An Interferometric Study of Moving Contact Line Dynamics

H.P. Kavehpour1, B. Ovryn2, and G.H. McKinley1

1Department of Mechanical Engineering, MIT, Cambridge, MA 2Department of Bioengineering, Case Western Reserve University, Cleveland, OH

Spreading of Fluids and Precursor Layer

- Fluidy (1919) reported the existence of a very thin film in front of moving wetting line.
- Centurioni et al. (2011) used ellipsometry to observe precursor film.
- Cottington et al. (1964) used ellipsometry to observe precursor film.

Gravity Current on an Inclined Plate

- Hardy (1919) reported the existence of a very thin film in front of moving wetting line.
- Local slope is calculated by numerical differentiation of drop profile.
- Measure droplet profile and compare with self-similar profile predicted by Huppert (1982).

Power-laws for Spreading Drops on Inclined Plates

- For small inclination angle γ → 0, lubrication theory remains valid.
- For γ → 0,ρ α σCa 1/3.
- Spreading driven by quasi-steady static balance, hence, Ca 1/3.

Conclusions

- Non-invasive optical technique has been used to investigate dynamical evolution at the vicinity of the dynamic contact line of spreading droplets.
- Existence of an “inflection point” close to the contact line is confirmed.
- Microscopic spreading is of form predicted by “Tanner’s Law” $\theta_a \sim |\text{Ca}|^{-1/3}$.
- Length of precursor layer L_P is determined by comparing spatial variation of visibility and drop heights.
- Shape of spreading drop on inclined plate close to the contact line follows the similarity solution given by Huppert (1982).

Project Goal: Develop a non-invasive optical technique that has sufficient spatial and temporal resolution to investigate contact line evolution.

Power-laws for Spreading Drops on Inclined Plates

- For small inclination angle $\gamma \to 0$, lubrication theory remains valid.
- For $\gamma \to 0$, $\rho \alpha \sigma \text{Ca}^{1/3}$.
- Spreading driven by quasi-steady static balance, hence, $\text{Ca}^{1/3}$.

Phase-shifted Laser Feedback Interferometer (psLFI)

- Feedback into the laser eliminates the need for a beam splitter and separate reference arm.
- Electro-optical modulator (EOM) is used to impose a series of controlled phase changes.
- Vertical spatial resolution of 50 nm is achieved using phase-shifting algorithms.
- Diffraction-limited lateral resolution achieved using high N.A. objectives.

Precursor Layer Length, L_P

- L_P is determined by comparing spatial variation of visibility and drop heights.
- Theoretical prediction $L_P \propto \rho \alpha \sigma \text{Ca}^{1/3}$ (De Gennes, 1985).

Confirmation of Tanner’s Law

- Vary spreading velocity by using several different silicone oils.
- Dynamic contact angle is proportional to the capillary number, $\text{Ca}^{1/3}$ (Tanner, 1979).

Dynamic Contact Angle, θ_a

- Local slope is calculated by numerical differentiation of drop profile.
- Dynamic contact angle, θ_a, corresponds to maximum value of slope.

Gravity Current on an Inclined Plate

- Spreading of viscous drops on an inclined plate under gravitational body force.
- Measure droplet profile and compare with self-similar profile predicted by Huppert (1982).
- Shift data so that $\xi = 0$ corresponds to inflection point of profile.

- For $\text{Ca} \ll 1$, $\text{Bo} \ll 1$, regardless of the slope of plate, $\theta_a \sim \text{Bo}^{-1/6}$.