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Iterated stretching, extensional rheology and formation of
beads-on-a-string structures in polymer solutions
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Abstract8

The transient extensional rheology and the dynamics of elastocapillary thinning in aqueous solutions of polyethylene oxide (PEO) are studied with
high-speed digital video microscopy. At long times, the evolution of the thread radius deviates from self-similar exponential decay and competition
between elastic, capillary and inertial forces leads to the formation of a periodic array of beads connected by axially uniform ligaments. This
configuration is unstable and successive instabilities propagate from the necks connecting the beads and ligaments. This iterated process results
in multiple generations of beads developing along the string in general agreement with predictions of Chang et al. [Phys. Fluids, 11 (1999)
1717] although the experiments yield a different recursion relation between the successive generations of beads. At long times, finite extensibility
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 Pruncates the iterated instability, and slow axial translation of the bead arrays along the interconnecting threads leads to progressive coalescence

efore the ultimate rupture of the fluid column. Despite these dynamical complexities it is still possible to measure the steady growth in the transient
xtensional viscosity by monitoring the slow capillary-driven thinning in the cylindrical ligaments between beads.

2006 Elsevier B.V. All rights reserved.

eywords: Extensional rheology; Beads on a string; Self-similarity; Iterative process

. Introduction

It has been known for at least 40 years that the dynamics of
apillary thinning and breakup of polymeric jets and threads is
ubstantially different from the equivalent processes in Newto-
ian fluids [1,2]. The capillary necking induced by surface ten-
ion results in a strong uniaxial stretching flow in the thread and
eads to large molecular elongation. The resulting viscoelastic
tresses in the fluid inhibit the finite time singularity associated
ith breakup in a Newtonian fluid jet [3,4]. The large viscoelastic

tresses arising from the stretching can also result in the forma-
ion of a characteristic morphology known as a beads-on-a-string
tructure in which spherical fluid droplets are interconnected
y long thin fluid ligaments. Understanding the distribution
f the droplets resulting from the dynamics of this process is
mportant in numerous commercial applications including jet
reakup [5], fertilizer spraying [6], high-speed atomization [7],
orward roll-coating and other coating applications [8], electro-
pinning [9] and inkjet printing [10]. Additional details of many

of these applications are provided in the monograph by Yarin
[11]. Similar beads-on-a-string structures have also been docu-
mented recently during gravitationally driven stretching of fluid
threads formed from wormlike micellar solutions [12].

The most complete investigation of the formation of beads-
on-a-string (BOAS) structures was performed by Goldin et al.
[2]. They studied aqueous solutions of polyethylene oxide and
polyacrylamide and used stroboscopic flash photography to doc-
ument the evolution of high-speed laminar jets. In addition to
observing the formation of thin interconnecting elastic ligaments
of random lengths they documented the development of small
secondary droplets and speculated that large increases in the
extensional viscosity of the polymer solutions were important
for stabilizing such structures. Schümmer and Tebel [13] rec-
ognized that the formation of a long thin filament undergoing
uniaxial elongation under the action of capillarity could be used
as the basis of a ‘free-jet’ extensional rheometer. By using a sim-
ple force balance for the filament and analyzing high-speed pho-
tographs the evolution in the extensional viscosity of the filament
could be evaluated. More recently Christanti and Walker [14,15]
used a periodically forced jet to study the role of viscoelasticity
U∗ Corresponding author. Tel.: +1 617 258 0754; fax: +1 617 258 8559.
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in controlling jet stability to different wavelength disturbances 60

and the subsequent formation of primary drops. They also mea- 61
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sured the distribution of sizes of the secondary drops which62

developed on the thin interconnecting ligaments between the63

primary drops. For the most elastic solutions a second genera-64

tion of beads between the primary drops was clearly visible.65

However, in all of these previous studies it proved difficult to66

observe the very long time dynamics of the drop formation and67

breakup process (such as the development of third generation68

droplets) because long times correspond to material elements of69

fixed Lagrangian identity being convected large distances down-70

stream of the nozzle. Under such conditions the high-speed jet is71

typically susceptible to infinitesimal external perturbations. In72

the present experiments we use a liquid bridge arrangement in73

which the background jet velocity is zero; instead a rapid axial74

strain is initially imposed to generate a long slender fluid thread75

of the polymer solution and this thread subsequently undergoes76

capillary-driven drainage and breakup. The fixed endplates that77

confine the experimental sample ensure that convective pro-78

cesses are not important and the stationary Eulerian nature of the79

resulting filament enables us to monitor its evolution using both80

a laser micrometer and high-speed digital video. Furthermore,81

the small axial and lateral dimensions of the fluid thread ensure82

that gravitational effects do not perturb the dynamics of breakup.83

The formation of a beads-on-a-string morphology is inher-84

ently a nonlinear dynamical process. Classical linear stability85

analysis shows that a viscoelastic fluid thread with zero ini-86

tial polymeric stresses in the material is in fact more unstable87
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ment of this morphology because the disturbances in the neck 119

region must grow sufficiently fast to exceed the rate of capillary 120

thinning in the primary filament. As noted elsewhere [20], the 121

elastocapillary thinning rate of the thread scales with λ−1 (where 122

λ is the characteristic polymer relaxation time) and the growth 123

rate of disturbances to the thread scale with the inverse of the 124

Rayleigh time scale (σ/ρR3)1/2 (with σ the surface tension and ρ 125

the density of a fluid thread of radius R). We thus require the nat- 126

ural or ‘intrinsic’ Deborah number λσ1/2/(ρR3)1/2 � 1 to observe 127

a repeated instability and the formation of multiple generations 128

of beads-on-a-string. 129

Similar iterated instabilities have been predicted numerically 130

and observed experimentally in viscous Newtonian fluid threads 131

[21,22]. However, these iterated processes do not lead to the 132

formation of a stable beads-on-a-string structure because each 133

successive iteration leads to a thinner filament that is more unsta- 134

ble to perturbations. There are no viscoelastic stresses to stabilize 135

the rapid growth of disturbances that develop in the thinnest 136

necks and the thread rapidly ruptures. 137

Iterated capillary breakup processes in protoplasmic threads 138

were also discussed very early on by D’Arcy Thompson [23 see 139

pp. 65–66] and distinctive features that may be recognized as 140

having the characteristics of a ‘blobs’-on-a-string structure are 141

described and sketched for the breakup of a non-Newtonian fluid 142

(a cylinder of viscoelastic cellular cytoplasm) surrounded by an 143

immiscible lower viscosity fluid. A similar two-fluid system with 144
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han a Newtonian fluid of equivalent steady state shear viscos-
ty. This is due to the temporal retardation of the viscoelastic
tresses that develop in the fluid as the result of a perturbation
f any specified wavelength [1,2]. However, the uniaxial exten-
ion in the neck region in which the perturbation has maximum
mplitude results in exponential growth of the polymeric stresses
n the thinning filament. These elastic stresses suppress further
rowth in the disturbance and both asymptotic analyses [4,16]
nd numerical simulations [17,18] show the formation of an
xially uniform thread or ligament connecting two drops. In the
pherical beads, the molecules are relaxed and surface tension
ominates; whereas in the thin thread the molecules are highly
tretched and viscoelastic stresses dominate.

In a very thorough investigation of the linear and nonlinear
ynamics of the slender filament equations derived for a finitely
xtensible nonlinear elastic (FENE) dumbbell model, Chang et
l. [19] predicted that at long times an additional phenomenon,
oined ‘iterated stretching’, should develop for low viscosity
lastic fluids in which elasticity, capillarity and inertia are all
mportant. In this stage of the dynamics, the neck region con-
ecting the cylindrical thread to the spherical bead was shown
o be unstable to perturbations which triggered a new instability
nd an “elastic recoil” close to the neck. This recoil leads to the
ormation of a smaller “secondary” spherical drop connected to
he primary drop by a new thinner cylindrical thread. This new
hread subsequently thins under the action of capillarity and the
ecks connecting the thread to the primary drop and new sec-
ndary drop may once again become unstable. This hierarchical
rocess can repeat itself indefinitely, provided that the molecules
ave not reached full extension, leading to multiple generations
f beads on strings. Fluid inertia is important in the develop-
JNNFM 2540 1–12

igh viscosity contrast was also utilized by Chang et al. [19] to
btain some preliminary images of iterated stretching events.

In a recent letter [24] we documented the iterated stretching
henomenon experimentally for the first time using a viscoelas-
ic fluid thread in air. A thin thread was formed between two
ylindrical plates in a capillary breakup extensional rheometer
CABER) and the evolution into beads was followed using a
igital video-microscope. The CABER device is typically used
o measure the transient extensional viscosity of complex flu-
ds [25]. In dilute polymer solutions the extensional viscosity is
xpected to be much larger than the steady shear viscosity and
t will depend on the molecular weight of the polymer, the poly-

er concentration and chain flexibility [26–28]. It is very hard to
uantitatively evaluate the extensional viscosity for such fluids
sing other techniques [29]; however, monitoring the slow cap-
llary drainage and ultimate rupture of a necking fluid thread in a
ariety of dripping/jetting configurations can provide a suitable
ay of measuring this elusive material function [3,27,28,30].
The analysis of the capillary thinning process – on which

omputation of an extensional viscosity is predicated – assumes
hat the fluid thread is a slender cylindrical filament. The devel-
pment of an axially periodic structure along the filament may
ell thus be expected to compromise the efficacy of the instru-
ent in measuring the extensional viscosity of the fluid. Indeed,

f a laser micrometer alone is used to measure the decay in the fil-
ment diameter at the axial midplane, then periodic fluctuations
n the signal can be detected in low viscosity elastic solutions
26,31] and these disturbances prevent a meaningful computa-
ion of the extensional viscosity. However, the analysis of Chang
t al. [19] together with recent numerical simulations of Li and
ontelos [18] show that in the thin interconnecting ligaments
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between the beads an elasto-capillary balance still holds. In the176

present paper we analyze these regions using an imaging system177

that is capable of both high spatial resolution (±2 �m) and high178

temporal resolution (±0.001 s), and use the results to evaluate179

the transient extensional stress growth in the fluid. In Section 2180

we describe the rheology of the viscoelastic test fluid and addi-181

tional details of the characterization technique. In Section 3 we182

present detailed observations of the evolution of the thread radius183

with time, and document the onset of instability at the junction184

between the bead and the interconnecting elastic ligaments, and185

the rapid formation of a hierarchical structure followed by a pro-186

longed coalescence phase. Finally, we use these observations to187

evaluate the growth in the transient extensional viscosity and the188

approach to a steady state value corresponding to an apparent189

Trouton ratio in excess of 104.190

2. Experimental methods and data analysis191

To observe iterated stretching and the development of a192

multigenerational beads-on-a-string structure, a number of key193

physical conditions must be realized [19]. The thinning of a194

polymer solution described by a nonlinear constitutive equa-195

tion such as the FENE model is controlled by multiple physical196

parameters that can be combined to give four dimensionless197

parameters; a Deborah number, defined above as a ratio of198
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Table 1
Viscometric and physical properties of the viscoelastic solution used

ηP (mPa s) ηS (mPa s) η0 (mPa s) σ (N/m) ρ (g cm−3)

40.32 6.77 47.09 0.0623 0.925

To obtain such values experimentally, we use a high molecu- 230

lar weight water-soluble flexible polymer, poly(ethylene oxide) 231

or PEO, commonly used in drag reduction [33] and viscoelas- 232

tic jet breakup studies [14,34]. The specific grade of polymer 233

used (WSR-301) is commercially available (Union Carbide) 234

and polydisperse, with a molecular weight M̄w that is difficult 235

to characterize precisely because of aggregation [35] but is in 236

excess of 3.8 × 106 g/mol. Using published correlations [36] this 237

corresponds to an intrinsic viscosity of [η]0 ≈ 1.42 × 10+3 cm3/g 238

and an overlap concentration of c* ∼ 1/[η] = 590 ppm. Direct 239

measurements of intrinsic viscosities of different PEO samples 240

over a range of molecular weights show that the solvent quality 241

parameter is ν ≈ 0.56 [34]. The high molecular weight and flex- 242

ibility of the PEO chains result in a high value of the FENE 243

extensibility parameter; using published values for the char- 244

acteristic ratio C∞ and the molecular bond lengths we obtain 245

L2 ≈ 2.4 × 104 [34]. 246

The polymer is dissolved at a concentration of 2000 ppm 247

in a mixture of ethylene glycol and water to give a semidilute 248

viscoelastic polymer solution (c/c* = 3.4) with the viscometric 249

properties shown in Table 1. The variation in the steady shear 250

viscosity with shear rate measured with a cone-and-plate fix- 251

ture (θ0 = 0.0177 rad (1◦1′)) is shown in Fig. 1(a). Rheological 252

reproducibility and accuracy becomes difficult for low viscosity 253

fluids at high shear rates. We therefore show in Fig. 1 the mea- 254

sured viscosity of a Newtonian calibration oil with viscosity 255
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he polymer relaxation time to the Rayleigh time scale for
nertio-capillary breakup of a thread of initial radius r0, De =
/

√
ρr3

0/σ; an Ohnesorge number characterizing the relative
mportance of viscous effects in the inertio-capillary breakup
rocess of a fluid thread Oh = η0/

√
ρσr0; a solvent viscos-

ty ratio S = ηs/(ηs + ηp) = ηs/η0 characterizing the individual
ontributions of the background solvent (ηs) and the polymer
ηp) to the total viscosity and, finally, a finite extensibility param-
ter L that characterizes the ratio of the maximum length to the
quilibrium length of the polymer molecules. This dimension-
ess parameter is a ratio of the contour length of the macro-

olecule to the radius of gyration in solution and scales with the
quare root of the molecular weight of the solute [32]:L ∼ M

1/2
w .

n these definitions, ρ is the density of the fluid, ηs the sol-
ent viscosity and η0 is the total zero-shear-rate viscosity. The
hnesorge number provides a dimensionless measure of the rel-

tive importance of viscous and inertial effects in unforced jet
reakup, and is inversely related to a local Reynolds number
or the flow Re ∼ Oh−2 = ρVcapr0/η0where Vcap is a capillary
elocity Vcap = σ/η0.

All previous numerical predictions and experimental stud-
es of capillary thinning and viscoelastic thread breakup can be
epresented in different regimes of this four-dimensional param-
ter space. In particular, Chang et al. [19] demonstrated that for
terated stretching to be observed one requires high Deborah
umbers De � 1, intermediate viscosity ratios (0 < S < 1), finite
uid inertia oh ∼ O(1) – so that inertial effects lead to rapid
rowth of the capillary instability and recoil – plus very high
nite extensibilities L � 1 so that the iterated nature of the insta-
ility and elastic recoil process is not truncated prematurely by
he maximum length of the molecules.
JNNFM 2540 1–12

= 0.138 Pa s. The PEO solution has a zero-shear-rate viscos-
ty of 0.047 Pa s and begins to shear thin gradually at shear
ates of γ̇ ∼ 2 s−1. The measured viscosity decreases monoton-
cally until a shear rate of γ̇ = 350 s−1. At this point a torsional
ow instability leads to an increase in the apparent viscosity.
he appropriate Reynolds number [37] at this point is Re =
(ΩR)(Rθ0)/η(γ̇) = 8.3 (where Ω is the rotational velocity of

he fixture) and the relevant viscoelastic parameter for parame-
erizing the instability [38,39] is Wi

√
θ0 = λγ̇

√
θ0 ≈ 11. Both

nertial and elastic effects would thus appear to be important
n controlling the critical conditions for this instability [40];
owever further exploration of this is beyond the scope of the
resent work. The first normal stress difference of this low vis-
osity elastic fluid is below the measurable resolution of the
R1000N rheometer. In Fig. 1(b) we show the linear viscoelastic
roperties of the 2000 ppm PEO solution. The storage and loss
oduli exhibit the expected Zimm-like frequency-dependence

or dilute solutions of flexible polymers [41]; however, great
are must be taken with these low viscosity elastic fluids in
rder to not exceed the linear viscoelastic limits of the material.
wo sets of measurements are shown at oscillating stresses of
agnitudes 0.05 and 0.005 Pa, respectively. Good superposition

s obtained across the frequency range. At angular frequencies
bove 10 rad/s inertial effects overwhelm the small elastic (in-
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Fig. 1. Rheological properties of the 2000 ppm PEO (WSR-301) solution: (a)
steady shear viscosity showing the shear-thinning region and the onset of a tor-
sional viscoelastic instability at a critical rotation rate; (b) frequency-dependence
of the storage modulus (squares) and loss modulus (triangles) at fixed stress
amplitudes of 0.05 Pa (hollow symbols) and 0.005 Pa (filled symbols).

phase) contribution to the signal and the resulting data points are280

discarded.281

A characteristic relaxation time may be estimated from stor-282

age moduli by identifying the point at which a pronounced283

deviation from the terminal scaling G′ ∼ ω2 is observed. This284

yields an estimate of ω* ≈ 5 rad/s and a time constant of order285

λ ∼ 1/ω* ≈ 0.2 s; however, it is clear that a definitive and unam-286

biguous determination is not readily possible from the linear287

viscoelastic data available. We therefore use capillary thinning288

experiments in order to determine the fluid time scale relevant289

for extensional flow. The measurements (described in detail290

below) give a fluid relaxation time of λ ≈ 0.23 ± 0.02 s for a291

concentration of 2000 ppm. We have performed additional rhe-292

ological experiments with different polymer concentrations and293

find that the relaxation time and the polymeric contribution to294

the viscosity both exhibit a dependence on concentration that295

scales approximately as
√

c in agreement with other measure-296

ments in dilute and semidilute aqueous solutions [42,43]. As297

the concentration is varied, the dimensionless parameters S, Oh298

and De – which are relevant to formation of beads-on-a-string299

structure – also vary. At higher polymer concentrations, the 300

increase in the fluid viscosity (and the correspondingly larger 301

value of Oh) results in an axially uniform and long-lived fila- 302

ment of the shape observed in capillary-thinning experiments 303

with highly elastic Boger fluids [28,44] and no bead forma- 304

tion. Conversely, at lower concentrations and/or lower molecular 305

weights, the very low viscosity of the solution results in an initial 306

phase of rapid inertio-capillary pinching, followed by forma- 307

tion of a single large ‘primary droplet’ that is centrally located 308

between the two circular end-plates. This structure was docu- 309

mented recently using high-speed video-imaging by Rodd et al. 310

[31] and the drainage of this structure under influence of gravity 311

precludes accurate measurement of the transient elongational 312

viscosity [26]. Once again no periodic beads-on-a-string struc- 313

ture is observed. Capillary-thinning experiments show that the 314

most pronounced structures develop for the 2000 ppm solution 315

and we thus focus our attention henceforth on this fluid. 316

Using the measured relaxation time of 0.23 s, we find 317

that the Deborah numbers in fluid threads of initial diame- 318

ter 2r0 ≈ 1.2 mm are De ≥ 127. Eggers [45] notes that inertial, 319

viscous and capillary effects will all become important in a 320

necking fluid thread (i.e. such that Oh ∼ 1) on length scales 321


 ∼ η2
0/ρσ. For the fluid properties given in Table 1 this cor- 322

responds to 
 ≈ 39 �m. For low viscosity Newtonian fluids 323

the ensuing iterated necking events will evolve on time scales 324

t =
√

ρ
3/σ ≈ 30 �s. Viscoelastic effects are expected 325

t 326

t 327

t 328

t 329

o 330

h 331

a 332

p 333

2 334

335

c 336

d 337

a 338

i 339

R 340

3 341

i 342

c 343

g 344

( 345

346

e 347

i 348

i 349

( 350

j 351
JNNFM 2540 1–12

Rayleigh
o slow down the filament dynamics; however, it is clear that
he necking and evolution of the beads-on-a-string microstruc-
ure will evolve rapidly in time and on fine length scales. We
hus use a high-speed digital CMOS video camera (Phantom 5)
perating at frame rates of 1600–1800 fps in conjunction with a
igh-resolution video-microscope lens system (infinity K2 with
n objective lens giving a spatial resolution of ∼2.3 �m per
ixel) to resolve the late stage dynamics.

.1. Analysis

Analyses of the necking phase of the dynamics of elasto-
apillary thinning commonly make use of simplified ‘zero-
imensional’ analyses in which axial variations along the fil-
ment are neglected entirely and the thread is considered to be
nfinitely long with a spatially uniform but time-varying radius
(t). The resulting force balance can be written in the form [46]:

ηs

{
2

R(t)

dR

dt

}
= σ

R(t)
− ∆τp(t) (1)

n which the three terms represent, respectively, the stress
ontributions of a viscous solvent undergoing uniaxial elon-
ation, the capillary pressure and the elastic stress difference

τp = τp,zz − τp,rr) in the thread.

Combining this force balance with a quasilinear constitutive
quation such as the Oldroyd-B model [47] shows that there
s an exponential growth of the elastic tensile stresses, which
s accompanied by an exponential decay in the filament radius
and concomitant increase in the capillary pressure within the
et). The contribution of the viscous solvent becomes negligibly
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small and the resulting elasto-capillary balance results in the352

following predicted rate of thinning in the filament radius [48]:353

R(t)/R0 = (ηpR0/λσ)1/3 exp(−t/3λ) (2)354

where R0 is the initial radius of the filament, ηp the polymer355

viscosity, λ the relaxation time and σ is the surface tension.356

Direct measurement of this rate of decay using a laser microm-357

eter or a digital video camera thus enables construction of a358

capillary-thinning extensional rheometer which provides quan-359

titative determination of the characteristic relaxation time of the360

fluid [25,26,28,44].361

Of course, such a zero-dimensional analysis cannot capture362

axial structures such as the growth of a beads-on-a-string mor-363

phology. Recent theoretical analyses and high resolution numer-364

ical simulations of one-dimensional slender filament models365

derived from the governing conservation equations have shown366

that the full profile also evolves in a self-similar manner; the pre-367

cise dynamics depend on the relative magnitudes of the inertial,368

viscous, elastic and capillary terms in the governing equation369

(see Eggers [45], Renardy [49] and McKinley [20] for detailed370

reviews).371

Ultimately this exponential thinning of the viscoelastic fluid372

thread is truncated by the maximum elongation of the macro-373

molecules in solution. This finite extensibility truncates the374
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3. Results 384

In Fig. 2 we show a representative set of measurements of the 385

global thinning dynamics in a Capillary Breakup Extensional 386

Rheometer (CABER-1, Cambridge Polymer Group). Initially, 387

the 6 mm-diameter plates are separated by a gap hi = 3 mm as 388

seen in Fig. 2(a1) corresponding to an aspect ratio Λ = hi/Rp = 1. 389

The liquid bridge confined between the plates is stretched as 390

the top plate moves linearly (−50 ms ≤ t ≤ 0) to a specified dis- 391

tance h0 = 9.7 mm (Fig. 2(a2)). The length of the fluid thread 392

now exceeds the Plateau stability limit and the system selects 393

its own necking dynamics so that the viscous, elastic, capillary 394

(and gravitational) forces balance each other. A laser microm- 395

eter (Omron Z4LA), measures the evolution of the midpoint 396

filament diameter, Dmid(t) = 2Rmid(t) as the thread thins under 397

the action of capillarity and eventually breaks at a time denoted 398

tf. A number of different regimes can be discerned in the data 399

shown in Fig. 2(b). Shortly after the top plate comes to a halt 400

(for times 0 ≤ t ≤ 45 ms), inertio-capillary oscillations of the 401

hemispherical fluid droplets attached to the end plates occur. 402

These oscillations (with period T ≈ (π/
√

2)tR corresponding 403

to damped oscillations of a viscous liquid globe [53]) decay 404

through the action of fluid viscosity and forthwith these regions 405

act as quasi-static fluid reservoirs into which fluid from the 406

necking thread can drain. The damped oscillations are followed 407

by the rapid development of a central axially uniform connect- 408
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xponential stress growth and the thread is then expected to thin
inearly in time towards a breakup event with a general form
(t) ∼ (σ/ηE) (tc − t) where ηE is the steady extensional viscos-

ty. With this form of evolution in the radial profile, the tensile
tress and the strain rate in Eq. (1) both diverge as ε̇mid (tc − t)−1.
he precise value of the numerical front factor in this expression
epends on the specific nonlinear constitutive model selected
nd the resulting value of the steady elongational viscosity at
arge strains and strain rates [50–52].

ig. 2. Capillary Breakup Extensional Rheometry: (a) CaBER geometry contain
hinning. (b) Evolution of the midpoint filament diameter, D(t) profile during fi
icrometer and the solid line corresponds to the regression using Eq. (1).
JNNFM 2540 1–12

ng filament of initial diameter 2r0 ≈ 1.1 mm which drains very
lowly. On these intermediate time and length scales, inertial,
iscous and gravitational effects can be neglected and a bal-
nce between surface tension and elasticity governs the filament
rainage [48]. In this regime, the local extensional rate in the fil-
ment is constant with magnitude ε̇mid = 2/3λ and its diameter
ecays exponentially with time according to Eq. (2). The char-
cteristic relaxation time is extracted by fitting the data to this
xpression, yielding λ = 228.5 ± 1.8 ms (solid line in Fig. 2(b)).

fluid sample (a1) at equilibrium before stretching and (a2) undergoing filament
nt thinning. The symbols represent experimental data obtained using the laser
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Fig. 3. Sequence of experimental images (226 �m × 2317 �m) of the formation and evolution of beads-on-a-string. Development of the first generation of beads-
on-a-string occurs at t = tB ≈ 1.7 s (first image).

At long times t ≥ tB ≈ 1.7 s (t/λ>
˜

7.5) the diameter of418

the necking thread approaches the characteristic length scale419

l ≈ 39 �m discussed above, at which inertial, capillary and vis-420

cous effects are all important. The inset video image in Fig. 2(b)421

shows that a series of regularly spaced beads spontaneously422

form on the viscoelastic fluid. The laser micrometer has a min-423

imum measurable diameter of 20 �m and the signal/noise ratio424

becomes increasingly poor at these scales. We therefore utilize425

the high-resolution digital video images for further analysis.426

A sequence of images showing the formation of the beads427

is presented in Fig. 3. It should be noted that, due to the high428

magnification necessary to capture the fine-scale structure of429

the beads-on-a-string, it is not possible to analyze the entire fil-430

ament. Thus, the snap-shots shown correspond to a section of431

2317 �m × 226 �m, located near the center of the filament. The432

repeated or ‘iterated’ nature of the bead formation process is433

clear. Following the initial instability and formation of a pri-434

mary generation of beads the new interconnecting fluid threads435

become unstable and form a second and third generation of436

beads. Using image analysis software (ImageJ; NIH), we are437

able to measure the diameters of the connecting filament at the438

onset of each bead formation event (denoted henceforth DN for439

N = 1, 2, . . .), as well as the bead diameters (denoted Bn) for440

each generation of beads well into the beads-on-a-string regime.441

The evolution in the bead radius and thread diameter within one442

period are connected through conservation of mass [12]. The443

b444

B445

i446

m447

448

t449

o450

b451

a452

the filament at the onset of bead formation. For the eight bead 453

structure in Fig. 3 the dimensionless wavelength of the initial 454

disturbance is found to be (Lbeads/D1) = 7.7 ± 1.4. Similar values 455

are obtained from other experimental realizations (cf. Fig. 7(a)). 456

The data obtained from the image analysis software are super- 457

imposed onto the laser micrometer measurements in Fig. 4. The 458

formation and growth of each new generation of beads is accom- 459

panied by a sharp thinning of the inter-connecting ligaments. 460

This results in a deviation from the exponential decay observed 461

in the earlier elastocapillary regime and appears to result in 462

a close-to-linear decrease in time (see inset in Fig. 4). These 463

characteristics of the iterated stretching sequence are consistent 464

with the predictions of Chang et al. [19]. The theoretical analy- 465

sis also predicted a recursive relationship Dn = f(Dn−1) between 466

the filament diameters at which successive generations form. 467

By assuming that each successive iterated instability developed 468

very rapidly (with no elastocapillary thinning between each gen- 469

eration), Chang et al. obtained the relationship 470

(Dn/d0) =
√

2(Dn−1/d0)3/2 (3) 471

for generations n ≥ 2; here d0 = 2r0 is the initial diameter of 472

the filament at the point when the elastocapillary balance is 473

established. This relationship is shown in Fig. 5 for the first 474

four generations formed in six different experimental realiza- 475

tions. Although there does appear to be a recursive relationship 476

b 477

n 478

g 479

( 480

w 481

o 482

i 483

l 484
U
N

Cead diameters for the first three generations are B1 ≈ 110 �m,
2 ≈ 75 �m and B3 ≈ 31 �m, respectively. A fourth generation

s just discernable but hard to quantify as the beads approach the
inimum spatial resolution of the image (1 pixel ≈ 2.3 �m).
The wavelength of the initial disturbance is very difficult

o determine from the small amplitude of the perturbations
bserved in the first few images, but it can be obtained robustly
y measuring the final spacing of the primary generation beads
t long times and comparing this with the measured diameter of
JNNFM 2540 1–12

etween consecutive generations, such that DN ∼ Dm
N−1, it is

ot captured by Eq. (3). However, the data are described to a
ood approximation by a power law of form:

DN/D∗) = (DN−1/D
∗)m (4)

here we have incorporated any numerical front factor present
n the right-hand side of Eq. (4) into the definition of D* for clar-
ty. A least-squares fit of Eq. (4) to the experimental data (solid
ine in Fig. 5) yields an exponent m = 2 and a characteristic length
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Fig. 4. (a) Evolution of filament and droplet sizes during a CaBER experiment. The filled symbols (�) represent filament diameters obtained with the laser micrometer,
and the hollow symbols represent measurements obtained using image analysis, corresponding to: (�) filament; (♦) first generation bead; (�) second generation
bead and (©) third generation bead. The solid line corresponds to the exponential fit of experimental data to Eq. (1). The inset shows the highlighted region plotted
on a linear scale. (b) Typical image of beads-on-a-string (138 �m × 2317 �m) used for image analysis captured at t − tB = 500 ms. The droplets corresponding to
those represented in (a) are identified as 1, 2 and 3, for first, second and third generation, respectively.

scale D* ≈ 44 �m, which is very close to the Eggers length scale485


 ≈ 39 �m computed a priori. The deviation between the asymp-486

totic theory and the experimental observations is most likely487

the result of finite extensibility effects: as the chains approach488

their maximum elongation, the rate of thinning increases from489

slow elasto-capillary (exponential) drainage to a linear decay490

towards a critical breakup time tc. This leads to a more rapid491

decay in the radius of the thread and thus a higher value of the492

exponent m.493

F
f
p
w

The location of the instability leading to the development of 494

a beads-on-a-string structure is analyzed in more detail in Fig. 6. 495

The axial profiles of the filament R(z, t) are generated using an 496

edge-detection algorithm and by manually tracking the evolution 497

of a given drop from onset of initial instability until the struc- 498

ture is fully developed. For each time tj, the axial position of the 499

primary drop was off-set to center the primary bead (with axial 500

coordinate zB(t)) at the origin of Fig. 6. As the primary bead 501

forms, pinching occurs at the necks on each side of the bead 502

(t − tB = 50 ms). At this point, the filament in the neck region is 503

thinner than in the main thread away from the beads. The fila- 504

ment in the neck gradually recoils (t − tB = 100 ms) and feeds a 505

newly developing bead on each side of the primary one. Mean- 506

while, the main filament connecting the beads grows thinner and 507

thinner while the main bead is driven by capillarity into an almost 508

spherical shape (t − tB = 500 ms). This process of pinching and 509

recoiling can also be seen for subsequent generations. For the 510

second generation droplets in Fig. 6, for example, pinching is 511

clear at t − tB = 150 and 175 ms. 512

In addition to the iterated stretching, we observe another 513

feature in the dynamics associated with a long time coales- 514

cence phase that leads to a ‘coarsening’ of the beads-on-a-string 515

structure. The smaller, higher-generation beads translate axially 516

along the filament and are ‘consumed’ by the larger primary 517

droplets. In order to represent the complete spatial and temporal 518

dynamics of this process, from the first stages of droplet for- 519

m 520

t 521

t 522

F 523

t 524
Uig. 5. Recursive relationship for filaments of successive generations obtained
rom various experiments. The dashed line corresponds to the Chang et al. (1999)
rediction given by Eq. (3); and the solid line shows the best power law regression
ith D1 = 44 �m and n = 2 in Eq. (4).
JNNFM 2540 1–12

ation through coalescence until filament breakage, we follow
he approach pioneered by Baumert and Muller [54] and process
he stream of digital images to construct a ‘space-time’ diagram.
or each frame i (=1, 2, . . ., 2048) and each axial (vertical) posi-

ion zj (1 ≤ j ≤ 1024), the average gray-scale intensity along the
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Fig. 6. Progressive evolution of the radius of an initially cylindrical fluid filament produced during a CaBER experiment towards a beads-on-a-string morphology.
The relative times of each profile are, t − tB: 0, 25, 50, 75, 100, 125, 150, 175, 200, 500 ms, from bottom to top. At each time, the axial position, z, has been shifted
to show the main bead (with axial coordinate zB(t)) at the center of the plot. The numbers on the top graph classify each droplet in terms of its generation.

(horizontal) x-axis was calculated. Higher intensities correspond525

to thicker local slices of the fluid filament (e.g. beads), while low526

intensities correspond to thin fluid elements (thin filament sec-527

tions). The average intensities are re-scaled from 0 to 1, where528

0 represents the thinnest filament present and 1 represents the529

largest bead in the whole process. The resulting column vec-530

tor of intensities is stored as an entry in an array of size (i × j)531

to create a space-time diagram as shown in Fig. 7 that cap-532

tures the formation of the beads-on-a-string morphology and533

the associated coarsening. Initially the intensity is homogeneous534

in z, showing the existence of a uniform filament. As the first535

generation of beads form (at tB ≈ 2.0 s), we see the appearance536

of bright bands. Higher generation (and hence smaller) beads537

appear as progressively lower intensity traces. After about 0.4 s,538

the beads-on-a-string structure is fully established; at this point,539

there is no visible formation of new beads. However in contrast540

to the expected rupture event [19] we observe a new regime in541

which groups of fully formed beads migrate axially along the542

filament. As a result, coalescence between beads of different543

generations occurs in accord with recent numerical descriptions544

of draining and merging of beads [18]. The large relief in elas-545

tic tension of the fluid thread following each coalescence event546

is evidenced by the apparent discontinuities in the bead traces547

shown in Fig. 7 corresponding to very rapid small-amplitude and548

affine axial displacements observed along the whole filament549

(e.g. at t − t = 0.45 and 0.67 s). Eventually, when the structure550

has coarsened to a few large beads, the extensibility limit of the 551

polymer is reached and the filament breaks. This coalescence 552

phase lasts at least 1.4 s (corresponding to 5λ or more); however 553

reproducibility is hard to achieve in this phase because the final 554

rupture of the thin filament is sensitive to the presence of dirt or 555

disruption by air currents. 556

Finally, we return to the use of elastocapillary thinning and 557

breakup as an extensional rheometer. A balance of elastic and 558

capillary forces in an axial uniform thread undergoing neck- 559

ing leads to an apparent extensional viscosity that is related to 560

the surface tension (σ) and the first derivative of the filament 561

diameter according to ηapp = − σ/(dD/dt) [13,28]. This is fre- 562

quently expressed in non-dimensional form as a Trouton ratio, 563

Tr = ηapp/η0. The transient Trouton ratio is shown in Fig. 7 as 564

a function of the total Hencky strain, experienced by a mate- 565

rial element εH = ∫ t

0 ε̇(t′) dt′ = −2 ln(D(t)/Dp) where Dp is the 566

diameter of the endplates (which controls the initial diameter of 567

the relaxed liquid bridge). The open symbols are obtained by 568

numerical differentiation of the experimental data measured for 569

D(t), and become increasingly noisy as the filament diameter 570

decreases and the discrete resolution of the laser micrometer is 571

approached. To overcome this issue, the diameter profile was 572

also fitted to the following empirical expression: 573

D =
(

D1 + k1

t + t1

)
exp

(
− t

3λ

)
− V2(t − t2), (5) 574
B

JNNFM 2540 1–12
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Fig. 7. Construction of a space-time diagram to concisely capture the long time evolution in the filament profile: (a) sequence of experimental images
(263 �m × 2695 �m) showing the initial formation and evolution of the beads-on-a-string morphology. Development of the first generation of beads-on-a-string
occurs at t = tB ≈ 2.0 s; (b) Corresponding space-time diagram for this experiment spanning a total elapsed time of 1.4 s. The color of each pixel coordinate {zi, tj}
indicates the relative thickness of the filament at that axial position and time; ranging from zero filament thickness (dark red) to the thickest bead (dark blue).

with D1, t1, k1, V2, t2 as fitting parameters. This functional form575

is motivated by the different capillary necking regimes expected576

theoretically and is able to describe all three phases generi-577

cally observed in measurements of the midpoint diameter: (i)578

the rapid initial necking of the filament (for small times t < t1)579

after opening as it approaches the elastocapillary balance; (ii)580

the exponential thinning regimes (for diameters D ≤ D1 + k1/t1)581

as well as (iii) the approach to finite molecular extensibility582

and onset of the self-similar drainage regime (which is captured583

by the linear term in Eq. (5), corresponding to an appropriate584

‘capillary velocity’ expected to scale as V2 ∼ σ/ηE for a highly585

stretched polymer solution).586

Nonlinear regression to the data yields D1 = 0.067 mm,587

k1 = 0.104 mm s−1, t1 = 0.093 s, V2 = 0.1 mm s−1 and t2 = 1.9 s as588

shown by the solid line in the inset to Fig. 8. Analytic differentia- 589

tion of Eq. (5) and substitution into the expression for the Trouton 590

ratio then results in the solid line shown in the main graph of 591

Fig. 8. The Trouton ratio climbs, initially exponentially, and 592

approaches a steady state value at large strains. The asymptotic 593

limit obtained from Eq. (5) for large strains gives a very large 594

Trouton ratio (Tr∞)exp → σ/(η0V2) ≈ 1.3 × 104. This is in good 595

agreement with the range expected for a dilute solution of highly 596

flexible molecules [29,47]. For the specific case of FENE dumb- 597

bells approaching full stretch in a homogeneous uniaxial exten- 598

sional flow, we expect lim(τp,zz − τp,rr) → ηEε̇0 = 2ηpL
2ε̇0. 599

Substituting this expression into (1) together with the expected 600

linear variation in radius close to breakup R → B(tc − t) 601

(where B is an unknown constant) and matching the dominant 602



C
O

R
R

E
C

TE
D

 P
R

O
O

F

10 M.S.N. Oliveira et al. / J. Non-Newtonian Fluid Mech. xxx (2006) xxx–xxx

Fig. 8. Apparent dimensionless extensional viscosity obtained from CaBER
experiments as a function of the total strain. The symbols are obtained by direct
numerical differentiation of the experimental data for the filament diameter,
while the solid line is calculated from the analytical derivative of Eq. (5). The
labels 1, 2 and 3 indicate where the formation of a first, second and third gener-
ation of beads occurs. The inset shows the fit of the experimental data points to
Eq. (5).

terms, we find that B = σ/(4ηpL
2) = σ/2ηE and the asymptotic603

value of the Trouton ratio predicted by the FENE-P model in a604

CABER experiment becomes Tr∞ → 2(1 − S)L2 Substituting605

for the measured value of S = ηs/η0 = 0.14 and the theoretical606

value of L2 = 2.4 × 104 we obtain (Tr∞)FENE-P → 4.1 × 104.607

This is in reasonable agreement with the experimental value,608

given the constraints of the theoretical model (which is most609

suited to a dilute solution of monodisperse flexible chains610

rather than a semi-dilute solution of polydisperse and possibly611

aggregating molecules).612

The characteristic Hencky strains at which each generation613

of beads forms are shown by the arrows in Fig. 8 and it is clear614

that the Trouton ratio is no longer climbing exponentially in this615

regime. In this fluid, formation of the beads-on-a-string struc-616

ture occurs concomitantly with the deviation from exponential617

growth in the elastic stress and the slow approach to full elonga-618

tion. This is not incorporated in the existing theoretical analysis619

of the iterated instability leading to bead formation [19].620

4. Conclusions621

In this paper we have shown that analysis of elastocapillary622

thinning and breakup provides a means of probing the transient623

extensional response even for very low viscosity – but highly624

elastic and extensible – polymer solutions (i.e. viscoelastic fluids625

w626

s627

o628

c629

g630

t631

s632

in the diameter of the slender elastic threads interconnecting the 633

beads. 634

Many of the basic features we observe have been described 635

in isolation by existing analyses [18,19]; however, the intercon- 636

nected nature of the iterated instability and coalescence phases 637

has not been analyzed to date. We observe a different recursion 638

relationship (see Fig. 5) from that obtained from asymptotic 639

analysis of the Oldroyd-B equation in the limit of infinite De. 640

This difference in the observed scaling appears to be a result 641

of additional drainage of the interconnecting elastic threads 642

between successive instability events coupled with the finite 643

extensibility of the PEO chains. 644

The prolonged coalescence phase of the dynamics repre- 645

sented by the space-time diagram (Fig. 6) has also not been 646

described in detail. Li and Fontelos [18] have computed the 647

development of secondary droplets in addition to the slow axial 648

translation (and merging) of the smaller droplets into the larger 649

primary drops. However, these simulations were performed for 650

the infinitely extensible Oldroyd-B model, and thus a finite time 651

breakup event is not admitted. By contrast, our experiments 652

show that for the 2000 ppm PEO solution finite extensibility 653

effects are important in the observed dynamics. Combining the 654

experimental value of the capillary velocity V2 = 0.1 mm s−1 (fit- 655

ted to the midpoint diameter data in Fig. 8 over the linearly 656

decreasing regime at late times) and the critical onset diameter 657

D* = 0.044 mm (fitted to the recursion relationship in Fig. 5) we 658

w 659

l 660

s 661

c 662

t 663

b 664

t 665

a 666

c 667

t 668

i 669

a 670

s 671

p 672

a 673

u 674

e 675

a 676

s 677

i 678

e 679

e 680

i 681

l 682

d 683

p 684

c 685

t 686

s 687

s 688

t 689
U
Nith Oh � 1 but De ≥ 1 and L2� 1). At late stages of thinning

uch fluids are prone to iterated instabilities that result in an array
f beads-on-a-string and a subsequent slow axial drainage and
onsolidation phase. However it is still possible to evaluate the
rowth in the apparent extensional viscosity and the approach
o steady state, provided that a high resolution video-imaging
ystem is used to monitor the continued elasto-capillary thinning
JNNFM 2540 1–12

ould expect the entire beads formation and breakup event to
ast for a time on the order of 
t ≈ D*/V2 = 0.44 s. This is con-
istent with the period of time over which the recursive bead
reation process is observed in Fig. 7(a) and with the expression
2 − tB (where t2 is the ‘apparent time to breakup’ determined
y fitting the measured midpoint diameter to Eq. (5)). However,
here then follows a prolonged period of coalescence that lasts
nother 1.5–3 s. Careful measurements of the radii of the inter-
onnecting ligaments in this region is extremely difficult because
hey approach the resolution of the imaging system. However it
s clear that each ligament no longer decays linearly towards

finite time breakup with a slope that is consistent with the
teady elongational viscosity of the fluid. The capillary thinning
rocess in the highly stretched polymer solution appears to be
rrested by the bead coalescence events. A useful path forward in
nderstanding this process may be to consider the total potential
nergy of the system. The discrete coalescence events that occur
long the fluid column appear to relieve significant amounts of
tored elastic energy (as evidenced by the discontinuous jumps
n the bead trajectories shown in Fig. 7 which correspond to rapid
lastic-like global displacements of the chain of beads). From an
nergetic point of view, the lowest total energy state is obtained
n the largest primary droplets (in which the capillary pressure is
owest and the chains are fully relaxed). In the smaller secondary
roplets the capillary pressure (and the associated surface area
er volume) is higher, whereas the elastic potential energy of the
hains is highest in the thin stretched ligaments. It thus appears
hat this final stage of the dynamics is cooperative as the entire
tructure of multiple generations of different sized beads on a
tring relaxes towards a final global minimum energy configura-
ion. It is to be hoped that these final stages of the drainage and
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breakup of polymer threads will be described by future analytic690

and numerical studies.691
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