Course Requirement Information Side-by-Side with Regular NSE SM

<table>
<thead>
<tr>
<th>LGO-NSE Program SM</th>
<th>Regular NSE SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>66 units of graduate subjects</td>
<td>66 units of graduate subjects</td>
</tr>
</tbody>
</table>

36 units approved by the NSE Department (see breakdown below). Undergraduate subjects, English proficiency subjects, and Research subjects (thesis and 22.94) may not be counted.

No special problems (22.901-22.904) may be counted.

Two modules are required; 12 units
(selected from 22.11, 22.12, 22.13, 22.14, 22.15, 22.16)

Two specialization courses in NSE are required; 24 units.
Recommended Fields of Specializations and subjects to choose from:
- Nuclear Reactor Engineering: 22.211, 22.312, 22.39, 22.313, 22.251
- Nuclear Reactor Physics: 22.211, 22.312, 22.212, 22.213, 22.251
- Nuclear Materials: 22.73, 3.20, 22.72, 22.74, 3.21
- Fusion: 22.611, 22.62, 22.67, 22.615, 22.616
- Nuclear Science and Technology: 22.51, 8.511, 22.90, 8.333, 8.421, 8.422
- Nuclear Security and Policy: 6.431, 22.312, 22.90, or other related subjects by petition.

One additional engineering course of at least 6 units as approved by the NSE Department.

24 units in the required courses in the LGO summer core. The [LGO summer courses](#) include focuses on Organizational Leadership and Change, Lean Tools and Applications, Programming in Python, Operations Management, Building and

48 of the 66 units must be taken within the NSE Department (see breakdown below)
Undergraduate subjects, English proficiency subjects, and Research subjects (thesis and 22.94) may not be counted.

No more than 12 units of special problems (22.901-22.904) may be counted.

Two modules are required; 12 units
(selected from 22.11, 22.12, 22.13, 22.14, 22.15, 22.16)

Other subjects may be selected in accordance with the student’s particular field of interest. Most Master’s candidates specialize in one of four alternative fields: fission nuclear technology, applied plasma physics, nuclear security, or nuclear science and technology.

Recommended Subjects for the S.M. Degree (specializations); Nuclear Reactor Engineering: 22.211, 22.312, and one of: (22.39, 22.313, 22.315, or 22.251); Nuclear Reactor Physics: 22.211, 22.312, and one of: (22.212, 22.213, or 22.251); Nuclear Materials: 22.73, 3.20 (Thermodynamics), and one of (22.72, 22.74, or 3.21 (Kinetics)); Fusion: 22.611, 22.62, and one of (22.67, or 22.615); Nuclear Science and Technology: 22.51, 8.511, and one of (22.90, or 8.333); Nuclear Security and Policy: 6.431, 22.814 and one of (22.312, or 22.90)
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Students apply through the Sloan application system. There are two rounds of applications. https://lgo.mit.edu/admissions/application-directions/</td>
<td>Students apply through the regular MIT grad apply application system. There is one round of applications. https://web.mit.edu/nse/education/grad/admissions.html</td>
</tr>
</tbody>
</table>