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Abstract. This paper describes a new result on a wavelet scheme
for scattered data interpolation extensively described in [2]. The in-
terpolation scheme of [2] already has several advantages as compared
to more classical RBF: it is highly stable and highly adaptive. In
this paper, we describe a new property of this scheme: that the ap-
proximation error locally only depends on a local sample density or
fill distance. We give a definition for this local fill distance, state the
error estimate and outline the proof.

§1. Introduction

The interpolation scheme devised and studied in [2] aims, given a set of
samples X ⊂ Rd and the corresponding sample values f(xxxxxxxxx), xxxxxxxxx ∈ X , at
fitting a function we call fX to these samples.

The scheme consists in finding the interpolant as a finite linear com-
bination of interpolating wavelets in a predefined basis (φjkkkkkkkkk)(j,kkkkkkkkk)∈J . A
number of features of this scheme have been already thoroughly described
in [2]. Mainly, the process has an error decay rate that is optimal w.r.t
the smoothness of the unknown function f . The local decay also depends
on the local function smoothness.

The result described in this paper extends this set of features and can
be stated as follows: the local error decay rate depends on the local density
of samples (or fill distance). Usually, error estimates are given in terms
of a uniform (or worst) fill distance across all the considered interpolation
domain.

In §2, we give an overview of the scheme and of its properties. In §3,
we define a local fill distance, state this local error estimate and give an
outline of the proof. §4 concludes the paper.
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§2. Scattered Data Wavelet Interpolation

The interpolation scheme is built in three steps. A first step, called alloca-
tion, consists in picking a subset (φjkkkkkkkkk)(j,kkkkkkkkk)∈J ′ of an interpolating wavelet
basis (φjkkkkkkkkk)(j,kkkkkkkkk)∈J [4]. The wavelets φjkkkkkkkkk are defined by

φjkkkkkkkkk(xxxxxxxxx) = φ(2jxxxxxxxxx− kkkkkkkkk),

where j is a resolution index, and kkkkkkkkk is the translation index. (In a bounded
domain, the boundary wavelets may have slightly different shapes due to
boundary effects, so the above formula must be refined, but to keep our
statement simple, we will ignore this in this paper). The fundamental
function φ is a compactly supported [3] interpolating function, i.e.

φ(kkkkkkkkk) = 0 if kkkkkkkkk ∈ Zd − {0},
φ(kkkkkkkkk) = 1 if kkkkkkkkk = 0.

The wavelet basis is then (φjkkkkkkkkk)(j,kkkkkkkkk)∈J , where the index set is

J = {(0, kkkkkkkkk) : kkkkkkkkk ∈ Zd} ∪
+∞⋃

j=1

{(j, kkkkkkkkk) : kkkkkkkkk ∈ Zd, kkkkkkkkk /∈ 2Zd}.

2.1. Allocation

Each wavelet φjkkkkkkkkk has a center node νjkkkkkkkkk = 2−jkkkkkkkkk. Each wavelet in the basis
also has a basin Bjkkkkkkkkk which is Voronöı cell of νjkkkkkkkkk in the mesh of all the
nodes νjkkkkkkkkk of basis functions of the same resolution. We can assume that
for each j, the set of basins Bjkkkkkkkkk is a partition of the domain.

Definition 1. An allocation is a 1-1 mapping from X to the wavelet basis
which is constructed iteratively as follows: Xf is initialized as Xf = X ,
and for each j, starting from j = 0, for each kkkkkkkkk such that Bjkkkkkkkkk ∩ Xf 6= ∅:
• let xxxxxxxxx be the closest point to νjkkkkkkkkk in Bjkkkkkkkkk ∩ Xf 6= ∅;
• set A(xxxxxxxxx) := (j, kkkkkkkkk)

• subtract xxxxxxxxx from Xf , i.e. set Xf := Xf − {xxxxxxxxx}.
If the fill distance h(X ) = min{|xxxxxxxxx−xxxxxxxxx′| : xxxxxxxxx ∈ X , xxxxxxxxx′ ∈ X , xxxxxxxxx 6= xxxxxxxxx′} is nonzero,
this process finishes for a finite j, i.e., A(xxxxxxxxx) is defined for all xxxxxxxxx ∈ X and
Xf = ∅. The selected subfamily is then indexed by J ′ = {A(xxxxxxxxx) : xxxxxxxxx ∈ X}.

This allocation procedure and its properties are detailed in [2,1]. In
univariate interpolation, we end up selecting a subset of the wavelet family
that has a tree structure. An example is given in Fig. 1.
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Fig. 1. Left: a wavelet family, with the location of the centers marked with
black circles on the wavelets. The black dots on the top line are the
samples. Right: the 1-1 mapping between samples and wavelets.

So far, if we expand the interpolant fX as

fX =
∑

(j,kkkkkkkkk)∈J ′
cjkkkkkkkkkφjkkkkkkkkk,

the interpolation constraints on the expansion coefficients (cjkkkkkkkkk) make up
a square linear system, since the allocation mapping A is a 1-1 mapping
between the unknowns cjkkkkkkkkk and the constraints. A second step, called
subsystem selection, is however necessary to guarantee that we end up
with a stable system.

2.2. Subsystem selection

Given an integer parameter P and a real parameter ρ, we define a (P, ρ)-
placement condition. This is a geometric criterion relating the positions of
the samples and the nodes of the wavelets that is simple to verify, and we
use it to guarantee that we end up with a stable system.

Definition 2. A sample point xxxxxxxxx and its allocated wavelet φjkkkkkkkkk (where
(j, kkkkkkkkk) = A(xxxxxxxxx)) fulfill a (P, ρ)-placement condition if and only if the following
conditions are fulfilled:

1 ) for all j′ < j, all kkkkkkkkk′ such that ‖νjkkkkkkkkk − νj′kkkkkkkkk′‖ ≤ P2−j , there exists
xxxxxxxxx′ ∈ X such that A(xxxxxxxxx′) = (j′, kkkkkkkkk′), and ‖νj′kkkkkkkkk′ − xxxxxxxxx′‖ ≤ ρ2−j ;

2 ) ‖νjkkkkkkkkk − xxxxxxxxx‖ ≤ ρ2−j .

Definition 3. The (P, ρ)-subsystem selection step consists in running through
all the pairs (xxxxxxxxx, (jkkkkkkkkk)) where (j, kkkkkkkkk) = A(xxxxxxxxx), from large to fine scales, and
removing all such pairs that do not fulfill the (P, ρ)-placement condition.
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With the remaining set of wavelets (φjkkkkkkkkk)(j,kkkkkkkkk)∈JS
, and the remaining set

of samples xxxxxxxxx ∈ XS we obtain a new square linear system:

∑

(j,kkkkkkkkk)∈JS

cjkkkkkkkkkφjkkkkkkkkk(xxxxxxxxx) = f(xxxxxxxxx) ∀xxxxxxxxx ∈ XS , (1)

and fX is defined to be fXS
=

∑
(j,kkkkkkkkk)∈JS

cjkkkkkkkkkφjkkkkkkkkk.

2.3. System solving

Once this has been done, we obtain a smaller square linear system (1).
For well chosen values of P and ρ (which depend on the shape of the
interpolating wavelet φ), we can guarantee that the system is stable. The
stability is obtained in the L∞ norm.

Theorem 4. If the function φ has a finite support (and if the boundary
wavelets have a finite number of different shapes and are all of finite sup-
port), then there exist an integer P > 0 and a real ρ > 0 such that for any
set of samples X , the subsystem obtained by (P, ρ) subsystem selection is
stable. Moreover:

1 ) There exists a constant bound M such that the subsystem solution
fX fulfills ‖fX ‖∞ ≤ M × ‖f‖∞ for any X ,

2 ) The norm of the system matrix inverse ‖M−1‖∞,∞ is bounded by
some M ′ × | log q(X )|, where q(X ) is the separation distance of the
sample set X , i.e.

q(X ) = min
xxxxxxxxx∈X

min
xxxxxxxxx′∈X−{xxxxxxxxx}

‖xxxxxxxxx− xxxxxxxxx′‖.

We give a short overview of the proof. We write the above subsystem
in a new function basis of relocated wavelets.

Definition 5. The relocation of a wavelet subfamily (φjkkkkkkkkk)(j,kkkkkkkkk)∈J ′ is a
new family (ϕjkkkkkkkkk)(j,kkkkkkkkk)∈J ′ spanning the same subspace, and fulfilling for all
(j, kkkkkkkkk) ∈ J ′

ϕjkkkkkkkkk(νj′kkkkkkkkk′) = 1(j,kkkkkkkkk)=(j′,kkkkkkkkk′).

The ϕ’s are uniquely defined by this property. Since we can prove
that

ϕjkkkkkkkkk − φjkkkkkkkkk ∈ span
{
φj′kkkkkkkkk′ : (j′, kkkkkkkkk′) ∈ J ′, j′ > j

}
,

the matrix C of the basis change is triangular. We can show that it is
invertible, and its norm (as well as that of its inverse) is bounded by some
M ′ × | log q(X )|. In the new relocated basis, the subsystem is diagonally
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dominant and of bounded inverse. These ingredients are used to prove
item 1) of Th. 4. To prove item 2), we show that

∥∥∥
∑

jkkkkkkkkk

cjkkkkkkkkkϕjkkkkkkkkk

∥∥∥
∞
≤ M ′′ ×max

jkkkkkkkkk
|cjkkkkkkkkk|,

where M ′′ does not depend on the sample set X .
From this, standard arguments can be used to prove that the inter-

polation scheme inherits the wavelet approximation properties, i.e., that
for instance

‖f − fX ‖∞ ≤ M ′′′ × h(X )α‖f‖α

if f is α-Lipschitz and ‖f‖α is its α-Lipschitz norm, provided that the
wavelet system has enough vanishing moments (i.e. the dual wavelet of φ,
which is a Radon measure, has at least dαe vanishing moments).

This error estimate can be refined: we can prove that a local error
decay rate depends on the local Lipschitz smoothness of the unknown
function f : for example, if f is Lipschitz-α in a vicinity of a point xxxxxxxxx, then

|f(xxxxxxxxx)− fX (xxxxxxxxx)| ≤ M × h(X )α.

The recent result which has been proved for this scheme is that the
local error bound also locally depends on some local sample density: in
order to do this, we first have to find an adequate and explicit definition
for a local fill distance.

§3. Varying Sample Density

A first definition of a local fill distance of a sample set h(X ) at point xxxxxxxxx
could simply be

hX (xxxxxxxxx) = min
xxxxxxxxx′∈X

|xxxxxxxxx− xxxxxxxxx′|.

Ideally we would like to have a local error bound of the form

|fX (xxxxxxxxx)− f(xxxxxxxxx)| ≤ hX (xxxxxxxxx).

With this, we cannot prove this bound. Especially, since the scheme is not
truly interpolating (some samples are discarded), we know that the local
fill distance can vanish at points where the error is nonzero.

Definition 6. Instead of a true local fill distance, we use a local fill dis-
tance envelope of parameter P defined as

h̄X (xxxxxxxxx) = min{h : ‖∇h′‖ ≤ 1/P and h(xxxxxxxxx) ≥ hX (xxxxxxxxx)∀ xxxxxxxxx}.
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Theorem 7. Given a wavelet system (φjkkkkkkkkk)kkkkkkkkk∈J with dαe vanishing mo-
ments, there exist parameters (P, ρ) such that the conclusions of Th. 4
hold, and if f is α-Lipschitz, then

|fX (xxxxxxxxx)− f(xxxxxxxxx)| ≤ M × h̄X (xxxxxxxxx)α‖f‖α,

where again ‖f‖α is the α-Lipschitz norm of f , M does not depend on f
or X , and h̄ is the local fill distance envelope of parameter P .

The proof of the theorem consists in showing that after allocation
and subsystem selection, the remaining wavelets are locally at a resolution
which is related to the local fill distance. This is exactly stated as follows:
defining levels sets Λj by

Λj = {xxxxxxxxx : h̄X (xxxxxxxxx) ≤ M2−j},
all wavelets (j′, kkkkkkkkk) whose center νj′kkkkkkkkk is in Λj and for which j′ < j appear
in the selected subsystem (1), i.e. (j′, kkkkkkkkk) ∈ JS .

Then, local error bounds are proven on the error fX − f using the
expansion of fX on the subfamily of relocated wavelets of Def. 5.

§4. Conclusion

With Theorem 7, we can describe the asymptotic behaviour of our wavelet
scheme fairly accurately. The approximation error locally depends on
the sample density and on the local unknown function smoothness. The
condition number of the system matrix to be solved also increases very
slowly with the sample separation distance. Formally, we thus have an
efficient approximation process for any input space dimension. As it is
now, the process still has a drawback: as the dimension of the input space
increases, the constants of the bounds above increase very sharply making
it completely inpractical for dimensions above 3. The challenge is now to
modify the scheme to have tighter bounds and to make it usable at higher
dimensions.
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