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Abstract 

While observer andl controller design is well understood 
and widely used for linear systems, extensions to non- 
linear systems have lacked generality. Motivated by 
fluid dynamics, and following up on our earlier work 
[Lohmiller and Slotine, 19961, this paper further ex- 
plores the use of so-called Euler coordinates (rather 
than the usual or Lagrange-based methods) in general 
nonlinear, non-autonomous systems, and the analysis 
and design tools they lead to. In this field formulation, 
a complex plant may be regarded as the superposition 
of simpler plants, each of them with very specific prop- 
erties. There are two major classes of simple flow fields 
in fluid dynamics, namely potential flow and solenoidal 
flow. Both of them may be associated to an integral 
formulation of the system equations, leading in turn to 
a Lyapunov-like fuinction, in the form of of a scalar po- 
tential CP or of stream function a*. These generalized 
distance functions can be regarded as a extension of the 
differential concept of length introduced in our earlier 
work. 

11. Introduction 

Nonlinear control system design has been very suc- 
cessfully applied to particular classes of systems and 
problems, but it still lacks generality, as e.g. in the 
case of feedback linearization, or explicitness, as e.g. 
in the case of Lyapunov theory [Isidori, 1995; Marino 
and Tomei, 1995; Khalil, 1995; Nijmeyer and Van der 
Schaft, 1992; Vidyasagar, 1992; Slotine and Li, 19911. 
Motivated by fluid dynamics and electromagnetism, 
we show in this patper that the use of so-called Euler 
coordinates allows new design and analysis methods. 
[Lohmiller and Slotine, 1996a] analyze a general flow 
field with the help of the Jacobian of the system. This 
differential analysis leads to a sufficient stability con- 
cept. More general stabilty concepts can be expected 
with an integral or ILyapunov formulation of a flow field. 
This integral formulation in the form of a scalar or “vec- 
tor” potential can be found for potential and solenoidal 
flows in a straightforward way. 

The general deterministic setting can be written 

x = f(%,U,t) (1) 
Y = h(x) 

where f is a n x 1 nonlinear vector function, x is the 
n x 1 state vector, U is the p x 1 input vector,and y is the 
m x 1 measurement vector. In this paper, all quantities 
are assumed to be smooth, by which is meant that any 
required derivative or partial derivative exists and is 
continuous. 

A standard problem is the observer problem, i.e., how 
to estimate the state x ( t )  given only the measurement 
y ( t ) .  Another standard problem is the tracking control 
problem, i.e. to make some k-dimensional vector z(x) 
follow a desired trajectory z d ( t )  , while preserving inter- 
nal boundedness. This paper first reviews and extends 
some general results on representation and differential 
analysis (sections 2 and 3) based on [Lohmiller and Slo- 
tine, 1996a], then discusses integral analysis (sections 
4 - 6) and provides a preliminary exploration of po- 
tential applications to  the modelling of controllers and 
observers (sections 7-8). 

2. Representation and Contraction Regions 

Motivated by fluid dynamics, equation (1) can be 
thought of as an n-dimensional fluid flow, where X is the 
n-dimensional “velocity” vector at the n-dimensional 
position x and time t. There are two ways of describ- 
ing such a flow, namely Lagrange coordinates and Euler 
coordinates [Chung, 19881. As discussed in [Lohmiller 
and Slotine, 1996a], simply correspond to describing the 
whole system flow at each given point in the state space 
rather than focusing on the paths of individual parti- 
cles, allowing for instance to regard a given nonlinear 
plant x = f(x, t )  as the superposition of simpler plants 
xi = fi(x, t) .  Euler coordinates will be systematically 
used in this paper. 

[Lohmiller and Slotine, 1996a] show that the squared 
distance between two neighboring Lagrange particles 
changes with the eigenvalues of the rate of strain ten- 
sor (symmetric part of the Jacobian g). For strictly 
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negative eigenvalues any length shrinks exponentially. 
Thus the radius of a sphere around an equilibrium point 
shrinks exponentially (Figure 1). This leads to the fol- 
lowing stability theorem (Figure 1) 

Theorem 1 Given the system equations x = f ( x , t )  
any plant, starting in a ball contained at at all times 
in a contraction region (region with uniformly negative 
definite Jacobian g) and centered at an  equilibrium 
point, will converge exponentially to  this equilibrium 
point. 

Lagrange 

point 

Figure 1: Stability of an equilibrium point 

This result may be viewed as a generalization of 
Krasovskii’s theorem on asymptotic convergence of 
nonlinear autonomous systems. Not surprisingly it only 
provides a suf ic ient  condition since length is defined 
here in a spherical sense and not related to the actual 
plant dynamics. More general stability results can be 
expected with an integral or Lyapunov formulation of 
a flow field. According to the analysis of differential 
forms integral formulations of a flow field exist only for 
potential and solenoidal flow fields [Bronstein and Se- 
mendjajev, 19901. 

Consider two Lagrange particles that remain within a 
convex contraction region at all times. The connecting 
line s in (Figure 2) shrinks exponentially so that the 
two Lagrange particles converge to one, in general time- 
varying, point exponentially. In fact any Lagrange par- 
ticle that remains within that contraction region at  all 
times will converge exponentially to this time-varying 
point. 

Consider now a contraction region wrapped around a 
indifferent region, i.e., one in which the system Jacobian 
does not have a priori any negative definiteness prop- 
erty (Figure 3). Since any length shrinks exponentially 
the area of any surface contained in the contraction re- 
gion shrinks exponentially. That means that this sur- 
face converges exponentially to the indifferent region. 
Any Lagrange particle contained in the volume of this 
surface thus converges exponentially to the indifferent 
region. 

. 

contraction region 

Figure 2: Two Lagrange particles in a contraction region 

contract 
region e 

exponentially 
shrinking 

Figure 3: Surface in a contraction region around a indif- 

Non-Cartesian Metric 

Consider the coordinate tranformation 

ferent region 

z = Z(X) 

where z represents a r-dimensional vector (T 5 n). A 
virtual displacement in z is given by 

a Z  6z = -6x ax 
Assuming this space to be Cartesian the squared dis- 
tance between two Lagrange particles can be written 
as 

(ds)2 = bzT6z 

or equivalently 

az az 
ax ax (ds)2 = bxT- -6x 

where g = ET% represents the metric tensor of the 
system [Fluegge, 19721. The space in x is now non- 
Cartesian if the metric tensor g is not the idendity ma- 
trix. 
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The rate of change of any length in the flow field is thus 
of the form 

d 
dt 
-((6ZTbZ) 2 bZTBZ 

ax ax 

az a2-l az  afaz-l 6z 
a x a x  axaxax = 2 6zT (-- +--- ) 

= 26zTF,6z 
= 26zTE,6z 

where F, represents the rate of deformation tensor with 
respect to the Cartesian basis in z. E, is the rate of 
strain tensor with respect to to the Cartesian basis in 
z. & is the Jacobian of the system dynamics in x, 

space. Similarly to the earlier reasoning, exponential 
convergence to one point in z is guaranteed if E, is 
uniformly strictly negative. If z = Z(X) is a invertible 
coordinate transformation it can be concluded that also 
x converges to one point. 

EXAMPLE 1: Consider the system 

- :gT+& the Christoffel part due to the curvature of the 

x = -tx 

for t 2 to > 0 thie rate of strain 
strictly negative and exponential 
equilibrium point is guaranteed. 

EXAMPLE 2: In the system 

k = -x+et 

tensor is uniformly 
convergence to the 

the rate of strain tensor is again uniformly strictly neg- 
ative and exponential convergence to one time-varying 
point (a single trajectory) is guaranteed - trivially 
here, two different initial conditions will both exponen- 
tially converge to tlhe same asymptotic behavior 2 = et .  

EXAMPLE 3: Consider a LTI system of the form 

x = A x  

The invertible coor'dinate transformation z = Tx, leads 
to the new dynamics: 

z = T-lATz = Areal z 

Choosing a proper coordinate transformation A r e a l  rep- 
resents the Jordan matrix of the system, where the 
complex eigenvalues have been put to real form and 
the 1's on the second diagonal have been replaced with 
p < Areal. Areal  is uniformly strictly negative if and 
only if the LTI system is stable. 

Assume now that A is in fact a linearization of a non- 
linear non-autonomous system, A = E. The rate of af 

deformation tensor is now given by F, = T-' &T and 
exponential convergence is guaranteed in the contrac- 
tion region with uniformly strictly negative F,. 

Example 4: Consider the general nonlinear non- 
autonomous system 

x = f ( x ,  t )  

Assume that this system is uniformly strictly negative 
definite only in some coordinates &educed. Then length 
can be defined as: 

T (ds)2 = 6Xreduced  &&educed 

and exponential convergence is guaranteed to one point 
in this coordinate subset, i.e., to a manifold in the whole 
state space. 

3. Potential and solenoidal flow 

Any general flow field can be decomposed, non- 
uniquely, into the sum of two simpler flow fields with 
very specific structural properties, namely potential 
and solenoidal flow - this is the continuum mechan- 
ics equivalent of the fact that any square matrix can 
be written as the sum of a symmetric part and a skew- 
symmetric part. 

3.1. Potential flow 
A potential flow field x can be expressed as the gradi- 
ent field of a scalar potential CP [Fluegge, 19721. The 
following three statements can be used equivalently to 
define a potential field [Aris, 19621 

x = grad@ 

[ti 1 for any closedcurve C 

where t represents the unit tangent vector of C. 

A typical example of a potential field is damping of 
the form xi = g(&). In more general systems, many 
authors suggest using the scalar potential component 
Q, as a Lyapunov function candidate [Abd-Ah, et al., 
19751. 

3.2. Solenoidal flow 
Solenoidal flow fields are used in continuum mechan- 
ics to model incompressible fluids. This incompress- 
ibility can be expressed with the following three equiv- 

'In tensor analysis, the Cartesian gradient of a scalar @ is 
generalized for n dimensions as the l-form grad @ = $dzi 
of the scalar potential ch. The curl of a vector X is defined as 

the 2-form curl X = 3 (3 - 3 dxj A dxi  . The Carte- ) 
sian divergence of a vector X is defined as the n-form diu X = (3 + _.. + e) dx' A .__ A dxn [Bronstein and Semendjajev, 
19901. 
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alent definitions [Aris, 19621, which extend to the n- 
dimensional case2 

x = curl* a* 
diu x = 0 

xTn d S  = 0 for any closed surface S 

where n represents the unit normal vector of S. The 
(non-unique) vector field ** is then called a vector po- 
tential of the flow field. 

Many important systems are solenoidal flow fields. For 
example, in a general Hamiltonian system [Arnold, 
19841 with Hamiltonian H(p, q, t )  

dH p = -- 
as 

aH q =  - 
aP 

and thus diu ( $ ) = 0. 

The vector potential Q* represents now the integral for- 
mulation of the solenoidal flow, that might be used as 
Lyapunov function. The vector potential Q* is the sum 
of "general" and "specific" vector potentials [Bronstein 
and Semedjajev, 19901 

** = Q g e n  + *spec  

where Qgen is a solution of the equation curl*Qgen = 0, 
and 

1 -  
*spec  = - xZvii2 _. dxiz A ... A dXin-' 

n - 2  
with 

~i~...i~-~(x', ..., zn)  = ~ i ~ . . . i ~ - ~ ( t z ' ,  ..., t ~ ~ ) t ~ - ~ d t  l. 
A solution is always guaranteed since diu x = 0. 

4. Stream functions 

Consider the time-augmented (n + 1)-dimensional form 
of a general non-autonomous system: 

Let ( 2 ) be an element of a system trajectory pass- 

ing through point ( : ) , and let ( ; ) denote the 

'In n dimensions, the Cartesian vector potential \k* is defined 
as the (n  - 2)-form q* = &*:l.,,i,-zdzil A ... A d z j n - 2 .  
x = curl* ** is the differential of \k* that is x = curl* !I?* = 
n ~ l ~ ; l , , , i , , - l d z i ~  A ... A dzGn-l with crl, , , in-l  - 

jajev, 19901. 

a*., . . n - l  - - - 
8x11 

[Bronstein and Semend- a*i1'3. . . 'n-1 + ,,, +(-1)n-1 " i l : . . I n - z  
81'2 ax'- - 2 

velocity vector at this point (Figure 4). Since ((2) 
is parallel to ( ) , one has 

x idx j  = xjdxi 
d x j  = x j d t  

Equations of this kind are known as 1-form or Pfaffian 

Figure 4: Two intersecting stream functions 

differential equations [Sneddon, 19573. A solution is 
given by n independent stream functions, 

Q'i(x,t) = ci i =  1, . . . ,  n 

Thus a system trajectory can be described as the inter- 
section of n surfaces [Chung, 19881 such that 

x . grad Q i  = 0 i =  1, ..., n 

or 
p ( x , t ) x  = grad Q1 x ... x grad Qn 

were p is a scalar function (density) of position and 
time. It can be shown that div(grad Ql x ... x an) = 0. 
Thus p(x, t )  must be chosen such that d i v ( p ( x ,  t ) x )  = 0. 
For a solenoidal flow, p = 1. 

Once a Lagrange particle is on a given manifold 
qi(x,t) = c i  it will never leave this manifold. The 
stream functions and their associated invariant mani- 
folds are in general not uniquely defined. But some of 
them have a strong physical interpretation as e.g. the 
energy, angular, or linear momentum of a mechanical 
system. For autonomous systems it is not necessary to 
augment the state space with the time variable, and 
thus only n - 1 stream functions define the flow field. 

In a time-invariant Hamiltonian system, the Hamilto- 
nian itself represents a stream function, since 

31n tensor analyis, the generalized cross-product is defined for 
n dimensions as E ~ . . . ~ v ~ . . . v ~  , correponding to a tensor of order 
n - m. 
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It is straightforward to show that the LLvector” poten- 
tial @* of a solenoidal flow in 2 dimensions is the stream 
function 9 of the flow field. For higher dimensions re- 
search is being done to show whether the stream func- 
tions 9 can be computed from the “vector” potential 
Q*. 

5. Generalized Lyapunov Functions 

Consider now the system 

x = f(x, U, t )  

and assume that a control input U = u(x, t )  can be cho- 
sen such that there exists a closed-loop stream function 
@ whose level surfaces (i.e.., the surfaces defined by 
q(x, t )  = constant ) represent at each time t a set of 
closed surfaces in a certain region around an equilib- 
rium point. We further assume that the stream func- 
tion q has a global minimum at the equilibrium point 
and other local minima do not occur in the region of 
interest. We will refer to such stream functions in the 
following simply as closed stream functions. This is 
illustrated in Figure 5 .  This set of stream functions 
obviously represents a generalization of the spherical 
stream functions used in Figure 1 if only the tangential 
flow is regarded. 

ercuilibrium Doint and minimum 

stream function W(x,t) = c 

Figure 5: Closed stream functions and superimposed sec- 

Consider now a seclondary flow field i ,  representing e.g. 
a system part (damping) that was not modelled yet 
or an additional control input U. This secondary flow 
field, represented b y  the dotted lines in Figure 5, always 
points to the interior of the stream function q(x, t )  or 
in the direction of decreasing !P. It is intuitively clear 
that this secondary flow field decreases the distance to 
the equilibrium point and makes the system converge 
to the equilibrium point, if strong enough. The dynam- 
ics of this generalized distance can be expressed in the 
following way: 

ondary flow 

Using the generalized distance @(x,t) as a Lyapunov 
function convergence to the equilibrium point is guar- 
anteed if grad @ . k + % is strictly negative. Expone- 
tial convergence is guaranteed if grad @ k + < 
X ‘I q ;  (A 5 p < 0). This secondary flow represents 
the generalization of the normal flow in Figure 1 in- 
duced by the shrinking radius. [Lohmiller and Slotine, 
19961 superimpose this secondary flow with the help of 
a coordinate error feedback in an observer design. 

In general it has to be accepted that the secondary flow 
ji- lies tangential to the stream function in some regions 
and can thus not decrease the distance to the equilib- 
rium point or stabilize the system in this region. Such 
a region is characterized by: 

grad ~ ( x ,  t )  . k = o (2) 

For grad 9(x,t)  # 0 this region is left by a Lagrange 
particle with velocity 

(3) 
a(grad q x ,  t )  ‘ S) 

lo . x  ax 
If this leaving velocity is 0 a particle will not leave 
this region, the distance Q stays constant and conver- 
gence to the equilibrium point cannot be guaranteed. 
If the velocity in equation (3) is strictly positive or 
negative it can be guaranteed that a Lagrange parti- 
cle moves in finite time At a finite distance Ax away 
from this unstabilizable region. If the shrinking veloc- 
ity (grad !P(x, t )  .A) is then strictly negative again and 
the Lagrange particle stays at least a finite distance Ax 
in this region convergence to the equilibrium point can 
still be guaranteed. 

6. Closed stream functions 

Since the velocity vectors x have to lie tangential to 
the stream functions a necessary condition for a stream 
function to  be closed is xTn dS = 0. That means it 
is in general easier to find a set of closed stream func- 
tions in a solenoidal flow field. That is the reason why 
we will split up a general flow field in the following 
in a solenoidal and non-solenoidal part first. A closed 
stream function is then searched in the solenoidal field. 
The non-solenoidal part (e.g. damping) is then super- 
imposed as secondary flow. Since this secondary flow 
field often represesents a dissipative system it can be 
expected that it will stabilize the primary flow. 

A closed stream function can only be found in a certain 
region if the system trajectories do not blow up in this 
region. That means it is desired to  have e.g. closed 
particle trajectories (limit cycles) in the solenoidal part. 
If the natural system is unbounded (as, e.g., in a vehicle 
with constant velocity) the control input U or error- 
feedback in a observer design can be used to model1 
e.g. virtual springs to prevent the system from blowing 
up. Once it is assured that the system trajectories in a 
certain region can fit in a set of closed stream functions 
the stream function itself (e.g. the Hamiltonian) can 
be searched. 
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Consider for example a conservative multibody system, 
which represents a special case of a Hamiltonian system: 

where q represents the positons and p represents the 
velocities of the system. With the help of the control 
inputs U at the joint links the system is supposed to 
follow a desired trajectory qd(t),Pd(t) = qd(t). 

Natural reference frames for a multibody system are 
the desired trajectories of each link. These desired tra- 
jectory frames can be regarded as inertial frames if the 
control input U = U* + uine,.tia cancels all the inertial 
forces (Coriolis, centrifugal etc.) of these moving refer- 
ence frames. A potential stream function is the total 
energy, that is the sum of the kinetic and potential en- 
ergy of the system then. Since @ = p - P d  are inertial 
velocities now the kinetic energy has its global minima 
for 6 = 0.  The control input U can be used to model 
virtual springs at  the joints and to cancel e.g. the grav- 
ity forces to assure that even the potential energy has 
its global minima at q = q - qd. And a closed stream 
function is found. Damping elements as a function of 
p = p - Pd assure that this energy decreases to the 
desired postion. The cancelled inertia forces are the 
inertia forces of the desired movement. Since the de- 
sired movement is well known this design should not 
be as sensitive to parameter uncertainities as feedback 
linearization, that cancels the whole inertia forces. In 
principle this tracking controller generalizes PD energy- 
based controllers for stabilization. The same method 
could also be used to model an energy-based observer 
just with the help of the position measurements of a 
multibody system. Error-feedback in the velocities can 
be achieved with the coordinate error feedback illus- 
trated in [Lohmiller and Slotine, 19961. 

7. Concluding Remarks 

Considering the flow of a nonlinear system at each given 
point in space rather than individual trajectories, leads 
to different analysis and design tools compared to the 
common Lagrange-based methods. [Lohmiller and Slo- 
tine, 19961 analyze a fluid flow with a differential con- 
cept conditioned by the Jacobian of the system. This 
method leads to a spherical concept of length. After 
summarizing and extending our earlier results, this pa- 
per shows thatimportant systems aare special classes 
of potential and solenoidal flows. These two flows in- 
deed allow an integral formulation of a dynamical sys- 
tem. The concept of length can also be introduced with 
the help a stream function, that is closely related to a 
Lyapunov function. One important stream function is 
the energy of a system. For 2 dimensions is the stream 
function given by the vector potential. Current research 
focuses on a method that gives a general stream func- 
tion as a function of the vector potential that itself can 
be found in a straightforward way in a solenoidal flow 
field. This would lead to a straightforward Lyapunov 

function for systems with mainly solenoidal or Hamil- 
tonian dynamics. 
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