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Abstract

Contraction theory is a recently developed nonlinear control system tool based on
an exact differential analysis of convergence. This paper applies contraction theory to
stability analysis and control system design for nonlinear chemical processes. Simple
designs with explicit stability and convergence guarantees are obtained by taking ad-
vantage of the monotonicity of the reaction rates and the linear ambiguity in the choice
of the chemical state.

Introduction

Nonlinear control system design has been very successfully applied to particular classes of
systems and problems (Isidori, 1995a; Marino and Tomei, 1995; Khalil, 1995; Vidyasagar,
1992; Slotine and Li, 1991; Nijmeijer and van der Schaft, 1990). In an attempt to system-
atically generalize its range of application, (Lohmiller and Slotine, 1998) derived a body of
new results, referred to as contraction analysis, using elementary tools from continuum me-
chanics and differential geometry. This paper exploits these results to derive new controller
and observer designs for nonlinear process control systems.

Many approaches to nonlinear process control have been developed, either as direct ap-
plications of general nonlinear control techniques, or as more tailored approaches to the
system physics. These include linear approximation, feedback linearization, nonlinear model
predictive control, Lyapunov-based and physically-based designs, intelligent systems, and
adaptive control. Recent overviews of these approaches and their practical applications can
be found e.g. in (Henson and Seborg, 1997; Bemporad, et al., 1999; Hangos, et al., 1999;
Stephanopoulos and Han, 1996; Astrom and Wittenmark, 1995).

In this paper, we show that the general tools of contraction theory can be specifically
tailored to important classes of nonlinear process control problems, and lead to systematic
design techniques with explicit guarantees of local or global exponential convergence. The
relative simplicity of these designs stems from their effective exploitation of the systems’
structural specificities and physical properties. The extent of convergence, typically condi-
tioned by input constraints and desired nominal performance, can be explicitly quantified.



The layout of the paper is as follows. After a brief review of the basic results of (Lohmiller
and Slotine, 1998), switching systems and systems with convex constraints are studied, and
a separation principle for nonlinear systems is derived. The contraction behavior of general
nonlinear reaction dynamics is then analyzed. The monotonicity of the chemical reaction
rates and the linear ambiguity in the choice of the chemical state allow one to reduce the
discussion to a set of constant linear matrix inequalities. Corresponding nonlinear chemical
controller and observer designs are then detailed. The last section offers brief concluding
remarks.

Contraction Analysis

Stability analysis using differential approximation is the basis of all linear control system
design. What is new in contraction analysis is that differential stability analysis can be
made ezact, and in turn yield global results on the nonlinear system. In this section, we
summarize the basic results of (Lohmiller and Slotine, 1998a), to which the reader is referred
for more details.

We consider general deterministic systems of the form
% = £(x,1) (1)

where f is an n x 1 nonlinear vector function and x is the n x 1 state vector. The above
equation may also represent the closed-loop dynamics of a controlled system with state
feedback u(x,t). All quantities are assumed to be real and smooth, by which it is meant
that any required derivative or partial derivative exists and is continuous.

The plant equation (1) can be thought of as an n-dimensional fluid flow, where % is the
n-dimensional “velocity” vector at the n-dimensional position x and time ¢. Assuming as we
do that f(x,t) is continuously differentiable, (1) yields the exact differential relation

. of
e I (x,1) 0x (2)
where 0x is a virtual displacement — recall that a virtual displacement is an infinitesimal
displacement at fized time (Figure 1). Note that virtual displacements, pervasive in physics
and in the calculus of variations, are also well-defined mathematical objects (Arnold, 1978;
Schwartz, 1993). In particular, if we view the position of the system at time ¢ as a smooth
function of the initial condition x, and of time, x = x(x,,?), then one simply has dx =

ox
%, dXo.

The line vector dx can also be expressed using the differential coordinate transformation

dz = Oox (3)

where ©(x,?) is a square matrix. This leads to
oz" 6z = 0x' M 0x (4)
where M(x,t) = ©7O represents a symmetric and continuously differentiable metric —

formally, equation (4) defines a Riemann space (Lovelock and Rund, 1989). Since (3) is



virtual displacement dx

virtual velocity &x

two neighboring
trajectories

Figure 1: Virtual dynamics of two neighboring trajectories

in general not integrable, we cannot expect to find explicit new coordinates z(x,t), but
6z and 0z’ 0z can always be defined, which is all we need. We shall require M to be
uniformly positive definite, so that exponential convergence of z to 0 also implies exponential
convergence of 0x to 0. Distance between two points P; and P, with respect to the metric
M is defined as the shortest path length (i.e., the smallest path integral [} ||dz|| ) between
these two points. Accordingly, a ball of center ¢ and radius R is defined as the set of all
points whose distance to ¢ with respect to M is strictly less than R.

Computing

: f
4 60z = F 0z where F=(0+ @8— o' (5)
dt ox

we can state the following definition and main result (Lohmiller and Slotine, 1998)

Definition 1 Given the system equations X = f(x,t), a region of the state space is called a
contraction region with respect to a uniformly positive definite metric M(x,t) = @70 if F
in (5) is uniformly negative definite in that region.

Regions where F is negative semi-definite are called semi-contracting, and regions where
F is skew-symmetric are called indifferent.

Theorem 1 Given the system equations X = f(x,t), any trajectory, which starts in a ball
of constant radius with respect to the metric M(x,t), centered al a given trajectory and
contained at all times in a contraction region with respect to M(x,t), remains in that ball
and converges exponentially to this trajectory.

Furthermore global exponential convergence to the given trajectory is guaranteed if the
whole state space is a contraction region with respect to the metric M(x,t).
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The generality of contraction analysis, as compared to related classical results on au-
tonomous systems (Krasovskii, 1959; Hahn, 1967; Hartmann, 1982), stems from its use of
pure differential analysis, and specifically of a pure differential coordinate transformation,
leading to a necessary and sufficient characterization of exponential convergence for non-
linear non-autonomous systems. Indeed, it can be shown conversely that the existence of a
uniformly positive definite metric with respect to which the whole state space is a contraction
region is actually a necessary condition for global exponential convergence. Furthermore, the
exponential convergence rate can be evaluated explicitly as an upper bound on the absolute
value of the largest eigenvalue of the symmetric part of F. In the linear time-invariant case,
a system is globally contracting if and only if it is strictly stable, with F simply being a
normal Jordan form of the system and ® the coordinate transformation to that form.

Example 1: Consider a generalized Van-der-Pol oscillator, of the form
i+ (22 = 1)d + f(z,t) =0
where f(z,t) can be any smooth function, and assume that z is measured and v = & is to be
estimated.
Define a reduced-order observer for this system by
o4 (2 + k=104 f(z,t) =0
=0+ kx
where £ > 1 is a constant and the intermediate variable v can be initialized arbitrarily. This
choice implies that ‘
o4 (22 — D)o+ k(0 —v) + f(z,t) =0
so that the observer contains the actual v as a particular solution, and furthermore the Jacobian

— (2? + k — 1) is uniformly negative definite. Thus, the estimate © converges globally and
exponentially to the actual v.

Note that the conditioning of the coordinate tranformation ® determines the transitory
overshoot in the exponential convergence. Indeed

d

— 6276z < 2 \p 02" 0z

dt
where Ap(x,t) denotes the largest eigenvalue of the symmetric part of the generalized Jaco-
bian F. This implies that

o2, 6x'ox < 0270z < e 2Pt (5276z),o < e 2Pt (62 6xT6xX)g

where the ¢’s denote the singular values of ®. Also note that the metric is unchanged by
an additional (perhaps time-varying or state-dependent) orthonormal transformation, i.e.,
by left-multiplying ® by an orthonormal matrix.

Further results on contraction analysis

After recalling a basic combination property of contracting systems, this section derives a new
separation principle for nonlinear systems, analyzes hybrid and switched systems, discusses
contracting systems under convex constraints, and further studies semi-contracting systems.
These results will be exploited in the next two sections.



Hierarchies

Combinations of contraction systems enjoy some useful closure properties (Lohmiller and
Slotine, 1998). In particular, consider a smooth virtual dynamics of the form

d<6Z1>_<F11 0><6Z1>

dt \ 022 ) \ Fai Fp 022

The first equation does not depend on the second, so that exponential convergence of dz;
to zero can be concluded for uniformly negative definite Fi;. In turn, for bounded Fy,
Fy.0z, represents an exponentially decaying disturbance in the second equation. Thus,
uniform negative definitiveness of Fyy implies exponential convergence of 9z, to zero, so that

the augmented system is contracting as well. By recursion, the result can be extended to
systems similarly partitioned in more than two equations.

An example of such dynamical hierarchies are polymerisation processes, as illustrated in
(Lohmiller and Slotine, 1998). Another illustration of this important property is offered by
the following classical problem.

Example 2: Consider a stirred tank fed with two incoming flows with controllable flow rate
¢1 and constant flow rate g = 1 (Kwakernaak and Sivan, 1972). Both flows contain dissolved
material with constant concentrations ¢; and ¢o. The outgoing flow has a flow rate ¢ = kV/V,
with V' the fluid volume in the tank and k& an outflow constant. Denoting by V. the partial
volume of the dissolved material in the tank, the corresponding dynamics

V = qit+q—kVV
: 1
Ve = aq+cq— chW
. . B o cinee OV _k Ve _ k.
is a hierarchy from V' to V. , and it is contracting since &, = N and FF = v are both

uniformly negative. A tracking controller of the form

q1:Vd*V*QQ+k\/Vd+Vd

preserves the hierarchy from V to V. a

Separation Principle

Consider a plant dynamics in terms of an explicit state vector z,
z =1f(z,t) + G(z,t)u(z,t)
combined with the observer
z="1(z2,1) — (e(z) — e(z)) + G(z, t)u(z,1)

where z is the state estimate, and u(z, ¢) the control input. Letting z = z — z, the Lyapunov-
like analysis

%(QTQ):QQT/;¥(Z4-)\Z) d\ 7



then shows that the convergence rate of z to z is specified by %. For bounded G

this system is a hierarchy, and thus the convergence rate of the plant dynamics is given
by @. This result may be viewed as an extension of the standard linear separation

principle in (Luenberger, 1979).

Hybrid systems

Hybrid dynamics, i.e., dynamics which combine continuous-time and discrete-time elements
(Branicky, 1994), occur in many systems of practical importance, as e.g. in a continuous
observer problem with discrete measurements. Sufficient conditions for contraction can be
easily derived for such systems.

Specifically, consider a continuous system
x = f(x, 1)
which is switched to a discrete system
X1 = £(x;,1)
every At; for one discrete step. Letting, in the same coordinate system ©, X be the largest
eigenvalue of the symmetric part of F, and )\; be the largest eigenvalue of F!F; (which is

the corresponding discrete-time quantity, as detailed in (Lohmiller and Slotine, 1998)), the
length dynamics over At; for one discrete step ¢ is bounded by

oz

Y AL s T
i+102i41 < \e" "oz, 0z,

Thus, the hybrid system is contracting if

FJa<1,Vi, 0<Neti<a (6)

Example 3: Consider a hybrid observer
x = f(x,1)
which incorporates a discrete measurement every At;, with
xiv1 = fi(x4,1)

and verifies (6). Assume that there is a bounded model uncertainty d in the prediction part

and a bounded measurement uncertainty d;. The observer error R; = f:f ||0zi|| then verifies,
similarly to the basic robustness result in (Lohmiller and Slotine, 1998)

Rip1 +aR; < ||[dAt; +d;|[m

and any observer trajectory converges exponentially to a ball of radius R; around the actual
trajectory. a



Switched systems

Consider an arbitrary number of continuously differentiable dynamics
X = fl (X7 t)

defined in separate regions V; of the state space and ¢ under the requirement that the resulting
combined dynamics is continuous in space. Typical examples of such continuous switching
are the min and max operators on components of f, or switching f; as a function of time ¢
only.

Now assume that all f; are contracting with respect to the same continuous metric M(x, t),

then any such continuous switching of contracting systems is itself contracting, as we now
show.
Indeed, consider the distance [} ||0z|| between two trajectories Py and Py, which is simply
the sum of the distances [; ||0z;|| in the regions V;. Since any ||dz;|| converges exponentially
to zero and no jump in x and M(x,t) can occur, the trajectories P; and P, converge ex-
ponentially to each other. This result may be regarded as a generalization of the stability
analysis of linear switching systems in (Shorten and Narendra, 1998).

Example 4: Consider an arbitrary number of continuously differentiable dynamics
X = fz (X, t)

that are all locally contracting around different operating points x; with respect to possibly
different ®;. Typical examples of such systems are gain-scheduled designs (Lawrence and Rugh,
1995).

Consider a particular trajectory x(¢) which belongs at the same time to a contracting ball around
each x;. Then, according to Theorem 1, each single dynamic x = f;(x,t) leads to exponential
convergence to X;, i.e., any switching from one dynamics to another dynamics is contracting. U

Extension to more general hybrid and switched systems (Isidori, 1995b) are a subject of
current research. Consider for instance a general, possibly discontinuous dynamics

x = f(x, 1)

and assume that unique solutions exist in the sense of (Filippov, 1960), and that the Jacobian
g—i can be computed in the sense of distributions (Schwartz, 1993). Then, generalized Jaco-
bians F(x,t) and their negative definiteness can be evaluated in the sense of distributions,
and the argumentation of Theorem 1 can be extended formally to such systems. Recall that
a generalized Jacobian F(x,t), computed in the sense of distributions, is uniformly negative
definite, if 3 a > 0 such that for any time ¢ > 0, and any C* vector field g(x) with compact

support,
[ g"x) Fx.1)glx)dx < o

Example 5: Consider a inertia-damping system with discontinuous damping
0 = —sgnv — v + u(t)

Denoting by / the unit Dirac impulse, the Jacobian (—1 — A(v)) is uniformly negative definite,
and hence any dv converges exponentially to zero.



Contraction analysis on convex regions

In some control contexts, it is common to have to enforce convex constraints on the states or
inputs. In process control, this occurs for instance when the control input or state estimate
is a chemical concentration (which must lie between 0 and 1) or a temperature (which must
be positive). This section discusses the incorporation of convex constraints in contraction
analysis.

Consider a contracting system
x = f(x,1)

which, assuming the explicit existence of z, can be transformed into
z = Of(x, 1)

on a convex region € (i.e. a region € in which any shortest connecting line (geodesic)
[+ ||0z]| between two arbitrary points x; and x; in §2 is completely contained in Q). Using
the argumentation of the previous section implies that the distance [ [|dz| between two
arbitrary trajectories x; and x5 in €2 which stay in €2 converges exponentially to zero. Now
maintain all trajectories in €2 with an extra term

L o oh’ on

= war® % 9 ®f
0z 0z
that is, in z coordinates
: 1 0h" Oh
e=Ot " mT 5 52 Ot
0z 0z
at outflowing boundaries 0 = h(z(x)) (recall that by convention 2% is a row-vector, to be

consistent with the notation of Jacobians). Since the projection of the superimposed flow
on any interior geodesic is positive, it can only speed up the convergence rate of [ ||dz|| to
zero. As a result all trajectories in €2 converge exponentially to a single trajectory.

Semi-contracting systems

Finally, let us discuss some technical extensions which may be useful in particular cases.
Consider the rate of change of length (Lohmiller and Slotine, 1998)

d ;. o o fofT : of
%((5)( M&X)—éx (8_}{ M+M+M8_x 0x

and assume that ( %TM+M%+M ) is only negative semi-definite. Assuming % (6XTM (5x)
to be bounded, the use of Barbalat’s lemma (Slotine and Li, 1991) shows asymptotic con-
vergence of

T
ox" of M+M+M§ ox
ox ox



to zero. This means that only a subset of the state x converges asymptotically to a single
trajectory. Furthermore, any distance in the complementary subset does not increase. This
result is of practical use for nonlinear parameter adaptation, as we shall see when we study
process observers. A more general discussion of semi-contracting systems can be found in
(Lohmiller and Slotine, 1999).

Finally, note that if the metric itself M in 8 can only be shown to be negative semi-
definite, then M defines an exponentially convergent subspace.

Nonlinear Chemical Processes

This section analyzes the contraction behavior of nonlinear chemical reactions. We first
analyze general nonlinear chemical reactions, and then discuss the specific properties of
chemical chain reactions. Choosing a constant metric M from Theorem 1 corresponds to
resolving the linear ambiguity left when choosing the chemical state with respect to element
and energy conservation laws.

Contraction analysis of chemical reactions

volume flow q [

—_—

feed t Aure T reaction volume V
emperaure 1 temperature T
feed concentration Ci —-—

/ concentration ¢,
S ——
/ ] ¢

chemical reaction rater, (¢, T)

Figure 2: Open stirred tank

Figure 2 describes a general smooth n-dimensional reaction dynamics in an open stirred
tank (Henson and Seborg, 1997)

% = q(t) (x; — x) + Nr (7)
with N the reaction rate coefficients, x = (¢; ... ¢, 1 T)T the state vector consisting of

the chemical concentrations ¢; > 0 and the temperature T > 0, x/(¢) the corresponding
feed vector and ¢(¢) > 0 the specific volume flow. The normalized reaction rates r; =

9



e T I, c;” .t = 1,...,p contain the specific activation energies F; > 0 and the stoichiometric
coefficients v;;. The Jacobian of (7) can be written as

Ty iNU%x)

i=1j=1

where N;; is a matrix of zeroes except for the j’th column, which is taken equal to the i'th
column of N. In the particular case of common terms, g;;ll = g;z for 4, # iy or j; # jo, by

convention the corresponding matrices are added and combined in a single matrix IN; ;.

In the physical modelling of the reaction dynamics (7), one has to choose a linear state
x under linear energy and element conservation. In order to resolve this linear ambiguity
in x, we analyze (7) with a general constant metric M, corresponding to a general linear
coordinate transformation.
g;? are positive,
J
for all ¢; > 0 and T > 0. As a result we can conclude on contraction behavior with Theorem
1 if there exists a constant metric

In addition, the monotonic behavior of the reaction rates implies that all

M >0 (8)
such that
Vi.j N;M+MN;; <0 (9)

These linear matrix inequalities are equivalent to the stability problem of linear switch-
ing systems (Shorten and Narendra, 1998). (Boyd, et al., 1994) provide general numerical
schemes to solve (8) and (9) for M if feasible.

Finally, note that the reaction rate vector r can be augmented with other monotonic
functions such as radiation or heat convection. Furthermore, if a non-monotonic function is
included in r, then the linear matrix inequality (9) has to be replaced with a more stringent
linear matrix equality — the system may still be solvable for an adequate metric since the
coefficient matrices are rather sparse.

Also, an alternative to the above derivation is to first augment the reaction rate vector r
with ¢x. Exponential convergence can then still be guaranteed if at least one strict inequality
in (9) holds for a strictly positive g;?. If this is not the case, the results of the section

J
on semi-contracting systems may still be applied. This more technical alternative will be
of practical importance in the section on observer design, where it will allow nonlinear

parameter adaptation.

Contraction analysis of chemical chain reactions

The analysis can be simplified in the case that the dynamics is in a specific form of (7),
which we shall refer to as a chemical chain reaction

= q(xy—21) + fi(2)
Ty = q(zof — x2) + fo(x1, x2)

10



This dynamics represents a hierarchy for bounded ﬁ As a result the system is exponentially

convergent if —g+ 5+ 8f1 is uniformly strictly negatwe Vz 1 <12 < n. Corresponding robustness
guarantees are glven in (Lohmiller and Slotine, 1998).

Example 6: Consider a temperature independent set of chain reactions similar to (Henson
and Seborg, 1997), composed of a primary reaction of the reactant A, a further reaction of the
desired product B into a side product C, and an additional reaction of A into the side product
D:

1
24 — D

The reaction dynamics can be written as

éa = qlcap—ca) —mica —nzch

g = —qcp+nica— nQCQB
with ¢4 and cp the concentrations of A and B, c4y the inlet concentration of A, ¢ > 0 the
specific inlet flow rate, and ni, ng, and n3 positive reaction rate constants. The Jacobian of this

dynamics is a bounded lower triangular matrix with uniformly negative definite main diagonal:
this chain reaction is an exponentially convergent hierarchy.

Note that choosing instead cc and cp as state variables simply corresponds to a linear coordinate
transformation z = ®x, i.e. to choosing a constant metric M = ®7 ®. However, this particular
choice does not preserve the hierarchy.

Chemical Controller and Observer Designs

This section studies nonlinear chemical controller and observer designs suggested by the
previous section. It also incorporates explicitly some of the general tools developed in the
section on system combinations, such as hierarchical analysis and the possibility to include
input constraints.

Chemical controller design
Consider again the reaction dynamics (7)
x =¢q(x; —x) +Nr+ Gu (10)

now controlled with u = K [ 25(x)dx + u4(t), where [ 2Edx is any function whose partial
81"1

derivatives are within the set spanned by 57, and K is a constant gain matrix to be specified.

The Jacobian of (10) can be written as

87"1'
z] axj (X)

p n
I+ > (N+GK)

i=1j=1
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where the j’th column of (N 4+ GK);; is the ¢’th column of (N + GK) and the remaining

elements are zero. Similarly to the analysis section, identical % can be combined in a single
J

term. Using a constant metric M > 0, the system is contracting if

Vi,j 3K, (N+GK)M+M(N+GK), <0 (11)

This problem is formally equivalent to the stabilization problem of linear switching systems
(Shorten and Narendra, 1998). Again, (Boyd, et al., 1994) provide general numerical schemes
to solve (11) for M > 0 and K if feasible.

Example 7: Consider again the chain reaction in Example 6
éa = qlu—cy)—nica —nsc} (12)
¢cg = —qcg+nicay —nQC2B

with constant ¢ > 0, which now includes a control input u. According to the previous discussion,
any controller consisting of the nonlinearities in (12)

u=kicyq + kgci + kscp + ug(t)

with gk1 — g — n1 <0, gka — n3 <0, k3 < 0 and the metric

o n1 0
M_< 0 —qk3>

can be used to increase the exponential convergence rate of the system.

Finally, an appropriate open-loop term ug4(t) can be immediately computed from the system
dynamics so as to converge to a specified c4(t) or cpq(t). O

Note that, while for this low dimensional system the design is almost trivial once the
basic principle is understood, it can be extended numerically (Boyd, et al., 1994) to chemical
systems of any order.

The above design by itself does not account for input constraints. Depending on the
required nominal performance, such constraints may have to be made explicit. This will
typically replace global exponential convergence results by exponential convergence in a
known finite region around the desired trajectory.

Example 8: Consider again the reaction above. The control input « is the inlet concentration
of A, and thus must verify
0<u<l1

We can use Theorem 1 to quantify the corresponding extent of convergence: any trajectory
within the largest ball around the desired trajectory that does not violate the constraints

0 < kica + kocy + ksep +ug(t) < 1

will converge exponentially to the desired trajectory. Of course, the desired trajectory itself must
satisfy the above constraints.

12



Alternatively, the earlier results on switching systems may be applied to such cases. For
instance, assume that the system is naturally contracting with respect to a metric M, and
controlled with u = K [ g—;dx + uy(t) using the same metric. Additional input constraints
of the form

Umin S Uu S Umazx

lead to a switching between the natural contraction behavior and the stabilized contraction
behavior in the same metric. Based on the results on switching systems, the resulting
dynamics is still contracting.

Example 9: Consider again the chain reaction above. Since the reaction is exponentially
convergent in open-loop, letting

u = kica + kac + uq(t)

with gk — ¢ —n1 < 0, gk —n3 < 0, and bounding v with the constraints 0 < u < 1, leads to
global exponential convergence. O

Chemical observer design

Similarly, consider again the chemical reaction dynamics (7)
x = ¢ (x5 — x) + Nr(x)

with a linear measurement y = Hx, where H is constant. Since only y is available for

feedback, we will denote by f;’ g—;(x)dx any function of y whose partial derivatives are
or;
PP

exists, generalizes the usual linear feedback term in (y —y). With the help of a coordinate
error feedback (Lohmiller and Slotine, 1998) we can design the observer

within the set spanned by $2:(x), and which equals zero for y =y — such a function, if it

. y 0
% = q(x;—%)+ Nr(%) + LH (Nr(%) + ¢ (x; — x)) + K/ a—i(x)dx
y
X = x—Ly
leading to the observer dynamics
& =g (x; ~ %)+ Nr(x) + LHN (r(3) ~ r(x)) + K [ g—i(x)dx (13)
y

The Jacobian of (13) can be rewritten as

P n a .
—I+Y Y (N+LHN +K), a:l (%)
./]'

i=1j=1

where the j’th column of (N 4+ LHN + K);; is the i’th column of (N + LHN + K) and the

remaining elements are zero. Again, identical g;? can be combined. Assuming as earlier a
)
constant metric M > 0, the system is contracting if
Vi,j 3LK (N+LHN+K) M+M(N+LHN+K), < 0 (14)

Again, (Boyd, et al., 1994) provide general numerical schemes to solve (14) for M > 0, K
and L if feasible.

13



Example 10: Consider the temperature-dependent reaction A — B in an open stirred tank

d [ cx caf —cA -1 _E
A7) =B )+ (5 P
with ¢4 the concentration of A, csy the inlet concentration of A, T' the measured temperature,

Ty the inlet temperature, g the specific inlet flow rate, and E the specific activation energy.
Define the observer

d ca B CAf*(AJA —1 £ k1 T _E
()=o) (5) e Foan () e for
This observer design is contracting if 3k, ko, M such that

0 < M:(MH M12>

Mo Mao
0o > ( 0 —My1 — My )
= —Mi1 — Mo —2Myo — 2My9
0o > ( —2My1 — 2M9 ki My + (ko — 1) M9 — My >
= kM1 + (ko — 1) Mg — My 2k Mo + 2k Moo

One can easily verify that these conditions are met, and thus the observer design is contracting,
for kl 2 kQ and kQ S 0.

System responses to the input cay = 0.2sin¢ + 0.5 and T} = 50sint + 300, volume flow ¢ = 0,
activation energy E = 500 and initial conditions ¢4 (0) = 0.5, T'(0) = 300, ¢4(0) = 1.0, T(0) =
400 are illustrated in Figure 3 and Figure 4. The solid line represents the actual plant, the

dashed line represents an observer design with £y = —0.04 and k3 = —10.0 and the dotted line
represents an identity observer (k1 = 0 and ko = 0).

Both observer designs are contracting,
however the feedback observer has an increased convergence rate. Note that a coordinate error
feedback would allow to augment the natural reaction rate coefficients —1.

Figure 3: Observer and plant dynamics: concentration cy4
Figure 5 and Figure 6 describe the same responses under temperature measurement “noise”

sin 10 4+ 3 cost. The identity observer is unaffected whereas the feedback observer converges
according to (Lohmiller and Slotine, 1998) to a bounded ball around the actual plant trajectory.
O
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Figure 4: Observer and plant dynamics: temperature 7'

Since observer trajectories do not necessarily remain in the convex region ¢; > 0, T> 0,
if needed they can be restricted to that region with the means of the section on convex
constraints.

Finally, in the case that the activation energies E; > 0 are unknown, but constant, the
above procedure can still be applied, by augmenting the system dynamics (7) with E; = 0
and the reaction rate vector r with ¢x. Indeed, this preserves the monotonicity of the
augmented r with respect to the augmented state. The convex condition E; > 0 can be
enforced similarly. However, we can in general only expect semi-contraction behavior, the
implications of which are detailed earlier in the section on semi-contracting systems.

Concluding Remarks

This paper exploits the monotonicity of chemical reaction rates and the linear ambiguity
in the choice of state to analyze the stability of nonlinear chemical reaction processes. A
corresponding nonlinear controller and observer design directly results from this physical
interpretation. Extensions to distributed nonlinear reaction-diffusion-convection processes
are the subject of a separate publication.

From a general control perspective, one can easily see that, conversely, the technique can
be applied to any nonlinear dynamics with constant linear ambiguities in the choice of state.
Extending further the work above to a state dependent metric M(x) is a topic of current
research.
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