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Abstract

Pinch-off dynamics of slender liquid bridges of generalized Newtonian fluids without
and with inertia are studied using asymptotic analysis and numerical computation. The
deformation-rate-dependent rheology is described by power law and Carreau models.
Because the bridges are slender, their dynamics are governed by a pair of spatially one-
dimensional, nonlinear evolution equations for the bridge shape and axial velocity. A

bridge of a power law fluid under creeping flow conditions exhibits self-similar dynamics



in the vicinity of the axial location where the bridge radius is a minimum. The scaling
exponents that determine the variation with time remaining to breakup of the bridge
radius or radial length scale, axial length scale, and axial velocity are evaluated by
a combined analytical and numerical approach. Similarity solutions are obtained by
collapsing numerically computed profiles of both the bridge shape and the axial velocity
in the vicinity of the axial location where the bridge radius is minimum by rescaling
of the transient profiles with radial and axial scalings deduced from theory. This
scaling behavior is transitory and inertial effects become significant as pinch-off is
approached. Thereafter, a new balance is established between viscous, capillary, and
inertial forces that leads to a new self-similar regime which persists until pinch-off.
The scaling exponents appropriate to this regime are also determined. Moreover, it
is shown theoretically that interface shapes in the vicinity of the singularity are non-
slender for values of the power law exponent below 2/3. Similarity solutions are once
again obtained in the same manner as that used in the creeping flow limit. Low-
viscosity bridges of Carreau fluids are known to exhibit a transition from potential
flow scaling to Newtonian scaling. Here it is demonstrated that high-viscosity bridges
of Carreau fluids exhibit a transition from power law scaling to Newtonian scaling. The
point of transition between the latter two regimes is predicted in terms of parameters

of the Carreau model.
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1 Introduction

Dynamics and breakup of liquid threads and jets driven by the capillary instability have been
studied for more than a century [1] due to their importance in various practical applications
as ink-jet printing [2], fiber spinning [3] and filament-stretching rheometry [4]. A space-time
singularity occurs when the minimum radius of a breaking thread shrinks to zero, resulting
in the blow-up of the values of the interfacial curvature and axial velocity at the pinch point.
Length and time scales of the motion close to pinch-off are much smaller than those of the
bulk motion so that the dynamics near the singularity ought to evolve virtually independently
of the initial and boundary conditions, and thus exhibit self-similarity.

Keller and Miksis [5] first proposed a scaling theory describing self-similar recoil of an
inviscid liquid sheet undergoing potential flow in the aftermath of its rupture. Peregrine
et al. [6] were first to suggest that the dynamics near breakup are universal, characterized
by the nonlinear properties of the equations of motion. Since these early works, many
authors have developed scaling theories to describe the pinch-off dynamics of Newtonian
liquid threads surrounded by a dynamically inert fluid, as discussed in the next paragraph.
The main objective of this paper is to advance the understanding of the pinch-off dynamics
of non-Newtonian liquid threads.

Eggers [7] was first to develop an asymptotic theory of the pinch-off singularity in the

situation where inertial, viscous, and capillary forces are all of the same order, a regime that



is appropriately called the inertial-viscous (IV) regime. Eggers [8] then derived the scaling
functions that define the shape of the thread and the velocity field within it close to breakup
as functions of the viscous length and time scales of the fluid. Before the liquid thread reaches
the IV regime, however, it can pass through intermediate asymptotic regimes depending on
the relative importance of inertial, viscous, and capillary forces as it thins. These regimes
include (1) a potential flow (PF) regime [9] where inertial and capillary forces are important,
and (2) a viscous (V) or creeping flow regime [10, 11] where only viscous and capillary forces
are important. Rothert et al. [12] have carried out an experimental study which showed a
transition from the V to the IV regime as breakup was approached. Similarly, a transition
from the PF to the IV regime was shown both computationally and experimentally in recent
papers by Notz et al. [13] and Chen et al.[14].

While the focus of most of the studies on interface rupture has been the breakup of
Newtonian liquid threads, the equally important problem of the breakup of non-Newtonian
liquid threads has received far less attention. In addition to the usual capillary force that
drives pinch-off, non-Newtonian effects such as deformation-rate-dependent material proper-
ties, viscoelasticity, and strain-hardening, among others, are known to significantly alter the
breakup dynamics [15, 16, 17, 18]. Experiments have shown that the presence of even small
amounts of polymer can delay or completely suppress breakup [15]. A recent experimental

study on pinch-off of a water drop with minute amounts of polymer has revealed that after a



brief period of self-similar dynamics that are unchanged from those observed with a drop of
pure solvent, an abrupt transition occurs leading to an exponential thinning of the neck [16].
Experiments such as these have motivated theoretical analyses on the pinch-off dynamics of
slender viscoelastic jets. In a series of papers [19, 20, 21], Renardy has studied the self-similar
breakup of jets of viscoelastic fluids whose rheologies are described by various constitutive
models. As pointed out by Chang et al. [22], since these analyses omit effects of inertia and
focus only on slender filaments, they have been unable to capture important pre-breakup
phenomena like iterated stretching and bead formation. Chang et al. [22] have studied the
iterated stretching dynamics of FENE and Oldroyd-B jets by solving a set of one dimensional
(1-D) slender-jet equations by numerical simulation and asymptotic analysis. These authors
have shown that the universal stress scaling during self-similar pinch-off of a viscoelastic jet
is quite distinct from that of a Newtonian jet, even though the radial and axial scalings are
identical in the two situations. More recently, Renardy and Losh have studied the existence
of similarity solutions for the surface tension driven breakup of a jet of a Giesekus fluid with
inertia [23].

There have been yet fewer studies of the pinch-off dynamics of fluids with deformation-
rate-dependent material properties. Renardy [20, 21] has demonstrated the existence of
self-similar solutions for pinching of a thread of a power law fluid undergoing creeping flow.

He used a Lagrangian formulation to derive a force balance governing the dynamics. He then



reduced this balance by a similarity ansatz with two scaling exponents. Renardy determined
the value of one of the exponents by a similarity transformation but left the value of the other
exponent undetermined. He also showed that the behavior of a power law fluid is qualitatively
similar to that of a Newtonian fluid [11]. However, as Eggers [7] has demonstrated for the
case of Newtonian fluids, inertia becomes important during the final stage of breakup of
a thread and a transition occurs from viscous-capillary scaling to inertial-viscous-capillary
scaling. A similar transition should be even more pronounced for deformation-rate-thinning
fluids and therefore inertia should be included in the analysis of pinch-off dynamics of such
fluids.

The presence of inertia in the equations of motion renders the slender-jet analysis more
difficult. Recently, Yildirim and Basaran (referred to herein as YB) [17] computationally
studied the dynamics of stretching liquid bridges of fluids described by the Carreau model.
The deformation-rate-dependent effects in a Carreau fluid are captured by a non-Newtonian

viscosity model given by [24]

fi = fio(1 = B)[1 + (a9)*) =D + 5,8 (1)

where [ is the apparent viscosity and 2 is the second invariant of the rate of deformation
tensor. In eq. (1), fi, is the zero-shear-rate viscosity, & ! is a characteristic shear rate, B,
where 0 < 4 < 1, is the viscosity in the limit of infinite deformation rate, and n < 1 is a power

law exponent. Section 2 provides a detailed description of eq. (1). It is noteworthy that



eq. (1) predicts the same rate-dependence of the fluid viscosity in any mode of deformation.
The flow in a thinning thread is, of course, predominantly a transient, uniaxial extensional
flow. However, for succinctness the fluid will henceforward be referred to simply as shear-
thinning rather than by the more cumbersome descriptor “extension-rate-thinning.” Other
generalized Newtonian fluid models have been proposed which show different behavior in
planar shear flow and uniaxial extension (see, for example, the work of Debbaut and Crochet
[25]). However, analysis of these models is beyond the scope of the present paper.

Figure 1 shows the variation of the dimensionless viscosity u = fi/ i, as predicted by eq.
(1) with the dimensionless deformation rate 4 = &y when n = 0.7 for three different values
of 5. In all three cases, the dimensionless viscosity shows the well known transition from an
initial Newtonian response to a power law response and it eventually approaches a second
Newtonian plateau corresponding to the infinite-shear-rate viscosity 3. Figure 1 shows that
the range of the power law region strongly depends on the value of 3. The results reported by
YB included comparison of breakup length, location, and time for liquid bridges of Carreau
fluids with corresponding results for Newtonian fluids. YB also reported results on the
scaling with time remaining to breakup of the minimum radius of bridges of low viscosity
Carreau and Newtonian fluids. They showed that for bridges of both fluids, the minimum
radius initially followed PF scaling theory and later transitioned to IV scaling. Through this

limited exploration of the parameter space, the only difference that YB identified between



the two cases was a delayed transition from PF to IV scaling for a Carreau fluid compared
to a Newtonian fluid owing to the former fluid’s shear-thinning nature. Therefore, the main
aim of this paper is to carry out a much more detailed analytical and numerical study of
the pinch-off of shear-thinning fluids than has been carried out to date in order to determine
completely the scaling behavior of a power law fluid without and with inertia, the transition
between such regimes, and the transition from a power law to a final Newtonian regime for
a Carreau fluid.

The paper is organized as follows. Section 2 presents the mathematical formulation of
the problem starting with the two-dimensional system of equations governing the dynamics
of a thinning filament. Section 2 then presents the Carreau constitutive model that is used to
describe the shear-thinning behavior of the non-Newtonian fluid and discusses two limiting
forms of this model. Section 2 also outlines a system of 1-D slender-jet equations for a
shear-thinning fluid that is analogous to the system of equations obtained by Bechtel et al.
[26] for viscoelastic fluids, and by Eggers [7, 8], Eggers and Dupont [27], and Papageorgiou
[10, 11] for Newtonian fluids. Section 3 summarizes the numerical method and algorithm
used to solve the system of 1-D evolution equations. Section 4 presents self-similar solutions
describing the pinch-off of a power law fluid without and with inertia. Section 5 presents a
number of computational results obtained with the numerical algorithm and also compares

predictions of the asymptotic analyses of section 4 with predictions made with the numerical



algorithm. For the case of a power law fluid without inertia, the exponent left undetermined
by Renardy [20] is also evaluated. Section 6 makes concluding remarks and suggests possible

avenues for future research.

2 Mathematical Formulation

The system under study is an axisymmetric bridge of an isothermal incompressible liquid
with density p that is held captive between two circular discs of radii R, as shown in fig. 2.
The bridge is surrounded by an ambient gas that is taken to be dynamically inactive. The
liquid-gas interface separating the bridge from the ambient gas has constant surface tension
o. In what follows, variables that have a tilde over them, (~), are considered to be dimensional
while the dimensionless counterparts of the same variables will be denoted without a tilde, ().
The characteristic scales used for non-dimensionalization are the disc radius R for length, the
zero-shear-rate viscosity fi, of the bridge liquid for the deformation-rate-dependent viscosity
function, and the capillary time . = \/W for time. The characteristic scale for velocity
is not independent but is given by U, = R/t.. The isothermal, incompressible flow of liquid
in the bridge is governed by Cauchy’s equation of motion and the continuity equation
Dv

10



Vv=0 (3)

Here, v is the dimensionless fluid velocity, ¢ is the dimensionless time, e, is a unit vector
that is antiparallel to gravity, Oh = fi,/+/pc R, is the Ohnesorge number which character-
izes the relative importance of viscous force to surface tension force, and G = gpR?/o is
the gravitational Bond number which characterizes the relative importance of gravitational
force to surface tension force. The stress tensor T in a generalized Newtonian fluid is given
by T = —pI + u(7)[Vv + (Vv)T], where p is the pressure and the viscosity function u(¥) is

discussed below. At the free surface the traction boundary condition

1
n-T:mQHn (4)

and the kinematic boundary condition
n-v=nmn-vg (5)

apply. Here n is an outward unit normal to and 2H is the twice the local mean curvature
of and vy is the velocity of points on the interface. In cylindrical coordinates (r, z) with the
origin placed along the axis of symmetry and where z is the axial coordinate measured along

the axis of symmetry and r is the radial coordinate, 2H is given by
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1 .,
=i me T Wt e (6)

where 7 = h(z,t) is the interface shape function and subscript z denotes differentiation with
respect to z.
In this paper, the shear-thinning behavior is described by a three-parameter Carreau

model (see [24]) similar to the one previously used by YB :

p=1=p)1+(ay) "V + 5 (7a)
Two different limiting forms of the Carreau model are of interest here. In the so-called power

law limit where 8 — 0 and (oy)” > 1,
=y (7b)

When the deformation rate is either vanishingly small or indefinitely large, the Carreau

model approaches the following two Newtonian limits

lim p=1 (7c)
¥—0
lim pu=p (7d)
F—00

In cylindrical coordinates, the magnitude of the deformation rate is given by

. v, \ 2 U\ 2 ov, v, \> o, \ 2
7_\/2<87°> +2(7) +(8z+87“) +2<8z> ®)
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In eq. (8), v, and v, denote radial and axial components of the velocity.
Equations (2) - (7a) can be simplified by substituting the following expansions of the

unknown axial velocity and pressure in power series in the radial coordinate r, viz.

v, (1, 2,t) = vo(2,t) +va(2, )T + ..., 9)

p(r,2,t) = po(z,t) + pa(z, t)r? + ... (10)

and retaining only the leading order terms in the resulting expressions, as described by
Eggers and Dupont [27] for Newtonian fluids. As shown by YB, the following set of 1-D

nonlinear evolution equations for h(z,t) and v = vg(z,t) then results:

v v 0(2H) 30h [0 [ (5,200
E+U§—— Ep 72 {&(N h G (11)

oh  Oh  hdv

T PR ¥ (12)
PN (n—1)
p=(1-75) \/1+3042(8—z> + 8 +00?) =p@ + ..., (13)

where (9 is the leading-order term in the Taylor series expansion of the viscosity. In the

power law limit, it follows from egs. (7b) and (13) that
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(n-1)
FONS V-
0z

The heretofore used nondimensionalization is inappropriate in the creeping flow limit as
the density does not enter the problem. In this situation, while it is still appropriate to
use R as characteristic length, one must instead employ o/, as characteristic velocity or
Rji,/o as characteristic time. The resulting set of 1-D evolution equations are identical to
(11) and (12) with the following exceptions. First, the two terms corresponding to the local
and convective accelerations on the left side of equation (11) do not arise because they are
premultiplied by Oh~2 and in the creeping flow limit Ok~ — 0. Second, the viscous term on
the right side of (11) gets premultiplied by unity rather than O#h in this limit. Therefore, the

properly nondimensionalized 1-D momentum equation in the creeping flow limit becomes:

8(2H) 3 8 (0) 281)
=— — | = h— )| -G 15
0 0z * h? [az (,u 0z (15)

In the computational results to be presented in section 5, the bridge length L is held
fixed and the deformation and breakup of the bridge are driven by subjecting the bridge to

an initial deformation having finite amplitude. In this situation, it is convenient to place the

origin of the cylindrical coordinate system at the center of the bridge. The 1-D evolution
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equations are then solved subject to the following boundary conditions imposed at the two

rods holding the bridge captive:

h(L/2,t) =1, w(L/2,t)=0
(16)

h(—L/2,t) =1, wv(—L/2,¢) =0
3 Numerical Analysis

The governing set of 1-D eqs. (11) and (12) or (15) and (12) is solved numerically by a method
of lines using the Galerkin/finite element method (G/FEM) for spatial discretization and an
adaptive finite difference method for temporal discretization [28]. The algorithm used here is
almost identical to that used by YB but with the following difference. In the present work,
all unknowns are represented in terms of quadratic basis functions rather than the linear
ones used in YB. Further details on the numerical method can be found in YB.

As will be shown in section 5, there are several points in the pinch region where dv/0z = 0.
Therefore, the viscosity in the power law model (cf. eq. (14)) is non-differentiable at these
points but the derivative of the viscosity appears in the slender-jet equations (cf. eq. (11) or
(15)). Fortunately, the use of the G/FEM overcomes this difficulty. The Galerkin weighted
residuals of eq. (11) or (15) are constructed by multiplying eq. (11) or (15) by the basis

functions and integrating the resulting expressions over the computational domain. The
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term involving the viscosity is then integrated by parts, thereby obviating the need for dif-

ferentiating the viscosity. By contrast, a finite difference algorithm would have considerable

difficulty in dealing with this situation.

4 Self-similar solution for power law fluid

4.1 Viscous power law regime

The 1-D momentum equation governing the pinch-off of a thread of a power law fluid un-

dergoing creeping flow can be obtained by substituting eq. (14) for the viscosity p(®) in eq.

(15). Following the analysis of Papageorgiou [11] for pinching of viscous Newtonian threads,

h(z,t) and v(z,t) are expected to have the following self-similar forms as 7 — 0, where 7 is

the time remaining to breakup:

h(Z,7) =716(¢)
(2, 7) = 7"9(E)

where

Z =2z— 2,

T=1,—1
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§=2/7° (21)

Here z, is the axial location of the pinch-off singularity, ¢, is the breakup time, and 2z’ is

the axial coordinate measured from z,. The exponent § controls the extent of the similarity

region and £ is the similarity variable. In addition to d, the exponents «; and s and the
scaling functions ¢(§) and (&) are to be determined as part of the analysis.

Inserting eqs. (17) and (18) in egs. (15) and (12) and enforcing the time invariance

of these equations results in a coupled set of ordinary differential equations for the scaling

functions ¢(§) and ¥(§)

(3\v§aw'm_”zW¢2+-¢) —0, (22)
! n—l/f'/Q
o =" B (23)

where primes denote differentiation with respect to £ and the scaling exponents o; = n and
ay = 6—1. When n =1, egs. (22) and (23) reduce to the equations governing the self-similar
pinch-off of a thread of a viscous Newtonian fluid [11]. The scaling functions ¢ and ), and
the axial scaling exponent ¢, are determined below. It has been shown by Renardy [21] that
the pinch-off dynamics of a power law fluid are qualitatively similar to those of a Newtonian

fluid under conditions of creeping flow. Moreover, Renardy has also noted that in contrast
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to the Newtonian case, a closed form solution for § does not exist and has to be determined
numerically in the non-Newtonian case.

The denominator of the kinematic boundary condition, eq. (23), vanishes when 9(§) =
—0& at a value of the similarity variable £ = &;. Therefore, as in the Newtonian case, smooth

solutions only exist if at £ = &

w(é-o) = —0&, (24)
wl(go) =2n (25)
The numerical evaluation of § is facilitated by expanding ¢ and 9 in a Taylor series in

¢ about & = &,, which turns out to be the pinch-off stagnation point (see below). The local

expansions can be written as

¢(§—fo) = ¢0+¢2(§_§o)2+¢4(§_§o)4+"' (26)
V(€ = &) = =66 +2n(E — &) +¥3(§ — &) + ... (27)
where ¢g, ¢o, ... and 13, ... are coefficients to be determined. For the case of a Newtonian

fluid (n = 1) it has been shown that the scaling function ¢ is even and the scaling function
¥ is odd [11] and also that &, = 0 [29]. Similar results also hold for a power law fluid. It
follows from eqs. (22) and (23) and eqs. (26) and (27) that

1
3(=D/2qn=1(2n)"(2n + § — 1)

Po = é (28)
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Therefore, using egs. (17) and ( 26) the minimum thread radius can be shown to vary with
time to breakup as

himin(t) = doT" (29)

Equations (28) and (29) along with the value of ¢y obtained from numerical solution of the
complete slender-jet equations will provide one of several ways to calculate the value of § in
section 5.1.

Eq. (22) represents the balance between capillary and viscous forces, assuming that
inertial force is small. This regime is henceforward referred to as the viscous power law or
the VP regime. The validity of the assumption that inertia is negligible can be checked only
if the value of ¢ is known. However, it is well-known from the pinch-off of Newtonian jets
that neglecting inertia is asymptotically inconsistent as breakup is approached, and the V
regime gives way to the IV regime. The analogous transition will be more pronounced for
a power law fluid. Hence, inertial effects must be included in the analysis of pinch-off of

non-Newtonian fluids.

4.2 Inertial-viscous power law regime

When inertial, viscous, and capillary forces are all of the same order, Eggers” has shown that
the appropriate characteristic length and time units close to breakup are the viscous length

scale and the viscous time scale. In the present case, these scales are given by I, = i2/po and
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t, = ji3/po?, respectively. Therefore, the appropriately scaled equations governing the axial
velocity and the shape function are virtually identical to eqs. (11) and (12) except Oh in
eq. (11) is replaced by unity. Following the analysis of Eggers [7] for pinching of Newtonian
threads when inertia cannot be neglected, the shape function h(z,t) and the axial velocity
v(z,t) are expected to have the self-similar forms given once again by eqs. (17) and (18)
as 7 — 0. Inserting egs. (17) and (18) in eq. (11) and eq. (12) and enforcing the time
invariance of these equations results in a coupled set of ordinary differential equations for

the scaling functions ¢(£) and (&)

n+1)

/24 (1-n/2)&0 + ' = ¢ /62 + V3" (Jag| ™D gy +2v/3" " o[V g /g (30)

n—y'/2
¢ =0 31
U+ (L /2 ey
with unique scaling exponents
ap=n, a=-nf2, 6=1-—n/2 (32)

When n =1, egs. (30) and ( 31) reduce to the equations governing the self-similar pinch-off
of a thread of a Newtonian fluid in the IV regime [7]. Equation (30) represents the balance

between inertial, viscous, and capillary forces, with all three terms diverging as 7(-"/2=1 as
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7 — 0. Since h ~ 7" and 2’ ~ 7'7"/2 (cf. eqgs. (17), (21), and (32)), both radial and axial
length scales vary as 7%/3 when n = 2 /3. Therefore, the 1-D theory will fail for values of
n below 2/3, as close to breakup the axial length scale will become smaller than the radial
length scale and the thread will no longer be slender. For such cases, a full 2-D theory is
needed for studying the pinch-off dynamics. Discussion of such a theory is outside of the

scope of this paper.

4.3 Determination of similarity solutions

Scaling functions ¢ and v can be determined in one of two ways. The first approach is to
determine similarity solutions directly by solving eqs. (22) and (23) or egs. (30) and (31)
by a shooting method, as done by Eggers [8], Brenner et al. [29], and Papageorgiou [11]
for Newtonian fluids. The second approach, which is adopted in section 5, entails collapsing
profiles of both the bridge shape and the axial velocity in the vicinity of the axial location
where the bridge radius is minimum by rescaling of the transient profiles obtained from
numerical solution of the slender-jet equations, viz. egs. (15) and (12) or egs. (11) and (12),

with the radial and axial scalings deduced in this section.
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5 Results

All the numerical results to be reported in this section have been obtained using the 1-D code
described in section 3 with 25000 non-uniformly spaced quadratic elements. The following

initial condition has been used in all the simulations:
Tz
h(z,0) =1 —acos (T),—L/QSZSL/Q (33)

v(2,0)=0, —L/2<z<L/2 (34)

where 0.2 < a < 0.8 is the amplitude of the initial shape perturbation. Moreover, in all
of the results to be reported, the bridge length L = 5. Simulations have also been carried
out for 2 < L < 9 and it has been shown that the value of L, as expected, has no effect
on the local pinch-off dynamics. The value of the Bond number G equals zero in all the
simulations. Values of all the other dimensionless groups are given in the captions to the

figures that follow.

5.1 Viscous power law (VP) regime

Figure 3 shows the variation of the computed minimum bridge radius h,,;, with time to
breakup 7 for a power law fluid under creeping flow conditions. This figure depicts the
radial scaling behavior for four different values of the power law exponent ranging between

0.7 < n < 1. It is expected from eq. (29) that a pinching bridge of a power law fluid
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undergoing creeping flow will exhibit VP scaling where h,,;, ~ 7". Figure 3 shows that this
is indeed the case when 1 x 107™* < hpi, < 1 x 1072, For each n, the computed results lie
along a straight line with slope n as predicted by the VP scaling theory. For n = 1, hyn
decreases linearly with 7 in accord with the V scaling theory for breakup of a Newtonian
thread [11]. The insets to fig. 3 show bridge shapes close to pinch-off in two situations. As
expected for n = 1 [11], the bridge profile in the vicinity of its center z = 0 is quite slender
and has the shape of a thin thread. However, fig. 3 also shows that both the length of the
thread and the slenderness are lower for n = 0.7 compared to those for n = 1. These effects
can be attributed to shear-thinning of a power law fluid, a point that will be discussed in
detail at the end of this section.

According to the discussion in section 4.1, the value of the axial scaling exponent 9,
which sets the scaling behavior of both the axial velocity, v ~ 7°~!, and the axial length,
z ~ 79, has to be determined using numerical solution of the full slender-jet equations. To
demonstrate the calculation of §, fig. 4 shows the variation with 7 of the axial velocity
and axial distance from the pinch-off singularity at an axial location where h = 2h,,;,, viz.

0.293

Von,.. and (zgp, . — 2,), for n = 0.8. Figure 4 makes plain that (2o, ., — 2,) ~ T and

Vo, ~ T~ 2797 so that both relations predict a value of § of 0.293. It has been confirmed by

direct calculation that the same scalings and the same value of § result if the axial velocity

and the axial length scalings are evaluated at an axial location where h = 3h,,;,, and 5hy ;.
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Moreover, substituting the value of the vertical intercept of A,,;, obtained from fig. 4 in eq.
(28) (cf. eq. (29)) also gives a value of § of 0.293, in accord with VP scaling theory. Figure
4 also shows the variation with 7 of the minimum radius A,,;, and the local viscosity p,,,,

at the axial location where h = h,,;,. The value of u, . decreases with 7 with a slope of

0.2, in accord with VP scaling theory which predicts that pu ~ 717,

The radial and axial scalings obtained in the manner described above can then be used
to compute the scaling functions ¢ and ¢ from numerically calculated local shapes and axial
velocity profiles, respectively. Figures 5 and 6 show the results of numerical calculations that
give the variation of ¢ = h/7™ and ) = v/7°~! with the similarity variable £ = (z — 2,)/7°
in the vicinity of the pinch point where the minimum radius varies as 5.99 X 1073 > A,in >
1.83 x 10™*. These figures show that, there is a very good collapse of profiles for ¢(€), fig. 5,
and (&), fig. 6, onto a single curve, which indicates the convergence of numerical solutions
to the similarity solutions and occurrence of self-similarity. The two insets to fig. 5 show the
global and the local bridge shapes in the vicinity of the pinch point. Similarly, the two insets
to fig. 6 show the divergence with time of the axial velocity fields within bridges both from
a global and a local perspective. The scaling functions ¢ and 1 are even and odd functions,

respectively, about the pinch point, and are qualitatively similar to the scaling functions

computed by Papageorgiou [11] for a viscous Newtonian thread.
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Figure 7 shows the variation of the axial scaling exponent ¢, calculated by three different
methods, with the power law exponent n. In fig. 7, ¢ calculated from the slope of (zop,,., —25)
versus 7 is denoted by d,. The value of § calculated from the slope of vy, , versus 7
is denoted by d,. Finally, values of § calculated by substituting values of ¢q, which are
determined from numerical solution of the full slender-jet equations and tabulated in table
1, into the analytical expression given in eq. (28) are denoted by d.. Figure 7 makes plain
that values of d,, d,, and J. for different n are in excellent agreement when 0.675 < n < 1.
Moreover, fig. 7 shows that as the value of n falls from 1 to 0.675, the value of § rises from
0.175 to 0.405. Similarly, table 1 shows that as n falls, ¢q rises. This effect can be attributed
to the shear-thinning nature of a power law fluid because the lower the value of n is, the
faster are (i) the rate at which the local viscosity p decreases and consequently (ii) the rate
at which the pinch-region thins.

Equation (28) can be rearranged as

1
(V/3a)"="(2n)" ¢y

5= % +(1—2n) (35)

A deeper understanding of the effects of shear-thinning on the axial scaling exponent § can
be gained by treating n and ¢ in eq. (35) temporarily as independent variables.
(1) The effect of the power law exponent n on ¢ can be seen by partial differentiating eq.

(35) w.r.t. n:
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% _ -1
8n_6¢0

{1260+ (20) "(V30)' " [1 + log (2V30m) | } (36)
Since ¢y > 0, the sign of % in eq. (36) depends on the ranges of values of n and «. If the
power law exponent is restricted as 0.15 < n < 1, the power law time constant has to be
a > 1 so that % < 0. If the lowest value of n is decreased below 0.15, the lowest allowable
value of o has to be increased above unity to ensure that % < 0.

(2) The effect of variations in the prefactor ¢y on § can be seen by partial differentiating

eq. (35) w.r.t. ¢o:

9o —1 -n n—1
90s = W(Qn) (V3a) (37)

Since ¢g > 0, eq. (37) shows that aanO < 0forn>0and a> 0.
Further insights into the dependence of the axial scaling exponent 6 on the power law

exponent n can be gained by carrying out a Taylor series expansion of § about its Newtonian

limit, n = 1. Letting, e =1 — n < 1, it can be shown from eq. (35) that

§(1—¢€) =0.175 + [4.634 +16.554 (?) ] e+ O(€) (38)
n=1

n

The higher-order terms in the above expansion involve higher-order derivatives of ¢y w.r.t.
n. Evaluation of eq. (38) requires the calculation of (%)nzl and higher-order derivatives of
¢o w.r.t. n evaluated at n = 1. In order to do so, the data of table 1 are least-square fitted

by a third-order polynomial :
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do3 = —0.2848n° + 1.4023n” — 2.189n + 1.1425 (39)

Values of § calculated in this manner by a third-order expansion in € are denoted by . and
tabulated in table 2. Table 2 shows that values of ¢ calculated by perturbation expansion, J,
and those obtained from computation agree well. The agreement between them can of course
be improved by including higher-order terms in the expansion of eq. (38) but is not pursued
here as the principal goal behind carrying out the Taylor series expansion is to expose the
competing effects of shear-thinning behavior on ¢ rather than providing a fourth method of
quantitatively determining 0.

Figure 7 shows that the agreement between values of the axial scaling exponent ¢ obtained
by the three methods deteriorates for values of n < 0.675. This effect may be attributable
to two causes: loss of local slenderness, as discussed in the next paragraph, and neglect of
inertial terms in the axial momentum balance, as discussed in the paragraph after the next
one.

The local slenderness of a thinning thread at a given time 7 is given by the ratio of the
axial to the radial length scale, viz. h/z' ~ 7"7%. Since § increases as n decreases, thinning
threads become less slender as n decreases from the Newtonian limit of n = 1. Therefore,
when the value of n falls below a critical value, the slender-jet approximation will fail and

a full 2-D theory will be required. Figure 8 shows the scaling function ¢(£) that has been
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calculated numerically for n = 0.7,0.8,0.9 and 1. Figure 8 makes clear that ¢(£) is an even
function for all values of n. Moreover, as n decreases, the shapes become less slender in the
vicinity of £ = 0, in accord with the results of the VP scaling theory.

After calculating ¢ for different values of n, the magnitude of the neglected inertial terms
in the momentum balance can be estimated to test the consistency of the creeping flow
assumption as pinch-off is approached. The ratio of inertial and viscous stresses can be
characterized by a local Reynolds number Re = p9Z/fi. According to the results of section

4.1, the local Reynolds number can be expressed as

Re — p(uiT Nz’ Uiz gsin-o
e = 1 n = . T
(,UZT ) i

20+n—2

= Re,T

where the quantities with the subscripts “z”

denote the initial values of the axial velocity,
axial length, and viscosity, and Re, is the initial value of the Reynolds number. Choosing the
values of v; and z; as those appropriate for creeping flow (cf. section 2), viz. v; = o/, and
z; = R, and setting the value of the initial viscosity equal to the zero-shear-rate viscosity,
viz. p; = fi,, it follows that Re, = Oh 2. For 0.67 < n < 1, it can be seen from fig. 7
that 0.4 > § > 0.175 and therefore —0.57 > 25 +n — 2 > —0.65. Hence, neglect of inertia

is invalid as 7 — 0. Therefore any balance close to pinch-off must include inertial terms, a

fact which has already been shown to be true during Newtonian jet breakup [30].
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5.2 Inertial-viscous power law (IVP) regime

Figure 9 shows the variation of the computed minimum bridge radius A,; with time to
breakup 7 for a power law bridge when Oh = 0.1. This figure depicts the radial scaling
behavior for four different values of n ranging between 0.7 to 1. The dynamical response of
the bridge close to pinch-off is expected to follow IVP scaling where h;, ~ 7" (cf. section
4.2). Figure 9 shows that this is indeed the case when 1x10™% < A,,;;, < 1x1072. For each n,
the computed results lie along a straight line with slope n as predicted by IVP scaling theory.
The insets to fig. 9 show shapes of two bridges, one with n = 1 and the other with n = 0.7,
at two different stages of their evolution. The profiles of both bridges are symmetric about
2, initially but become asymmetric as pinch-off nears. Figure 10 shows the corresponding
variation with 7 of minimum bridge radius A,,;,, axial distance from the breakup singularity

(22n,,,, — %o), axial velocity vgp,, . , and local viscosity pp, .. for a liquid bridge with n = 0.7

and Oh = 0.1. This figure makes plain that Ay, ~ 707, (20n,.,, — 20) ~ T90% vgp,, .~ 77035
and pp, .~ 7%3 which are all in accord with predictions of IVP scaling theory (cf. section
4.2).

The radial and axial scalings obtained in section 4.2 can be used to compute the scaling
functions ¢(£) and ¥(&) from numerically calculated local shapes and axial velocity profiles,
respectively. Figure 11 shows the results of numerical computations that give the variation of

the shape function ¢ = Oh3~2h/7" with the similarity variable £ = Oh'=3"/2(z — 2,) /71~ "/2
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in the vicinity of the pinch point when 2.3 x 1072 > h,,,;, > 7.03 x 10~*. Here the prefactors
of Oh*=2 and Oh'~®"? arise because of the difference in the nondimensionalization of the
equations governing the global dynamics presented in section 2, which uses the rod radius
and the capillary time as characteristic length and time, and that of the equations governing
the local dynamics presented in section 4.2, which uses the viscous length and time scales
as the corresponding characteristic scales (see, for example, the work of Chen et al. [14]).
Similarly, fig. 12 shows the variation of the velocity function ¢ (&) = Oh3/?~2y /77™/2 with ¢
in the vicinity of the pinch point when 1.41 x 1073 > A, > 1.68 x 10~%. Figures 11 and 12
show that there is a very good collapse of profiles for ¢(&), fig. 11, and (&), fig. 12, which
supports that the dynamics close to pinch-off is indeed self-similar. Figure 11 also shows
that ¢(&) is asymmetric about the pinch point which is qualitatively similar to the scaling
function computed by Eggers for a Newtonian thread [8].

Figure 13 shows the scaling function ¢(¢£) that has been computed numerically for n =
0.7,0.8,0.9 and 1. The profile for n = 1 is in excellent agreement with the so called Eggers’s
universal solution for a Newtonian fluid [8]. As discussed in section 4.2 and shown by fig.
13, the local slenderness decreases as n decreases. According to IVP scaling theory, the ratio
of radial to axial scaling varies as 73"/27% (cf. eq. (32)). Therefore, when n = 2/3, close
to pinch-off the local filament shape becomes conical and results in the failure of the 1-D

theory.
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5.3 Change in scaling from VP to IVP

It has been shown at the end of section 5.1 that even in the case of a thinning thread of a high
viscosity fluid initially exhibiting VP scaling, the local Reynolds number does not remain
small for all time and therefore inertia becomes important as pinch-off is approached. It has
subsequently been demonstrated in section 5.2 that the final scaling regime before pinch-off
involves a balance between viscous, inertial, and capillary forces. The value of the minimum
bridge radius A, at which the transition from the initial VP scaling regime to the final
IVP scaling regime occurs can be determined as follows. As shown in section 5.1, the local
Reynolds number in a thinning thread of a high viscosity fluid initially undergoing creeping
flow is given by Re = Re, 721" 2 = Oh~ 272472, Transition from VP scaling to IVP scaling
should occur when Re = O(1). In terms of time remaining to breakup, the transition should
therefore occur when 7 = Res/®™™™ . Since h ~ 7" the value of the minimum thread

radius at the transition is given by

~ Re?/(?—?&—n) — Oh?n/(26+n—2)_ (40)

hmin

Figure 14 shows the variation with 7 of the computed minimum bridge radius b, (294, —

min

2 =5, Figure

Z0)s Von,..., and pyp, . for a power law bridge with n = 0.7 and Oh = Re; !
14 shows that the calculations initially follow dynamics dictated by VP scaling. It follows

from eq. (40), however, that the inertial terms should become important when the minimum
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radius decreases to order Oh 14054 = Rel7/%™ — 15 x 1072, Figure 14 shows that the
transition begins when A, ~ 2 x 1072 and the dynamics thereafter crosses over to IVP
scaling. First, a similar change in scaling has been shown albeit experimentally for a viscous
Newtonian fluid undergoing pinch-off by Rothert et al. [12]. Second, the value of the
minimum thread radius at which the dynamics transitions from VP scaling to IVP scaling
predicted from the computations (cf. fig. 14)) is almost an order of magnitude smaller
than the corresponding value predicted from eq. (40). Chen et al. [14] have shown both
experimentally and computationally that the measured and computed values of h,,;, for

transition from PF scaling to IV scaling for Newtonian fluids also exhibits the same behavior.

5.4 Scaling for a Carreau fluid

Having demonstrated the self-similar behavior of a bridge of a power law fluid during pinch-
off, attention is now turned to the pinch-off dynamics of a liquid bridge of a Carreau fluid.
Figure 15 shows the variation of the computed minimum bridge radius h,,;, with time 7 to
breakup for a bridge of a Carreau fluid with n = 0.2,0.4, and 0.6. All the other relevant
dimensionless groups are given in the caption to the figure. Figure 15 shows that in each
case, hy,in ~ 7" initially, in agreement with results expected of a power law fluid as described
in the previous section. As pinch-off continues, fig. 15 shows that the dynamics undergoes

a transition and the power law scaling regime gives way to a Newtonian scaling regime. In
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the power law regime, the Carreau model is well approximated by eq. (7b) appropriate
for a power law fluid. Similarly, in the final Newtonian regime, the viscosity predicted by
the Carreau model is well approximated by the infinite-shear-rate viscosity [ given by eq.
(7d). The transition from the power law regime to the Newtonian regime occurs when the
magnitude of the viscosity u predicted by both limiting forms of the Carreau model are of

the same order. Therefore, the rate of deformation at the transition is given by

ﬂl/(n—l)

(41)

Ytransition =
(6%

It is noteworthy that for a power law fluid, the maximum velocity gradient in the bridge
diverges as ¥ ~ Ov/0z' ~ 77! for any value of n (cf. section 4). Substituting this result into
eq. (41) yields the following expression for the time 7 before breakup for transition from the
power law regime to the Newtonian regime

.1 o

Ttransition = Vtransition — ﬂl/(n_l) (42)

Figure 15 also shows that the transition occurs first when n = 0.2 followed by n = 0.4 and
n = 0.6, respectively. This trend can be appreciated by noting that eq. (41) or eq. (42) can

be differentiated w.r.t. n to give

d ) BT log B

% (’j/transition) = _;Ytransition%(Ttr‘ms’ition) = (77, _ 1)2 a

(43)

3 99 ransition
Forall 0 < # <1, a >0, and 0 < n < 1, eq. (43) predicts that Trersition > () and

a””a"% < 0. Therefore, the smaller the value of n is, the smaller is the value of Yy.ansition
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and the larger is the value of 7y.4nsition at which the transition will occur, in accord with the
results depicted by the three profiles in fig. 15.

As remarked previously, smaller values of n result in higher rates of shear-thinning.
Therefore, it accords with intuition that, for a fixed value of 3, the fluid with the smallest
value of n shear-thins the fastest and approaches the Newtonian regime the earliest. This
expectation is of course confirmed by fig. 16 which shows the computed variation of the
local viscosity p with the local deformation rate 4 at the axial location where the thread
radius is smallest for the same three Carreau fluids depicted in fig. 15. All three profiles
in fig. 16 show that the viscosity p exhibits a power law behavior at small values of ¥ and
finally approaches the inifinite-shear-rate viscosity # = 0.01 at large values of 7. Table 3
shows the values of Yy ansition a0d Transition Predicted by egs. (41) and (42), respectively, and
order of magnitude estimates for the same quantities obtained from the computed profiles
of u versus 7 in fig. 16 and those of h,,;,, versus 7 in fig. 15. Table 3 makes plain that the
predicted values are in good agreement with the computed values. Hence, eqs. (41) and (42)
provide good a priori estimates of the values of Yy ansition aNd Tyransition for transition from
power law scaling to Newtonian scaling behavior for a Carreau fluid. Examination of the
profiles of bridges near breakup under the conditions of figs. 15 and 16 reveals yet another
interesting consequence of the effect of n on the bridge dynamics. The insets to fig. 15 show

bridge shapes at the incipience of pinch-off when A,,;,, = 1 x 1073, Since the fluid with the
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smallest value of n approaches the Newtonian regime the earliest, it accords with intuition
that the bridge with n = 0.2 forms a slender thread in its middle as pinch-off nears.

Figure 17 shows the variation of the computed minimum bridge radius h,,;, with time
to breakup 7 for a bridge of a Carreau fluid with 8 = 0.1,0.01, and 0.001. All the other
relevant dimensionless groups are given in the caption to the figure. Figure 17 makes plain
that the larger the value of [ is, the sooner the transition occurs from power law scaling to
Newtonian scaling. This trend also can be appreciated by differentiating eq. (41) or eq. (42)
w.r.t. (8 to give

2—n
9 ' . o 1 ﬁm
% (’Ytransition) = _7152ransition%(Ttra”‘giti‘m) == (1 _ ’I’L)

- (44)

Forall0 < 3 <1,a>0and 0 < n < 1, eq. (44) predicts that “T < 0 and
‘9””8"% > 0. Therefore, the smaller the value of (3 is, the larger is the value of Yy .ansition
and the smaller is the value of Tyransition 8t Which the transition will occur.

At a fixed value of n, a Carreau fluid can shear-thin most for the smallest value of 3,
thereby resulting in a delayed transition in a fluid with small § compared to one with large
B. This expectation is of course confirmed by fig. 18 which shows the computed variation of
the local viscosity p with the local deformation rate + at the axial location where the thread

radius is smallest for the same three Carreau fluids depicted in fig. 17. All three profiles

in fig. 18 show that the viscosity p exhibits a power law behavior at small values of 4 and
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finally approaches the infinite-shear-rate viscosity 3 at large values of 7. Table 4 shows the
values of Yiransition a0d Tiransition Predicted by eqs. ( 41) and (42), respectively, and order of
magnitude estimates for the same quantities obtained from the computed profiles of ;1 versus
v in fig. 18 and those of h,,;, versus 7 in fig. 17. Table 4 makes plain that the predicted
values are in good agreement with the computed values. Hence, once again, egs. (41) and
(42) provide good a priori estimates of the values of Yyransition aNd Tyransition foOr transition

from power law scaling to Newtonian scaling behavior for a Carreau fluid.

6 Conclusions

In this paper, a detailed study of capillary thinning of generalized Newtonian fluids has been
carried out to improve the understanding of the role of shear-thinning rheology on the local
pinch-off dynamics. The study has relied on (a) computing numerical solutions to the full
1-D slender-jet equations for a breaking liquid bridge and (b) asymptotic analysis of the 1-D
equations to capture the local pinch-off dynamics for fluids whose rheology are described
by power law and Carreau models. The dynamics of a necking bridge of a power law fluid
undergoing creeping flow is driven by a balance between viscous and capillary forces alone
and exhibits self-similar behavior close to pinch-off. The scaling exponents for the neck

radius and the axial velocity are found to be unique for a given value of the power law
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exponent n. The value of the axial scaling exponent § is determined in several ways using a
combination of numerical solution of the governing 1-D equations and analytical methods.
Values of § determined by the different methods are shown to be in excellent agreement with
one another. The local shapes and axial velocity computed by numerical solution of the full
1-D slender-jet equations without inertia show self-similar behavior. The local shape and
axial velocity profiles are found to be qualitatively similar to ones found by Papageorgiou
[11] in his study of pinch-off of Newtonian jets undergoing Stokes flow.

Furthermore, it is shown here that close to pinch-off, inertia becomes important and alters
the dynamics, just as in the case of Newtonian threads undergoing capillary pinching [8].
The dynamics of a bridge of a power law fluid that is driven by a balance between inertial,
viscous, and capillary forces also exhibits self-similar behavior close to pinch-off. The scaling
exponents are uniquely determined once a self- similar transformation of the governing 1-D
equations is carried out. Once again, the local shape and axial velocity profiles computed by
numerical solution of the full 1-D slender-jet equations show self-similar behavior. Inertia
results in the local shapes near pinch-off becoming asymmetric about the axial location where
the thread radius is a minimum, as in the problem of Newtonian jet breakup [7, 8]. Due
to loss of local slenderness, the 1-D slender-jet equations do not remain faithful to the fluid

physics for values of the power law exponent n < 2/3.

37



For threads of Carreau fluids undergoing capillary pinching, two distinct scaling regimes
are observed. These are an initial power law scaling regime which gives way to a final
Newtonian scaling regime as pinch-off nears. It is shown that the deformation rate and the
time at which the transition from power law to Newtonian scaling occur can be estimated by
simple expressions involving the rheological parameters. The predictions of these expressions
are demonstrated to agree well with those of numerical simulations of the 1-D equations.

There are several areas of future research that can be carried out to extend the analyses
and results presented in this paper. One obvious extension entails computation of similarity
solutions directly from the equations governing the scaling functions ¢ and % in the self-
similar space (cf. egs. (22) and (23) or egs. (30) and (31)) in contrast to the approach
adopted here. The second involves solving the full set of equations governing the dynamics
of capillary thinning of generalized Newtonian fluids, as in YB, albeit using more robust al-
gorithms (see, for example, references [13, 14]) than that used by YB to enable computation
of interface shapes that can overturn prior to rupture. Indeed, such analyses are needed to
resolve the fate of a breaking fluid thread when the interface profile is not slender, as in the

case of a generalized Newtonian fluid with a power law exponent n < 2/3.
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Figure 1: Variation of the dimensionless viscosity u = [i/i, with the dimensionless deforma-

tion rate 4 = &7 for the Carreau model. Here n = 0.2 .
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Gas

Figure 2: Schematic of a liquid bridge of length L held captive between two disks of equal

radii R.
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Figure 3: Variation of the computed minimum bridge radius h,,; with time to breakup
7: radial scaling behavior for bridges of power law fluids of high viscosity with power law
exponents 0.7 < n < 1 under creeping flow conditions. Here a = 0.5,0Oh™' =0, and o = 1.
The data points shown correspond to computational results obtained with the 1-D code.
The straight lines are analytical results from VP scaling theory. The shape insets shown are

the bridge shapes at the incipience of breakup, A, = 1 x 107*, for n = 0.7 and 1.
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Figure 4: Variation of the computed minimum bridge radius h;,, axial distance from the
breakup singularity z = z9p,,,, — 2,, Where zg, . is the axial location where h = 2h,,;,, axial
velocity v = vy, , and local viscosity at the pinch point u = pp, . with time to breakup
T: radial, axial, axial velocity, and viscosity scalings for a bridge of a power law fluid with
n = 0.8 under creeping flow conditions. Here a = 0.5, Oh™! = 0, and o = 1. The data points
shown correspond to computational results obtained with the 1-D code. The straight lines

are analytical results from VP scaling theory.
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Figure 5: Variation with time of the numerically computed local shape h with axial coor-
dinate measured from the pinch-point z — 2z, where both have been rescaled according to
radial and axial scalings appropriate to VP scaling theory: self-similarity of local shapes for
a power law fluid with n = 0.8 under creeping flow conditions. Here a = 0.5, Oh~! = 0, and
a = 1. The data points shown correspond to computational results obtained with the 1-D
code. The top inset shows the global bridge shapes and the bottom inset shows local shapes

in the vicinity of the pinch point at the incipience of breakup computed with the 1-D code.
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Figure 6: Variation with time of the numerically computed local velocity field v with axial
coordinate measured from the pinch-point z — 2z, where both have been rescaled according to
velocity and axial scalings appropriate to VP scaling theory: self-similarity of local velocity
for a power law fluid with n = 0.8 under creeping flow conditions. Here a = 0.5,Oh~! = 0,
and a = 1. The data points shown correspond to computational results obtained with the
1-D code. The left inset shows the evolution in time of the axial velocity globally and the

right inset shows that in the pinch region computed with the 1-D code.
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Figure 7: Variation of axial scaling exponent ¢ with power law exponent n. ¢, is calculated
from axial scaling, ¢, is calculated from axial velocity scaling, and d, is calculated using the
expression given by eq. (28). Here a = 0.5,0h! = 0, and a = 1. All the data points shown

have been obtained with the 1-D code.
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Figure 8: Numerically computed scaling function ¢(§) for pinching bridges of power law
fluids with n = 0.7 — 1 under creeping flow conditions. Here a = 0.5,Oh~! = 0, and o = 1.

The data points shown have been obtained with the 1-D code.
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Figure 9: Variation of the computed minimum bridge radius h,;, with time to breakup
7: radial scaling behavior for bridges of power law fluids of low viscosity with power law
exponents 0.7 < n < 1. Here a = 0.2,0h = 0.1, and a = 1. The data points shown have
been obtained with the 1-D code. The straight lines are the analytical results from IVP
scaling theory. The shape insets shown are the shapes of two bridges, one with n = 1 and
the other with n = 0.7, at two different stages of their evolution when A,,;, = 1 x 107! and

1x 104
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Figure 10: Variation of the computed minimum bridge radius Ay, axial distance from the
breakup singularity z = 294, — 2., axial velocity v = vy, ., and local viscosity u = ps,,,,
with time to breakup 7: radial, axial, velocity, and viscosity scalings for a bridge of a power
law fluid of low viscosity with n = 0.7. Here a = 0.2, 0Oh = 0.1, and o = 1. The data points

shown have been obtained with the 1-D code. The straight lines are the analytical results

from IVP scaling theory.
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Figure 11: Variation with time of the numerically computed local shapes h with axial co-
ordinate measured from the pinch-point z — z, where both have been rescaled according to
radial and axial scalings appropriate to IVP scaling theory: self-similarity of local shapes for
a power law fluid of low viscosity with n = 0.7. Here a = 0.2, Oh = 0.1, and a = 1. The top
inset shows global bridge shapes and the bottom inset shows local shapes in the vicinity of

the pinch-point at the incipience of breakup computed with the 1-D code.
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Figure 12: Variation with time of the numerically computed local velocity field v with axial

coordinate measured from the pinch-point z — 2z, where both have been rescaled according to

velocity and axial scalings appropriate to IVP scaling theory: self-similarity of local velocity

for a power law fluid of low viscosity with n = 0.7. Here a = 0.2, 0Oh = 0.1, and o = 1. The

left inset shows the evolution in time of the axial velocity globally and the right inset shows

that in the pinch region at the incipience of breakup computed with the 1-D code.
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Figure 13: Numerically computed scaling function ¢(§) for pinching bridges of power law

fluids of low viscosity with n = 0.7 — 1. Here a = 0.2, Oh = 0.1, and o = 1. The data points

shown have been obtained with the 1-D code.
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Figure 14: Variation of the computed minimum bridge radius Ay, axial distance from the

breakup singularity z = 294, — 2., axial velocity v = vy, ., and local viscosity u = us,,,,

with time to breakup 7: change in scaling from the VP regime to IVP regime. Here a =

0.2,0h =5, and a = 1. The data points shown have been obtained with the 1-D code. The

straight lines are the analytical results from VP and IVP scaling theories.

57



N i i NYHHI i i NYHHI i i NYHHI i i NYHHI i i NYHHI i i NYHHI i i NL
- A 0 4
1 AV<><>8

10- = AAAV goo -

= A v v o° =

= &° ]

= &0 m

10°k =

= | 1
£ 3

L 107F =

10” =

- n=0.2 =

B n=0.4 ]

i n=0.6 ]

Slope =1
10° =
- | | IIIIIII | | IIIIIII | | IIIIIII | | IIIIIII | | IIIIIII | | IIIIIII | | II:

10° 10 10° 107 T 10t 10° 10°
Figure 15: Variation of the computed minimum bridge radius A, with time to breakup
7: radial scaling behavior for bridges of Carreau fluids of high viscosity with exponents
n = 0.2,0.4, and 0.6. Here Oh = 20,a = 0.5, = 30, and # = 0.01. The data points
shown have been obtained with the 1-D code. The straight lines are the analytical results
from IVP scaling theory. The data show change in scaling from initial power law to final

Newtonian scaling. The shape insets show bridge shapes at the incipience of breakup when

hmin = 1 X 10°.
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Figure 16: Variation of the computed local viscosity p at z = z;,,, with local deformation
rate 4 for bridges of Carreau fluids of high viscosity of different n. Here Oh = 20,a =

0.5, = 30, and = 0.01. The data points shown have been obtained with the 1-D code.
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Figure 17: Variation of the computed minimum bridge radius A, with time to breakup
7: radial scaling behavior for bridges of Carreau fluids of high viscosity of different 3. Here
Oh = 20,a = 0.5, = 30, and n = 0.2. The data points shown have been obtained with
the 1-D code. The data show a shift in transition points for change in scaling from initial
power law to final Newtonian scaling. The shape insets show bridge shapes at the incipience

of breakup when A, =1 x 107°.
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Figure 18: Variation of the computed local viscosity p at z = z;,,, with local deformation
rate 7 for bridges of Carreau fluids of high viscosity of different 3. Here Oh = 20,a =

0.5, = 30, and n = 0.2. The data points shown have been obtained with the 1-D code.
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Table 1: Variation of numerically computed prefactor ¢, with power law exponent n.

Power law exponent (n) | Prefactor (¢y)
0.675 0.2160
0.700 0.2000
0.725 0.1850
0.750 0.1690
0.775 0.1560
0.800 0.1430
0.825 0.1310
0.850 0.1200
0.875 0.1100
0.900 0.1010
0.925 0.0925
0.950 0.0845
0.975 0.0775

1 0.0709
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Table 2: Comparison of the value of the axial scaling exponent calculated by numerical
computations, ¢, with that calculated using a Taylor series expansion, &, for different values

of the power law exponent n.

Power law exponent (n) J e

0.825 0.277 | 0.298
0.850 0.261 | 0.272
0.875 0.245 | 0.251
0.900 0.227 | 0.234
0.925 0.213 | 0.218
0.950 0.202 | 0.205
0.975 0.187 | 0.190

1 0.175 | 0.175
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Table 3: Variation with the Carreau model exponent n of the values of the rate of deformation

and the time remaining to breakup for transition from the power law regime to the Newtonian

regime. Here Oh = 20, 8 = 0.01, and « = 30.

N | Viransition = ﬂl/(;kl) Yiransition (cOmputed) | Tiransition = G/ | Tiransition (computed)
0.2 10.5 O(10') 0.1 o101
0.4 71.8 O(102) 0.014 O(107?)
0.6 3.3 x 103 O(10%) 3% 10 O(107?)

Table 4: Variation with the Carreau model parameter 3 of the values of the rate of defor-

mation and the time remaining to breakup for transition from the power law regime to the

Newtonian regime. Here Oh = 20,n = 0.2, and a = 30.

B | Vransition = w Yiransition (computed) | Tiansition = 71y | Ttransition (computed)
0.1 0.59 O(10°) 1.7 O(10°)
0.01 10.54 O(10) 0.09 o107
0.001 187.45 0(10?) 5.3 x 1073 O(1072)
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