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Abstract

The necessary inertia compensation used in the force balance for the filament
stretching rheometer is derived for an arbitrary frame of reference. This enables
the force balance to be used to correctly extract the extensional viscosity from mea-
surements of the tensile force at either end of the elongating fluid column in any of
the different experimental configurations that have been introduced to date. The
present analysis eliminates a restriction inherent in the work of Szabo, Rheol. Acta,
36: 277-284 (1997).
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Introduction

Over the past decade, filament stretching rheometers have been used increasingly as a
means for accurately measuring the transient uniaxial extensional viscosity of viscoelastic
fluids (McKinley and Sridhar, 2002). A fluid filament is formed between two rigid end-
plates and elongated by a rapid separation of the plates. A force transducer attached to
one or other of the plates measures the tensile force generated by the elongation and a
laser micrometer measures the evolution in the radius of the fluid column at the axial
midplane. A number of different experimental configurations have been introduced and
it is helpful to derive a general force balance which can be adapted to each different con-
figuration. This was first done rigorously by Szabo (1997) and the resulting force balance
was successfully used in an international study to compare experimental measurements of
the transient extensional viscosity of a common test fluid in three differently-configured
filament stretching devices (see Anna et al. 2001). The test fluids used in this work, and
in most other experimental filament stretching studies to date, have been quite viscous
(typically with viscosities greater than 7y > 1 Pa.s), in order to minimize the influence of
gravitational sagging in the filament. As a consequence, inertial effects have also typically
been very small for the range of stretch rates that can be accessed experimentally. How-
ever as experiments begin to focus on dilute polymer solutions in lower viscosity solvents,
an accurate treatment of inertial effects is becoming increasingly important. In this note
we generalize the previous work by Szabo to develop a general force balance for filament



stretching devices that is correct even in arbitrary non-inertial reference frames such as
those configurations commonly used in experiments.

An arbitrary frame of reference

In Figure 1 we define the basic geometrical variables in the filament stretching rheometer.
The derivation on page 278 in Szabo (1997) assumes implicitly that the filament geometry
is located in an inertial frame of reference where the center plane is stationary at z=0.
To generalise the analysis we assume here that the upper half part of the filament is
located between zo(t) and z(t) + L(t)/2 instead of the interval 0 to L/2. The local origin
zo(t) located at the middle of the filament may be accelerating (typically axially) with
respect to an external and stationary (inertial) frame of reference {r, z}. Three cases are
encountered commonly in filament stretching experiments:

(7). Both plates accelerate symmetrically in opposite directions with user-imposed pro-
files £L(t)/2 such that the axial midplane remains stationary at z=0 and the radius
decreases exponentially in time.

(#7). The bottom plate remains stationary and the top plate accelerates upwards at +f/(t).
The midplane thus also accelerates upwards at Zy = +L(t)/2.

(7i1). The top plate remains stationary and the lower plate accelerates downwards at

_L@).

The principal reason for these different configurations is the fragility of the sensitive
force transducers used to make measurments of the (small) tensile forces in the slender
fluid columns (typically R ~ O(1 mm)). The transducers are very susceptible to im-
posed (exponentially-increasing) accelerations, and they are thus typically located on the
stationary endplate in each configuration. It is therefore also important in developing
the force balance to provide a mechanism for interconverting between the tensile forces
exerted on each of the two endplates.

These considerations lead to a modification of the equation (6) in Szabo (1997) so that
the general force balance in an external and inertial frame of reference for the top half of
the fluid column now becomes the following,
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where F}, ;,, is the force measured on the top plate defined by:
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In equation (1) dots and primes represent time and spatial (z) derivatives respectively. A
variable in brackets, <> denotes an area average across the midfilament plane.

The modification, compared to the force balance in Szabo (1997), appears only in
the inertia integral on the right of equation (1) where zy(¢), the present location of the
filament center plane, now enters the integration limits.



To simplify the analysis, we may want to compute the inertia integral in a frame of
reference moving with the center plane. That is, we define and introduce a new local axial
filament co-ordinate x=2z—2z(t). The inertia integral then becomes,
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The additional term is somewhat analogous to the ‘added mass’ term that appears
in the Navier-Stokes equations when studying problems involving transient accelerations.
Combining the equations (3) and (1) we obtain a general force balance which has the
following form:
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From this equation we note that if the center plane is fixed (case (i) in the list above)
then there is no correction to the original force balance. If, however, the chosen configura-
tion involves acceleration of the midplane then there will be a modification. If the bottom
plate is fixed and only the top plate accelerates (case (i7) above) then a correction term
with %y=41/2 appears in equation (4). Conversely, if the upper plate is held stationary
then a correction term with %, = —L/2 enters the expression. As the equation (4) is
generally valid for any choice of z(t), future stretching schemes, other than cases ()-(ii7)
above, may in a simple way be directly accounted for.

The result in equation (4) may alternatively be developed for the force exerted on the
bottom plate. The force, F}, pottom is defined by
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By extending the force balance to the entire fluid column rather than just the upper half,
the analysis leads to the following general relationship between the two force measure-
ments,

Fp,top = Fp,bottom - p(g + ZO)% (6)

From this relation we note that the two force readings become identical if the center plane
has a downwards acceleration equal in magnitude to the gravitational acceleration g. This
is the case of ‘free fall’. However, it is important to note that in general for the extensional
profiles imposed in experiments, the length L(¢) increases approximately exponentially or
faster, and thus so does the acceleration at the midplane (McKinley and Sridhar (2002)).

To illustrate the importance of this additional inertial correction term, we consider
the simplest case of ideal uniaxial elongation. In this case, the length increases as L(t) =
Lo exp(got) and the radius decreases as R(t) = Rgexp(—0.5¢ot) such that the volume of
the fluid column is a constant Vo = mR3L,. If the filament is initially under quiescent
conditions so that all stresses are identically zero, then the only stress components that
develop during the subsequent elongation are those in the first term on the left-hand side
of eq. (4). Denoting the transient extensional viscosity by n5 = —(7,, — Trr)s/€0 and
substituting into eq. (4) leads to the following expression
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The force on the lower plate can be found if desired using eq. (6). The negative sign
on the force term is correct because the force Fj o, is defined as shown in Figure 1. In
general, for experiments, the net tensile force from the elongating fluid column will act
downwards on the top plate (i.e. it will be negative). It is clear from equation (7) that the
axial inertia term becomes increasingly important at long times or large Hencky strains.
However the term arising from the acceleration of the reference frame is also of the same
order as this term. In general terms we can let 3, = aL = aé2Lge?®’. Equation (7) then
becomes
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For the particular case of a stationary upper plate and a downwardly-accelerating lower
plate we have a=—1/2. For this configuration, the additional term arising from correctly
accounting for the acceleration of the reference frame thus changes not only the magnitude
but also the sign of the dominant inertial correction term. Interestingly, we note that if a is
set to be —1/4 (corresponding to upward motion of the top plate at —i—L/ 4 and downward
motion of the lower plate at —3L/4) then the axial inertial term vanishes completely.

Another interesting analysis is to evaluate the effect of inertia on the spatial stress
distribution in the filament. We consider again the flow in simple uniaxial elongation with
constant strain-rate £y. The frame of reference is moving according to zo(t). Solution of
the equations of motion then yields the following expressions for the stress distribution;
for the stress difference 7,, — 7, we obtain
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In the above analysis we have assumed an initial rest state so that 7,, — 799 = 0. From
equations (9) and (10) we note that the principal stress difference 7,,—7; changes quadrat-
ically with the axial co-ordinate. The radial variation is, however, decreasing during the
experiment due to the fact that Ry(t) — 0.

In real experiments where the no-slip boundary conditions at the rigid plates typically
lead to a non-cylindrical shape, the so-called ”wine-glass-stem”, the inertia contribution
becomes even larger than indicated by equation (9) due to the fact that more mass is
located near the endplates. Computation of the inertial correction in equation (3) thus
requires time-resolved measurements of the filament profile R(z,¢). In principle, it is
also possible to exploit the exact cancellation of the axial inertial terms discussed above;
however, this is impractial since it would require a stretching device having three locations
with user-controlled displacement profiles (the two ends and the midplane) and the value
of a would be time-varying because the profile of the filament changes in time.

A final limitation inherent in eq. (4) concerns the top-bottom symmetry implicitly
assumed about the midplane of the elongating filament. For stretch rates less than
Esag ~ P9Lo/(3m) gravitational sagging becomes increasingly important and there is a
weak secondary axial flow within the filament in the direction of gravity. The volume of
fluid remaining above the midplane at = 0 (at which the local radius R;(t) is measured)

is then f; /2 R2dx and this expression should replace the term V /2 in eq.(4). Like the
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inertia integral, this term can also be computed from measurements of the filament profile
R(z,t). However it should be noted that the resulting tensile stress difference will con-
tain contributions from both the imposed extensional flow and the induced gravitational
‘slumping’. It is difficult to deconvolute these two contributions without full numerical
simulations.
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Figure 1: Definition of the basic variables in the filament geometry.



