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Abstract

The non-Newtonian flow of dilute aqueous polyethylene oxide (PEO) solutions through micro-fabricated planar abrupt
contraction–expansions is investigated. The small lengthscales and high deformation rates in the contraction throat lead to significant exten-
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sional flow effects even with dilute polymer solutions having time constants on the order of milliseconds. By considering the definitio
elasticity number,El = Wi/Re, we show that the lengthscale of the geometry is key to the generation of strong viscoelastic effects, s
the same flow behaviour cannot be reproduced using the equivalent macro-scale geometry using the same fluid. We observe signifi
growth upstream of the contraction plane, which is accompanied by an increase of more than 200% in the dimensionless extra pre
across the contraction. Streak photography and video-microscopy using epifluorescent particles shows that the flow ultimately beco
ble and three-dimensional. The moderate Reynolds numbers (0.44≤ Re ≤ 64) associated with these high Weissenberg number (0≤ Wi ≤ 548)
micro-fluidic flows results in the exploration of new regions of theRe–Wi parameter space in which the effects of both elasticity and ine
can be observed. Understanding such interactions will be increasingly important in micro-fluidic applications involving complex flu
can best be interpreted in terms of the elasticity number,El = Wi/Re, which is independent of the flow kinematics and depends only on
fluid rheology and the characteristic size of the device.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The high deformation rates achievable in micro-fabricated
devices can result in strong viscoelastic effects even in dilute
aqueous polymer solutions. This is particularly relevant to
lab-on-a-chip[1] and inkjet printing applications, whose
smallest dimensions are on the order of 50�m or less, and
typically utilise aqueous fluids containing low concentrations
of high molecular weight polymers. Common features of
micro-fluidic experiments are very low Reynolds numbers,
low Peclet numbers and the assumption of Newtonian
rheological properties. Very little attention has been given to
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micro-fluidic flows involving non-Newtonian working fluids
with the notable exception of a micro-fluidic flow rectifie
(and related applications) developed by Groisman et
[2,3]. Since most fluids processed in lab-on-a-chip devi
are likely to exhibit a complex micro-structure and exhib
non-Newtonian properties, it is clear that understanding
dynamics of non-Newtonian fluid motion at micromete
lengthscales is both fundamentally and practically releva

The importance of the geometric scale in micr
hydrodynamics has been of particular interest over the p
decade. The validity of the continuum assumption at mic
meter-lengthscales and the influence of surface propertie
the effective boundary conditions at the solid–liquid interfa
have been frequently questioned. As far as the resolutio
current diagnostic techniques permits, it has been establi
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Nomenclature

Dimensionless groups
Re,Recrit, R̃e Reynolds number, critical value and mod-

ified Reynold number (usingwc as character-
istic lengthscale) (–)

Wi, Wicrit, Wiu Weissenberg number, critical value and
Weissenberg number evaluated upstream of
the contraction (–)

El Elasticity number (–)
Ta, Tacrit Taylor number and critical value (–)

Geometric properties
D diameter of tube (m)
Fθ geometric factor for shear stress (conversion

factor in rheometer) (–)
h channel depth (m)
l characteristic lengthscale (m)
Lc contraction length (m)
Lv vortex length (m)
wu, wc upstream channel and contraction widths (m)
z axial distance downstream of contraction plane

(m)
α wall angle (–)
β contraction ratio (–)
χL, χN dimensionless vortex length, Newtonian

dimensionless vortex length (–)
ε = d/R1 ratio of gap to inner cylinder radius in Couette

cell geometry (–)

Dynamic properties
C Couette correction (–)
Q volumetric flowrate (ml hr−1)
s gradient of�P12–Q curve at low flowrates

(kPa/ml hr−1)
v(x) local velocity vector (m s−1)
V̄ average or characteristic velocity (m s−1)
V̄c average velocity in the contraction (m s−1)
V̄u average velocity upstream of the contraction

(m s−1)
δt arbitrary time step (s)
�P, �Pmax dimensionless pressure drop and maxi-

mum value (–)
�P12 total pressure drop across contraction geome-

try between two pressure transducers located
at points 1, 2 (kPa)

�Pen entrance pressure drop (kPa)
γ̇ shear-rate (s−1)
γ̇crit critical shear-rate (s−1)
Tflow characteristic timescale of the flow
ω angular frequency associated with oscillatory

shear tests (rad/s)

Ω1 angular rotation of inner cylinder of Couette
cell (s−1)

�min minimum torque (N m)

Rheological properties
b length of a Kuhn step (m)
c, c* concentration, overlap concentration (wt.%,

ppm)
MW molecular weight (g mol−1)
G′ storage modulus (Pa)
N no. of Kuhn steps in a polymer chain (–)
N1 first normal stress difference (Pa)
Rmax maximum length of a polymer chain (at full

stretch) (m)
φ volume fraction of particles in solution (–)
ηs, ηp solvent and polymer viscosity (Pa s)
η, ηE steady shear and extensional viscosity (Pa s)
[η] intrinsic viscosity (ml g−1)
λ relaxation time determined from CaBER

experiments (s)
λZimm Zimm relaxation time (s)
ρ fluid density (kg m−3)
τ, τw shear stress, wall shear stress (Pa)
Ψ1, Ψ10 first normal stress coefficient, limiting value

asγ̇ → 0 (Pa s2)

Constitutive parameters
a′ exponent in Mark–Houwink relation (–)
K power law coefficient (Pa sn)
n power law exponent (–)
ν solvent quality exponent (ν = (a′ + 1)/3) (–)

Optical parameters
dp particle diameter (m)
e minimum resolvable distance by detector on

image plane (m)
M magnification (–)
n refractive index (–)
NA numerical aperture (–)
δzm measurement depth (m)
δz (or DOF) depth of field (m)
λ0 wavelength of light in a vacuum (m)
θ aperture angle of objective lens (–)

Physical constants
NA Avogadro’s constant (–)
kB Boltzmann constant (J K−1)

that, on micrometer-lengthscales, Newtonian fluids essen-
tially obey the fundamental equations governing macro-scale
fluid flow in the absence of non-conservative forces (e.g.
magnetism and electrokinetics)[4,5]. For geometric length-
scales ofl ∼ O(10�m), the ratio of molecular size/geometry
is still 10−5. However, if we consider the mean radius of
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gyration of a polyethylene oxide (PEO) molecule with molec-
ular weight 2× 106 g mol−1 (Rg ∼ N1/2b � 0.16�m, where
N � 2.21× 104, the number of Kuhn steps of sizeb � 7.37Å),
the equivalent ratio (under equilibrium conditions) increases
by a factor of 1000. If this molecule is extended to its finite
extensibility limit, Rmax∼ Nb, this ratio becomes approxi-
mately 2. It is therefore not surprising that the geometric scale
of micro-fluidic devices will become increasingly important
with non-Newtonian fluids and result in flows (particularly
those involving extension) that are different to those seen
in the equivalent macro-scale experiment[2,3]. This is par-
ticularly relevant in high speed industrial processes such as
roll-coating, electrospraying/spinning and inkjet printing in
which the combination of high velocities and small length-
scales (maximum velocities∼10 m s−1 and orifice diameters
of ∼50�m) for inkjet printers[6]) can result in the onset
of appreciable elastic effects even in low-viscosity aqueous
polymer solutions[7] (typically with viscosities as low as
2–3 mPa s[6]).

A prototypical complex flow geometry that captures a
number of features in an inkjet print head, and which
serves as a benchmark problem for viscoelastic flow sim-
ulations, is the converging entry flow through an abrupt
contraction–expansion. This geometry has been used exten-
sively to study the non-linear flow phenomena associated with
fl les.
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of elastic stresses to inertial effects. It is independent of the
fluid kinematics since bothWi andRe vary linearly with char-
acteristic velocity,V̄c, and represents the trajectory of a set
of experiments with a given viscoelastic fluid through the
Wi–Re operating space. As shear-thinning becomes impor-
tant, the slope of this trajectory decreases because bothη and
λ typically exhibit shear-thinning.

In order to assess previous works on viscoelastic entry
flows, it is useful to evaluate the flow conditions of each
set of experiments in terms of their location in aWi–Re
operating space.Fig. 1 presents the approximate trajecto-
ries followed by Boger fluids and shear-thinning fluids in
Wi–Re space as the flowrate through the contraction geom-
etry is incremented. This figure clearly illustrates the effect
of shear-rate-dependent material functions associated with
shear-thinning fluids. The range of operating space relevant
to specific previous experiments has been summarised in
Table 1. High Wi, low Re regions of this operating space are
typically accessible using highly elastic constant viscosity
Boger fluids, while regions of moderateWi and moderateRe
are characteristic of experiments using semi-dilute or concen-
trated aqueous solutions of a high molecular weight polymer
(such as polyacrylamide (PAA) or polyethylene oxide).

1.2. Brief review of viscoelastic entry flow phenomena

ows
i and
e tion
fl fic
t ref-
e anar
fl

ows
h lanar
c re
c
T city
a een
e k of
C ing
fl nge
o n-
t lting
f hen
r
r used
i iour
c otal
s ents
i -
o s, for
c and
e f
e ted in
T

uid elasticity in converging flows at macro-lengthsca
he resulting vortex growth observed in the flow of hig
lastic dilute polymer solutions (typically with viscos
0 ∼ O(1 Pa s) and higher) is extensively documented
xisymmetric[8–11], and to a lesser degree, planar cont

ions [12–16], for a large number of polymer solutions a
olymer melts. Detailed reviews of works published prio
987 can be found in[17,18], and a brief summary of mo
ecent work is given by Alves et al.[19].

.1. Characterising entry flows: dimensionless groups

In addition to the contraction ratio,β, the key dimension
ess groups used in characterising viscoelastic entry flow
he Reynolds number,Re, and the Weissenberg number,Wi.
he Reynolds number is defined byRe = ρV̄cl/η0, in which
is the characteristic lengthscale (which is typically the c
raction diameter or radius in axisymmetric geometries a
lanar geometries, is either the contraction width,wc or the
ydraulic diameter,Dh = 2hwc/(h + wc)), V̄c is the aver
ge velocity in the contraction throat, andρ andη0 are the
olution density and zero-shear-rate viscosity, respect
lastic effects in the entry flow of a non-Newtonian fluid m
e characterised by a Weissenberg number defined as th
f two timescales,Wi =λ/Tflow, in whichλ is the relaxation

ime of the fluid andTflow is the characteristic residence ti
n the contraction region. This characteristic residence
s approximated byTflow ∼ l/V̄c � γ̇−1

c . It is also helpful to
efine an elasticity number,El, which is the ratio of fluid
lasticity to fluid inertia,El = Wi/Re =λη0/ρl2. The elastic

ty number provides a measure of the relative importa
The work presented here is primarily concerned with fl
n planar contractions that are influenced by both inertia
lasticity. We therefore focus our discussion on contrac
ows at moderate values ofRe andWi, and also those speci
o planar entry flows of dilute polymer solutions. Some
rences will also be made to numerical simulations of pl
ows that incorporate both elasticity and inertia.

The flow structures observed in viscoelastic entry fl
ave been documented by a handful of authors for p
ontractions[12–15,20,21], but have been explored mo
omprehensively for axisymmetric geometries[9–11,22,23].
his is especially true for flows that contain both elasti
nd inertia. For a clear illustration of the interplay betw
lasticity and inertia, the reader is referred to the wor
able and Boger[9–11], who use a number of shear-thinn
uids in axisymmetric contractions to span a wide ra
f the Wi–Re operating space. Although their work co

ains extensive information about the flow structures resu
rom both inertia and elasticity, one should be careful w
elating these (axisymmetric) phenomena to similarWi–Re
egimes observed in planar geometries, such as those
n the present experiments. The vortex evolution behav
an be qualitatively different as a result of the different t
trains and strain-rate histories experienced by fluid elem
n the two geometries[16,24]. Regions ofWi–Re space previ
usly accessed through experiments in both geometrie
reeping flow regimes and also flows containing inertia
lasticity, are shown graphically inFig. 2. Further details o
xperiments carried out in planar geometries are presen
able 1.
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Fig. 1. Representing contraction flow experiments on aWi–Re diagram; using (a) shear-thinning viscoelastic fluids such as concentrated polymer solutions and
(b) Boger fluids consisting of dilute polymer solutions in a viscous solvent. The inclination of the lines gives the elasticity numberEl = Wi/Re =λη/ρl2.

The flow behaviour of inertio-elastic entry flows, such as
those in[9–11], can be categorised into three regimes; vortex
growth, diverging flow and unstable flow.

1.2.1. Vortex growth
The vortex growth behaviour observed in viscoelastic

entry flows has been characterised predominantly in terms
of a dimensionless vortex length,χL = Lv/wu (whereLv

is the vortex length andwu is the upstream channel width
(or diameter), and its evolution with increasingWi [23]. The
principal effect of the geometric change from axisymmet-
ric to planar entry flows is to reduce the size of the salient
corner vortex for the same contraction ratio. An argument
for this behaviour is that the total Hencky strain imposed on
the polymer molecules during the converging flow reduces
with the change from uniaxial to planar kinematics[24].

F pariso iments
i s: (0.3%
ig. 2. Accessing new regions ofWi–Re space through micro-fluidics; com
n micro-fabricated planar geometries (shown by hollow black symbol♦)
n of previous “macro-scale” entry flow experiments with the current exper
PEO, (�) 0.1% PEO and (©) 0.05% PEO).
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Table 1
Summary of previous entry flow studies in axisymmetric (A), planar (P) and square (S) geometries

Author Year Exp./num. Axisymmetric/
planar/square

Contraction ratio Fluid Rheology Wi range Re range Comments

Alves et al. 2004[19] E S 4 0.01–0.05% PAA in
glycerol/water

Ψ1, η, η′, ρ,
G′, G′′, N1

0 <Wi < 0.6 2.72× 10−5 < Re < 0.012 Inertial suppression of vortices and
diverging flow. Vortex growth and
diverging flow beyond criticalWi.
Asymmetric growth and swirling flow at
high Wi.

Nigen and
Walters

2002 E A, P 2, 4, 8, 16, 22, 32,
40

PAA in glucose
syrup/water

G′, G′′, η, ρ No relaxation
time

0 <Re < 0.15 Dimensionless pressure drop > unity
observed for Boger fluid in axisymmetric
contraction (pressure normalised by
pressure drop of a Newtonian fluid of the
sameη0, for the same flowrate). Pressure
drop for Boger fluid equal to the pressure
drop of a Newtonian fluid (of the same
η0), in planar contraction.

Quinzani et al. 1995 E P 4 5% PIB Ψ1, η 0.25 <Wi < 0.77 0.08 <Re < 1.43 No visualisation, centreline velocity
only. Decrease in transient extensional
viscosity with increasingWi.

Chiba et al. 1990, 1992 E P 3.33, 5, 10 0.1–0.5% PAA in
water

η 1.44 <Wi < 16.84 0.49 <Re < 331.3 Rheology of Evans and Walters[12]
used for 0.1% and of Chiba and
Nakamura[26] for 0.5% to calculate
relaxation times. Visualised unstable
streamlines along depth of channel;
Goertler-like vortices.

Evans and
Walters

1986, 1989 E P, S (with and without
contraction angle
<90◦)

4, 16 (planar), 80
(axisymmetric)

0.2–2%PAA in water N1, η 0 <Wi < 4 0.001 <Re < 100 Salient vortex growth observed for
shear-thinning fluid. No vortex growth
for Boger fluid. No lip vortices for both
fluids.

James and
Saringer

1982 E A (converging) Sink flow 5–40 ppm PEO in
water

Not provided 0.3 <Wi < 96 10 <Re < 300 Wi calculated using Zimm time.
Dimensionless pressure drop dependent
on concentration,Re andWi. Unstable
flow patterns.

Walters and
Rawlinson

1982 E P, S 13.33 Boger fluids,
B12–17

η0, λ 0.08 <Wi < 1.81 0.01 <Re < 0.23 Symmetric and asymmetric vortex
growth observed for square contraction
only. No vortex growth observed in
planar contraction.

Alves et al. 2004[57] N P 4, 10, 20, 40, 100 Shear-thinning fluid PTT
(ε = 0.25),
ηs/η0 = 1/9

0 <Wi < 300 Re = 0 Forβ > 10, streamlines in corner vortex
collapse at sameWi/β. Streamlines in lip
vortex collapse at sameWi. Lip vortex
dependent on downstream lengthscales
and salient vortex dependent on
upstream vortices. Upstream lengthscale
important forβ < 10.
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Table 1 (Continued )

Author Year Exp./num. Axisymmetric/
planar/square

Contraction ratio Fluid Rheology Wi range Re range Comments

Alves et al. 2003[25] N P, A 4 Oldroyd-B and PTT Oldroyd-B,
PTT
(ε = 0.25),
ηs/η0 = 1/9

0 <Wi < 1000
(PTT), 2.5
(Oldroyd-B)

Re = 0 Vortex growth for Oldroyd-B fluid in
axisymmetric, vortex reduction in planar.
Newtonian vortex size smaller in planar
than axisymmetric. Vortex growth
observed in PTT fluid for both
axisymmetric and planar, however to a
lesser degree in planar.

Alves et al. 2003[48] N P 4 Constant viscosity,
elastic fluid and
shear-thinning fluid

Oldroyd-B,
PTT
(ε = 0.25),
ηs/η0 = 1/9

0 <Wi < 3
(Oldroyd-B)
0 <Wi < 100
(PTT)

Re = 0 Decreasing salient vortex size with
increasingWi. Model unable to predict
pressure drop (predicts negative Couette
correction coefficient).

Phillips and
Williams

2002 N P, A 4 Oldyroyd-B, with
β > 0.9 for
comparison with
Boger fluids

Oldroyd-B
model

0 <Wi < 1.5 0 <Re < 1 Inertial suppression of vortices observed
for both axisymmetric and planar. Net
vortex growth occurred in axisymmetric
and vortex reduction in planar
contraction.

Alves et al. 2000 N P 4 Constant viscosity,
elastic fluid

UCM 0 <Wi < 5 Re = 0.01 No vortex growth. Vortex size reduces
with increase inWi (constantRe).
Diverging flow at highestWi.

Xue et al. 1998 N P 4 Constant viscosity,
elastic fluid and
shear-thinning fluid

UCM, PTT 0 <Wi < 4.4 0.06 <Re < 0.6 Vortex growth at smallRe = 0.06 for
increasingWi. For higherRe = 0.6, no
salient vortex growth but lip vortex
grows for increasingWi.

Purnode and
Crochet

1996 N P 4 FENE-P (to simulate
dilute PAA in water)

N1, η 0.033 <Wi < 145 3× 10−5 < Re < 6.37 Lip, salient vortex growth, inertial
damping of vortices. Diverging flow at
highestRe andWi. Qualitative agreement
with Evans and Walters aqueous PAA in
planar contractions.

Baloch et al. 1996 N P (contraction), P and
A (expansion)

4, 13.3, 40, 80 PTT fluid with
ε = 0.02 (dilute
polymer solution),
0.25 (polymer melt)

PTT model 1 <Wi < 25 1 <Re < 4 Lip vortices, growing elastic corner
vortices, diverging flow dependent onRe
andWi.
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This is supported by the results of Nigen and Walters[16],
in which no elastic vortex growth was observed in the same
Boger fluid, when changing from an axisymmetric to pla-
nar geometry, for the same contraction ratio. This difference
has also been predicted numerically in planar geometries for
UCM and Oldroyd-B fluids, for which the vortex size at
anyWi is reduced, and also reduces with flowrate, forRe > 0
[25].

On the other hand, shear-thinning fluids, which do not have
a large background solvent viscosity exhibit vortex growth
[12–16,26] in planar contractions, although the degree of
vortex growth is still somewhat reduced when compared
with axisymmetric geometries[25]. This trend has also been
observed numerically for a PTT fluid; the strength, growth
rate and size of the corner vortex are all smaller in a planar
geometry compared with an axisymmetric geometry. This
suggests that the extension rate (and thusWi) is not the only
parameter to be considered in entry flows, especially when
comparing axisymmetric to planar geometries. In addition to
the reduced Hencky strain expected in experiments with pla-
nar geometries, there are also three-dimensional flow effects
due to the finite depth of the channel. This latter effect is
likely to result in discrepancies when comparing experimen-
tal observations in planar geometries with the results of 2D
numerical simulations.

Inertia also has an effect on vortex development. In the
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number may either strengthen or weaken diverging flow
depending on the elasticity number and/or the contraction
ratio.

1.2.3. Unstable flow
Steady two-dimensional viscoelastic entry flows are

observed to become unstable at moderate Weissenberg and
Reynolds numbers in axisymmetric and planar geometries;
however, the spatio-temporal characteristics of the different
flow regimes that result beyond the stability threshold have
been found to be dependent on the magnitude of the elas-
ticity number. For an axisymmetric geometry, it has been
found that moderately elastic solutions experience regimes
consisting of diverging flow with unstable salient vortices,
and regimes with Goertler-like and lip vortices, while for
higher elasticity solutions, instability results in asymmetric
helical flow patterns, azimuthally varying elastic corner vor-
tices and ‘buckling’ flow structures[26]. The “Goertler-like”
vortex regime is also common to 4:1 planar contractions of
high aspect ratio,h/wc > 20 using the same low elasticity
solutions[14,15].

1.2.4. Pressure drop
Currently, the only measurements of the additional or

‘excess’ pressure drop resulting from the flow of aqueous
polymeric solutions through converging dies are those of
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ase of inertio-elastic flows, the vortex growth is trunca
t a critical Reynolds number,Recrit, which depends on th
lasticity of the fluid. ForRe < Recrit, vortex growth is depen
ent only on the rheology of the fluid, while forRe > Recrit,

nertial effects cause a reduction in vortex size, which is o
ccompanied bydiverging flow patterns near the centrepla
f the upstream converging flow[11]. This phenomenon
ost frequently observed in shear-thinning fluids, howev
as also been seen in constant viscosity elastic fluids a
eynolds numbers (Re ∼ O(0.01)), both experimentally (
xisymmetric contractions[27]) and numerically (in plana
ontractions[28]). These prior studies all demonstrate
oth dimensionless variables,Re andWi are independent

mportant in assessing the vortex growth behaviour and i
nce of inertia in the converging flow.

.2.2. Diverging flows
Diverging streamlines upstream of the contraction a

eature of converging flows that are controlled by both e
icity and inertia. A comprehensive illustration of this fl
egime is detailed in work of Cable and Boger[11]. Diverg-
ng flow is usually seen in shear-thinning fluids, since
asier to generate moderate values ofRe, however flow pat

erns characteristic of the early stages of this regime
lso been observed in the circular entry flow of Boger

ds, at Reynolds numbers as low as 0.04[27]. Diverging flow
tructures have also been predicted numerically in the
nce of both elasticity and inertia, for shear-thinning flu
epresented by the PTT[29] or FENE-P[30] models. At a
onstant, non-zero value ofRe, increasing the Weissenbe
ames and Saringer[31] and Groisman and Quake[3]. The
easured pressure drop can be scaled with the correspo

alue obtained using a Newtonian fluid at the same Reyn
umber to give a dimensionless pressure drop,�P (Re). Gro-

sman and Quake measure a dimensionless pressure
P� 1 for Wi � 2 andRe � 1, which increases to a ma

mum value of�P � 6.7 at Wi � 5.2, Re � 3. James an
aringer[31] measure an enhanced pressure drop be

hat expected for a Newtonian fluid in hyperbolically c
erging channels, in which the minimum channel diam
s 130�m. This enhancement develops beyond a cri
train rate, and is influenced by both the polymer con
ration and Reynolds number, such that the influenc
nertia is reflected in the shape of the�P–γ̇ curve. To ou
nowledge, James and Saringer[31] and Groisman et a
2,3] have published the only studies of converging fl
f dilute polymer solutions at sub-millimetre-lengthsca

n the case of James and Saringer[31], the motivation fo
heir choice of lengthscale was to minimise inertial effe
t high strains when studying dilute solutions of aque
EO (MW = 8× 106 g mol−1) whose concentrations rang
etween 5 and 40 ppm (0.02c* < c < 0.13c* ). Their experi
ents covered the range, 10 <Re < 300 and 0.3 <Wi < 96, for
hich they report a number of stable, unstable and rot
ortex flow regimes. The micro-fluidic flow rectifier dev
ped by Groisman et al.[2,3] was also used to investiga

he non-linear dynamical effects observed in dilute aqu
AA solutions. Their measurements illustrate elastic vo
rowth upstream of the contraction plane, and non-linea

n the global pressure drop–flowrate relationship.
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In the present work, we investigate the flow of
dilute and semi-dilute polyethylene oxide solutions
(0.58 <c/c* < 4) through micro-fabricated planar abrupt
contraction–expansions of contraction ratio,β = 16. Exper-
iments are performed over a range of Weissenberg and
Reynolds numbers (0≤ Wi ≤ 548, 0.44≤ Re ≤ 64), in a
region of Wi–Re parameter space that has previously been
unexplored, as we illustrated schematically inFig. 2. We
investigate the competing effects of inertia and elasticity
on vortex growth and the structure of flow instabilities in
the micro-contraction flows. Video-microscopy and streak
imaging with 1.1�m diameter epifluorescent seed particles
are used to characterise the steady flow kinematics upstream
of the contraction for both a Newtonian fluid and three
aqueous polyethylene oxide solutions. The pressure drop
is measured over a section of the channel containing the
abrupt contraction–expansion, in order to quantify the extra
pressure drop arising from viscoelastic effects in each of the
solutions. The inverse dependence of the elasticity number
on the lengthscale of the geometry makes it possible to attain
high values ofWi andEl using semi-dilute aqueous polymer
solutions in micro-fluidic devices; conditions not typically
accessible in the equivalent macro-scale experiment.

2. Experimental

2

la-
n annel
w
2 ,
h rtex

Lv is used to define the dimensionless vortex lengthχL =
Lv/wu. Channels were fabricated in polydimethylsiloxane
(PDMS) using soft-lithography and SU-8 photo-resist molds
(Microchem NANOTM Su-8-50, www.microchem.com),
which were fabricated using standard photo-lithographic pro-
cedures[32,33]. The SU-8 molds were fabricated using
a high-resolution chrome mask (Advance Reproductions,
www.advancerepro.com) together with a contrast enhancer
(Shin-Etsu MicroSi CEM 388SS,www.microsi.com) and
barrier coat (Shin-Etsu MicroSi CEM BC 7.5). The con-
trast enhancer is an opaque photo-bleachable material, whose
exposed regions become more transparent over time. It is
applied between the mask and photo-resist to effectively
absorb low intensity light (refracted light) while transmitting
direct light in open regions through to the photo-resist. This
results in sharp features at the contraction entrance and near-
vertical channel walls along the entire length of the channel
as illustrated inFig. 4a–c. PDMS channels and microscope
cover slips (170�m thickness) are plasma treated in air (75 W,
700 mTorr) for approximately 40 s and then brought into con-
tact to achieve a covalently bonded interface that is resistant
to separation at high pressures. Further details of the chan-
nel design and fabrication procedure are found elsewhere
[34].

Pressure taps were integrated into the device at axial
locations 3 mm upstream (7.5 upstream channel widths)
a er to
m
o the
N o a
c para-
t eam
a rates
s e

F expanw d
h

.1. Channel geometry and fabrication

In Fig. 3, we illustrate the dimensions of the 16:1:16 p
ar abrupt contraction–expansion with an upstream ch
idth, wu = 400�m, downstream contraction width,wc =
5�m, contraction length,Lc = 100�m and uniform depth
= 50�m. The detachment point of the salient corner vo

ig. 3. Schematic diagram of the planar micro-fabricated contraction–
is the uniform depth of the channel.
nd 3 mm downstream of the contraction plane, in ord
easure the differential pressure drop,�P12 as a function
f flowrate for each of the polymer solutions and for
ewtonian fluid. Inlet and outlet ports for connection t
onstant displacement-rate syringe pump (Harvard Ap
us PHD2000) were located an additional 7 mm upstr
nd downstream of the pressure taps. Volumetric flow
panning the range 0.1≤ Q ≤ 18 ml h−1 were used in th

sion;c is the contraction width,wu the upstream width,Lv the vortex length an

http://www.microchem.com/
http://www.advancerepro.com/
http://www.microsi.com/
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Fig. 4. SEM images of the 16:1 planar contraction: (a) plan view of the contraction–expansion geometry, (b) a “polymer’s eye-view” as it enters the entrance
region and (c) optical micrograph of the micro-channel cross-section, illustrating the high wall angles (87◦ <α < 92◦) upstream of the contraction plane.

present experiments. This gives characteristic deformation
rates, 1800< γ̇ = 2V̄c/wc < 3.2 × 105 s−1.

2.2. Fluid rheology

Three aqueous solutions containing 0.05, 0.10 and 0.30%
polyethylene oxide (2× 106 g mol−1) were used in this work.
For brevity, we henceforth denote these compositions by 0.05,
0.1 and 0.3%, respectively. The rheological properties of
these solutions are given inTable 2. The characteristic relax-
ation times reported in the table were measured using capil-
lary breakup extensional rheometry (CaBER)[35], and vary
over the range of 0.7 <λ < 4.4 ms. Using the capillary thin-
ning method, reproducible and reliable measurements of the
relaxation time of these semi-dilute, low-viscosity solutions
can be obtained, however the values show a weak dependence
on the geometric configuration of the CaBER instrument[35].
Following the nomenclature of[35], an aspect ratio ofΛ = 1.6
and an initial gap height of 2.7 mm ensured maximum repro-
ducibility.

All measured values of the relaxation time were greater
than those predicted according to Zimm theory, in which the
relaxation time is given by[36]:

λZimm = F
[η]MWηs

NAkBT
. (1)

H -
s r-
a
c his

T
R
1

F

R
Z
D
c
c
P
P

T

has been determined experimentally to be [η] = 0.072M0.65
W

by Tirtaatmadja et al.[36]. This gives [η] = 897 ml g−1 for
a molecular weight of 2× 106 g mol−1. The prefactor,F, is
given by the Riemann Zeta function,ζ(3ν)−1 = ∑∞

i=11/i3ν,
in whichν is the solvent quality exponent which is calculated
from the exponenta′ = 3ν − 1 in the Mark–Houwink rela-
tion. For PEO,a′ = 0.65[36] and henceν = 0.55. The overlap
concentration,c* , is calculated according to the expression
of Graessley[37], which givesc* = 0.77/[η] = 858 ppm for
these solutions. With a front factorF = ζ(1.55)−1 = 0.463,
we calculate a Zimm time ofλZimm = 0.341 ms, significantly
lower than the measured relaxation time,λ = 1.2 ms, for the
0.05% PEO solution (c/c* = 500/858 = 0.58). As the poly-
mer concentration increases, the relaxation time determined
from capillary breakup measurements also increases. Simi-
lar trends have been documented in other capillary breakup
experiments[38,39]. The concentration dependence of the
shear rheology of numerous aqueous polymer solutions has
also been investigated in detail by Tam and Tiu[40] and
Kalashnikov[41].

The steady shear viscosities of the solutions used in the
present study were determined using a controlled stress
rheometer (AR2000) with a double gap Couette cell at shear-
rates, 1≤ γ̇ ≤ 104 s−1 with zero-shear-rate viscosities rang-
ing between 1.8 <η0 < 8.3 mPa s. The shear viscosity for each
fl
t high
d oxi-
m iven
i

ea-
s flow
i vis-
c ing to
a e
o iven
i

T

i
w lds
n

ere,MW is the molecular weight,NA the Avogadro’s con
tant,kB the Boltzmann’s constant,T the absolute tempe
ture,ηs the solvent viscosity and [η] is the intrinsic vis-
osity given by the Mark–Houwink relation; for PEO, t

able 2
heological properties of solutions containing PEO ofMW = 2×
06 g mol−1

luid property (at 20◦C) 0.05% PEO 0.1% PEO
in water

0.3% PEO
in water

elaxation time,λ (ms) 0.7–1.2 1.5 4.4
ero-shear viscosity,η0 (mPa s) 1.8 2.3 8.3
ensity,ρ (g cm−3) 0.996 0.996 0.989

/c* 0.58 1.16 3.49
* (wt.%) 0.086 0.086 0.086
ower law exponent,n 0.97 0.977 0.88
ower law coefficient,K (Pa sn) 0.002 0.0025 0.0132

he Zimm relaxation time is evaluated to beλZimm = 0.341 ms.
uid, as a function of shear-rate, is shown inFig. 5. All
hree solutions were found to be mildly shear-thinning at
eformation rates, exhibiting power law behaviour. Appr
ate power law constants for each of the fluids are also g

n Table 2.
The upper limit on the viscometric data that can be m

ured in the rheometer is constrained by the onset of a
nstability. This is manifested as an apparent increase in
osity at high shear-rates, and can be predicted accord
linear stability analysis[42]. For a Newtonian fluid, th

nset of inertial instabilities in the couette geometry is g
n terms of a critical Taylor number

acrit ≡ 2Re2ε = 3400, (2)

n which Re is the Reynolds number andε = d/R1, d the gap
idth andR1 is the radius of the inner cylinder. The Reyno
umber is defined asRe = ρΩ1R1d/η(γ̇), in whichΩ1 is the
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Fig. 5. Steady shear data for 0.05, 0.1 and 0.3% PEO solutions and de-ionised
water: (· · ·) minimum torque�min, (–· –) 20× minimum torque 20�min and
(- - -) onset of Taylor instabilities.

angular rotation of the inner cylinder,ρ the density of the
fluid andη(γ̇) is the shear-dependent viscosity. Substituting
this expression for the Reynolds number into Eq.(2), and
using valuesR1 = 22 mm,d = 0.38 mm,ρ � 1000 kg m−3, the
criterion for onset of inertial instability can be rearranged in
the following form:

η(γ̇) = 5.02× 10−7γ̇, (3)

with η in Pa s anḋγ in s−1. This equation is represented by
the dashed line inFig. 5and is in reasonable agreement with
the data.

Alternatively, if we apply the criterion for a purely
elastic instability, given by [ε1/2Wi]crit = 5.92 [42], where
Wicrit = λγ̇crit and γ̇crit is determined experimentally from
Fig. 5, the longest relaxation time would appear to increase
(3.6 <λ < 9.7 ms) with decreasing concentration (for the same
solvent viscosity). The source of the instability observed at
high shear-rates inFig. 5, therefore appears to be attributable
to inertial effects.

The low shear-rate limit of the viscometric data is deter-
mined by the minimum torque associated with the instrument,
which is given by the manufacturer as�min = 10−7 N m [43].
Using the applicable geometric factor and stress factors for
the double-gap Couette cell, the minimum shear stress mea-
surable by the instrument is given by (ηγ̇)min = Fθ�min,
w
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c
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a time

constant obtained from repeated experiments wasλ̄0.05 =
1.2 ms. The relaxation time for the 0.05% PEO solution,
used in computingWi has been adjusted from this exper-
imentally measured value. Essentially, the relaxation time
has been adjusted downwards toλ = 0.7 ms so that the onset
of inertio-elastic instabilities in the micro-fluidic converg-
ing channels occurs at the sameWi for all three solutions.
Measurements with the 0.1 and 0.3% PEO solutions inde-
pendently give a critical Weissenberg number,Wicrit � 50,
for the onset of elastic instabilities without any relaxation
time adjustment. Flow visualisation studies showed that the
onset of elastic instabilities for the 0.05% PEO solution
occurred at higher deformation rates, corresponding to a
markedly higher critical Weissenberg number, if we chose
λ = 1.2 ms. We therefore argue that the real relaxation time
of the 0.05% PEO solution is below the lower measurable
limit of our current capillary breakup apparatus. One possible
choice of presentation would be simply to report dimen-
sional values of the critical shear-rates observed in the 0.05%
solution. However, to be consistent with our presentation of
results for the 0.1 and 0.3% fluids we have instead cho-
sen to adjust the relaxation time by a constant factor of
(Wicrit)0.1,0.3/(Wicrit)0.05= 50/85 = 0.58, resulting in a value
of λ = 0.581× 1.2 ms = 0.7 ms. This adjustment results in the
onset of elastic instabilities in the planar contractions occur-
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hich is equivalent to the inequalityη ≥ Fθ�min/γ̇, with
θ = 2976 m−3. This bound is given by the lower left-ha
orner ofFig. 5.

Due to the low viscosity of these solutions, small am
ude oscillatory shear measurements of the elastic st
odulusG′(ω) could not be performed successfully and

esult, we could only evaluate the longest relaxation timλ
hrough capillary breakup experiments. At the lowest c
entration (500 ppm) even capillary thinning and brea
xperiments become difficult to resolve. The thread t
nd breaks within 20–40 ms. The mean value of the
ing at the same value ofWicrit = 50 for all solutions. Th
orrectness of this adjustment and the shape of the bou
etween elastically stable and unstable flow is a subje

urther research.

.3. Flow visualisation

The fluids are seeded with 1.1�m diameter fluoresce
articles (excitation/emission = 520/580 nm) at a conce

ion of 0.02 wt.%. For neutrally buoyant particles, this c
esponds to a volume fraction ofφ = 2× 10−4, for which we
xpect a negligible increase in viscosity according to the
tein expressionη =η0{1 + 2.5φ}= 1.0005η0. In Fig. 6, we
how the optical set-up for the streak imaging experim
10× 0.3NA objective lens is used in conjunction with

ull-field continuous illumination mercury lamp at 532 nm
For an imaging system with numerical aperture, NA, m

ification,M, refractive index,n, wavelength of imaged ligh
in a vacuum),λ0, and minimum resolvable feature sizee,
he depth of field (DOF) is given by[44]:

z = nλ0

(NA)2 + ne

(NA)M
(4)

rovided e/M > dp. Here, dp is the particle diameter. F
ur system, withn = 1.33,λ0 = 580 nm, NA = 0.3,M = 10×,
= 6.8�m, we findδz = 3�m.

Although the depth of field of the imaging system its
s only 3�m, this is misrepresentative of the true depth
he image plane on which streak lines are observed. Th
depth of measurement’ is calculated according to the th
f [44], who originally developed the analysis for calculat
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Fig. 6. Flow visualisation set-up and pressure tap location (P1, P2); fluorescence microscope imaging of 1.1�m particles using a long exposure to generate
streak images (‘plan view’). The ‘side view’ of the channel illustrates the location and depth of the measurement plane (δzm), compared with the nominal depth
of field (DOF) associated with the 10× 0.3NA objective.

the measurement depth,δzm in particle image velocimetry.
The depth of measurement is given by:

δzm = 3nλ0

(NA)2 + 2.16
dp

tanθ
+ dp, (5)

in whichθ = sin−1 (NA/n). In this expression, the three terms
on the right-hand side of the equation, from left to right, repre-
sent the components associated with diffraction, geometrical
shadow and the size of the particle. The additional factor of
3 in front of the diffraction term is selected according to the
intensity cut-off value for which light intensity contributes
to the measurement. This value is experimentally verified in
[44]. For our particular optical setup,δzm = 29.7�m, and thus
corresponds to 60% of the depth of the channel. It is expected
that this value is a better estimate of the depth over which par-
ticles contribute to the observable streak lines than using the
DOF, which only accounts forin focus streamlines.

Streak images are acquired on a 3.5 MP Apogee CCD
camera (2184× 1472 pixels) with a 30 ms exposure time.

The transient behaviour (i.e. start-up, shut-down and fully
developed unstable flow regimes) of the flow in the micro-
contraction was also captured using a Pulnix CCD camera
(768× 494 pixels) at a frame rate of 29.97 fps and exposure
time of 16 ms. Although sequences from these movies have
not been included in this paper, they are provided as support-
ing material online (http://web.mit.edu/lerodd/www).

2.4. Pressure drop measurements

Pressure measurements are taken via two pressure taps,
which are located upstream and downstream of the contrac-
tion plane, as depicted inFig. 6. The two pressure taps (stain-
less steel tubing, o.d. = 0.71 mm) are connected via 0.7 mm
i.d. flexible Tygon tubing to a Honeywell 26PC differential
pressure sensor. Three pressure sensors were used to cover a
differential pressure range of 0 <�P12 < 200 kPa. The volt-
age output of each of the sensors was calibrated for the
differential pressure range 0 <�P12 < 30 kPa using a static

http://web.mit.edu/lerodd/www
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Fig. 7. (a) Calibration data for three differential pressure sensors, able
to measure maximum differential pressures of: (�) �P12 = 34.5 kPa, (�)
�P12 = 103 kPa and (�) �P12 = 207 kPa. These are denoted in the legend
by nominal ranges of 5, 15 and 30 psi, respectively. (b) Transient pressure
response of the system for increasing flowrates (0–6 ml h−1). Flowrates from
the syringe pump are increased 1 ml h−1 every 5 min. Measurements are
performed using a Newtonian fluid consisting of 55% glycerol and water
(η0 = 8.59 mPa s) in a 400:25�m contraction. The system response time is
on the on the order of 5 min at the lowest flowrates, but decreases as the
flowrate and pressure increases.

column of water. For higher pressures, the sensors were cal-
ibrated using a pressurised nitrogen line and independently
calibrated digital pressure gauge. The calibration curves for
each of the pressure sensors are given inFig. 7a.

In each of the steady-state experiments, the transient pres-
sure was recorded for a duration of approximately 3–5 min
after the inception of flow (or after a step increase in flowrate).
The flowrate was increased incrementally, to achieve a range
of steady-state pressure drops corresponding to flowrates,
0.1 <Q < 18 ml h−1. The transient responses associated with
each of these step increases in flowrate, are illustrated in
Fig. 7b. The response time of the system is much longer
than the relaxation time of the polymer solutions or the con-
vective time scale of the flow. This timescale is dependent
on the deformability of the fluid channel and compressibility
in the pressure tap tubing, resulting from small amounts of
trapped air[45]. For micro-fluidic flows such as those con-
sidered here, the volume of fluid in the tubing and pressure

sensor is greater than that in the flow channel of interest. In
particular, any air bubbles present near the pressure sensor
membrane are likely to occupy volumes that are comparable
to, if not greater than, the volume of micro-fluidic channel.

Transient pressure measurements indicate that the time
taken to reach steady-state is also dependent on the angular
velocity of the syringe pump gearing for sufficiently small
flowrates. Small volume syringes, which use higher rotation
speeds for the same flowrate, require less time to reach a
steady-state pressure measurement. This is consistent with
the analysis of Dealy[46] for weakly compressible flows
of polymer melts from reservoirs. The steady periodic mod-
ulation of the pressure drop measurement about the mean
steady-state value can be seen inFig. 7b and is also depen-
dent on the rotation rate of the syringe pump. The pressure
drop for each flowrate is taken as the mean steady-state value
of these fluctuating values.

2.5. Dimensionless parameters

2.5.1. Dynamic flow parameters: elasticity and inertia
The dynamics of the flow through the micro-scale geome-

tries are characterised by the following dimensionless quan-
tities: Weissenberg number (Wi), Reynolds number (Re) and
elasticity number (El) which are defined according to Eqs.
(6)–(8). The Weissenberg number is defined in terms of the
a

W

i
t f
t ds
n

R

i ty
a
F

E

A um-
b erse
s . It is
c t
o , the
e .1
a from
E to
z metry
i a
v las-
t ity
a rac-
verage shear-rate,γ̇c in the contraction throat:

i = λγ̇c = λV̄c
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= λQ
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, (6)

n whichλ is the relaxation time of the fluid,̄Vc = Q/(wch)
he average velocity,wc the contraction width,h the depth o
he channel andQ is the volumetric flowrate. The Reynol
umber is

e = ρV̄cDh

η0
= 2ρQ

(wc + h)η0
, (7)

n which ρ is the fluid density,η0 the zero-shear viscosi
nd the hydraulic diameter is given byDh = 2wch/(wc + h).
inally, the elasticity number is

l = Wi

Re
= 2λη

ρwcDh
= λη(wc + h)

ρw2
ch

(8)

s we have noted in the introduction, the elasticity n
er,El is dependent only on fluid properties and the inv
quare of the characteristic lengthscale of the channel
onstant for a given fluid and geometry, i.e.El is independen
f the kinematics of the flow. In the present experiments
lasticity numbers areEl = 3.8, 8.4 and 89 for the 0.05, 0
nd 0.3% PEO solutions, respectively. It may be noted
qs. (6) and (7), that Wi and Re are defined according
ero-shear-rate properties. For cases in which the geo
s kept the same (i.e. the productwcDh is held constant),
ariation inEl is a direct measure of the variation of the e
icity of the fluid, provided the relaxation time and viscos
re not rate-dependent. Although it is customary to cha
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terise the shear-thinning effects in entry flows by reporting
the shear-rate-dependent rheological properties of the test flu-
ids, it was not possible to measure the steady shear viscosity
over the full range of shear-rates used in the experiments
2 × 103 < γ̇ < 3.2 × 105 s−1 (seeFig. 5). In addition, it was
not possible to obtain data on the first normal stress differ-
ence for these fluids, leaving the (constant) relaxation time
determined from capillary breakup experiments as the only
directly measurable timescale for the fluid. As a result, the
computed values ofWi andRe increase linearly and without
bound at all flowrates and shear-rates accessed experimen-
tally. We may contrast this with the response obtained from
a more realistic non-linear viscoelastic constitutive equation
such as the PTT or Giesekus models in which the material
functions exhibit a progressive rate-thinning. At high defor-
mation rates,̇γ 
 1/λ, it is common to observe for many
polymeric fluids, that the effective viscosity, normal stress
difference and relaxation time all decrease. As a result, the
rate-dependent Weissenberg numberWi = λ(γ̇)γ̇ increases
with deformation rate more slowly than the Reynolds num-
ber Re(γ̇) = ρV̄cl/η(γ̇). This may be seen very clearly in
the data plotted inWi–Re space inFig. 2. The importance
of this difference between rate-dependent and -independent
material functions for numerical simulations has also been
discussed at length by Boger et al.[47]. For clarity, we fol-
low the approach of Rothstein and McKinley[24] and report
o r-rate
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points ‘1’ and ‘2’ upstream and downstream of the contrac-
tion. In the case of axisymmetric flows with constant viscosity
Boger fluids it is possible to subtract the contribution to the
overall pressure drop that arises from the fully developed
Poiseulle flow in the pipes upstream and downstream of the
contraction[24,49]. However, the three-dimensional nature
of the flow in rectangular micro-fluidic channels, coupled
with shear-thinning in the fluid rheology at high shear-rates
makes this impractical here. We therefore report the total
pressure drop�P12 between the two transducers (located
3 mm upstream and downstream of the contraction plane).
The dimensionless pressure,�P, is obtained by normalising
the differential pressure�P12 by the linear slope of the pres-
sure drop/flowrate curve that is observed in all experiments
at low Wi [16], such that�P(Re, Wi) = �P12/(sQ), where
s = d(�P12)/dQ asQ → 0.

3. Results and discussion

We begin by comparing the flow patterns observed in the
micro-contraction using a Newtonian fluid (DI water) with
those obtained using viscoelastic polymer solutions. We then
systematically compare the vortex size, fluid streamlines and
flow stability in each of the three viscoelastic fluids as a
function of increasing shear rate. Finally, we quantify the
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ur flow parameters in terms of the measured zero-shea
aterial properties. The primary implication of this definit

or the relevant dimensionless operating parameters is th
alculated values ofWi areupper bounds, and actual leve
f fluid elasticity (calculated using rate-dependent mat

unctions) are expected to increase more slowly with de
ation rate. This effect propagates into the calculated v
f the elasticity number, which are also an upper bound.
ifferences between the values of the dimensionless pa
ters calculated based on rate-dependent material fun
nd rate-independent viscometric parameters becomes
ubstantial at high shear-rates and higher polymer conce
ions, for which the material functions deviate increasin
rom the zero-shear-rate properties.

.5.2. Dimensionless vortex length
The dimensionless vortex length,χL = Lv/wu is defined

ccording to the convention in previous macro-scale e
ow experiments[17], to quantify the axial distance upstre
rom the contraction plane at which the primary flow fi
etaches from the channel wall.

.5.3. Dimensionless pressure drop
In computational studies of viscoelastic flow through c

ractions it is customary to report the Couette correctionC =
Pen/2τw [48], in which�Pen is the entrance pressure dr
cross the contraction plane andτw is the wall shear stress

he contraction. In experiments however it is a global pres
rop across the entire geometry�P12 that is most readil
easured by macroscopic pressure transducers loca
 t

imensionless vortex size and the associated increase
ressure drop resulting from the contraction flow.

.1. The effect of elasticity

In Fig. 8, we illustrate a well-known feature of no
ewtonian flows, in which elasticity has theopposite effect

o inertia [50]. Similar trends have also been simulated
arrow ‘slit-like’ planar contraction geometries by Balo
t al. [29]. Here, we compare the flow of the 0.05% P
olution (Fig. 8a) in which the effects of both elasticity a
nertia affect the kinematics, with the flow of water (Fig. 8b)
t the same value ofRe. At low flowrates (Re � 5), the
treak lines appear visually identical in both (a) the 0.0
EO solution (QEl=3.8= 1.25 ml h−1) and (b) the DI wate

QEl=0 = 0.5 ml h−1). In the Newtonian case (Fig. 8b), an
ncrease in Reynolds number toRe = 11 (QEl=0 = 1.5 ml h−1),
esults in a barely perceptible flattening of streamlines o
pstream side of the contraction plane, and the formatio
pair of small “lip vortices” on the downstream side. Th

ortices first appear forRe ≥ 11, and continue to grow un
e � 20 (QEl=0 � 2.75 ml h−1), at which point these isolate

lip vortices’ grow into the stagnant downstream corne
hown in the fourth image ofFig. 8b. The downstream corn
ortices continue to grow and extend downstream in a s
etric fashion for the entire range of flowrates tested u
e = 60 (QEl=0 = 8 ml h−1). This is higher than the predict
nset of a symmetry-breaking bifurcation, which is expe

or Re ≥ 54 according to the two-dimensional simulation
ewtonian planar expansion flows. The onset of this bifu
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Fig. 8. Comparison of Newtonian and non-Newtonian entrance planar entry flows at the sameRe: (a) 0.05% PEO (El = 3.8) and (b) DI water (El = 0) in a 16:1
contraction–expansion for 4� Re � 60. The length of the contraction of the geometry containing the Newtonian fluid,Lc = 200�m is twice that of the geometry
containing the elastic fluid,Lc = 100�m. Flow is from left to right.

tion at the same critical Reynolds number has been predicted
by several other authors using a range of techniques[51–54].

Streak line analysis showed that the flow appeared to be
stable over the entire range of flowrates tested, 0.15 <Re < 60.
The images atRe = 18 and 29 (QEl=0 = 2.5 and 5 ml h−1) are
similar to those observed by Townsend and Walters in their
macro-scale 14:1 planar expansion geometry. Small quanti-
tative discrepancies arise as a result of difference in contrac-

tion ratio and the use of a square cross-section contraction
throat in the work of[55], as compared with our geometry,
which has an aspect ratio (contraction channel width/depth)
of wc/h = 0.5. Rescaling our own values ofRe according to
the contraction width instead of hydraulic diameter yields a
modified Reynolds number̃Re = ρV̄cwc/η = 27, which is in
good agreement with[21]. This emphasises the importance
of choosing appropriate definitions of dimensionless param-
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eters when seeking to make quantitative comparisons with
previous studies.

It should be noted that inFig. 8, the length of the contrac-
tion used for the Newtonian fluid experiments (Lc = 200�m)
is longer than the length of the contraction in the experi-
ments using the 0.05% PEO solutions (Lc = 100�m). The
streaklines that are observed in the viscous Newtonian fluid
downstream of the contraction plane are fully developed and
independent of contraction length. By this argument, pro-
videdLc is kept constant for all experiments with each of the
non-Newtonian fluids (in which fluid memoryis important),
it does not matter what value ofLc is chosen for the New-
tonian fluid (which haszero fluid memory). This is the case
only for streakline analyses, and a constantLc = 100�m has
been used for all pressure drop experiments.

In the case of the 0.05% PEO solution (El = 3.8), the effects
of fluid elasticity are to suppress the formation of downstream
vortices for all flowrates. Only atRe � 50, are the inertial
effects great enough to support downstream vortex growth
(Re = 56,Wi = 212,Q = 14 ml h−1). Upstream of the contrac-
tion, Newtonian-like behaviour is observed up toWi � 60, at
which point the streak lines begin to show significant vis-
coelastic bending in the entrance region (−2wc ≤ z ≤ 0).

This transition between the bending streamlines and vor-
tex growth regimes is depicted more clearly inFig. 9 for
the 0.05% PEO solution. Analysis of the streaklines of the
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in the throat isγ̇c = 2V̄c/Wc � 105 s−1, so that even aque-
ous polymer solutions with small relaxation times experience
significant molecular deformation. Fluid elasticity causes
vortices to grow upstream of the contraction, while suppress-
ing downstream vortices; the latter being a characteristic of
expansion flows of Newtonian fluids.

3.2. The effect of increasing elasticity; El = 3.8, 8.4 and
89

In Fig. 10, we illustrate the evolution of the upstream
flow structure prior to the formation of the elastic corner
vortex in three solutions of varying elasticity; 0.05% PEO
(El = 3.8), 0.1% PEO (El = 8.4) and 0.3% PEO (El = 89). In
bothFigs. 10 and 11, each column documents the sequence of
streak lines associated with a single solution as the flowrate
is progressively increased. The three images in each row
illustrate the streak lines at approximately the same value
of Wi for each solution, but with varying degrees of iner-
tia. The onset of visually discernable elastic effects occurs at
Wicrit � 50, at which point the smoothly converging stream-
lines are replaced by ‘wine-glass’-shaped streamlines, which
are particularly clear in the 0.05% PEO solution. The val-
ues ofWicrit correspond to shear-rates of 59× 103, 33× 103

and 11× 103 s−1 for the 0.05, 0.1 and 0.3% PEO solu-
t ers,
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v nge of
.05% PEO solution indicate that the flow is stable atRe = 18,
i = 68, although the effects of elasticity are clearly evid

n the bending streamlines near the contraction entra
or 19≤ Re ≤ 23, 72≤ Wi ≤ 87, the flow becomes inerti
lastically unstable and unsteady in nature. At sufficie
igh Reynolds numbers and Weissenberg numbers,Re ≥ 4,
i ≥ 91, a large viscoelastic corner vortex forms abrup
nd is bistable; i.e. the vortex may rapidly jump from be

nitially attached to the ‘lower’ surface of the upstream c
raction (as observed in the microscope images) to then
ttached to the ‘upper’ surface as shown inFig. 9atRe = 24.
t higher flowrates, asymmetric vortices continue to g
pstream for 24 <Re < 72 and 91 <Wi < 272.

These results primarily illustrate that significant chan
n the flow kinematics occur upstream and downstrea
he contraction as a result of adding only a small amou
olymer. At a Reynolds number ofRe = 24, the shear-ra

ig. 9. The development of streaklines in the flow of 0.05% PEO (El = 3.8)
ortex growth regimes. For this fluid, this transition occurs over the ra
ions, respectively. At slightly higher Weissenberg numb
7� Wi � 80, the 0.05 and 0.1% PEO solutions unde

nertio-elastic instabilities immediately upstream of the c
raction plane. Further reducing the Reynolds number
onstant Weissenberg number (0.3% PEO) results in i
ilities that are similar in nature and confined to the c
egion around the contraction entrance, however the st
ines are more coherent and show less pronounced in
uctuations.

At Wi � 0 andRe � 9, inertio-elastic instabilities exten
nto the upstream corners of the contraction and enve
arge part of the entrance region (−5wc ≤ z ≤ 0). In con-
rast, the more elastic 0.3% PEO solution (Wi = 78,Re = 0.87)
evelops a small quasi-stable lip vortex. For all three s

ions, the inertio-elastic instabilities are ultimately repla
y quasi-stable upstream corner vortices for 120 <Wi < 270.
hese vortices appear to be stable over extended pe
uch that the mean value of the vortex lengthL̄v has a well

6:1 planar contraction during the transition from the bending streaml
flowrates (4.5≤ Q ≤ 6 ml h−1) corresponding to 18≤ Re ≤ 24 and 68≤ Wi ≤ 91.
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Fig. 10. Effect of the elasticity number; streak images of 0.05% PEO (El = 3.8), 0.1% PEO (El = 8.4) and 0.3% PEO (El = 89) flowing through a 16:1 planar
contraction around the onset of non-Newtonian behaviour, compared at the same value of Weissenberg number, 40� Wi � 80.

defined constant value over time, although the instantaneous
value fluctuates around̄Lv with a frequency that depends on
the speed of the flow.

As the Weissenberg number is increased further, the large
elastic vortices grow upstream in all cases, however the tran-
sient dynamics associated with establishing a stable vortex
position varies systematically from one fluid to another, as
shown inFig. 11. For the least elastic solution (0.05% PEO),
the flow remains asymmetric for all values ofWi attained.
For 120≤ Wi ≤ 170, the upstream corner vortices continue to
grow in size, however their orientation periodically switches
from ‘upper’ to ‘lower’ surfaces. Eventually, forWi ≥ 180,
vortices form in both upstream corners, although they remain
unequal in size. The 0.1% PEO solution displays similar
behaviour, although a quasi-stable, top–bottom symmetric
flow pattern is achieved at a much lower Weissenberg num-
ber (100 <Wi < 120, 12 <Re < 14). In conjunction with this
development, a “diverging flow” regime develops upstream
of the elastic corner vortices, and is clearly evident atWi = 240
as indicated by the broken lines inFig. 11. The flow patterns
of the 0.05% PEO solution upstream of the contraction at
Wi = 272 can also be characterised as “diverging”, although
this divergence is skewed by the asymmetry of the flow. The
0.3% PEO solution displays vortex growth of the same order
of magnitude, although the flow asymmetry is greatly exag-
gerated at highWi.

The precise dynamical mechanism that leads to the devel-
opment of diverging streamlines upstream of the contraction
plane is still unclear. The few numerical simulations that
have predicted diverging flow upstream of the contraction
[28–30,56]have not focussed on this phenomenon in any
detail. However it appears to require the combination of
significant fluid elasticity (Wi > 1), rate-dependent material
functions (such as those predicted by the PTT constitutive
model) and also the effects of fluid inertia (Re �= 0).

The primary effect of increasing the elasticity number is
to increase the stability of elastically induced flow structures
(such as lip vortices). While the nature of the elastic insta-
bility and the magnitude of the vortex length upstream of
the contraction plane is approximately consistent between
the three solutions (for the sameWi), the transient dynamics
associated with the development of these structures depends
on both fluid viscoelasticity and inertia.

3.3. Evolution in vortex length

The streak images presented in Sections3.1 and 3.2have
shown that there are significant changes in the vortex activ-
ity both upstream and downstream of the contraction plane
with increasing flowrate. InFig. 12, we quantify the vortex
growth for all three solutions by plotting the dimensionless
vortex sizeχ as a function of the Weissenberg number. Data
L
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Fig. 11. Effect of the elasticity number; streak images of 0.05% PEO (El = 3.8), 0.1% PEO (El = 8.4) and 0.3% PEO (El = 89) flowing through a 16:1 planar
contraction during vortex growth regime, compared at the same value of Weissenberg number, 215� Wi � 280.

for all three solutions collapse onto the same curve, which
represents an almost-linear relationship between dimension-
less vortex length andWi, although the slope appears to
progressively decrease at highWi. Substantial vortex growth
is only observed forWi ≥ 100. The Weissenberg number is
based on conditions in the downstream contraction throat.
Numerical simulations by Alves et al.[57] show that vor-
tex size characteristics for different contraction ratios can
also be superimposed if flow conditions are referenced to

F
1
a

the upstream tube. For planar 16:1 geometries such as the
present micro-fluidic channels,̄Vu = V̄c/16 andwu = 16wc,
and therefore the Weissenberg number in the upstream tube is
thusWiu = 2λV̄u/wu = Wi/162 and vortex growth appears
to start atWiu � 100/162 = 0.4.

The most appropriate dimensionless measure for corre-
lating elastic effects in planar entry flows is expected to be
in between the values of the Weissenberg numbers evaluated
using conditions in the upstream tube and in the contraction
throat. The elongational component of the velocity gradi-
ent as the fluid approaches the contraction plane is set by
both upstream and downstream geometric conditions. Fur-
thermore, although the flow converges in only one plane,
substantial three-dimensional effects on the velocity field can
be expected in micro-fluidic geometries because of the very
shallow aspect ratio in the ‘neutral’ direction. We therefore
considerWic andWiu to be an upper and lower bound of the
true magnitude of viscoelastic effects in the entry region. For
clarity, we henceforth useWic to characterise the planar entry
flows discussed in following sections.

The primary effect of fluid inertia is to reduce the size
of the upstream corner vortex, and this can be seen most
clearly in cases for which elasticity is not important. In
the current work, the dimensionless vortex length decreases
to a minimum value ofχL = 0.1, which is half of the pre-
dicted valueχL → 0.2 for creeping flows of a Newtonian
fl
0 m-
ig. 12. Dimensionless vortex length as a function ofWi for flow through a
6:1 planar contraction: (�) 0.05% PEO (El = 3.8), (�) 0.1% PEO (El = 8.4)
nd (�) 0.3% PEO (El = 89).
uid through a planar contraction, forβ ≥ 10 [57]. For the
.3% PEO solution, in which a minimum Reynolds nu
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ber of Re = 0.5 was achieved, the minimum vortex length
was 0.18, substantially closer to the creeping flow predic-
tion. Although substantial scatter is observed in theχL–Wi
data for 50≤ Wi ≤ 150, the vortex length in the polymer sec-
tion increases approximately linearly with flow rate. This is
in agreement with previous experiments using shear-thinning
solutions, in which the vortex size has been shown to increase
approximately linearly or logarithmically with Weissenberg
number[12,13]. The degree of shear-thinning that occurs in
these dilute/semi-dilute polymer solutions at the deformation
rates in our experiments is not known quantitatively, however
from the steady shear rheology we would expect that the high-
est degree of shear-thinning would occur in the semi-dilute
0.3% PEO solution (c/c* = 3.5).

It is anticipated that the shear-rate-dependence of the
material functions for the 0.1 and 0.05% PEO solutions is
almost negligible. As a result of the nearly constant shear vis-
cosity of the 0.05 and 0.1% PEO solutions, one may expect to
see parallels between the vortex growth behaviour observed
in the present PEO solutions and the flow behaviour previ-
ously seen for Boger fluids in planar contraction geometries.
We would therefore expect to see at least a reduction in
the vortex growth rate, if not a complete absence of vor-
tex growth for the 0.05 and 0.1% PEO solutions. Our results
therefore stand in contrast to previous results observed both
experimentally[13,16] and numerically for Boger fluids in
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t
u ely,
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downstream of the contraction for a range of flowrates are
presented inFig. 13a. First note that for all flowrates (corre-
sponding toRe < 60) the total pressure drop measured for
water increases linearly withQ. The linear slope of the
pressure drop/flowrate curve at lowQ has been used to nor-
malise differential pressure data in each fluid as shown in
Fig. 13b. Values of the initial gradient (s = d(�P12)/dQ when
Q → 0) used to calculate the dimensionless pressure drop
�P, were 4.33, 1.70 and 1.63 kPa/(ml hr−1) for the 0.3, 0.1
and 0.05% PEO solutions, respectively. The constant dimen-
sionless pressure drop illustrated inFig. 14a for water at all
Re within the range tested, shows that inertial contributions to
the fully developed pressure drop inNewtonian flows through
the 16:1 contraction are negligible forRe < 60. However, pre-
vious work suggests that there is a strong coupling between
inertia and elasticity, such that the effects of inertia on both
the kinematics (i.e. streaklines) and on the dynamics (i.e.
pressure drop) can be seen at Reynolds numbers far lower
than expected from Newtonian fluid analysis[8].

All differential pressure measurements were performed
over approximately the same range of Weissenberg numbers,
0 <Wi < 500 for each fluid. The dimensionless pressure drop
�P = �P12/sQ is shown inFig. 14b. For the most elastic
solution (0.3% PEO),�P asymptotically approaches a value
of 3.5 at highWi. Both the shape and magnitude of the growth
in �P is in agreement with the pressure drop measurements
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lanar contraction geometries[48]. This may be a result o
he very different and shallow aspect ratios (h/wu = 2) nat-
rally obtained in micro-fluidic geometries, or alternativ
ay be related to the higher Reynolds numbers achiev

he present experiments, compared with previous planar
ow experiments with Boger fluids. Both of these possi
ies are subjects of further research.

.4. Pressure drop measurements

The steady-state pressure drop measurements�P12(Q)
btained between two positions 3 mm upstream and 3

ig. 13. Total pressure drop (�P12) vs. flowrate (Q) for the (�) 0.05% P
hrough a 16:1 planar contraction: (a) all data and (b) determining slo
f [24], in which the authors measured an asymptotic v
f �P � 4 in a 4:1:4 axisymmetric contraction–expans
lthough for much lower values ofWi (0 <Wi < 8) and using
PS/PS Boger fluid.
The results for the 0.1 and 0.05% PEO solutions

ore dramatic and show that ahigher dimensionless pre
ure drop is observed in both cases compared with the
EO solution. Again, considering our analogy of the 0
nd 0.1% solutions to Boger fluids, we can highlight
ontrast between the present results and those of N
nd Walters[16], who consistently measure a dimensi

ess pressure drop of 1 for the flow of Boger fluids thro

0.1% PEO, (�) 0.3% PEO polymer solutions and for (�) water flowing
w flowrates for normalising pressure data.
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Fig. 14. Dimensionless pressure drop vs. (a)Re and (b)Wi for: (�) 0.05% PEO, (�) 0.1% PEO, (�) 0.3% PEO and (�) water ((a) only) in a 16:1 planar
contraction.

a planar contraction over their entire range of flowrates and
for a number of contraction ratios 4≤ β ≤ 40. However, they
also observe flow instabilities and bistable corner vortices at
higher flowrates, although this is seen in 20:1 planar contrac-
tion geometries, using high zero-shear viscosity Boger fluids
(16.5 Pa s). The absence of relaxation times for their fluids
makes it difficult to determine meaningful values of the cor-
responding Weissenberg numbers, which would be required
to make adequate comparison with our own results. Elastic
corner vortices were only observed upstream of the contrac-
tion during a flow instability, however a constant value of
�P = 1 was still measured under all flow conditions.

The saturation in�P observed for all three PEO solu-
tions in the current experiments is probably a consequence
of polymer chains reaching their finite extensibility limit.
As full extension is approached, the polymer chains act as
a highly anisotropic viscous fluid, with extensional viscosity
ηE, such that�P ηEε̇ ∼= QηE/(w2

ch). As polymer concen-
tration increases, the mobility of individual polymer chains
is hindered through chain–chain interactions, resulting in
anisotropic drag on the chains and/or an overall reduction
in the finite extensibility of the polymer. Both of these effects
will result in a lower value of the extensional viscosity,ηE.
Of the three solutions, only the 0.05% PEO solution has a
concentration less thanc* , and consequently we find that the
maximum dimensionless pressure drop decreases for increas-
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tions, which were only 0.07c* and 0.13c* ; significantly lower
than the values 0.7c* and 1.34c* for our 0.05 and 0.1% PEO
solutions, respectively. There is no previous work that we
are aware of which presents pressure drop measurements
for shear-thinning polymeric fluids flowing through planar
contractions. In terms of comparing our work with simu-
lations, numerical models are currently unable to correctly
predict the pressure drop in planar geometries[48] even for
shear-thinning fluids, and tend to predict negative Couette
correction coefficients.

3.5. Flow diagnostics

This study represents one of the first detailed studies of
non-Newtonian flow in micro-fluidic geometries. As such,
additional factors should be kept in mind. Firstly, the finite
depth of the imaging system (δzm = 27�m) results in imaging
of particle streaklines over a substantial depth of the channel,
rather than within a single plane. Quantitative 2D imaging
(i.e. by minimisingδzm) is achievable using micro-particle
image velocimetry (�PIV) techniques[58], and will be the
subject of future experiments. The three-dimensional flow
structure and time-dependent nature of the flow also con-
tributes to the multiple streaklines that can be observed in
each image. All of the images forWi ≥ 60 show overlap-
ping particle pathlines. It should be kept in mind that the
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The local maxima in the dimensionless pressure dro

he 0.05 and 0.1% PEO solutions, compared with the pla
bserved for the 0.3% PEO solution, is believed to be a r
f the higher inertial effects in these lower viscosity solutio
his maximum becomes more pronounced and shifts to l
i as the effects of inertia increase. This “inertial” maxim
bserved in the dimensionless pressure drop measure

or the 0.05 and 0.1% PEO has also been observed by J
nd Saringer[31], in their exponentially-converging cha
el experiments using dilute PEO solutions. This behav
as observed most distinctively for theirhighest concentra
s

mages associated with the 0.3% PEO solution are t
ith the same exposure time (16 ms) as the other

ions. Because the flow velocities are substantially sm
he coherence of the streak lines for the 0.3% PEO
ion may therefore be deceiving as they represent a sm
ath length�l = |v(x)| δt than in the faster moving flow

t is also worth noting that the very shallow depths (ty
ally 50�m or less) of the present micro-fabricated ch
els are a characteristic ofall micro-fluidic devices and th
esults in aspect ratios that are substantially different
hose typically employed in macro-scale planar contrac
xperiments.



20 L.E. Rodd et al. / J. Non-Newtonian Fluid Mech. 129 (2005) 1–22

A second imaging artefact is associated with the time reso-
lution of the image capture system relative to the frequency of
vortex size oscillations. Analysis of both single frame streak
images and video-microscopy images led to the conclusion
that the oscillation frequency of the vortex size is dependent
on the flowrate. At low flowrates, instabilities can be resolved
because of the slower frequency and better time resolution of
the local fluctuations. At higher flowrates, the high frequency
of oscillations results in an image that effectively contains
an ensemble average of multiple oscillations. Although the
image will be less defined, as is observed for the 0.1% PEO
solution at high flowrates, the flow feature (e.g. vortex size)
will be less variable between images. On the other hand, the
vortex in the 0.3% PEO solution appears to be more clearly
resolved, although its size is more variable between individ-
ual images.

In addition to imaging artefacts, the integrity of the chan-
nel geometry as well as material build-up in the device also
grossly affect the pressure drop measurements and the asym-
metry of the flow. The asymmetry associated with the 0.1 and
0.3% PEO flows can be affected by small amounts of mate-
rial that have been carried by the flow, and deposited on the
surface of the channel near the contraction throat. Depend-
ing on the amount of deposited material, this can effectively
cause asymmetries in the geometry, resulting in asymmetric
flow. The pressure-driven flow of dilute aqueous PEO solu-
t also
b ction
e O
s min-

utes to hours. The extent of this PEO build-up in the present
experiments has not been determined.

Pressure taps that are mounted flush with a channel wall
are known to cause errors in pressure measurements, due to
a flow disturbance caused by the presence of the hole[45].
These errors consist of both inertial and elastic contributions
for a viscoelastic fluid, and are dependent on the first and
second normal stress differences, and on the shear stress;
all of which are a function of the local shear-rate and rhe-
ological properties of the fluid. In the present experiments
both pressure taps are located upstream and downstream of
the contraction plane in regions of equal cross-sectional area
(400�m× 50�m), and therefore experience the same local
shear-rate. Since the pressure-tap holes are also of equal size,
we expect the hole-pressure error to be equal at both positions.
These errors cancel each other as a result of the differential
measurement.

4. Conclusions

Exploiting the high deformation rates and small length-
scales of micro-fabricated flow geometries makes it possible
to generate very high shear-rates and high Weissenberg num-
bers that far exceed those achievable in traditional macro-
scale entry flow experiments. We have studied the behaviour
o tries
w
a ws in
t onset
ions, particularly at moderate Reynolds number, has
een known to cause a build-up of material at the contra
ntrance[31], resulting in a build-up of “crystallised” PE
trands that would occur on timescales of the order of
Fig. 15. Summary of flow regimes inWi–Re space for semi-dilute
f three dilute and semi-dilute PEO solutions in geome
ith a characteristic lengthscale ofl ≈ 25�m (El = 3.8, 8.4
nd 89), and characterised these micro-scale entry flo

erms of the steady flow patterns observed, and the
aqueous PEO solutions through micro-fabricated geometries.
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of inertio-elastic instabilities (at highWi). Furthermore, the
evolution in the dimensionless vortex length and dimen-
sionless pressure drop with increasing flowrate has been
quantified.

Returning to theWi–Re parameter space that was intro-
duced in Section1, the evolution in the dynamical behaviour
of the three polymer solutions atEl = 3.8, 8.4 and 89 is char-
acterised by the development of a number of specific flow
regimes. InFig. 15, we illustrate these flow regimes, and their
location inWi–Re space. For all three solutions, the onset of
elastic instabilities close to the throat is manifested by the
development of additional streamline curvature and fluctua-
tions in the local velocity at a criticalWicrit � 50. In the case
of high levels of fluid elasticity (El = 89), this is followed
by the development of coherent and stable lip vortices for
50 <Wi < 100, which subsequently develop into asymmetric
viscoelastic corner vortices that continue to grow upstream
for Wi > 100. For lower levels of fluid elasticity, inertio-elastic
instabilities upstream of the contraction plane atWicrit � 50,
replace the lip vortices observed at higher elasticity numbers.
For 100 <Wi < 150, elastic vortices grow steadily upstream.
These vortices are essentially symmetric forEl = 9 but as iner-
tial effects become increasingly important they become tem-
porally unsteady and spatially bistable structures forEl = 3.8.
Diverging streamlines eventually develop forWi > 150, just
upstream of the elastic vortex structures. These appear to be a
c gov-
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