MISSION AND GOALS

The MIT Nuclear Reactor Laboratory (NRL), which has served the university and surrounding community for 52 years, is an interdepartmental center that operates a 6 MW research reactor (MITR-II) in support of MIT's educational and research mission. No electricity is produced.

MITR-II is the second largest university research reactor in the United States and the only one located at a major research university.

Its mission is to provide faculty and students from MIT, researchers from the national scientific and engineering communities, as well as local area universities and hospitals with both a state-of-the-art nuclear facility and the infrastructure to enable them to use for important research and other societal objectives. Highest priority is placed on operating in a highly professional manner which is safe to the public, to the researchers and employees, and to the environment.

In addition to the NRL's role as a major center for neutron research, it is committed to educating the general public by promoting education and training in nuclear science and technology.

The MITR-II is the second of two research reactors that have been operated by MIT. The original one, the MITR-I, first achieved criticality in 1958. In 1974, that reactor was shut down in order to allow conversion to the MITR-II which offered a higher neutron flux level.

DESCRIPTION OF THE MITR-II

The MITR-II is a light-water cooled and moderated nuclear reactor that utilizes flat plate-type finned, aluminum clad fuel elements. The MITR-II, which currently operates at 6 MW, is located in the center of a gastight cylindrical steel containment building that is equipped with a controlled pressure relief system. Access to the containment building is through either a personnel or a truck airlock. The reactor core consists of rhomboid-shaped elements arranged in a hexagonal pattern. There are generally 24 elements and 3 in-core irradiation positions. The core is located at the center of a light-water tank which is in turn surrounded by a heavy-water tank, a graphite reflector, a thermal shield, and finally a biological shield. Additional safety is achieved since the light-water coolant, the heavy water, and the shield regions are all separately cooled. The MIT reactor runs at atmospheric pressure and 55 °C (the temperature of hot tap water). The nuclear reaction is controlled by inserting neutron absorbing blades. To provide an alternative shutdown mechanism, the heavy water can be dumped to a holding tank eliminating the reflected neutron flux necessary to sustain a reaction. Furthermore, when either the cooling water or the fuel temperature rises, the reactivity is decreased, thereby providing passive safety. The maximum thermal neutron flux available to experimenters is 6x10^{13} neutrons/cm^2/sec. MITR-II flux levels while operating at 6 MW are as follows:

MITR Neutron Flux Levels @ 6 MW*

- **Inc-critical:** Thermal: 3.8x10^14, Fast: 1.7x10^13, Gamma: 10^6
 \[\text{Gyhr} \]
- **Beam Ports:** Thermal: 10^10, Fast: 10^9
 \[\text{Gyhr} \]
- **Baseline Room:** Thermal: 10^9, Fast: 5x10^7
 \[\text{Gyhr} \]
- **Fission Converter:** Thermal: 10^9
- **Beam Converters:** Gamma: 10^8
- **Beam Doses:** up to 120 Gy

WHAT DOES THIS MEAN IN LAYPERSON TERMS?

While the MITR-II research reactor does not produce electricity, its mission is to produce neutrons that are used in various cutting-edge scientific and engineering studies. Its power level is 6 MW, compared to 3000 MW for a large electric power reactor. Because of its low power and small size, and its passive safety design features, it does not present a significant safety concern.
The MITR-II supports a broad research program that encompasses most aspects of neutron science and engineering, including materials testing and evaluations, fission engineering, nuclear medicine, neutron scattering, neutron activation analysis, and teaching. Current research and service areas supported by the MITR-II include:

- Infrastructure to support the US initiative for designing and building the next generation of nuclear reactors as a means of reducing the country’s reliance on fossil fuels.
- Advanced materials and fuel research.
- Trace element analysis, isotope production, and irradiation services.
- Neutron transmutation doping of silicon.
- Neutron scattering.

Available facilities and capabilities include:

Beam Ports
Numerous beam ports penetrate the reactor’s shield, graphite reflector, and heavy-water shield, providing access to the high-intensity neutron beam for experiments.

In-Core Loops and Sample Assembly
The MITR-II core design offers a unique technical capability in in-core loops that replicate pressurized or boiling-water reactor pressure/temperature/chemistry environments to study the behavior of advanced cladding or water chemistry. High temperature capsules can be designed to test materials under extreme conditions.

Neutron Scattering Experimental Facility
Neutron scattering and spectroscopy are among the preeminent tools for studying the structure and dynamics of matter at the atomic and molecular scales. The MITR-II’s neutron scattering instruments include:
- A triple-axis diffractometer that is equipped with focusing PG monochromator, PG analyzer, He3 monitor and detector and standard collimators, slits and apertures. This instrument is suitable for elastic neutron scattering experiments on characterizing novel materials and is an important tool for students training in neutron scattering.
- A neutron optics test station has polychromatic neutron beam for tests of neutron detectors, mirrors, and other neutron instrumentation components.

Medical Irradiation Rooms
Two facilities are available. One is located in the basement and uses a neutron beam from the reactor core. The other, located on the reactor floor, utilizes a beam produced by a fission converter driven by neutrons from the core.

Reactor Thermal Hydraulics Laboratory
The Thermal Hydraulics Laboratory experimental facilities and associated instrumentation are supported jointly by the Nuclear Science and Engineering Dept. (NSE) and the NRL. Facilities include several single-phase and flow boiling loops and pool boiling facility that are used for research projects in nanofluid applications, general heat transfer and two-phase flow, and MITR LEU fuel components research, as well as teaching at both undergraduate and graduate levels.

Neutron Activation Analysis Facility
The MITR neutron activation (NAA) facility is currently equipped for both prompt and delayed gamma neutron activation analysis. The NAA makes its NAA facilities and expertise available to industry, private and government laboratories, and hospitals. Both research and service-oriented collaborations are underway with MIT research laboratories as well as with educational and research institutions.

Automatic Sample Transfer
The MITR is equipped with pneumatically-operated horizontal tubes that allow samples to be exposed to various neutron fluxes. These facilities are normally used to support the neutron activation analysis of environmental samples such as air pollutants.

Graphite Reflector
Vertical irradiation thimbles penetrate the graphite reflector which surrounds the MITR core. These thimbles are normally used for the activation of specimens that require a uniform, thermal flux.

EDUCATIONAL OPPORTUNITIES
NRL supports a strong educational program including:
- Outreach to the educational community as well as the general public that encourages understanding of nuclear energy and its applications by providing tours and lectures.
- Supporting MIT’s educational missions by providing: Independent Activities Period (IAP) lectures; hosting Undergraduate Research Opportunities Program (UROP) students; and offering lab courses for professionals, under-graduates, and advanced secondary school students.
- Web-enabled time-of-flight experimental facility.
- NRL staff that assist in research projects, theses, sample irradiations, neutron activation analyses (NAA), experiments, hands-on training, and other educational activities.

REACTOR OPERATOR TRAINING
The NRL offers Reactor Operator’s Training to several MIT students each year. These students undergo several months of training and studying. They are then eligible to take a two-day exam administered by the U.S. Nuclear Regulatory Commission in order to obtain their Reactor Operator’s License. After successfully passing the course and NRC exam, these students are then offered part-time positions as Reactor Operators. This program is exceedingly popular among students. In addition, all NRL staff working directly with the reactor are required to complete this training.

RESEARCH
The NRL has supported and contributed to many research projects through the years, such as closed-loop digital control of spacecraft and terrestrial reactors; boron neutron capture therapy for the treatment of cancer; material studies for the next generation of reactors; neutron activation analysis used for the study of autism; and the investigation of nanofluids for nuclear applications.

The NRL has one of the strongest materials and infrastructure programs in the country that supports research in the areas of advanced nuclear fuel and materials which are necessary for both existing and advanced power reactors. There is rekindled interest on the part of the US Department of Energy (DOE) and the nuclear industry in building the next-generation of nuclear power systems, many using novel materials and advanced forms of fuel. Therefore, facilities such as the MITR-II are in high demand to test novel and fuel behavior in a variety of radiation environments.

The MITR-II is arguably the best-suited university reactor for carrying out such studies because of its relatively high-power density (similar to a light-water reactor), the capability to control chemistry and thermal conditions to reflect prototypic conditions through its easy-access geometric configuration, and space for up to three independent irradiation tests.

PARTNERSHIP WITH ATR-NSUF
The NRL supports a strong educational program including:
- Enrollment of its test capability to NSUF experimenters.
- Support to external users whose projects are selected via a peer review process. The MITR-II offers a portion of its test capability to NSUF experimenters.

REACTOR SAFETY
Safe operation of the 6 MW MITR-II is the highest priority for each member of the NRL’s highly-trained staff. Reactor safety is ensured by an array of engineered systems and passive designs. Oversight is provided by the U.S. Nuclear Regulatory Commission, MIT’s EHS Radiation Protection Office, and the NRL Reactor Safeguards Committee.