
s7!, and (c) ¢ = 7.19 s1: (O) experimental data, (—) basic
DEMG model, (— —) MLD/Milner—McLeish CLF model, and
(- - -) MLD/Doi—Kuzuu CLF model.

(or more accurately, the strain) associated with the
transient stress growth. In this respect, the overall time
to steady state predicted by all three versions of the
model is too short, which is most likely a consequence
of the fact that the estimated values of the Rouse and
reptation time scales are too short, due to the fact that
the nonlinear model does not include DCR. Referring
back to the results in Table 2, the two sets of linear
viscoelastic fits to our data using the Lihktman—
McLeish model shows that there is approximately a
factor of 2—3 increase in the estimates of these time
scales when DCR is included in the linear viscoelastic
model.

The deviation between the transient behavior pre-
dicted by the MLD model and the data thatoccurs at
short times [evident particularly in Figure 13c] may be
due partially to the fact that the startup process for the
filament-stretching device does not lead instantaneously
to a constant strain rate uniaxial extensional flow.
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Table 3. Solution Parameters for PS3 (0.076 g/cm? of 2.89 M Polystyrene in a Mixed Solvent of Toluene and Styrene
Oligomer)
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a Original paper.

7. Comparisons with Previous Studies

We note that the experimental results obtained here
are similar in some respects to the birefringence data
obtained earlier by Yavich et al.3°® for steady 2D mixed
type strong flows in a two-roll mill. In the original study,
these data were compared to predictions using the
DEMG model without either CLF or CCR and with
model parameters obtained by more “ad hoc” and less
reliable procedures than those discussed in section 4.
While the results were qualitatively reasonable, it is of
interest to see whether the nature of the fit is changed
when more advanced models and better methods for
parameter estimation are brought to bear. This is not
simply a matter of adding another data set, as there
are several fundamental differences between the uni-
axial extensional flow studied in the previous sections
and the more complicated 2D flows that are generated
in the two-roll mill. The most important of these is that
the two-roll mill flows are “mixed-type” strong flows
rather than purely extensional flows. The designation
as a “strong” flow means that material points separate
exponentially in time, just as they do for a purely
extensional flow (in contrast to a simple shear or
viscometric flow). On the other hand, they are “mixed-
type” in the sense that they contain both pure straining
(or extensional) and vorticity components. Thus, an
additional factor is that the orientation of the polymer
chain relative to axes fixed in the flow is not known a
priori. Consequently, successful predictions require not
only accurate predictions of chain stretch but also chain
orientation, which cannot be established in a purely
extensional flow.

In this section, we revisit the data from Yavich et al.3°
Our objective is to provide a test of the MLD model for
this class of flows with model parameters recalculated
following the procedures of section 4. We do not discuss
the details of the experiments, as these are available
in the published paper of Yavich et al. Here, we note
only that the polymer used was a 0.076 g/cm? solution
of 2.89 x 106 molecular weight polystyrene in a toluene/
oligomer solvent (we denote this solution as PS3). The
measurements were made at the central stagnation
point of the two-roll mill, where the flow is 2D with a
ratio of strain rate to vorticity (which can be varied)
specified by a parameter A, according to

HENn _1+21
Q1= 1-2 (34)
Data were obtained for three different configurations
of the two-roll mill, corresponding to A = 0.0196, 0.06,
and 0.15 for Newtonian fluids. Because the polymer
solution is viscoelastic, however, both the flow type and
the magnitude of the velocity gradient are different than
they would be for a Newtonian fluid. Thus, to make
predictions via the MLD or any related model, one must
actually measure these flow parameters and then com-
pare the predicted and measured stress (or birefringence
in this case) using the measured flow parameters as
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Figure 14. (a) Orientation angle and (b) dimensionless
birefringence vs the principal eigenvalue of the velocity
gradient tensor in a mixed-type flow generated in a two-roll
mill with a flow type parameter 2 = 0.0196. The figure shows
(O) experimental data, (—) basic DEMG model, (— —) MLD/
Milner—McLeish CLF model, and (- - -) MLD/Doi—Kuzuu CLF
model. The fluid is a 2.89 M polystyrene solution with
properties shown in Table 3.

inputs to the model. The necessary flow data was
obtained by Yavich et al. using a dynamic light scat-
tering technique.”

Linear viscoelastic data from the original paper of
Yavich et al.3? was used to determine model parameters
following the procedures described in section 4 (assum-
ing that the toluene/oligomer mixture is a good solvent).
The results are listed in Table 3, together with the
parameter values that were originally estimated by
Yavich et al. In the original study, the plateau modulus
and the number of entanglements per chain were
obtained from the scaling correlations of Osaki et al.5!
for polystyrene in a good solvent, while the disengage-
ment time for reptation, rq, was estimated directly from
the crossing point for G' and G" in the linear viscoelastic
regime without any correction for the effect of CLF or
DCR. The Rouse time, tr, was then calculated as 74/3Z.
Comparing the two sets of parameters, we see that the
estimates of the plateau modulus are virtually identical;
however, the Osaki correlation relating M. and Gﬁ,
neglects the #/s factor discussed earlier, causing the
estimate of Z in Yavich et al. to be smaller than the
current estimate. We also see that the Rouse and
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Figure 15. (a) Orientation angle and (b) dimensionless
birefringence vs the principal eigenvalue of the velocity
gradient tensor in a mixed-type flow generated in a two-roll
mill with a flow type parameter A = 0.06. The figure shows
(O) experimental data, (—) basic DEMG model, (— —) MLD/
Milner—McLeish CLF model, and (- - -) MLD/Doi—Kuzuu CLF
model. The fluid is a 2.89 M polystyrene solution with
properties shown in Table 3.

reptation times used by Yavich et al. for DEMG calcula-
tions are similar to the current estimates including CLF
(taking into account the change in Z).

With a new set of model parameters available, predic-
tions for the birefringence and the average polymer
orientation were carried out for the basic DEMG model,
and for the full MLD model using both Milner—McLeish
and Doi—Kuzuu versions of CLF with the parameters
indicated in Table 3. Results are shown in Figures 14—
16 for the three configurations of the two roll mill
reported in the original study. We reiterate that the
model calculations are based on the measured flow data.
Although the predicted results are plotted as smooth
continuous curves, the velocity gradient data is only
available at the same discrete set of 7 values as the
experimental points. The curves simply connect the
computed values without smoothing, which explains the
apparent bumps seen in some of the plots. Although it
is not directly relevant to the plots, we should also point
out that the principal eigenvalue of the velocity gradient
tensor in 2D mixed-type flows becomes j/ﬁ, and thus
the magnitude of the velocity gradient where one should
expect to see the onset of chain stretching is increased
relative to the critical strain rate in a purely extensional
flow by the factor 1.

To compare the measured and predicted birefringence
shown in Figures 14—16, the experimental data must
be scaled by the product of the plateau modulus GON
and the stress—optical coefficient C.22 In the present
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Figure 16. (a) Orientation angle and (b) dimensionless
birefringence vs the principal eigenvalue of the velocity
gradient tensor in a mixed-type flow generated in a two-roll
mill with a flow type parameter A = 0.15. The figure shows
(O) experimental data, (—) basic DEMG model, (— —) MLD/
Milner—McLeish CLF model, and (- - -) MLD/Doi—Kuzuu CLF
model. The fluid is a 2.89 M polystyrene solution with
properties shown in Table 3.

work, we use a value of C = —3.38 x 107° Pa. That is
based on direct measurements of the stress and bi-
refringence for polystyrene in a good solvent.38 As shown
in Table 3, Yavich et al. used a somewhat larger value
taken from the literature.

Let us first consider results for the smallest flow type
parameter, A = 0.0196, shown in Figure 14. Looking
initially at the orientation angle, we see that the
inclusion of CCR and CLF in the form proposed by Mead
et al. seems to improve the orientation angle predictions
over the results for the basic DEMG model. In fact, other

than one point at the next to smallest value of \/Z)'/, the
MLD predictions with the current parameter values are
very good. Since the measurement of the orientation
angle via birefringence is susceptible to low signal
strength at low y, it is more likely the data point is at
fault rather than the prediction. Similarly, the MLD
prediction of the birefringence with current parameter
values is virtually perfect up to the largest values of
«//_15/, where there is a slight deviation. Furthermore,
referring back to the original paper, we see that that
there is also a modest though significant improvement
in the predictions based on the current rather than the
original Yavich parameter values.

The results for 4 = 0.06, shown in Figure 15, are
qualitatively similar, with the MLD model using current
parameter values producing the most accurate predic-
tions. The MLD predictions of the orientation angle and
the birefringence predictions are again amazingly good
when compared with the data scaled with the current
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estimate of the stress—optical coefficient, especially with
the Doi—Kuzuu version of CLF.

Finally, we consider the results for 4 = 0.15, shown
in Figure 16. The birefringence comparisons in this case
are again basically perfect for the MLD/Doi—Kuzuu
CLF model with current parameter values. However,
the comparisons between measured and predicted val-
ues of the orientation angle are less satisfactory. Both
the DEMG and MLD models seem to predict too little
rotation away from the principal strain rate direction
(45°). We do not understand the origin of this discrep-
ancy, and thus we are uncertain of its significance.
Superficially, one would tend to think that the predic-
tion of orientation angle would improve as 1 increases
toward the limit A = 1, which corresponds to a purely
extensional planar flow for which the orientation angle
is fixed at 45° (like the case of the uniaxial extension
considered in the main body of this paper). Experimen-
tal measurements also become easier as 4 increases,
because the gap between the cylinders in the two-roll
mill increases relative to their radius, facilitating optical
access. Furthermore, the fact that the birefringence is
so accurately reproduced seems to suggest that the flow
characterization obtained from the light scattering must
be quite good. Consequently, we cannot explain the
failure of the MLD model to accurately predict the
orientation angle for A = 0.15.

Despite this one issue, however, we conclude that the
MLD model, especially with Doi—Kuzuu CLF, generally
provides very satisfactory predictions for both the
orientation angle and the birefringence for these mixed-
type flows. Indeed, the predictions are better than we
should expect given the absence of mechanisms such as
DCR.

8. Conclusions

To the best of our knowledge, we have obtained the
first reliable data on the transient evolution of the
extensional stresses and the steady state uniaxial
extensional viscosity for highly entangled, monodisperse
polymer solutions in a uniaxial extensional flow. In
doing so, we have provided for the first time a unique
basis with which to test the models that have recently
been proposed to describe the nonlinear dynamical
behavior of entangled polymers based on extensions of
the Doi—Edwards reptation model to account for chain
stretching, contour length fluctuations, and convective
constraint release.

The results are in rather poor agreement with the
model of Mead, Larson, and Doi,* at least for this class
of flows in the range of strain rates that we have been
able to achieve in the filament stretching device. Specif-
ically, the steady state predictions for the extensional
viscosity are lower than the data in all cases and are
lower by large amounts depending on the strain rate
that is chosen. We surmise that the discrepancies may
be mainly due to the fact that the MLD model does not
include DCR and the corresponding dual constraint
release version of the CCR mechanism. The inclusion
of these mechanisms will have two effects: the model
predictions will be changed directly, but more impor-
tantly, the estimates of time scales will be changed by
inclusion of the DCR mechanism.

In addition, we have applied the same methodology
to steady 2D mixed-type strong flows, where experi-
mental birefringence data is available from an earlier
investigation.3® Here, an additional factor is the orienta-
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tion of the polymer chain relative to axes fixed in the
flow. For a variety of flow types, the birefringence is
predicted very accurately. Similarly, the orientation
angle is accurately calculated for the two flows nearest
to simple shear flow, where the model has previously
been tested,! but less well predicted for the flow that is
furthest from simple shear. Until more experimental
data is available, it is unclear whether this discrepancy
is due to a limitation of the model or inaccuracy in the
data.

It seems surprising that the MLD model appears to
provide better agreement with the data for the mixed-
type flows, where one must accurately predict both the
orientation angle and the birefringence (or stress), than
for the apparently simpler case of uniaxial extensional
flow, where the orientation angle is known. The only
point that we can make is that the model parameters
were fit to linear viscoelastic data in simple shear flow,
and at least for the comparisons that we have made in
this paper, the most accurate predictions correspond to
the flows that are most similar to shear. While it is
probably premature to draw any conclusion from this
observation until we have compared the data to a model
incorporating all of the currently proposed mechanisms
(DCR and dual convective constraint release in particu-
lar), it is nevertheless a provocative result.
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