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Abstract

While observer and controller design is well understood
and widely used for linear systems, extensions to non-
linear systems have lacked generality. Motivated by
fluid dynamics, and following up on our earlier work
[Lohmiller and Slotine, 1996], this paper further ex-
plores the use of so-called Euler coordinates (rather
than the usual or Lagrange-based methods) in general
nonlinear, non-autonomous systems, and the analysis
and design tools they lead to. In this field formulation,
a complex plant may be regarded as the superposition
of simpler plants, each of them with very specific prop-
erties. There are two major classes of simple flow fields
in fluid dynamics, namely potential flow and solenoidal
flow. Both of them may be associated to an integral
formulation of the system equations, leading in turn to
a Lyapunov-like function, in the form of of a scalar po-
tential ® or of stream function ¥*. These generalized
distance functions can be regarded as a extension of the
differential concept of length introduced in our earlier
work.

1. Introduction

Nonlinear control system design has been very suc-
cessfully applied to particular classes of systems and
problems, but it still lacks generality, as e.g. in the
case of feedback linearization, or explicitness, as e.g.
in the case of Lyapunov theory [Isidori, 1995; Marino
and Tomei, 1995; Khalil, 1995; Nijmeyer and Van der
Schaft, 1992; Vidyasagar, 1992; Slotine and Li, 1991].
Motivated by fluid dynamics and electromagnetism,
we show in this paper that the use of so-called Euler
coordinates allows new design and analysis methods.
[Lohmiller and Slotine, 1996a] analyze a general flow
field with the help of the Jacobian of the system. This
differential analysis leads to a sufficient stability con-
cept. More general stabilty concepts can be expected
with an integral or Lyapunov formulation of a flow field.
This integral formulation in the form of a scalar or “vec-
tor” potential can be found for potential and solenoidal
flows in a straightforward way.
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The general deterministic setting can be written

x = f(xu,t) (1)
y = h(x)

where f is a » x 1 nonlinear vector function, x is the
nx 1 state vector, u is the px 1 input vector,and y is the
m x 1 measurement vector. In this paper, all quantities
are assumed to be smooth, by which is meant that any
required derivative or partial derivative exists and is
continuous.

A standard problem is the observer problem, i.e., how
to estimate the state x(t) given only the measurement
y(t). Another standard problem is the tracking control
problem, i.e. to make some k-dimensional vector z(x)
follow a desired trajectory z4(t) , while preserving inter-
nal boundedness. This paper first reviews and extends
some general results on representation and differential
analysis (sections 2 and 3) based on {Lohmiller and Slo-
tine, 1996a], then discusses integral analysis (sections
4 - 6) and provides a preliminary exploration of po-
tential applications to the modelling of controllers and
observers (sections 7-8).

2. Representation and Contraction Regions

Motivated by fluid dynamics, equation (1) can be
thought of as an n-dimensional fluid flow, where x is the
n-dimensional “velocity” vector at the n-dimensional
position x and time t. There are two ways of describ-
ing such a flow, namely Lagrange coordinates and Euler
coordinates [Chung, 1988]. As discussed in [Lohmiller
and Slotine, 1996a), simply correspond to describing the
whole system flow at each given point in the state space
rather than focusing on the paths of individual parti-
cles, allowing for instance to regard a given nonlinear
plant x = f(x,t) as the superposition of simpler plants
x; = fi(x,t). Euler coordinates will be systematically
used in this paper.

[Lohmiller and Slotine, 1996a] show that the squared
distance between two neighboring Lagrange particles
changes with the eigenvalues of the rate of strain ten-

sor (symmetric part of the Jacobian %). For strictly
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negative eigenvalues any length shrinks exponentially.
Thus the radius of a sphere around an equilibrium point
shrinks exponentially (Figure 1). This leads to the fol-
lowing stability theorem (Figure 1)

Theorem 1 Given the system equations x = f(x,t)
any plant, starting in a ball contained at at all times
in a contraction region (region with uniformly negative

definite Jacobian '3% ) and centered at an equilibrium
point, will converge exponentially to this equilibrium
point.

Lagrange
particle shrinking

radius

contracting
region

shrinking

length
equilibrium
point

Figure 1: Stability of an equilibrium point

This result may be viewed as a generalization of
Krasovskii’s theorem on asymptotic convergence of
nonlinear autonomous systems. Not surprisingly it only
provides a sufficient condition since length is defined
here in a spherical sense and not related to the actual
plant dynamics. More general stability results can be
expected with an integral or Lyapunov formulation of
a flow field. According to the analysis of differential
forms integral formulations of a flow field exist only for
potential and solenoidal flow fields [Bronstein and Se-
mendjajev, 1990].

Consider two Lagrange particles that remain within a
convex contraction region at all times. The connecting
line s in (Figure 2) shrinks exponentially so that the
two Lagrange particles converge to one, in general time-
varying, point exponentially. In fact any Lagrange par-
ticle that remains within that contraction region at all
times will converge exponentially to this time-varying
point.

Consider now a contraction region wrapped around a
indifferent region, i.e., one in which the system Jacobian
does not have a priori any negative definiteness prop-
erty (Figure 3). Since any length shrinks exponentially
the area of any surface contained in the contraction re-
gion shrinks exponentially. That means that this sur-
face converges exponentially to the indifferent region.
Any Lagrange particle contained in the volume of this
surface thus converges exponentially to the indifferent
region.

Lagrange particle 1

contraction region

Lagrange particle 2

Figure 2: Two Lagrange particles in a contraction region

Lagrange
particle

com.raction/
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non-
contraction
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exponentially
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Figure 3: Surface in a contraction region around a indif-
ferent region

Non-Cartesian Metric

Consider the coordinate tranformation
z = z(xX)

where z represents a r-dimensional vector (r < n). A
virtual displacement in z is given by

Oz
0z = 6_X6X

Assuming this space to be Cartesian the squared dis-
tance between two Lagrange particles can be written
as

(ds)? = 627 6z

or equivalently

0z7 9z
ds)? = oxT = —ox
(ds) ox Ox
T
where g = ZZ° 2Z represents the metric tensor of the

system [Fluegge, 1972]. The space in x is now non-
Cartesian if the metric tensor g is not the idendity ma-
trix.
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The rate of change of any length in the flow field is thus
of the form

%(&Taz) = 206z 6z
_ g prde” (Ozg,  0n
= 24x e 7% —0x +a §x
_ agT (02702 ),
- *1ox ox ox )
0z 0z~ 0Oz Of 9z 1
— T Ya2us
= 20z (axax 9% 9% Ox )6z
= 262TF, 62
= 26zTEz(5z

where F, represents the rate of deformation tensor with
respect to the Cartesian basis in z. E, is the rate of

strain tensor with respect to to the Cartesian basis in

Z. -g{- is the Jacobian of the system dynamics in x,

3§T gz the Christoffel part due to the curvature of the

space. Similarly to the earlier reasomng, exponentlal
convergence to one point in z is guaranteed if E; is
uniformly strictly negative. If z = z(x) is a invertible
coordinate transformation it can be concluded that also
x converges to one point.

EXAMPLE 1: Consider the system
T=—lz

for t > t, > 0 the rate of strain tensor is uniformly
strictly negative and exponential convergence to the
equilibrium point is guaranteed.

EXAMPLE 2: In the system
= —z+e

the rate of strain tensor is again uniformly strictly neg-
ative and exponential convergence to one time-varying
point (a single trajectory) is guaranteed — trivially
here, two different initial conditions will both exponen-
tially converge to the same asymptotic behavior z = et.

EXAMPLE 3: Counsider a LTI system of the form
x = Ax

The invertible coordinate transformation z = Tx, leads
to the new dynamics:

z2=T 'ATZ = Areas 2

Choosing a proper coordinate transformation A4 rep-
resents the Jordan matrix of the system, where the
complex eigenvalues have been put to real form and
the 1’s on the second diagonal have been replaced with
B < Arealr Areqr is uniformly strictly negative if and
only if the LTI system is stable.

Assume now that A is in fact a linearization of a non-

linear non-autonomous system, A = 5%2. The rate of

deformation tensor is now given by F, = T~12% of %< I and
exponential convergence is guaranteed in the contrac-
tion region with uniformly strictly negative F,.

Example 4: Consider the general nonlinear non-
autonomous system

x = f(x,t)

Assume that this system is uniformly strictly negative
definite only in some coordinates Xyeduced- Then length
can be defined as:

2 T
(ds) - ereduced 6xreduced

and exponential convergence is guaranteed to one point
in this coordinate subset, i.e., to a manifold in the whole
state space.

3. Potential and solenoidal flow

Any general flow field can be decomposed, non-
uniquely, into the sum of two simpler flow fields with
very specific structural properties, namely potential
and solenoidal flow — this is the continuum mechan-
ics equivalent of the fact that any square matrix can
be written as the sum of a symmetric part and a skew-
symmetric part.

3.1. Potential flow

A potential flow field x can be expressed as the gradi-
ent field of a scalar potential & [Fluegge, 1972]. The
following three statements can be used equivalently to
define a potential field [Aris, 1962] !

x = grad®
curl x 0

fkdt = 0
c

where t represents the unit tangent vector of C.

I

for any closed curve C

A typical example of a potential field is damping of
the form #; = g(&;). In more general systems, many
authors suggest using the scalar potential component
® as a Lyapunov function candidate [Abd-Alj, et al.,
1975].

3.2. Solenoidal flow

Solenoidal flow fields are used in continuum mechan-
ics to model incompressible fluids. This incompress-
ibility can be expressed with the following three equiv-

ln tensor analysis, the Cartesian gradient of a scalar @ is
generalized for n dimensions as the 1-form grad & = g—:;d:c'
of the scalar potential ®. The curl of a vector X is defined as

1 (”—ﬂ _ o )d:cf Adzi . The Carte-

2 \ 8z7 8zt

sian dlvergence of a vector X is defined as the n-form div X =
(Ei' o+ Qin P ) dz! A ... A dz™ [Bronstein and Semendjajev,
1990].

the 2-form curl X =
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alent definitions [Aris, 1962], which extend to the n-
dimensional case?
x = curl* ¥*
div x 0

/)'cTndS = 0
s

where n represents the unit normal vector of S. The
(non-unique) vector field ¥* is then called a vector po-
tential of the flow field.

for any closed surface S

Many important systems are solenoidal flow fields. For
example, in a general Hamiltonian system [Arnold,
1984] with Hamiltonian H(p,q,?)

. 8H
P~ "8q
. 8H
17

and thus dw< ﬁ ) =0.

The vector potential ¥* represents now the integral for-
mulation of the solenoidal flow, that might be used as
Lyapunov function. The vector potential ¥* is the sum
of “general” and “specific” vector potentials [Bronstein
and Semedjajev, 1990]

Ur = ‘I’gen + \I’spec

where ¥, is a solution of the equation curl*¥ ., =0,
and

iy 4., AT A . Adaint

\I’spec = n_2
with
1
’l},’l_“,‘"_l (:El, ...,.’En) = / iil...i,._l(t-'lll, “eey twn)tn~2dt
o

A solution is always guaranteed since div x = 0.

4. Stream functions

Consider the time-augmented (n + 1)-dimensional form
of a general non-autonomous system:

(9)-("%)

Let ( <(11;C ) be an element of a system trajectory pass-

ing through point < )t( > , and let ( )1{ ) denote the

2In n dimensions, the Cartesian vector potential ¥* is defined
as the (n — 2)-form ¥* = (—7;_1—2)!-\11314‘_1-"_21133” A Adain-2,
x = curl* ¥* is the differential of ¥* that is x :aglurl* T* =

1 .x iy in-1 wi * — 2ftn—1
=1l i, 4T A AdETret withoef = —r
Wiz, iy Wiy ..

- Cyn=19Yir i g : ~
e O +(-1) P [Bronstein and Semend
Jjajev, 1990].

velocity vector at this point (Figure 4). Since ( ((l;t( )
. be
is parallel to ( 1 ) , one has

x,dx] = x.jd.’L‘,;
dl‘j = i:jdt

Equations of this kind are known as 1-form or Pfaffian

Y x, t)=c, ( ’1() system trajectory

—
-
P

Hx=c

Figure 4: Two intersecting stream functions

differential equations [Sneddon, 1957]. A solution is
given by n independent stream functions,

V;(x,t) = ¢ i=1,...,n

Thus a system trajectory can be described as the inter-
section of n surfaces [Chung, 1988] such that

X-grad ¥; =0 i=1,...,n
or3
p(x, )% = grad ¥y x ... X grad ¥,

were p is a scalar function (density) of position and
time. It can be shown that div(grad ¥; x ... x ¥,) = 0.
Thus p(x, ) must be chosen such that div(p(x,t)x) = 0.
For a solenoidal flow, p = 1.

Once a Lagrange particle is on a given manifold
¥,(x,t) = ¢; it will never leave this manifold. The
stream functions and their associated invariant mani-
folds are in general not uniquely defined. But some of
them have a strong physical interpretation as e.g. the
energy, angular, or linear momentum of a mechanical
system. For autonomous systems it is not necessary to
augment the state space with the time variable, and
thus only n — 1 stream functions define the flow field.

In a time-invariant Hamiltonian system, the Hamilto-
nian itself represents a stream function, since

9H p oH _9H
T 7} _ i} [E] _
p-(B)(5)-(8 )4 )
ad 5q 5p
3In tensor analyis, the generalized cross-product is defined for

n dimensions as €1._,v!..0™ | correponding to a tensor of order
n—m.
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It is straightforward to show that the “vector” poten-
tial ¥* of a solenoidal flow in 2 dimensions is the stream
function ¥ of the flow field. For higher dimensions re-
search is being done to show whether the stream func-
tions ¥ can be computed from the “vector” potential
U,

5. Generalized Lyapunov Functions

Consider now the system
x = f(x,u,t)

and assume that a control input u = u(x, t) can be cho-
sen such that there exists a closed-loop stream function
¥ whose level surfaces (i.e.., the surfaces defined by
¥(x,t) = constant ) represent at each time t a set of
closed surfaces in a certain region around an equilib-
rium point. We further assume that the stream func-
tion ¥ has a global minimum at the equilibrium point
and other local minima do not occur in the region of
interest. We will refer to such stream functions in the
following simply as closed stream functions. This is
illustrated in Figure 5. This set of stream functions
obviously represents a generalization of the spherical
stream functions used in Figure 1 if only the tangential
flow is regarded.

equilibrium point and minimum
'

stream function Y (x,t)=c¢

Figure 5: Closed stream functions and superimposed sec-
ondary flow

Consider now a secondary flow field X, representing e.g.
a system part (damping) that was not modelled yet
or an additional control input u. This secondary flow
field, represented by the dotted lines in Figure 5, always
points to the interior of the stream function ¥(x,t) or
in the direction of decreasing W. It is intuitively clear
that this secondary flow field decreases the distance to
the equilibrium point and makes the system converge
to the equilibrium point, if strong enough. The dynam-
ics of this generalized distance can be expressed in the
following way:

: . o¥
¥ =grad U-%x+ 5

Using the generalized distance ¥(x,t) as a Lyapunov
function convergence to the equilibrium point is guar-
anteed if grad ¥ - X+ %% is strictly negative. Expone-
tial convergence is guaranteed if grad ¥ - % + %—‘f <
A-U; (A £ 8 < 0). This secondary flow represents
the generalization of the normal flow in Figure 1 in-
duced by the shrinking radius. [Lohmiller and Slotine,
1996] superimpose this secondary flow with the help of

a coordinate error feedback in an observer design.

In general it has to be accepted that the secondary flow
X lies tangential to the stream function in some regions
and can thus not decrease the distance to the equilib-
rium point or stabilize the system in this region. Such
a region is characterized by:

grad ¥(x,t) - % =0 (2)

For grad ¥(x,t) # 0 this region is left by a Lagrange
particle with velocity

d(grad (x,t) - %), .
9% lo "X (3)

If this leaving velocity is 0 a particle will not leave
this region, the distance ¥ stays constant and conver-
gence to the equilibrium point cannot be guaranteed.
If the velocity in equation (3) is strictly positive or
negative it can be guaranteed that a Lagrange parti-
cle moves in finite time At a finite distance Ax away
from this unstabilizable region. If the shrinking veloc-
ity (grad ¥(x,t) - X) is then strictly negative again and
the Lagrange particle stays at least a finite distance Ax
in this region convergence to the equilibrium point can
still be guaranteed.

6. Closed stream functions

Since the velocity vectors x have to lie tangential to
the stream functions a necessary condition for a stream
function to be closed is [ xTn dS = 0. That means it
is in general easier to find a set of closed stream func-
tions in a solenoidal flow field. That is the reason why
we will split up a general flow field in the following
in a solenoidal and non-solenoidal part first. A closed
stream function is then searched in the solenoidal field.
The non-solenoidal part (e.g. damping) is then super-
imposed as secondary flow. Since this secondary flow
field often represesents a dissipative system it can be
expected that it will stabilize the primary flow.

A closed stream function can only be found in a certain
region if the system trajectories do not blow up in this
region. That means it is desired to have e.g. closed
particle trajectories (limit cycles) in the solenoidal part.
If the natural system is unbounded (as, e.g., in a vehicle
with constant velocity) the control input u or error-
feedback in a observer design can be used to modell
e.g. virtual springs to prevent the system from blowing
up. Once it is assured that the system trajectories in a
certain region can fit in a set of closed stream functions
the stream function itself (e.g. the Hamiltonian) can
be searched.
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Consider for example a conservative multibody system,
which represents a special case of a Hamiltonian system:

q
p

p
f(p,q,u)

il

where q represents the positons and p represents the
velocities of the system. With the help of the control
inputs u at the joint links the system is supposed to
follow a desired trajectory qq(t), p4(t) = qa(t).

Natural reference frames for a multibody system are
the desired trajectories of each link. These desired tra-
jectory frames can be regarded as inertial frames if the
control input u = u* + W;pertiq cancels all the inertial
forces (Coriolis, centrifugal etc.) of these moving refer-
ence frames. A potential stream function is the total
energy, that is the sum of the kinetic and potential en-
ergy of the system then. Since p = p — pq are inertial
velocities now the kinetic energy has its global minima
for p = 0. The control input u can be used to model
virtual springs at the joints and to cancel e.g. the grav-
ity forces to assure that even the potential energy has
its global minima at @ = q — q4. And a closed stream
function is found. Damping elements as a function of
P = p — pq assure that this energy decreases to the
desired postion. The cancelled inertia forces are the
inertia forces of the desired movement. Since the de-
sired movement is well known this design should not
be as sensitive to parameter uncertainities as feedback
linearization, that cancels the whole inertia forces. In
principle this tracking controller generalizes PD energy-
based controllers for stabilization. The same method
could also be used to model an energy-based observer
just with the help of the position measurements of a
multibody system. Error-feedback in the velocities can
be achieved with the coordinate error feedback illus-
trated in [Lohmiller and Slotine, 1996].

7. Concluding Remarks

Considering the flow of a nonlinear system at each given
point in space rather than individual trajectories, leads
to different analysis and design tools compared to the
common Lagrange-based methods. [Lohmiller and Slo-
tine, 1996] analyze a fluid flow with a differential con-
cept conditioned by the Jacobian of the system. This
method leads to a spherical concept of length. After
summarizing and extending our earlier results, this pa-
per shows thatimportant systems aare special classes
of potential and solenoidal flows. These two flows in-
deed allow an integral formulation of a dynamical sys-
tem. The concept of length can also be introduced with
the help a stream function, that is closely related to a
Lyapunov function. One important stream function is
the energy of a system. For 2 dimensions is the stream
function given by the vector potential. Current research
focuses on a method that gives a general stream func-
tion as a function of the vector potential that itself can
be found in a straightforward way in a solenoidal flow
field. This would lead to a straightforward Lyapunov

function for systems with mainly solenoidal or Hamil-
tonian dynamics.
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