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Abstract

Nonlinear shear and extensional flow dynamics of a wormlike micellar solution based on erucyl bis(2-hydroxyethyl) methyl ammonium chloride
(EHAC) are reported here. The influences of surfactant (EHAC) and salt (NH4Cl) concentrations on the linear viscoelastic parameters are determined
using small amplitude oscillatory shear experiments. The steady and time-dependent shear rheology is determined in a double gap Couette cell,
and transient extensional flow measurements are performed in a capillary breakup extensional rheometer (CABER). In the nonlinear shear flow
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xperiments, the micellar fluid samples show strong hysteretic behavior upon increasing and decreasing the imposed shear stres
evelopment of shear-banding instabilities. The non-monotone flow curves of stress versus shear rate can be successfully modeled in a
ense by using the single-mode Giesekus constitutive equation. The temporal evolution of the flow structure of the surfactant solutions ine
ow geometry is analyzed by instantaneous shear rate measurements for various values of controlled shear stress, along with FFT a
esults indicate that the steady flow bifurcates to a global time-dependent state as soon as the shear-banding/hysteresis regime is reaching
he salt–surfactant ratio or the temperature is found to stabilize the flow, and corresponds to decreasing values of anisotropy factor in t
odel. Finally, we have investigated the dynamics of capillary breakup of the micellar fluid samples in uniaxial extensional flow. The

hinning behavior of the micellar fluid samples is also accurately predicted by the Giesekus constitutive equation. Indeed quantitative
etween the experimental and numerical results can be obtained providing that the relaxation time of the wormlike micellar solutions in e
ows is a factor of three lower than in shear flows.
2005 Elsevier B.V. All rights reserved.
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. Introduction

Surfactant molecules consist of a hydrophilic head group and
hydrophobic tail and under certain conditions they can spon-

aneously self-assemble into long, flexible wormlike micelles in
queous solutions. The structure and rheology of these micelles
re extremely sensitive to surfactant and counterion concentra-

ion as well as to temperature because the individual micelles
re constantly being destroyed and recreated through Brownian
uctuations. Wormlike micellar systems are therefore widely
sed in industry as viscosity modifiers and enhancers[1,2]. They
lso offer potential as drag-reduction additives in district heating
ystems[3]. Recently, wormlike micellar systems have been suc-
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cessfully used in separation of DNA fragments[4] and in form-
ing templates for nanostructures[5]. They are also used as rhe
ogy and flow control agents in petroleum transport system[6].
The main advantage of these liquids for enhanced oil reco
is their ability to undergo dramatic structural changes upon
tacting hydrocarbons, leading to an important drop in “viscos
(after completing its fracturing task, this liquid can be ea
removed from the parts of the fracture contacting with hy
carbon). The fracture cleanup is therefore greatly impro
especially in production zones. The ability to easily formu
the fluid outdoors makes these liquids very attractive and
mercially successful for oil extraction applications[7–10].

A cationic surfactant, erucyl bis(2-hydroxyethyl) met
amomonium chloride (EHAC), has very recently been use
several studies with different counterions (EHAC/NaSal/W
EHAC/NaCl/Water and EHAC/NaTos/Water[11–13]; EHAC/2-
propanol/KCl/Water[14] and EHAC/KCl/Water[15]). Ragha
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van and Kaler[11] have reported that EHAC-based solutions
can form an entangled network of extremely long wormlike
micellar chains and become highly viscoelastic or gel-like with
increasing salt concentration. The ability of these surfactant
systems to form long, polymerlike structures, but with the addi-
tional possibility of breakage and reformation at much lower
scission energy, leads to the terminology of “living” or “equilib-
rium” polymers (for recent reviews on the rheology of wormlike
micelles see Refs.[16–18]). EHAC solutions show robust vis-
coelastic behavior even at high temperatures[11,12]in compar-
ison to other viscoelastic surfactant systems, which is important
in oilfield applications.

The linear viscoelastic rheological properties of these vis-
coelastic wormlike micelles in brine solutions can usually be
characterized, at least at low frequencies, with a single relax-
ation timeλ and they are therefore well described by a simple
Maxwell model. This narrowing of the viscoelastic spectrum is
observed when the micellar breaking timeλbr is short compared
to the diffusion or reptation timescaleλrep of the whole micelle
[19]. Deviations from this monoexponential relaxation behavior
are observed at high frequencies due to Rouse-like behavior of
the micellar segments[20–22].

The nonlinear steady shear rheology of wormlike micelles
shows a much more complex behavior as indicated schemati-
cally in Fig. 1. The dimensionless shear stress (τ* = τxy/G0) is
plotted as a function of dimensionless shear rate (γ∗ = γ̇ λ).
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upturn in the shear stress curve is observed due to an increasing
solvent contribution to the stress in the fluid sample until the
stressτ∗

max is reached again at a shear rateγ∗
2 . The separation of

these two linear regions depends on the solvent viscosity ratio
βs =ηs/η0.

Cates and co-workers[19,23,24]also developed a constitu-
tive equation for micellar solutions based on the reptation model
for steady flows with a stress tensorτ given by:

τ = 15

4
G0

(
W − 1

3
I
)

(1)

whereW is the second moment of the orientational distribution
function[24]. Although this equation is able to predict the max-
imum behavior of the stress, it fails to capture the subsequent
upturn of the stress from the solvent and disentangled chain seg-
ments. However, the nonlinear differential constitutive equation
proposed by Giesekus[25,26], originally developed from a net-
work theory for entangled polymer systems, has proven to give
a very good description of the first stress maximum as well as
the upturn at high shear rates[27,28]. The Giesekus model for
a single relaxation mode can be written as:
(

I + α
λ

ηp
τp

)
· τp + λτp(1) = ηp�̇

�s = ηs�̇

(2)
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he zero shear rate viscosity is given byη0 = G0λ. The stress firs
ises with a slope of unity and then deviates at a shear rateγ∗

1 .
he stress falls with increasing shear rate after passing thro
aximum stressτ∗

maxat a shear rateγ∗
M. This maximum has bee

ttributed by Cates and co-workers (within the scope of rept
heory) to be the maximum stress that a reptating micellar
egment can sustain[19,23,24]. An increasing destruction ra
f the tube segments due to retraction of the wormlike mic
ith further increases in the shear rate results in a falling s
t shear ratesγ∗ > γ∗

M. However, the decreasing shear st
egion cannot persist to infinite shear rates, and eventua

ig. 1. A representative nonmonotonic dimensionless stress-deformatio
elation in shear flow of a wormlike micellar solution.
a

s

n

e

The symbolτp(1) denotes the upper convected derivativ
he stress tensor anḋγ the rate of strain tensor andτ is the tota
tress given byτ = τp + τs. Although the single-mode Giesek
odel is a semi-empirical constitutive equation (incorpora
n adjustable anisotropy factorα), its “spectacularly success
escription of semidilute wormlike micelles”[1] in nonlinear
hear flow makes it a very useful tool in the description of
eported hysteresis behavior of the flow curves in the pre
aper. Recent experiments using another gel-like surfactan

em also show excellent agreement with the predictions o
iesekus model in transient shear flow[29].
If an applied shear rate lies in the regimeγ∗

M < γ∗ < γ∗
m, a

omogenous flow can no longer be stable and the system e
owards a new stationary state, in which the system forms
r more “shear-bands”[30–32]. Thus, a steady shear flow c
nly be supported by separate regions of fluid flowing a
ighγ∗

2 and lowγ∗
1 shear rate limits of the stress plateau reg

ndicated by the dotted line inFig. 1. According to this picture
here is no constraint on the number of band configurations

set of multiple stationary flow states is possible in a s
ate controlled situation. Still, the stress in this plateau re
s uniform throughout the shear-bands and at the interfa
etween bands. In order to select the number and locati

hese bands a higher order theory is required, which incorpo
patial fluctuations across the gap in the number of dens
oncentrations of the micellar species[31–33].

An even more complex rheological response is expecte
he case of a shear induced structure (SIS) formation (su
elation[34] or liquid crystalline phases[35,36]), which can
ccur in a micellar solution. Such dynamical transitions h
een theoretically described by Olmsted and co-workers[33,37]
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and also monitored experimentally by Fuller and co-workers
[38,39].

In the following report we will focus on a relatively new
surfactant system with a pronounced viscosity enhancement
(several orders of magnitude higher than that for comparable
systems) and with unusually rich equilibrium phase behavior.
The corresponding surfactants exhibit both shear-induced phase
separation (SIPS) and nonzero dichroism signal under shear
[13]. In these systems, a slowly increasing shear rate ramp is
expected to result in a stable flow up to the maximum stress
τ∗

max in the plateau level as indicated by the dashed line in
Fig. 1 [24,40]and this typical stress behavior of an up-ramp
shear rate profile has been reported by several authors[41,42].
However, beyond the critical shear rate, the stress level corre-
sponding to the plateau region can lie between the maximum
stressτ∗

max and the stressτ∗
min at the local minimum inFig. 1.

Fischer and co-workers[38,43,44]demonstrated that the dynam-
ics of the inhomogeneous shear-band layers coexisting at such
stress levels could also lead to periodic oscillatory fluctuations of
the stress around this average plateau level. Very recent studies
[39,45–48]have also confirmed that many shear-banding sys-
tems display periodic oscillations and time-chaotic fluctuations
in their bulk rheology, rheo-optics or velocimetry. It may thus
be anticipated that the final stationary stress state of the flow in
the plateau regime is strongly history-dependent and a hystere-
sis between the measured macroscopic behavior upon increasing
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by Anderson et al.[64], using the EHAC system reported on
in the current paper, and with a filament stretching rheometer
by Rothstein[65], who was able to calculate a scission energy
for wormlike micelles in strong extensional flows, supporting
the hypothesis of Chen and Warr[60] for the drop in the exten-
sional viscosity at high rates.

In the present study, we examine the hysteretic behavior of
wormlike micellar fluid solutions in nonlinear shear experiments
upon increasing and decreasing the deformation rate under con-
trolled shear stress conditions for different temperatures and salt
concentrations. We compare these results with the theoretical
predictions of the single-mode Giesekus model using parameters
that are independently determined from linear viscoelastic data
obtained using small amplitude oscillatory flow experiments.
The Giesekus equation is then used to predict the behavior of
wormlike micellar solutions in a uniaxial extensional flow field.
These theoretical results are then compared to experimental
measurements of the transient extensional response of worm-
like micellar solutions determined using the capillary breakup
extensional rheometer (CABER).

2. Experimental

2.1. Apparatus

The oscillatory and steady shear flow measurements were
p T.A.
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nd decreasing the shear rate is expected[49,50]. However, ther
ave been no detailed experiments reported of such pheno
e will examine this hysteretic behavior under controlled st

onditions, for EHAC-based wormlike micellar fluid sample
The extensional flow behavior of viscoelastic worm

icelles has received far less attention than studies of the
heology to date. However, recent reports on flow phenom
ccurring in wormlike micellar solutions, such as rising bub

n micellar solutions[51], falling spheres and flow past sphe
52,53] or filament rupture[54,55] of wormlike micellar solu
ions have taken into account not only the shear flow prope
ut also the steady and transient elongational viscoelastic
rties of the solution.

The first investigations of the apparent extensional visc
f wormlike micellar solutions were conducted by Prudhom
nd Warr[56], Walker et al.[57], Fischer et al.[58] and Lu e
l. [59], using the opposed jet device. They reported a ge

hickening of wormlike micellar solutions with imposed ext
ion rate in contrast to the reported shear thinning beha
n observed drop of the extensional viscosity at high exten

ates was explained by Chen and Warr[60] by micellar scissio
t high rates and supported with measurements of the rad
yration in the extensional flow field of the opposed jet dev
owever, severe problems in the quantitative correlation o
aterial functions determined with the opposed jet device[61]
ave led to other methods for studying extensional flows. Ka
l. [62] used rheo-optical studies in a four roller mill, and Mu
t al. [63] investigated the flow through porous media to m
ure steady elongational viscosities. For robust determinat
he transient elongational viscosity, wormlike micellar solut
ere investigated recently with a capillary breakup rheom
a.
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erformed with an AR 2000 stress controlled rheometer (
nstruments, Newcastle DE, USA) in a double gap conce
ylinder fixture (rotor outer radius: 21.96 mm, rotor inner rad
0.38 mm, gap: 0.5 mm, approximate sample volume: 6.4
nd cylinder immersed height: 59.5 mm). Extensional flow m
urements were conducted in a capillary breakup extens
heometer developed in collaboration with the Cambridge P
er Group (Cambridge, MA, USA). The device holds a fl

ample between circular plates (with radius of 3 mm, initial p
eparation of 2.2 mm). An axial step strain is imposed by
rating the plates rapidly within 50 ms to a final separatio
.6 mm. The midpoint diameter of the fluid filament is monito
sing a laser micrometer with a calibrated minimum resolu
f 20�m. The global evolution of the column profile is a
ecorded with a standard CCD camera. More detailed des
ion about the CABER device is given elsewhere[66–68].

.2. Fluid samples

The surfactant solution, a mixture of erucyl bis
ydroxyethyl) methyl ammonium chloride and iso-propa
25 wt%), is obtained from Schlumberger Cambridge Rese
he fluid samples to be studied were diluted with an appr
te amount of brine solution (ammonium chloride in deion
ater) and stirred to homogeneity for 72 h. The samples are
ept at rest for a time-period of 7 days prior to the measurem

Two sets of fluid samples were prepared to investigate
ffects of EHAC concentration (Csurf) and the molar conce

ration ratio of NH4Cl/EHAC (C* = Csalt/Csurf). For the first se
f six samples the EHAC concentration (54 mM or 2.25 w
as held constant while NH4Cl concentrations were varied fro
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143 mM (0.75 wt%) to 858 mM (4.5 wt%) with increments of
143 mM (0.75 wt%). For the second set of five samples, the
molar concentration ratio of NH4Cl/EHAC was kept constant
(C* = 10.6) and the surfactant concentration was varied from
18 mM (0.75 wt%) to 90 mM (3.75 wt%) with an increment of
18 mM (0.75 wt%).

3. Results and discussion

3.1. Linear viscoelastic behavior of micellar solutions

It is now well known that viscoelastic surfactant solutions can
behave, under certain conditions, like an ideal Maxwell material
with a single characteristic relaxation time,λ, for the whole
system. However, the linear rheological properties of wormlike
micellar solutions depend on the ratio of breaking and reptation
times, denoted

ζ = λbr

λrep
(3)

where the weak micellar structures break and recombine on an
individual timescale denotedλbr. According to Cates and co-
workers[19,20,23,69]a single exponential relaxation is only
observed ifλbr � λrep. In this case the breaking time (the aver-

age lifetime) of the micelles is much smaller than the reptation
time (the diffusion time). Numerous breaking and re-formation
processes occur within the time scale of the overall relaxation
and consequently average out the relaxation process leading to
a pure, monoexponential stress decay. On the basis of reptation
theory[70], Cates[23] developed an expression for this single
relaxation time depending on the breakup and reptation time:

λ = (λbrλrep)
0.5. (4)

The linear viscoelastic (LVE) behavior of complex fluids can
be described in terms of the complex relaxation modulusG*

G∗(ω) = G′(ω) + iG′′(ω) (5)

where the storage modulus,G′(ω), and the loss modulus,G′′(ω),
are expressed for an ideal Maxwell model with a single relax-
ation time by

G′(ω) = G0
ω2λ2

1 + ω2λ2 (6)

G′′(ω) = G0
ωλ

1 + ω2λ2 . (7)

In Fig. 2, we show the remarkable agreement of the exper-
imental data (T = 25◦C) at low and medium frequencies with

F
s
T

ig. 2. The storage moduli,G′(ω), and the loss moduli,G′′(ω), determined in a freq
olutions of: (a)Csurf = 90 mM;C* = 10.6, (b)Csurf = 72 mM;C* = 10.6, (c)Csurf = 54
= 25◦C).
uency range of 0.01–100 rad/s with a constant shear strain of 10% for the EHAC
mM;C* = 10.6 and (d)Csurf = 54 mM;C* = 16 (experiments were performed at
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this single relaxation time Maxwell model. The deviations from
Maxwellian behavior in general start at higher frequencies for
larger values ofCsurf (for constantC* ) and larger values ofC*

(for constantCsurf). The relaxation timeλ and the plateau mod-
ulusG0 were determined from a least squares fit of the Maxwell
model (Eqs.(6) and(7)) to the measured LVE data. This was
done using a Cole–Cole representation of the storage and loss
moduli as shown inFig. 3. In these plots, the loss modulus is
plotted as a function of the storage modulus, and this enables a
more precise determination of the relaxation behavior of samples
than simple frequency sweeps[20]. Semi-circular profiles are
obtained from the Maxwell model and represent the pure mono-
exponential stress relaxation behavior atT = 25◦C. Fig. 3(a)
shows the effect of the surfactant concentration (Csurf) on the
linear viscoelastic behavior for a constant salt–surfactant con-
centration ratio ofC* = 10.6, whereasFig. 3(b) shows the effects
of varying salt concentration at a constant surfactant concentra-
tion of Csurf = 54 mM. The diameter of the semi-circular shape
is a measure ofG0 and is greatly affected by variation inCsurf. A
monotonic decrease in the diameter is obtained with lower val-
ues ofCsurf, rapidly dropping to the lowest value of 0.45 Pa for
the fluid sample withCsurf = 18 mM. We use an inset toFig. 3(a)
in order to more clearly illustrate the semi-circular shape for
this sample. The fit results (T = 25◦C) are given inTable 1and
shown inFig. 4.

In the absence of any solvent contribution to the stress, the
z

η

s-
s the
g eas-
i lts in

Fig. 3. Cole–Cole plots of EHAC solutions (a) for various surfactant concen-
trations (Csurf) and (b) for various salt–surfactant concentration ratios (C* ). The
inset to (a) is the plot forCsurf = 18 mM. The storage modulus,G′(ω), and the
loss modulus,G′′(ω), are determined in a frequency range of 0.01–100 rad/s
with a constant shear strain of 10% (experiments were performed atT = 25◦C).

a monotonic increase inG0. The variation of plateau modulus
exhibits a power law type behavior, which is expected from the-
oretical predictions for polymers and micellar solutions[23,69].
The corresponding relations are, respectively,G0 ∼ (Csalt)2.49

for C* = 10.6 held constant (Fig. 4(a)) andG0 ∼ (Csalt)0.73 for
Csurf = 54 mM held constant (Fig. 4(b)). Because the ratio of
surfactant to salt (or equivalently the salinity conditions) are

T
L rmined from small-amplitude oscillatory shear experimentsT = 25◦C (C* = Csalt/Csurf)

C

E1 E2 E3

8.0 10.6 13.3 16
432 572 718 864
103 28.4 10.9 5

8.7 8.4 11.6 11.8
903 238 126 59

0.246 0.48 0.599 0.681
50.2 19.9 12.6 7.9
0.233 0.494 1.344 2.567

C

E1

54 72 90
572 763 954

28.4 23.7 2.9

7

51
ero shear viscosities of the samples are calculated by

0 = ηp = G0λ. (8)

The dashed lines inFig. 4(a and b) are best fits from regre
ion analysis and are shown here to qualitatively illustrate
eneral trend of the fitted rheological parameters with incr

ng Csalt. In both cases, increasing salt concentration resu

able 1
inear viscoelastic properties of the wormlike micellar fluid samples dete

surf = 54 mmol/l

C* 2.65 5.3
Csalt (mmol/l) 143 286
λ (s) 60.6 171
G0 (Pa) 4.7 2.07
η0 (Pa s) 284 355
G

′′
min (Pa) 0.474 0.096

λbr × 102 (s) 11.2 112.4
ζ × 104 0.034 0.428

* = 10.6

Csurf (mmol/l) 18 36
Csalt (mmol/l) 191 382
λ (s) 115 48.7
G0 (Pa) 0.45 3.6
η0 (Pa s) 51.9 175
G

′′
min (Pa) 0.055 0.166

λbr × 102 (s) 158 31.7
ζ × 104 1.886 0.424
8.4 12.6 30.2
238 298 87.6

0.48 0.34 1.3
19.9 15.9 3.9
0.494 0.450 1.9
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Fig. 4. Linear viscoelastic (LVE) parameters and time scales of EHAC solutions: (a) LVE parameters for variousCsurf, (b) LVE parameters for variousC* , (c) time
scales for variousCsurf and (d) time scales for variousC* (experiments were performed atT = 25◦C).

kept constant inFig. 4(a) for a wormlike micellar solution with
C* = 10.6, the data actually corresponds to an increasing sur-
factant concentration. The observed scaling ofG0 ∼ (Csalt)2.49

indicates that the rheological behavior of these EHAC surfactant
systems in this concentration regime is in good agreement with
the theoretically predicted power law exponent of 2.3 obtained
from scaling theory for micellar solutions[69]. Similar scaling
has also been observed for other micellar systems[71]. Ragha-
van and Kaler[11] have performed similar analyses for their
EHAC-based solutions. Their measurements were made for a
constant molar concentration ratio ofC* = 0.5 and for a con-
stant surfactant concentration ofCsurf = 60 mM at a temperature
of 60◦C. Their reported values of the power–law exponents for
these two cases (respectively, 2.27 and∼1) appear to be close
to the ones obtained in the present study.

Fig. 4(b) shows the variation of the linear viscoelastic prop-
erties with salt concentration at a constant surfactant concen-
tration. In this case, a ratio ofG0 ∼ (Csalt)0.77 is observed, sug-
gesting a rather salinity-insensitive dependence of the plateau
modulus. This is in accordance with the suggestion that an
increasing salt concentration does not lead to strong changes
in the structural composition of the wormlike micelles at this
salinity level; as a consequence, the modulus varies only weakly.
However, as Safran et al.[72] have noted, the screening effect

of the salt counterions with rising concentration may lead to an
alteration of the scission energy of the micelles, and therefore
significant variation in the relaxation time as shown inFig. 4(d).

At high salinities, Candau et al.[73] describe the formation
of a dynamic three-dimensional network of wormlike micelles
that results in a local maximum in the relaxation time and also in
the resulting viscosity of the solution (see Eq.(8)). We observe
a similar behavior inFig. 4(d) for the relaxation time and in
Fig. 4(b) for the viscosity. This pronounced maximum is again
in agreement with the viscosity measurements of Raghavan and
Kaler for an EHAC/sodium salicylate solution[11]. However,
it should be noted that with the smaller Cl− ions utilized in
our study, the critical concentrations required for the maxima
in the viscosity and relaxation time to be observed are nearly
a decade higher. A possible explanation for this shift is that, in
contrast to salicylate, the nonbinding character of the Cl− ions
limits the penetration between the head groups of the EHAC
molecules that comprise the micelles, so that this screening
effect requires much higher salt concentrations. The critical con-
centrations of the samples that correspond to maximum values
of η0 areCsalt= 762 mM (orCsurf = 72 mM) for C* = 10.6 and
Csalt= 332 mM (orC* = 8) for Csurf = 54 mM.

We notice inFig. 4(b) that forC* ≥ 8 the relationship between
Csalt andη0 becomes almost linear on this log–log plot with a
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power law exponent,η0 ∼ (Csalt)−3.37. This value of a power
law exponent is slightly lower than the power–law exponent
of −5 quoted by Larson[1] and Shikata and Kotaka[74] for
some gel-like surfactant systems. Clausen et al.[75] describe
electron microscopy imaging studies of micelles in this region
of decreasing relaxation time that demonstrate that the length
of the micelles (and thus the modulus) remains fairly constant,
indicating that it is indeed the screening by the increased salt con-
centration that accelerates the micellar reformation processes.

For clarity in our discussion of the nonlinear rheology in the
following section we will focus on the three fluid samples (denot-
ing them by E1, E2 and E3) on the power law curve ofFig. 4(b)
to examine the effects of salt–surfactant ratio on nonlinear shear
and extensional flow behavior. The composition of fluids E1, E2
and E3 along with other micellar fluid samples used in this work
are given inTable 1.

The representation of the storage and loss moduli for the
investigated solutions in the form of Cole–Cole plots (Fig. 3)
shows that in all cases Maxwell-like behavior is obtained in the
low-and medium-frequency regimes. However, inFig. 3(b), sig-
nificant deviations from Maxwell behavior are present at high
frequencies. These deviations are expected at high frequencies
because Rouse-like behavior of the individual entangled seg-
ments and an additional solvent stress are present. Consequently,
there is an upturn ofG′′ as a function ofG′ as noted by Fischer
a e’
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in a power law fashion with salt concentration (see the log–log
plot shown inFig. 4(b)).

The values ofλbr andζ further support the expected monoex-
ponential behavior sinceζ � 1, and therefore the approximation
λbr � λrep holds for almost all of the fluid samples studied.
The departures from semi-circular response on a Cole–Cole plot
occur at progressively higher frequencies with decreasing values
of ζ as can be seen inFig. 3. The evolutions ofλ andλbr with
increasing salinity are quite similar as shown inFig. 4(c and
d). Both time constants monotonically decrease with increasing
surfactant concentrations (Csurf) for a constant salt–surfactant
concentration ratio ofC* = 10.6. However, the effect of salt con-
centration onλ andλbr at a constant surfactant concentration is
more complex. Both the relaxation and micellar breakup times
exhibit a maximum atCsalt= 286 mM (or C* = 5.2) and then
rapidly decrease at higher salinity. On the other hand, the rep-
tation timeλrep remains initially unaffected by salt-variation,
but then sharply decreases with increasing salt concentration.
This complex dependence appears to be associated with shear-
induced morphology change or phase separation of micellar fluid
samples, as previously observed by Raghavan and co-workers
[12,13].

3.2. Steady and transient shear flows of micellar solutions

3.2.1. Steady shear flow
oted
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nd Rehage[27]. The addition of a Newtonian ‘solvent-lik
ontribution to Eq.(7) with ηs� G0λ, allows a better agre
ent at high frequency regimes while the low-frequency reg

emains unaffected:

′′(ω) = ηsω + G0
ωλ

1 + ω2λ2 . (9)

A quantitative determination ofλbr is possible by fitting
imulations[21] or numerical calculations[20], including the
atio ζ (from Eq.(3)) as a fitting parameter, to the experime
ole–Cole plots. Combining Eq.(3) with Eq. (4) results in the
xpression

br = λ
√

ζ (10)

nd enables the calculation ofλbr from the relaxation time an
he ratioζ. A more accessible method to extractλbr from the
easured deviation ofG′′ from the single-mode Maxwell mod
as introduced by Kern and co-workers[21,22,76]. According

o the method and Eq.(9), a departure from the semi-circu
hape at high frequencies must be represented with a ‘dip
‘tail’ indicating Rouse-like behavior. The dip correspond
local minimum in the loss modulus (G

′′
min) and the ratio o

′′
min/G0 is directly correlated to the entanglement length
verage contour length of the micelle. Thus, the critical
uencyω* at which the minimum value of the loss modulu
btained provides a much better measure for micellar bre

ime [27]. This approach was used in this report to extrac
icellar breakup timescaleλbr from the linear viscoelastic da
he results, as well as the value of the parameterζ calculated

rom Eq. (10), are listed inTable 1. As mentioned before, th
ero shear rate viscosities of the fluids E1, E2 and E3 ch
d

p
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The nonlinear shear rheology of the micellar solution den
1 (seeTable 1) was determined under controlled shear st
onditions, the results are given inFig. 5 in the form of a flow
urve and the corresponding viscosity-shear rate curve. Di
ionless shear stress, shear rate and viscosity are, respe
efined asτ* = τ/G0, γ∗ = γ̇λ, andη* =η/η0. The symbols cor
espond to discrete stresses in a continuous stepped stres
xperiment (no rest between steps). The stress-increment o
tep is equal in log-space (10 equally spaced points per de
ll experimental points displayed here were measured fo
verall time of 300 s and represent the averaged signal. Th
ranch (hollow circles) corresponds to increasing increm

n τ* and the lower branch (hollow diamonds) to decrea
ncrements. Both figures show a distinct hysteresis betwee
ncreasing and decreasing stress ramp. At low stresses th
hows a nearly Newtonian flow behavior. However, above a
cal stressτ* ∼ O(1) for an increasing stress ramp the shear
ncreases rapidly and leads to a second Newtonian regime a
tresses. The huge drop (5000-fold) in the viscosity at this s
evel is shown inFig. 5(a) and is commonly associated wit
ielding process, or microstructural breakdown[77]. However
he nature of this structural transition cannot simply be der
rom a single steady stress experiment. As already pointe
y Cates et al.[40] it is expected for a wormlike micellar syste

hat an increasing stress ramp experiment will show a m
one increasing shear rate, albeit with a rapid increase o
hear rate atτ∗ > τ∗

max. However, the simple reptation theo
uggests that there will be a maximum of the stress-shea
urve as pointed out in the discussion ofFig. 1 and expecte
rom the constitutive equation of Eq.(1). For an up-ramp stre
xperiment the critical stressτmax for the onset of the plateau
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Fig. 5. The results of up and down ramp controlled stress experiments for the E
fluid: (a) dimensionless viscosity (η* =η/η0) as function of the dimensionless
shear rate (γ∗ = γ̇λ) and (b) dimensionless stress (τ* = τ/G0) as a function of the
dimensionless shear rate. The top branch (hollow circles) corresponds to increa
ing increments inτ* and the lower branch (hollow diamonds) to decreasing
increments. Solid lines represent results of the single-mode Giesekus constitu
tive equation (experiments were performed atT = 25◦C).

determined by the top jump condition

τmax ∼= 0.67G0 (11)

as deduced from reptation theory[24]. A marginally smaller
value ofτmax ∼= 0.54G0 is predicted for nonuniform flow fields
[78]. The critical stressτ∗

min of a down ramp experiment should
follow a bottom jump condition and result in a hysteresis
between the up and down ramp stress plateau as theoretical
proposed by Porte et al.[49].

The resulting nonmonotonic stress versus shear rate curv
leads for a certain range of stressesτ∗

1 < τ∗ < τ∗
2 to a bifurcation

in the flow and the occurrence of nonhomogeneous behavio
in the form of shear-bands. This formation of local spatially
inhomogeneous shear-bands has been experimentally observ
by NMR imaging[79,80], neutron scattering[81,82]and other
flow imaging diagnostics[38,83–89].

The occurrence of an underlying nonmonotonic constitutive
relationship between the steady shear stress and shear rate can
also be directly inferred from the ‘up’ and ‘down’ ramp experi-
ments shown inFig. 5. The microstructural compositions of the
shear-banded states are highly degenerate and at a stress level of
τ∗

max individual regions may be associated with any deformation
rateγ∗

M ≤ γ∗ ≤ γ∗
2 indicated inFig. 1. Theories which incorpo-

rate a coupling between stress and microstructure are required
in order to provide a selection mechanism for these bands[31].

An increase in the externally imposed driving stress and/or
the time of imposed shearing leads to progressive destruction of
a larger fraction of the wormy micellar (equilibrium) state and
formation of an increasing percentage of the shear-distrupted
micellar segments. These segments contribute to the second
low-viscosity mode that provides the upper Newtonian con-
tribution to the stress. The final stationary flow state can also
strongly depend on the flow history of the micellar solution,
as reported by Radulescu et al.[90]. As the stress is decreased
from the second Newtonian flow regime, which is dominated
by the solvent-like contribution to the total stress, the structural
buildup of the wormlike micelles starts at the stress minimum
τ∗

min indicated inFig. 1.
The Johnson–Segalman (JS) equation[91] has been com-

monly used to model the nonmonotonic material instability and
formation of shear-banding. Greco and Ball[92] suggested a
selection criterion for the symmetry breaking of the band distri-
b flow.
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ution, based on the stress distribution in a circular Couette
u et al.[93] considered planar shear for a JS model with a

ional diffusive terms. However, preliminary attempts to fit
resent shear-flow experiments indicated that the JS mode
redicted the value of (τ∗

max − τ∗
min) within a reasonable she

ate range ofγ∗
1 ≤ γ∗ ≤ γ∗

2 . A rederivation of the JS mod
rom microstructural considerations in order to obtain a ful
f equations with higher order derivative terms and includi
onservation equation for the local number density of mic
oupled to the stress equations may improve the predictions[31].

A simple way to capture this behavior is given by a n
er of semi-empirical constitutive equations comparabl

he Johnson–Segalman equation, which incorporate the
ar Maxwell model under small strains or strain rates an
xpanded to incorporate additional nonlinearities. Exampl
ppropriate nonlinear constitutive equations include the P
hien and Tanner model[94], the Giesekus model[25,26], the
hite-Metzner[95] or the Bird-deAiguiar model[96]. These
odels may all exhibit nonmonotonic shear stress-rate beh
epending on the values of the relevant nonlinear param
nd the background solvent viscosity.

In the following we will use the single-mode Giese
onstitutive equation (Eq.(2)) to model the hysteresis of t
hear-banding phenomenon since this equation has alread
emonstrated to model the nonlinear properties of worm
icellar solution in start-up of steady shear flows quite

28]. The dimensionless viscosity (η* = τ* /γ* ) computed from
he single-mode Giesekus equation is given by:

∗ = (1 − f )2

1 + (1 − 2α)f
+ βs, (12)
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f = 1 − √
(κ1 − 1)/κ2

1 + (1 − 2α)
√

(κ1 − 1)/κ2
, (13)

κ1 =
√

1 + 16α(1 − α)(γ∗)2, (14)

κ2 = 8α(1 − α)(γ∗)2, (15)

whereα andβs are, respectively, the anisotropy factor and the
dimensionless solvent viscosity that dominates the viscosity of
the solution at high shear rates. The solid lines inFig. 5(a and b)
represent the predictions of the model with fitting parameters of
α = 0.93 andηs = 0.1 Pa s (orβs = 4.18× 10−4). The parameter
βs has been chosen as an adjustable parameter since the viscosity
in the high shear rate regime includes not only the Newtonian
solvent but also the additional, undefined contributions of the
surfactant molecules in a nonmicellar state. Small deviations of
the solution viscosity at high shear rates from the expected com-
plex viscosity (Eq.(9)) of the Rouse-like regime have also been
reported by Manero et al.[14]. The linear viscoelastic rheolog-
ical parameters given for the E1 solution inTable 1were used
in the calculations as starting values for a best fit of the model
to the experimental data.

The maximum deviation between experimental values of the
linear viscoelastic parameters and the best fit of the model is
only 0.32%, as seen inTable 2below. The agreement between
the plateau values of the experimental data and the local minima
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Fig. 6. The results of up and down ramp controlled stress experiments: (a) for
the E2 fluid (C* = 13.2) and (b) for the E3 fluid (C* = 16). Solid lines represent
the Giesekus model predictions (experiments were performed atT = 25◦C).

and phase behavior data for the current samples to confirm this
hypothesis.

The observable range of the Newtonian regime after the sec-
ond upturn in the shear stress also becomes smaller with increas-
ing C* due to a fast transition of the micellar solution to a foamy
thixotropic state that shows a strong increase of the shear stress at
a nearly constant rate. The stress sweep experiments cannot pro-
ceed further since irreversible structural changes occur at higher
stresses. This stress-jump behavior at the transition to a shear
induced structure[34,44] limits the ability of the single-mode
Giesekus equation to model the macroscopic stress beyond the
shear-banding regime because the solution is no longer a single
homogeneous phase. All of our experiments are truncated at this
SIS transition.

The effects of temperature on the dynamics of shear-banding
were also investigated for the E1 fluid over a temperature range
of 25–70◦C. The required zero shear viscosities for evaluation
of the Giesekus model predictions were obtained from time-
temperature superposition. The temperature dependent shift fac-
tor aT(T; T0) was determined from a series of ten viscosity
nd maxima of the theoretical curve is very good, especia
redicting the local minimum of the stress during the down r
f the stress sweep.

The effect of salt–surfactant concentration ratio,C* , on the
ysteresis/shear-band structure can be seen forC* = 13.2 and 16
fluid samples E2 and E3) inFig. 6(a and b). The qualitativ
eatures of the flow curves for both fluids are similar to the
uid. However, the distance between the upper and lower br
τ∗

max − τ∗
min) decreases asC* increases. Indeed, the magnitu

f the anisotropy factor in the Giesekus model provides a d
easure of the width of the hysteresis gap;α decreases from
.93 for the E1 fluid to 0.89 and 0.85 for the E2 and E3 flu
espectively (seeTable 2). The stabilizing effect of increasing t
alt–surfactant concentrationC* on the micellar fluid structur
as also noted by Raghavan and Kaler[11] and was interprete
s a promotion of the level of micellar branching. The spe
etails of the range of salt–surfactant concentration require
hase-stabilization is expected to vary with the nature o
ounterion (e.g. whether it is binding or nonbinding). Ho
ver, there is at present no reported microstructural ana

able 2
iesekus model parameters in shear flow (T = 25◦C)

E1 E2 E3

(s) 28.4 (0.07)a 11.6 (6.6) 4.97 (−0.6)

0 (Pa) 8.42 (0.24) 12.3 (6.2) 12.6 (6.4

0 (Pa s) 239 (0.32) 143 (13.2) 62.4 (5.7
0.93 0.89 0.85

s (Pa s) 0.10 0.085 0.025

a The numbers in parentheses show deviation (in percentage) from line
logy experiments.



82 B. Yesilata et al. / J. Non-Newtonian Fluid Mech. 133 (2006) 73–90

Fig. 7. Influence of the temperature on hysteresis/shear-band structure for the E1 fluid: (a)T = 30◦C, (b) T = 35◦C, (c) T = 55◦C and (d)T = 70◦C. Solid lines
represent the Giesekus model fits at each temperature.

measurements over low shear rates (γ∗ ≤ γ∗
1) in a temperature

range of 25◦C≤ T ≤ 70◦C andaT follows a simple activated
rate process of Arrhenius form

aT(T ) = η(γ̇, T )

η(γ̇, T0)

T0ρ(T0)

Tρ(T )
≈ exp

[
�H

R

(
1

T
− 1

T0

)]
(16)

whereaT is the temperature shift function and the density ratio
ρ(T0)/ρ(T) for the aqueous micellar solution is assumed to be
approximately equal to unity over the investigated temperature
range. For the investigated system withT0 = 25◦C, the activation
energy ratio�H/R was found to be 11500 K. The thermal vari-
ations of the background solvent viscosityηs(T) and anisotropy
factorα(T) were determined by an independent fitting procedure.
The variation of these parameters with temperature is also found
to be nearly exponential. The experimental and model results are
given inFig. 7. The hysteretic behavior becomes progressively
weaker at elevated temperatures, and finally disappears at 70◦C.
The anisotropy factorα in the Giesekus model clearly confirms
this trend and decreases from 0.93 atT = 25◦C to 0.50 at 70◦C.
The valueα = 0.5 corresponds to the Leonov model and is the

limiting value between a monotone rise of the stress (with the
absence of the hysteresis behavior) and the development of a
shear-banding region[97].

Visual analysis also shows that the fluid sample remains
homogeneous and rheological data can be measured up to 90◦C.
The stabilizing effect of a moderate level of temperature rise
has previously been observed for viscoelastic flow instabilities
[98,99]. There are also computational studies in the context of
elastic instabilities to confirm this observation. For EHAC based
solutions, the effect of temperature on the degree of micellar
branching is shown to be analogous to increases in salt concen-
tration[12], and hence such a stabilization effect with increasing
temperature is to be expected.

3.2.2. Transient shear flow
The temporal characteristics of the nonmonotone stress shear

rate relation and the hysteresis behavior of the viscoelastic sur-
factant solution in circular Couette flow can be monitored by
following the transient shear rate evolution at various values of
a constant controlled shear stress.
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Fig. 8. Measurements of temporal fluctuations in the shear rate for various values of the dimensionless shear stress for the E1 fluid. Each transient shear rateγ* (t)
at a givenτ* is normalized by the corresponding time-averaged nominal value (〈γ* (t)〉): (i) location of the transient experiments on the qualitative stress shear rate
curve and (ii) transient shear rates for various values of (τ* ; 〈γ* (t)〉): (a) (0.36; 0.95) (b) (0.42; 1.37), (c) (0.48; 81), (d) (0.60; 1382), (e) (0.72; 3318), (f) (0.84; 3719),
(g) (1.2; 4778) and (h) (1.68; 5514) (experiments were performed atT = 25◦C).
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A series of measurements of the evolution in the transient
dimensionless shear rate ofγ* (t) is shown (for E1 fluid) inFig. 8
for various values of the dimensionless shear stress,τ* . The
dimensionless shear rateγ* (t) is normalized by its time-averaged
nominal value (〈γ* (t)〉) to illustrate the relative magnitude of
the fluctuations around unity. For low values ofτ* , the instan-
taneous shear rate is essentially constant in time (t), as shown
in Fig. 8(a and b) with r.m.s. fluctuations of less than 4.2 and
4.1%, respectively. Forτ* < 0.48 the shear flow of the micellar
solution is steady. The flow becomes strongly time-dependent as
the dimensionless stress is increased toτ* = 0.48, as depicted in
Fig. 8(c). The shear rate monotonically increases with time over
the time range of the experiment. The experimental timescale is
restricted to about 600 s at each stress to minimize the effect of
evaporation of the sample in a longer time-period. Grand et al.
[78] noted that at the onset of the plateau region the timescale for
equilibration into the final steady state could be up to two orders
of magnitude higher than the linear viscoelastic relaxation time.
This monotonic increase of the shear rate with time continues
even at higher values ofτ* (seeFig. 8(d)) in the nearly horizon-
tal plateau regime of theτ* –γ* plot. Eventually, this transient
increase of the shear rate saturates into a strongly time-periodic
flow around an average shear rate as seen inFig. 8(e and f) at
the upper end of the plateau regime. The amplitude of the shear
rate fluctuations in this time-periodic flow state can reach up to
50% with respect to the nominal value (or up to 14.8% in terms
o
u ,
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are shown inFig. 9 for selected values ofτ* . Fig. 9(a–d),
respectively correspond to power spectral densities of the sig-
nals γ* (t)/〈γ* (t)〉 given in Fig. 8(e–h). The power spectrum
obtained from FFT analysis are also normalized by a nominal
component of the spectrum for eachτ* , in order to provide con-
sistency in comparison, as suggested by Yesilata et al.[100].
Forτ* = 0.72, the power spectrum shows a peak atf1 = 0.032 Hz
(Fig. 9(a)), corresponding to a dimensionless frequency value
of f ∗

1 = λf1 ≈ 1 since the characteristic relaxation time of the
fluid isλ = 28.4 s. The nominal steady rotation rate of the Couette
fixture isωc = 〈γ̇〉/Λ = 2.6 rad/s, whereΛ = R1/d is the ratio of
inner rotor radius to the gap[101]. The nominal rotation rate is
thus nearly one order higher than the value ofω1 = 2πf1 = 0.2 in
rad/s. Wheeler et al.[38] performed similar experiments using
a controlled stress device at a nominally constant deformation
rate betweenγ∗

M ≤ γ∗ ≤ γ∗
m. In their experiments, strongly peri-

odic oscillations were observed above a critical stress with a
frequency that was dependent on the moment of inertia of the
test (Couette) fixture and the characteristics of the instrument
feedback loop. We see no such coupled instrument/fluid oscil-
lations with the present rheometer (probably due to a tighter
feedback control loop). The periodic frequency identified in
Fig. 9(a) corresponds purely to the fluctuating material response
since the dimensionless frequency is nearly equal to unity
(f ∗

1 ≈ 1).
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f r.m.s. fluctuations). At the highest stresses (τ* ≈ 1), on the
pper branch of the flow curve corresponding toFig. 8(g and h)

he fluctuations decrease again and are less than, respe
5 and 10% (or 9 and 6% in r.m.s. fluctuations) of the nom
ignal.

The characteristic frequencies of the shear rate oscilla
an be quantitatively identified by Fourier analysis of
ime series measurements. Power spectral-densities ofγ* (t)

ig. 9. Fast Fourier transforms (FFT) ofγ* (t) in the time-periodic and the tim
a) τ* = 0.72, (b)τ* = 0.84, (c)τ* = 1.20 and (d)τ* = 1.68. The spectra are no
ly,
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For stresses above the critical value for onset of time-per
ow, the dominant frequency of oscillations increases and
iple peaks are discernable (Fig. 9(b)). The appearance of the
ew peaks in the power spectrum can be considered a
rst sign of the onset of a more complex chaotic-like flow
he strongly fluctuating regimes shown inFig. 9(c and d) the
hear rate oscillates with multiple in commensurate freq
ies as determined by the FFT analysis. However, the inte
f the oscillations decreases, as the linear relationship be

aotic regions for E1 fluid. The corresponding dimensionless stresses are
ized with the nominal value of the spectrum for each case.
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τ* and〈γ* (t)〉 is re-established and the stress shear rate curve
approaches the second upper linear flow regime.

The time-dependent fluctuations leading to inhomogeneous
and banded structures were noted recently by Lee et al.[39]
in the middle of the gap of a Couette cell using pointwise flow-
induced birefringence (FIB) measurements. Recent studies have
shown that transient oscillations also occur in more complex
flows of micellar fluids with shearing and extensional kinematics
[52,53]. It does appear that these fluctuations are not specific to
a single kinematic field but are common to all flows in which
the characteristic deformation rate and micellar time scale are
on the same order.

3.3. Transient extensional flow of micellar solutions

The transient extensional response of three micellar fluids
(E1, E2 and E3) was also investigated with a capillary breakup
extensional rheometer. The experimental device utilizes plates of
radiusR0 = 3.0 mm separated by an initial distanceL0 = 2.2 mm
so that the initial aspect ratio isΛ0 = L0/R0 = 0.733. The plates
are separated rapidly (within 50 ms) to a final separation of
L1 = 6.6 mm.

Fig. 10 shows a sequence of images of the test fluids at
T = 25◦C. The first images show that the initial filament configu-

F
fl
w

rations for all samples are axially nonuniform. For convenience,
time is referenced to the instant when stretching is halted (i.e.
we sett = t1 = 0). The subsequent images show the progressive
elasto-capillary drainage and ultimate breakup of the filament
at a critical time after the cessation of stretching. The temporal
resolution of the breakup event is limited by the framing rate of
the video camera to 30 frames/s.

The filaments of all three samples shown inFig. 10 neck
and break in a quantitatively different manner. Both the axial
profiles of the filaments and the time evolution in the midfilament
diameter are significantly different for each type of fluid. The
axial profile of the E1 fluid filament is nearly homogeneous, and
the minimum diameter is always close to the midplane (although
gravitational effects cause the actual minimum to be slightly
above the midplane at initial stages). The effect of gravity at
early times becomes more pronounced for the E2 sample, and
especially for the E3 fluid. However, at later stages, the axial
profile of the filament rapidly evolves into an axially uniform
cylindrical filament. The time to breakup for the E1 fluid is
significantly longer than those of E2 and E3.

Transient midfilament diameters measured for the three flu-
ids are shown inFig. 11(a). Notice that measurements from three
separate experiments for each fluid agree extremely well and we
obtain excellent experimental reproducibility. Measurements of
the filament evolution for the fluids decay approximately expo-
nentially with time as shown by the solid lines. Prior to the
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ig. 10. Time-sequences of flow images in the CABER experiments for (a) E1
uid (C* = 10.6), (b) E2 fluid (C* = 13.2) and (c) E3 fluid (C* = 16) (experiments
ere performed atT = 25◦C).
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reakup, significant deviation from the initial exponential cu
ccurs caused by the finite extensibility of the micellar st

ures.
Entov and Hinch[67] have shown that the exponential beh

or of the midfilament thinning at intermediate times is rela
o a balance of the capillary and elastic forces in the thread
llows for the calculation of a relaxation timeλE in the elonga

ional flow,

mid(t) ∼ exp

[
− t

3λE

]
. (17)

For Boger fluids, Anna and McKinley[66] confirmed (in
ccordance with the theoretical predictions from Entov
inch[67]) thatλE ≈ λ, whereλ is the longest relaxation time

he polymer solution determined from linear viscoelastic m
urements. However, in these micellar fluids, the characte
elaxation times for transient elongation, extracted from the
ar regimes in the semi-logarithmic plots inFig. 11(a) according

o Eq. (17) and shown inTable 3, are substantially lower (b

able 3
iesekus model parameters in extensional flow (T = 25◦C)

E1 E2 E3

E (s) 9.03 3.63 1.65

0 (Pa) 7.98 (−5.0)a 11.5 (−0.52) 11.9 (1.62

0 (Pa s) 215 (−9.71) 125 (−0.71) 59.5 (0.97

s (Pa s) 0.10 0.085 0.025
0.02 0.031 0.003
0.229 0.241 0.227

a The numbers in parentheses show deviation (in percentage) from line
logy experiments.



86 B. Yesilata et al. / J. Non-Newtonian Fluid Mech. 133 (2006) 73–90

Fig. 11. (a) Transient midfilament diameter profiles of the E1, E2 and E3 fluids.
Different symbols correspond to separate CABER experiments for each fluid
Solid lines show best exponential fits of the curves. (b) Comparison of measure
midfilament diameter profiles (symbols) for micellar fluid filaments with pre-
dictions from the single-mode Giesekus model (solid lines). The diameter and
time are scaled withD1 andλE (experiments were performed atT = 25◦C).

almost a factor of three) than the relaxation times obtained from
oscillatory shear flow. We are not aware of any other reports o
the characteristic time constant for extensional flow of micel-
lar solutions; however, Rothstein[65] noted that the apparent
nonlinearity of a micellar network is also characterized by very
different values of the relevant rheological parameter in shea
and extension (in this case the finite extensibility parameter)
This factor of three differences in the characteristic relaxation
time must be associated with the different dynamics of micelle
creation and destruction in the elongated and aligned state th
is associated with extensional flow in a thinning filament as
compared to the fully entangled three-dimensional structure tha
exists under equilibrium conditions. Thus, the transient exten
sional behavior of the wormlike micelles studied here appears
to be more complex than that expected for a simple viscoelasti
fluid of Maxwell–Oldroyd type.

We now use the simple zero-dimensional formulation pro-
posed by Entov and Hinch[67] to predict the filament thinning
behavior of the micellar fluid samples using the single-mode
Giesekus constitutive equation. Ignoring axial curvature effects,
the temporal evolution of the filament mid-diameterDmid is
given by a balance of the viscous, elastic and capillary forces
(see Anna and McKinley[66]):

dDmid

dt
= 1

6ηs
[(τzz − τrr)Dmid − 2σ] (18)

whereσ denotes the surface tension of the fluid andτzz andτrr
are the additional micellar contributions to the axial and radial
tensile stress components of the total stress tensorτ.

For an ideal uniaxial extensional flow, these stress compo-
nents are evaluated from the Giesekus constitutive equation (Eq.
(2)), which becomes

λE
dτzz

dt
+ (1 − 2ε̇λE)τzz + α

G0
τ2

zz = 2G0λEε̇ (19)

λE
dτrr

dt
+ (1 + ε̇λE)τrr + α

G0
τ2

rr = −G0λEε̇ (20)

where the rate of strain is expressed by

ε̇ = − 2

Dmid

dDmid

dt
. (21)
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Combining Eq.(18)with Eqs.(19)–(21)gives a coupled set
rdinary differential equations (ODEs) forDmid, τzz andτrr. The
qs.(18)–(20)can be integrated using standard routines for
DEs under appropriate initial conditions. The correspon

nitial conditions when the stretching is halted are given by[66]:

mid(t1 = 0) = D1, (22)

zz(t1 = 0) ∼= 2σ

D1
− a

2ηs

λE
, (23)

rr(t1 = 0) = 0. (24)

The parametera in Eq. (23) has been introduced by An
nd McKinley[66] to correctly account for the initial deform

ion. The results of simulations (the solid lines), usinga andα

s adjusting parameters, along with experimental measure
the symbols) are depicted inFig. 11(b). The time and diame
er are scaled withλE andD1, respectively, and the paramet
sed in the calculations are listed inTable 3. It can be see

rom the figure that quantitative agreement between experim
nd theoretical predictions can be obtained, provided tha
odel parameters are not forced to be the same as the
btained in shear flow. The anisotropy factorα for extensiona
ows obtained from the fits is more than a decade smaller
he value for shear experiments (seeTable 2). Most interestingly
he relaxation timesλE obtained from best fits to Eq.(17) are a
actor of almost three smaller than the value expected in
ow. This suggests that the arguments leading to Eq.(4) for λ

eed to be modified for an elongated micellar chain rept
nd breaking/reforming in an extensional flow.

It is also desirable to re-express the midfilament diam
ata in a more intuitive format, i.e. as a transient tensile stre
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extensional viscosity. The thinning dynamics of the elastic fluid
filaments result from an interplay between the fluid rheology and
the effects of capillarity. We have demonstrated that the observed
evolution of the midfilament diameter as the fluid thread necks
down and breaks can be well described using a single-mode
Giesekus model and an appropriate force balance on the fluid
filament, provided that the initial deformation is correctly
accounted for. The transient extensional rheology of the fluid is
encoded in this evolution and we can obtain an apparent exten-
sional viscosity that is related directly to the midfilament diame-
ter by using the same approach described by Anna and McKinley
[66]. An appropriate apparent extensional viscosity calculated
from the surfactant and solvent contributions is given by

ηE = (τzz − τrr)

ε̇
+ 3ηs. (25)

This relation combined with Eq.(18) and(21) gives a direct
dependence of the apparent extensional viscosity from the mid-
filament diameter evolution

ηE = − σ
dDmid

dt

(26)

F
fi
p
a

and we thus differentiate the experimental diameter data to
obtain the transient extensional viscosity. The results are pre-
sented inFig. 12and show the apparent extensional viscosity in
terms of a dimensionless Trouton ratio (ηE/η0) as a function of
the total Hencky strainε

ε = 2 ln

[
D1

Dmid(t)

]
. (27)

The experimental diameter data obtained from Eq.(26) are
shown as symbols and the Giesekus simulations are indicated by
solid lines. In general, the experimental and theoretical values
for the apparent extensional viscosities extracted from elasto-
capillary thinning agree well for all three samples. The exten-
sional viscosity at timet1 is a factor of approximately three
higher than the expected extensional viscosity of 3η0 from the
Trouton ratio due to the initial stretch that is imposed by the rapid
extension to the final plate separation prior to the surface tension
driven filament thinning. The extensional viscosity asymptoti-
cally reaches a steady state value when the strain becomes large.
However, the final approach to breakup falls below the cali-
brated minimum resolution of 20�m of the CABER device.
The observed Trouton ratios approaching this steady state are on
the order of 100. Rothstein[65] obtained a similar magnitude
increase in the Trouton ratio for a wormlike micellar solution
system (CTAB/NaSal) in a constant rate filament stretching
experiment at constant deformation rate ofε̇ ∼= 1.55 s−1.
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ig. 12. Comparison of apparent extensional viscosities computed from mid
lament diameter profiles of E1 (�), E2 (�) and E3 (�) fluids, along with
redictions from the single-mode Giesekus model (solid lines): (a) in log-scale
nd (b) in linear-scale.
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. Conclusions

In the present study, we have examined the linear viscoel
ty, nonlinear shear and extensional flow dynamics for the ter
ystem of EHAC/NH4Cl in salt-free water. EHAC based wor

ike micellar solutions are relatively new materials in the con
f wormlike micellar structures and the linear viscoelastic p
rties have recently been investigated[11,12] in the presenc
f different counterions (NaSal, NaCl and NaTos). The pre
xperiments confirm the earlier observations that EHAC-b
olutions are highly viscoelastic and their structure and rh
gy delicately depend on the chemical structure and the am
f salt used as counterion and on the surfactant concent
nd temperature. Although the zero shear rate viscositi
ur solutions at room temperature can be two to three o
f magnitude lower than those studied previously using di
nt salts, similar nonmonotonic trends in the linear viscoel
roperties are obtained. As shown inFigs. 2 and 3, the solu-

ions are well-described by a single-mode Maxwell respon
ow frequencies (ω<

˜
1/λ), but some significant deviations fro

his behavior at intermediate and high frequency regime
bserved for 5.2≤ C* ≤ 8. The variations of the zero shear v
osity and relaxation time as a function of salt concentra
re nonmonotonic as indicated inFig. 4. These nonmonoton
heological responses are not observed in all micellar fluids
ave been attributed to the long, unsaturated chains and co
eadgroups of EHAC-based surfactants[11].

Stepped shear flow experiments reveal the hysteretic b
or of these wormlike micellar fluid samples upon increas
nd decreasing shear stress. This hysteresis can be inte
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as an indication of a nonmonotonic underlying flow curve and
the onset of shear-banding at intermediate shear rates. At low
and high shear rates outside this shear-banding regime, the flow
curves measured upon increasing and decreasing shear stress
coincide. The nonmonotonic hysteretic behavior can be modeled
with a single-mode Giesekus constitutive equation, provided that
the anisotropy factorα is greater than 0.5. The hysteretic behav-
ior was investigated under a number of different conditions;
increasing values of salt concentration narrow the hysteresis
region as does an increase in the solution temperature.

The transient evolution of the viscoelastic surfactant solu-
tion in steady Couette flow under controlled stress conditions
was explored by conducting a series of instantaneous shear rate
measurements over a wide range of shear stresses. The critical
conditions for the onset of time-dependent flow were determined
quantitatively from these measurements and coincide with the
range of stresses for which hysteretic behavior in the flow curve
is observed.

Experimental observations of the extensional flow behavior
of the micellar fluid samples in capillary breakup experiments
show strong extensional thickening of the samples with the
apparent Trouton ratios increasing by up to two orders of magni-
tude. The characteristic relaxation times of the fluids determined
from extensional flow experiments are consistently lower than
expected from oscillatory shear flow experiments. A comparison
of the extensional experiments with predictions computed using
t gree
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