I nnovation is powerful, but in a field like nuclear engineering, new materials, designs and processes must prove their merit under all foreseeable conditions before moving into everyday use. An NSE team is using specialized facilities of the MIT Nuclear Reactor Laboratory to evaluate a new approach to protecting reactor fuel rods, with the prospect of enabling better reactor performance and safety, while also reducing waste production.

Uranium fuel for common pressurized water reactors typically comes in pellets, which are then inserted into slender four-meter-long tubes to form fuel rods. Several thousand of these tubes reside in a reactor’s core, where they provide an interface between the reacting uranium and cooling water flowing through the core. Their working conditions are exceedingly harsh, in a chamber pressurized to over 150 atmospheres, filled with about 300-degree Celsius water, and bombarded with intense neutron radiation.

To learn more about NSE please contact Professor Richard K. Lester, Head Department of Nuclear Science & Engineering rklester@mit.edu

Photo: Preparing apparatus for burst testing of irradiated silicon carbide composite tubes (in a radioactive materials laboratory at the Nuclear Reactor Lab). left: Gordon Kohse, right: David Carpenter
Silicon carbide’s working qualities include excellent strength at high temperatures, an order of magnitude less chemical reactivity with water or steam, very low neutron absorption, and resistance to radiation damage.

Silicon carbide (SiC) has emerged as an outstanding candidate to succeed zircaloy; SiC fibers can be wound onto a hollow “monolithic” tube of SiC and cemented in place with an external layer of SiC. This results in a composite tube that is the same size and shape as traditional zircaloy cladding. SiC’s working qualities include excellent strength at high temperatures, an order of magnitude less chemical reactivity with water or steam, very low neutron absorption, and resistance to radiation damage. “It is fortunate that silicon carbide, a material that has the mechanical and chemical properties we’re looking for, is also neutronically reasonable and radiation resistant,” says Kohse.

Evaluating SiC’s performance through computer simulation and reactor irradiation has been the main focus of Carpenter’s Ph.D. work, which began in 2007. “Part of it is building fundamental knowledge of how SiC behaves under reactor conditions, but we’re also trying to improve the material,” says Carpenter. “It’s a lot like metals – you can forge steel, but the exact conditions and additives and the forging process have a huge impact. The same is true of SiC. After running a wide variety of specimens in the reactor, I was surprised to learn how much depends on careful manufacturing and control of conditions.”

Carpenter intends to carry on his work as a postdoc with Kohse and Prof. Mujid Kazimi, director of the Center for Advanced Nuclear Energy Systems. Several companies and organizations, including Ceramic Tubular Products, Westinghouse Electric Company, the Electric Power Research Institute, and the US Department of Energy, are supporting the efforts, with an eye towards scaling up production and pursuing commercialization of the technology.