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This is the second in a series of papers that exploit the physical cou-

pling of tethered spacecraft to derive a propellant-free spin-up and attitude

control strategy. We take a nonlinear control approach to underactuated

tethered formation flying spacecraft, whose lack of full state feedback lin-

earizability, along with their complex nonholonomic behavior, character-

izes the difficult nonlinear control problem. We introduce several nonlinear

control laws that are more efficient in tracking time-varying trajectories

than linear control. We also extend our decentralized control approach

to underactuated tethered systems, thereby eliminating the need for any

inter-satellite communication. To our knowledge, this work reports the

first nonlinear control results for underactuated tethered formation flying

spacecraft. This article further illustrates the potential of the proposed

strategy by providing a new momentum dumping method that does not

use torque-generating thrusters.

I. Introduction

As discussed in the first paper of this series,1 most of previous work on tethered satellite

formation flight is based upon the assumption that the tethered system is fully actuated
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(both thruster force F and torque u are available). Motivated by the controllability analy-

sis illustrated in the first paper,1 indicating that both array resizing and spin-up are fully

controllable by the reaction wheels (u) and the tether motor, the aim of this paper is to intro-

duce several new nonlinear control techniques for spinning tethered arrays without thrusters

(F = 0). We exploit partial feedback linearization, feedback linearization via momentum

decoupling, and backstepping, and compare the performance of nonlinear control laws with

that of gain-scheduling linear control.1 We shall consider only the case of the fixed tether

length, focusing on the spin-up attitude control problem on the assumption that the tether

length is controllable separately.

This paper investigates the feasibility of controlling the array spin rate and relative

attitude without the use of thrusters. As stated in the first paper of this series,1 we can

dramatically increase the life span of the mission by using reaction wheels instead of thrusters

for controlling the array spin-rate. Also, the optics will not risk contamination by exhaust

from the thrusters. The proposed underactuated method is most effective for a compact

configuration with short baselines.1 This article also fulfills the potential of the proposed

strategy by providing a new momentum dumping method without the need for torque-

generating thrusters; the compound pendulum mode and array spin rate are stabilized using

only the linear thruster and translational actuator on the tether during the operation of

momentum dumping.

Control of underactuated mechanical systems is an active area of research.2–4,6 In particu-

lar, Spong7 developed the partial feedback linearization technique for the swing up maneuver

of the acrobot. One drawback of the partial feedback linearization method is that it does not

automatically guarantee stable zero dynamics after applying the change of control. Back-

stepping8 is another alternative methodology to come up with an underactuated nonlinear

controller. However, backstepping is applicable only to strict-feedback systems. A model

reduction technique by transforming a class of underactuated systems to cascade normal

forms is presented in Ref. 4,5. In addition, recent work examines the sliding-mode control,9

intelligent control,10 and hybrid switching control11 for underactuated nonlinear systems. In

the context of geometric control theory, two energy-based methods can be considered for

underactuated nonlinear systems. First, an oscillatory control based on averaging2,3 can be

developed, which requires a high-frequency control input. The second interesting geometric

control approach is the method of controlled Lagrangians via the so-called matching pro-

cess.2 In essence, the control design involves shaping the system’s total or kinetic energy

with the additional parameters and the matching process. One limitation is that generic

physical damping makes the control-modified energy rate indefinite, thus invalidating the

nonlinear stability argument of the controlled Lagrangian method.12 Since the SPHERES

tethered formation flying experimental setup involves various forms of friction (see Ref. 13),
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the method of controlled Lagrangians is not pursued in this paper.

Control of underactuated spacecraft has also been a popular subject. Of particular

interest is work by Tsiotras14–16 showing that a nonsmooth time-invariant feedback control

law can be used to rotate an axis-symmetric rigid spacecraft to the equilibrium using only

two control torques. In Refs. 17 and 18, underactuated control of a dumbbell spacecraft is

studied.

Most aforementioned work is restricted to a single-body dynamics problem. In this paper,

the decentralized control strategy from out prior work19 is extended to the underactuated

control of multi-vehicle tethered formation flying. To our knowledge, this work presents the

first linear and nonlinear control results for underactuated tethered formation flight systems.

The remainder of the paper is organized as follows. After reviewing some fundamen-

tal aspects of underactuated tethered systems in Section II, we present nonlinear control

laws based on partial feedback linearization (Section III), feedback linearization via momen-

tum decoupling (Section IV), and backstepping (Section V). We show in Section VI that

a fully decentralized control law designed from the underactuated single-tethered system

can stabilize a multi-vehicle tethered array. Section VII discusses simulation results, where

the nonlinear tracking control laws are compared with the linear control approach. In Sec-

tion VIII, a new momentum dumping method that does not use torque-generating thrusters

is presented.

II. Fundamentals of Underactuated Systems

We have proven in Ref. 19 that a fully decentralized control law designed from a single-

tethered spacecraft can also stabilize arbitrarily large circular arrays of tethered spacecraft

including a two-spacecraft configuration. Furthermore, due to the hierarchical combination,

the dynamics of a three-inline configuration reduce to those of the single-tethered systems

if the center spacecraft becomes exponentially stabilized by a simple independent control

law (see Fig. 1). Consequently, we first focus on control of an underactuated single-tethered

system (see Fig. 2(c)), and then discuss decentralization and decoupling in Section VI. To

that end, we proceed to illustrate the dynamics and challenges of the underactuated single-

tethered system.

A. Underactuated Single-Tethered Systems

Underactuated mechanical systems are characterized by fewer actuators than degrees of

freedom (DOF) or configuration variables, and encountered in a wide range of applications

such as walking robots, aerospace vehicles,4 and nonholonomic systems.2 Popular two-DOF

examples include the acrobot (Fig. 2(a)) and the pendubot (Fig. 2(b)), where the control
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(a) Three inline configuration with a hierarchical combination

(b) Decoupled into two independent single-tethered systems and a center spacecraft

Figure 1. Three-spacecraft array decoupled into three sub-systems (see Ref. 19).
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Figure 2. Three representative cases of underactuated two-link mechanical systems.
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input is available only to one joint variable. In contrast, the single-tethered system shown in

Fig. 2(c) is underactuated via input coupling. This paper also serves the purpose of proposing

the single-tethered system as another underactuated control benchmark problem. We also

attempt to make a connection between the single-tethered system, which is a fundamental

building block for constructing multi-spacecraft arrays, and a two-link planar robot, which

has been a representative example in nonlinear control theory.

The equations of motion for the single-tethered system under the torque actuator only

(u 6= 0, F = 0) becomes13

M1(φ)

θ̈
φ̈

+ C1(φ, θ̇, φ̇)

θ̇
φ̇

 =

u
u

 (1)

where M1(φ) =

m11(φ) m12(φ)

m12(φ) m22

 =

Ir +m`2 + 2mr` cosφ Ir +mr` cosφ

Ir +mr` cosφ Ir

,

C1(φ, θ̇, φ̇) =

c11(φ, φ̇) c12(φ, θ̇, φ̇)

c21(φ, θ̇) c22

 =

−mr` sinφφ̇ −mr` sinφ(θ̇ + φ̇)

+mr` sinφθ̇ 0

.

In the equations above, r, `, and IG denote the satellite’s radius, tether length, and

moment of inertia. Also, Ir is the moment of inertia about the tether attachment point

(Ir = IG + mr2), and u denotes the torque exerted on the Center of Mass (CM) of the

satellite, e.g., torque by a Reaction Wheel Assembly (RWA) or diagonal thruster firings.

Note that we can derive the above equation from the two-link robot manipulator dynamics,

by assuming that the mass and moment of inertia of the first link are zero and gravity is

absent.

Equation (1) clearly shows that the single input u enters both the configuration variables

θ and φ, as opposed to the acrobot τ =
(

0 u
)T

and the pendubot τ =
(
u 0

)T
. Even

though all three cases in Fig. 2 are derived from the two-link manipulator robot, there exists

another fundamental difference: the effect of gravity is ignored in the tethered system (see

the modeling assumptions in Ref. 1). In particular, underactuated mechanical systems such

as the acrobot are in general not controllable in the absence of gravity. However, the artificial

gravity, induced by the centrifugal force associated with array rotation, plays a crucial role

in making the tethered system controllable and stable (see the discussion in Ref. 1).

B. Challenges of Nonlinear Underactuated Systems

As mentioned earlier, an underactuated mechanical system is not, in general, exactly input-

state feedback linearizable. Its lack of feedback linearizability, along with its complex non-
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holonomic behavior, characterizes the difficult nonlinear control problem. It has been shown

in Ref. 21 that the acrobot is not feedback linearizable with static state feedback and non-

linear coordinate transformation. In this section, we derive a similar result for the single

tethered system given in Eq. (1) and Fig. 2(c).

Consider a nonlinear system, affine in the control input u, with f(x) and g(x) being

smooth vector fields,

ẋ = f(x) + g(x)u (2)

The system is input-state linearizable22 in an open set U such that a nonlinear feedback

control law u = α(x)v + β(x) and a diffeomorphism z = φ(x), transform Eq. (2) to the

resultant linear dynamics

ż = Az + bv (3)

if and only if (1) dim span{g, adfg, · · · , adn−1
f g}(x) = n, ∀x ∈ U in Rn– i.e., the vector fields

are linearly independent and (2) span{g, adfg, · · · , adn−2
f g} is an involutive distribution on

U . Note that adifg is the iterated Lie bracket.22

We can easily write the dynamics of the single-tethered system in the first-order form,

shown in Eq. (2), by multiplying Eq. (1) with the inverse of the inertia matrix, M1(φ). The

underactuated tethered system in Eq. (1) satisfies the first condition, which corresponds to

a controllability test. This result agrees with the linear controllability analysis about the

relative equilibria, as discussed in the first paper of this series.1 The more subtle second con-

dition, derived by Frobenius’ theorem, warrants further discussion. To meet the involutivity

condition, the following vector fields

[g, adfg] [g, ad2
fg] [adfg, ad

2
fg] (4)

must lie in the distribution ∆ = span{g, adfg, ad2
fg}. It is verified in Ref. 13 via Mathe-

matica(TM) that the matrix constructed by one of the above vector fields and ∆ has full

rank of four. This in turn implies that they do not lie in the distribution ∆ (all vectors are

independent). As a result, similar to the acrobot, the underactuated single-tethered system

fails the involutivity test, and hence is not input-state feedback linearizable.

Nevertheless, there might exist an output function to render input-output feedback lin-

earizability. Finding such an output function is not trivial, and additional work is required

to ensure that the associated zero dynamics are stable. This is one of the reasons that

designing an efficient control law of a large class of underactuated systems is generally an

open problem. In Section IV, we introduce a nonlinear diffeomorphism that permits model

reduction and simple feedback linearization about the transformed state vector, inspired by

the following normal forms.4,5
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C. Normal Forms for Underactuated Systems

Olfati-Saber4,5 developed cascade normal forms for underactuated mechanical systems, based

upon the mechanical symmetry. Normal forms can be further classified into triangular normal

forms and nontriangular forms. Both strict-feedback and strict-feedforward systems are

called “triangular” by analogy with linear systems. In particular, a strict-feedback system

permits a systematic nonlinear control design called backstepping.

Let us consider the dynamics similar to the acrobot such that the input is applied only

to the shape variable q2:

m11(q2)q̈1 +m12(q2)q̈2 + h1(q1, q2, q̇1, q̇2) = 0 (5)

m21(q2)q̈1 +m22(q2)q̈2 + h2(q1, q2, q̇1, q̇2) = τ

where the dynamics are kinetically symmetric with respect to q2 such that mij(q) = mij(q2).

Similar to the partial linearization, there exists an invertible change of control input τ =

α(q)u+ β(q, q̇), which transforms the dynamics into

q̇1 = p1

ṗ1 = −m−1
11 (q2)h1(q1, q2, p1, p2)−m−1

11 (q2)m12(q2)u (6)

q̇2 = p2

ṗ2 = u

Since the linearization was performed on the actuated variable q2, such a change of control

is called collocated partial feedback linearization. Ref. 4, 5 introduces a diffeomorphism

transforming the above equation into a strict-feedback form:

ż1 = m−1
11 (ξ1)z2

ż2 = g(z1, ξ1) (7)

ξ̇1 = ξ2

ξ̇2 = u

where g(·, ·) is the gravity term. Unfortunately, the single-tethered system shown in Fig. 2(c)

does not permit the same strict-feedback form due to its input coupling and the lack of such a

gravity function. Nevertheless, in Section IV, we show that the same transformation yields a

useful coordinate transformation permitting feedback linearization and backstepping control

design for the reduced variables z1 and z2.

We can also show that the pendubot in Fig. 2(b) can be transformed into a cascade
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nonlinear system in nontriangular quadratic normal form by a similar transformation:

ż1 = m−1
21 (ξ1)z2

ż2 = g(z1, ξ1) + (z2, ξ2)π(ξ1)(z2, ξ2)
T (8)

ξ̇1 = ξ2

ξ̇2 = u

Stabilization of a nontriangular form, addressed in Ref. 4,5, is in general much more difficult

than that of a triangular form. For example, backstepping or forwarding4 is not applicable.

Even though the single-tethered dynamics in Fig. 2 can be transformed into a non-triangular

form, such a method is not pursued in this paper due to the challenge associated with

a nontriangular form. Instead, we apply feedback linearization and backstepping to the

reduced system by using a transformation similar to Eq. (7), in addition to partial feedback

linearization.

III. Partial Feedback Linearization

The present section describes a nonlinear control law obtained by applying partial feed-

back linearization. The stability of the zero dynamics is also treated using a new nonlinear

stability tool called contraction analysis,23 which has been applied to tethered systems in

Ref. 19.

A. Collocated Linearization

The partial feedback linearization technique4,7 is applied to the following equation, which

can be obtained by canceling the input-coupling of Eq. (1):

Mc(φ)

 θ̈

φ̈

+

h1(φ, θ̇, φ̇)

h2(φ, θ̇)

 =

 0

u

 (9)

where Mc(φ) =

mc11(φ) mc12(φ)

mc21(φ) mc22

 =

 m`+mr cosφ mr cosφ

IG +mr2 +mr` cosφ IG +mr2

,

and

h1(φ, θ̇, φ̇)

h2(φ, θ̇)

 =

−mr sinφ(θ̇ + φ̇)2

mr` sinφθ̇2

.

Even though the inertia matrix Mc(φ) is no longer symmetric, Eq. (9) has eliminated the

input coupling, thereby facilitating collocated or noncollocated partial feedback linearization.
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Equation (9) is physically meaningful, since it can be directly derived by the Newton-Euler

formulation, as seen in Ref. 13. Note that the first equation (unactuated part) of Eq. (9)

corresponds to the second-order nonholonomic constraint. This system can be partially

feedback linearized for φ.

Multiplying the first equation by m−1
c11(φ), and then inserting the resulting equation for

θ̈ into the second equation yields

θ̈ = −m−1
c11(φ)mc12(φ)φ̈−m−1

c11(φ)h1

φ̈ = v

u = α(φ)v + β(φ, θ̇, φ̇) (10)

α(φ) = mc22 −mc21(φ)m−1
c11(φ)mc12(φ)

β(φ, θ̇, φ̇) = h2 −mc21(φ)m−1
c11(φ)h1

where v is now a new control input to the linearized φ dynamics. In addition, α(φ) and

β(φ, θ̇, φ̇) define an invertible change of control between u and v.

Since φ is the actuated variable, it is called collocated partial feedback linearization.7 Then,

we can design the following controller v to asymptotically stabilize φ dynamics:

v = −Dφ̇−K(φ− e) (11)

e = tan−1(A(θ̇d − θ̇))

where D,K, and A are all positive constants and θ̇d denotes the desired angular rate of the

tethered array. Also note that we chose such a definition of e, instead of e = A(θ̇d − θ̇), to

avoid saturation by accommodating a large value of (θ̇d − θ̇).
Assuming ė and ë are sufficiently close to zero, Eq. (11) makes φ tend to e asymptotically

(φ→ e):

φ̈+Dφ̇+K(φ− e) = 0 (12)

The rationale behind this choice of v is to balance between the tracking error θ̇d− θ̇ and the

compound pendulum mode φ by transferring energy between them, similar to Ref. 7.

B. Analysis of Zero-Dynamics

The zero dynamics are defined to be the internal dynamics of the system when the system

output is kept at zero by the input.22 By analogy with linear systems, a nonlinear system

with stable zero dynamics corresponds to a minimum phase system. To investigate the zero

dynamics of θ under this control input v in Eq. (11), the θ dynamics in Eq. (10) are expanded
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as:

θ̈ = −m−1
c11(φ)mc12(φ)φ̈−m−1

c11(φ)h1

= −m−1
c11(φ)(mc12(φ)v + h1) (13)

=
mr sinφ(θ̇ + φ̇)2 +mr cosφ(Dφ̇+K(φ− e))

m(`+ r cosφ)

If φ→ e and φ̇→ 0, the zero dynamics of θ become

θ̈ = − rθ̇2

`+ r cos [tan−1(A(θ̇ − θ̇d))]
sin[tan−1(A(θ̇ − θ̇d))] (14)

If ` > r, which is a reasonable assumption, then mc11 = m(` + r cos e) > 0. In addition,

if a reference array angular rate is a constant step input (θ̈d = 0, θ̇d 6= 0), Eq. (14) reduces to

d

dt
(θ̇ − θ̇d) + L(t) sin[tan−1(A(θ̇ − θ̇d))] = 0 (15)

where

L(t) =
rθ̇2

`+ r cos [tan−1(A(θ̇ − θ̇d))]
> 0 (16)

for nonzero θ̇.

Let us prove exponential stability of Eq. (15) by applying the partial contraction theory

(see the Appendix). The virtual y-system

ẏ + L(t) sin[tan−1(Ay)] = 0 (17)

has two particular solutions, namely, (θ̇ − θ̇d) and 0. This y-system is contracting (see the

Appendix) since its associated Jacobian

−L(t) cos [tan−1(Ay)]
1

(Ay)2 + 1
A (18)

is negative definite since L(t) > 0, A > 0, and −π
2
< tan−1(·) < π

2
. Hence, all solutions of y

tend to each other, which implies θ̇ tends to θ̇d exponentially.

From Eqs. (11) and (12), the convergence of e→ 0 also implies φ→ 0, which concludes

the stability analysis of the proposed underactuated control law in Eq. (11). Its corresponding

u is then defined by the relation between u and v shown in Eq. (10).
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IV. Momentum Decoupling and Feedback Linearization of

Reduced Models

Even though exact feedback linearization is not possible for the underactuated tethered

system, we show herein that there exists a diffeomorphism such that feedback linearization

is made possible with respect to the relative equilibria of a spinning tethered system.

We recall the dynamics of the underactuated single-tethered system with the fixed tether

length from Eq. (1):

d

dt

∂L

∂θ̇
− ∂L

∂θ
= m11θ̈ +m12φ̈+ c11θ̇ + c12φ̇ = u

d

dt

∂L

∂φ̇
− ∂L

∂φ
= m21θ̈ +m22φ̈+ c21θ̇ + c22φ̇ = u (19)

where mij and cij are defined in Eq. (1).

Following Ref. 5, consider the nonlinear diffeomorphism applying the change of coordinates

such that

z1 = θ + γ(φ)

z2 = m11(φ)θ̇ +m12(φ)φ̇ (20)

where

γ =

∫ φ

0

m12(s)

m11(s)
ds =

∫ φ

0

Ir +mr` cos(s)

Ir +m`2 + 2mr` cos(s)
ds. (21)

As discussed in the first paper of this series,1 the kinetic symmetry with respect to θ in

the absence of a gravitational effect leads to symmetry in mechanics such that

∂K

∂θ
=
∂L

∂θ
= 0 (22)

since the corresponding Lagrangian L is independent of θ.

Note that z2 is essentially the first generalized angular momentum such that

z2 =
∂L

∂θ̇
, ż2 =

d

dt

∂L

∂θ̇
=
∂L

∂θ
+ u = u (23)

In addition,

ż1 = θ̇ +
m12(φ)

m11(φ)
φ̇ =

m11(φ)θ̇ +m12(φ)φ̇

m11(φ)
=

z2

m11(φ)
(24)
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Incorporating Eqs. (23) and (24), we obtain the following equations of z1 and z2:

ż1 = m−1
11 (φ)z2 (25)

ż2 = u

where m11(φ) = Ir +m`2 + 2mr` cosφ. Note that m11(φ) > 0, ∀φ since Ir = IG +mr2.

A closer examination of the definition of z1 and z2 given in Eq. (20) reveals that z1 corre-

sponds to the superposition of two angular variables, θ and φ, whereas z2 is the generalized

momentum conjugate to θ.

By differentiating ż1,

z̈1 =

[
∂m−1

11 (φ)

∂φ
φ̇z2

]
+m−1

11 (φ)ż2

=
2mr` sinφ

(Ir +m`2 + 2mr` cosφ)2
φ̇z2 +m−1

11 (φ)u (26)

= v

The following definition of the new control input v guarantees exponential convergence of z1

to z1d:

v = z̈1d −D(ż1 − ż1d)−K(z1 − z1d) (27)

where the control gains K and D are positive constants.

For φd = 0 and φ̇d = 0, the reference ż1d and z̈1d can be defined as

ż1d = m−1
11 (φ)z2d = m−1

11 (φ)
(
m11(φ)θ̇d +m12(φ)φ̇d

)
= θ̇d, z̈1d = θ̈d (28)

For the error (z1−z1d), we are mainly concerned with the array angular rate θ̇ of the spinning

tethered array rather than the angle θ. So we consider only the γ(φ) term from the definition

of z1 such that

z1 − z1d ≈ γ(φ)− γ(φd) = γ(φ) (29)

where γ(φ) is analytically obtained from the integral in Eq. (20) using Mathematica(TM):

γ(φ) =

∫ φ

0

m12(s)

m11(s)
ds =

∫ φ

0

Ir +mr` cos(s)

Ir +m`2 + 2mr` cos(s)
ds (30)

=
φ

2
+

m`2 − Ir√
−(m`2 + Ir)2 + 4m2r2`2

tanh−1

(
Ir +m`(`− 2r)√

−(m`2 + Ir)2 + 4m2r2`2
tan

φ

2

)

Figure 3 plots the function γ(φ) in Eq. (30), which is a monotonic function of φ within a

small range of the compound pendulum mode angle φ. From Eq. (26), the original torque
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Figure 3. Plot of γ(φ) using `=(0.3m, 0.6m, 0.9m) and the physical parameters Ref. 1

input u can be computed:

u = m11(φ)v − 2mr` sinφ

m11(φ)
φ̇z2 (31)

where the new control input v is defined in Eq. (27).

As discussed in Section II-B, the original nonlinear system in Eq. (1) is not fully feedback

linearizable with respect to its states, θ, θ̇, φ, φ̇. Nonetheless, the nonlinear control law in

Eq. (31), using feedback linearization, is made possible with respect to the reduced variables,

z1 and z2. The simulation results in Section VII show that the control law in Eq. (31) is

particularly efficient for tracking the desired trajectory of θ̇d while the desired φd and φ̇d are

set to zero.

V. Tracking Control by Backstepping and Contraction Analysis

Feedback linearization often results in cancellations of useful nonlinearities. To the con-

trary, backstepping design is more flexible and does not force the designed system to appear

linear. We present a backstepping nonlinear control design of the single tethered system,

based upon the strict-feedback cascade normal form introduced in the previous section.

Suppose that the original dynamics in Eq. (2) has a stabilizing control function u = α(x)

such that
∂V (x)

∂x
[f(x) + g(x)α(x)] ≤ −W (x) < 0 (32)

Since W (x) : Rn → R is negative definite, x = 0 is the global asymptotic equilibrium of
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the original dynamics in Eq. (2). If W (x) is only positive semi-definite, we can prove the

convergence of W (x) to zero via LaSalle-Yoshizawa theorem.8

Now we augment the nonlinear system in Eq. (2) with an integrator

ẋ = f(x) + g(x)ξ

ξ̇ = u (33)

where ξ is now a virtual control input whose desired value is α(x), which satisfies Eq. (32).

We can design a stabilizing control ξ̇ = u for the full system in Eq. (33) via backstepping.

Following Ref. 8, if W (x) is positive definite, then

Va(x, ξ) = V (x) +
1

2
[ξ − α(x)]2 (34)

is a Control Lyapunov Function (CLF) for the full system Eq. (33). In other words, there

exists a feedback control u = αa(x, ξ) that renders x = 0, ξ = 0 the globally asymptotically

stable (GAS) equilibrium of Eq. (33).8 If W (x) is only positive semi-definite, then we can

prove the existence of a feedback control that ensures global boundedness and convergence

of
(
x(t) ξ(t)

)T
to the largest invariant set Ma contained in the set, W (x) = 0, ξ = α(x).

Significant design flexibility is allowed in the backstepping procedure by the choice of the

stabilizing function α(x). In other words, a careful choice of α(x) avoids cancellations of

useful nonlinearities, and allows for additional nonlinear terms to improve transient perfor-

mance.8

Let us now turn to the reduced dynamics for the single-tethered system in Eq. (25), where

the nonlinear diffeomorphism in Eq. (20) defines z1 and z2. The strict-feedback system,

given in Eq. (25), regards the variable φ as an exogenous variable, thereby allowing for

backstepping. Let us define the stabilizing function α(z1) = −c1z1, c1 > 0 such that the

dynamics

ż1 = m−1
11 (φ)α (35)

is asymptotically stable with V = 1
2
z1

2. We define the error function e such that

e = z2 − α(z1) = z2 + c1z1 (36)

and its time derivative is

ė = ż2 + c1ż1 = u+ c1m
−1
11 (φ)(e− c1z1). (37)

Suppose that a CLF for z1 and z2 is Va = 1
2
z1

2 + 1
2
e2. Its time derivative should be
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bounded by the positive definite function W (x) for asymptotic stability.

V̇a = z1ż1 + eė = z1m
−1
11 (φ)(e− c1z1) + e[u+ c1m

−1
11 (φ)(e− c1z1)]

= −c1m−1
11 (φ)z1

2 + e[u+ c1m
−1
11 (φ)e+ (1− c12)m−1

11 (φ)z1] (38)

The following u renders V̇a = −c1m−1
11 (φ)z1

2 − c2e2 < 0 with c2 > 0:

u = −c2e− c1m−1
11 (φ)e+ (c1

2 − 1)m−1
11 (φ)z1

= −[c2c1 +m−1
11 (φ)]z1 − [c2 +m−1

11 (φ)c1]z2 (39)

The closed-loop system in the (z1, e) coordinates results inż1

ė

 =

−c1m−1
11 (φ) m−1

11 (φ)

−m−1
11 (φ) −c2

z1

e

 (40)

where c1 and c2 are positive constants.

The above equation shows an interesting property. The system matrix is uniformly (inde-

pendent of time) negative definite due to the skew-symmetric off-diagonal terms and the

positive m11(φ) term. Possessing such a negative-definite system matrix is an important

characteristic of backstepping design.8 It is emphasized that a similar discussion automat-

ically leads to contraction analysis (see the Appendix). The resulting equation for (z1, e)

in Eq. (40) is contracting due to its uniformly negative definite Jacobian, hence (0, 0) is an

exponentially stable equilibrium of (z1, e).

Since we are more interested in tracking control of the underactuated system, the following

tracking control law is suggested based upon Eqs. (39) and (40):

u = −[c2c1 +m−1
11 (φ)]z1 − [c2 +m−1

11 (φ)c1](z2 − z2d) + ż2d (41)

where z2d = m11(φ)θ̇d and ż2d = m11(φ)θ̈d due to φd = 0, φ̇d = 0. Since we focus on the

angular rate θ̇, z1d is defined such that z1 − z1d = z1 and ż1d = m−1
11 (φ)z2d. Additionally,

we set ed = z2d + c1z1d and ėd = ż2d + c1ż1d. Then, the control law in Eq. (41) leads to the

closed-loop system of the virtual variables y1 and y2, which hasy1

y2

 =

z1 − z1d

e− ed

 and

y1

y2

 =

0

0

 (42)
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as particular solutions. Its virtual displacement equation results inδẏ1

δẏ2

 =

−c1m−1
11 (φ) m−1

11 (φ)

−m−1
11 (φ) −c2

δy1

δy2

 . (43)

This is contracting since the symmetric part of its Jacobian matrix−c1m−1
11 (φ) 0

0 −c2

 (44)

is uniformly negative definite (see the Appendix for the details of contraction theory). Hence

all solutions of y1 and y2 tend to each other, resulting in θ̇ → θ̇d and φ, φ̇ → 0 from the

definition of z1, z2 and e. Furthermore, the contraction rate of z1 is proportional to c1

whereas c2 independently determines the contraction rate of e. This indicates that we can

properly tune the gains c1 and c2 for desired tracking performance of z1 and z2, respectively.

In order to maintain the same convergence rate for z2 over various tether lengths, we can set

c2 → c2m
−1
11 (φ).

VI. Decentralized Control For Multi-Vehicle Systems

1u

θ

1φ

2φ

2φ

1φ

2u

Figure 4. Two-spacecraft tethered system with a reaction wheel, depicted on the rotation
plane. The φ1 and φ2 angles indicate the compound pendulum modes.

Following the model reduction technique introduced in Ref. 19, we show herein that a
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fully decentralized control law designed from the underactuated single-tethered system can

stabilize a multi-vehicle tethered array. The decentralized controller will enable simple in-

dependent control of each satellite by eliminating the need for exchanging individual state

information. This will significantly simplify both the control algorithm and hardware imple-

mentation, as well as eliminate any possibility of performance degradation due to noisy and

delayed communications.

Consider a two-spacecraft array with only torque input (u1, u2), as illustrated in Fig. 4:

M2(φ1, φ2)


θ̈

φ̈1

φ̈2

+ C2(φ1, φ2, θ̇, φ̇1, φ̇2)


θ̇

φ̇1

φ̇2

 =


u1 + u2

u1

u2

 (45)

where

M2(φ1, φ2) =


m11(φ1) +m11(φ2) m12(φ1) m12(φ2)

m12(φ1) m22 0

m12(φ2) 0 m22

 ,

C2(φ1, φ2, θ̇, φ̇1, φ̇2) =


c11(φ1, φ̇1) + c11(φ2, φ̇2) c12(φ1, θ̇, φ̇1) c12(φ2, θ̇, φ̇2)

c21(φ1, θ̇) c22 0

c21(φ2, θ̇) 0 c22


(46)

and mij and cij are defined in the single-tethered dynamics in Eq. (1).

We can proceed to prove the stability of the nonlinear decentralized control law introduced

in Section IV. The proof entails showing that such a decentralized control law can de facto

synchronize the two compound pendulum mode angles– φ1 and φ2 for the two-spacecraft

system. Recall that the second and third rows of Eq. (45) are the independent dynamics for

φ1 and φ2, respectively:

(Ir +mr` cosφ1)θ̈ + Irφ̈1 +mr`θ̇2 sinφ1 = u1

(Ir +mr` cosφ2)θ̈ + Irφ̈2 +mr`θ̇2 sinφ2 = u2

(47)

where the decentralized control law ui, i = 1, 2 from Eq. (31) can be written as

ui = m11(φi)[θ̈d −D(θ̇ − θ̇d)]−Dm12(φi)φ̇i −Km11(φi)γ(φi)−
2mr` sinφi
m11(φi)

φ̇iz2(φi) (48)

Since the φ angle is stabilized (φ → 0), assume that φ and φ̇ are sufficiently small such

that m11(φ) ≈ m11(0), cosφ ≈ 1, and sinφφ̇ ≈ 0. Then, the closed-loop dynamics in Eq. (47)
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can be simplified as

Irφ̈1 +Dm12(φ1)φ̇1 +Km11(φ1)γ(φ1) +mr`θ̇2 sinφ1 = g(t)

Irφ̈2 +Dm12(φ2)φ̇2 +Km11(φ2)γ(φ2) +mr`θ̇2 sinφ2 = g(t)
(49)

where the common excitation input is defined as

g(t) = −(Ir +mr`)θ̈ +m11(0)[θ̈d −D(θ̇ − θ̇d)] (50)

Also, note that m11(φ) > 0 ∀φ and m12(φ) > 0 for |φ| < π
2
.

Consider the virtual dynamics of y that has φ1 and φ2 as its particular solutions:

Irÿ +Dm12(y)ẏ +Km11(y)γ(y) +mr`θ̇2 sin y = g(t) (51)

The above dynamics is contracting (δy → 0) with D > 0 and K > 0 in the region

|φ| < π
2
, indicating that any solutions of y converge to each other. This in turn implies

that φ1 tends to φ2 exponentially fast. Once φ1 → φ2, it is straightforward to show that

the equation of motion for two-spacecraft in Eq. (45) reduces to the superposition of the

reduced variables z1 and z2 for each spacecraft. As a result, a decentralized control law

designed from the single-tethered dynamics not only stabilizes the coupled two-spacecraft

dynamics, but also synchronizes the compound pendulum mode angles φ1 and φ2. Following

the discussion in Ref. 19, the above result can be extended to a triangular configuration and a

three-inline configuration. In particular, due to the hierarchical combination, the dynamics

of a three-inline configuration reduce to those of the single-tethered systems if the center

spacecraft becomes exponentially stabilized by a simple independent control law. In other

words, the above result shows that implementing an underactuated control law based on the

single-tethered dynamics in Fig. 2 ensures the stability of the rotation rate and the relative

motions in an inline three-spacecraft array (see the discussion in Ref. 19).

VII. Simulation Results

We compare the tracking performance of the two nonlinear underactuated control laws,

introduced in Sections IV and V, with that of the linear LQR control. In addition, we

validate the effectiveness of a decentralized nonlinear underactuated control law for a two-

spacecraft configuration as well as a three-spacecraft inline configuration, thereby further

extending the theory in Ref. 19 to underactuated tethered systems.

18 of 30



A. Comparison with LQR Control

We illustrate that the nonlinear control approach is superior to the linear control in tracking

a time-varying trajectory. For each simulation, the desired angular rate of the array θ̇d is

given as

θ̇d = 0.25 + 0.02e−τt(1− cos (2πft)) (52)

θ̈d = 0.02e−τt[2πf(sin (2πft))− τ(1− cos (2πft))]

where f=0.01, τ=0.02. The control law is also required to minimize the compound pendulum

modes such that φd, φ̇d = 0 while trying to follow θ̇d.

The initial conditions are defined as θ̇0=0.25 rad/s, φ0 = 0.1 rad, and φ̇0 = −0.05 rad/s.

The physical parameters used in the simulations are selected from the actual values of the

SPHERES testbed on the new air-bearing carriage described in the first paper of this series.1

The radius of SPHERES, r is 0.15 m, the mass of SPHERES with the air-bearing carriage,

m is 20.346 kg, and the moment of inertia I is 0.178 kgm2. The tether length ` is either 0.5

m or 1 m.

Figure 5 shows the performance of the nonlinear tracking control using the feedback

linearization of the reduced variables in Eq. (31). The gains are defined as K = 1 and

D = 2. The nonlinear control is denoted by NLFL and compared with the LQR control. For

the LQR control, the Q weighting matrix is diag(
[
1 5 1

]
) and the nominal angular rate

of θ̇ = ω=0.25 rad/s are used. The simulation clearly indicates that the nonlinear control

is superior to the LQR control in terms of tracking error. Both control approaches turn out

to be equally efficient in minimizing the compound pendulum mode (φ, φ̇). As the tether

length ` increases from 0.5 m (Fig. 5(a)) to 1.0 m (Fig. 5(b)), the tracking performance

for the LQR control degrades even though the change in the tether length was taken into

account in computing the optimal LQR gains. This degradation in the performance of

the LQR control has to do with the fact that the underactuated tethered system becomes

less controllable as the tether length increases (see the controllability analysis in Ref. 1). In

contrast, the nonlinear control achieves the same level of performance regardless of the tether

length variation. In addition, cumbersome gain-scheduling is not required for the nonlinear

control approach.

Likewise, Figure 6 represents the performance of the nonlinear tracking control law de-

rived by the backstepping design approach in Eq. (41). The gains used for this simulation

are c1 = 4 and c2 = 2. The figures clearly indicate that the nonlinear control approach

using backstepping demonstrates more efficient tracking performance than the LQR control,

whose performance deteriorates as the tether length increases.
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B. Two-Spacecraft System

We simulate the proposed decentralized underactuated control law in Eq. (31) and Eq. (48)

for the two-spacecraft tethered system shown in Fig. 4. The desired trajectory θ̇d is defined

as in the previous section. Since the total tether length in Eq. (45) is 2`, `=1 m is used.

All other physical parameters of the SPHERES satellite remain the same as the previous

section, including the control gains (K = 1 and D = 2). The initial conditions are defined

as θ̇(0)=0.25 rad/s, ψ̇(0)=0.25 rad/s, φ1(0) = 0.1 rad, φ̇1(0) = 0 rad/s, φ2(0) = −0.1 rad,

and φ̇2(0) = 0 rad/s. As illustrated in Fig. 7, the control law works efficiently to follow the

trajectory θ̇d while minimizing the compound pendulum mode (φ1 and φ2). It should be

stressed that the control law makes both the compound pendulum modes angles synchronize

exponentially (i.e., φ1 → φ2) due to the discussion in Section VI. We can easily find why

the state responses of the two-spacecraft system are similar to those of the single-tethered

system in the previous section. Once the two individual spacecraft are synchronized, they

behave as one unified closed-loop dynamics of the single-tethered system.

C. Three-Spacecraft Inline Configuration

Following the discussion in Section VI, we also investigate if the proposed method of designing

a nonlinear underactuated control law from the decoupled single-tethered dynamics can be

applied to the three inline configuration shown in Fig. 1. The equations of motion are given in

Ref. 19. Figure 8 shows a simulation result obtained by the same underactuated control law

in Eq. (48) for the two outlying spacecraft in the linear three-spacecraft tethered array. For

the center-spacecraft, a simple linear control law, u0 = −0.228(ψ̇− θ̇d), is used for a spin-up

operation. The nonlinear control gains are K = 0.5 and D = 2 while the only nonzero initial

conditions are given as ψ̇ = 0 and φ1 = 0.05 rad. During the spin-up maneuver of ψ̇ from 0.25

to 0.27 rad/s, the compound pendulum modes φ1 and φ2 get excited due to the coupling

motions of the underactuated dynamics. Eventually, the compound pendulum modes φ1

and φ2 oscillate in sync as they tend to zero (see the discussions in Section VI and Ref. 19).

In conclusion, the proposed underactuated control law, independently implemented in each

spacecraft in a decentralized fashion, also ensures the stability of the closed loop system.
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(a) tether length=0.5 m

(b) tether length=1.0 m

Figure 5. Nonlinear tracking control using the feedback linearization of the reduced variable
(NLFL) in Section IV and the LQR control
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(a) tether length=0.5 m

(b) tether length=1.0 m

Figure 6. Nonlinear tracking control using backstepping (NLBS) in Section V and the LQR
control
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Figure 7. Simulation result of a decentralized control for Fig. 4
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1u

2u

1P

2P2F 1F

Figure 9. Two-spacecraft tethered system equipped with a high-bandwidth linear actuator
on the tether (P ), a reaction wheel (u), and a tangential thruster (F , not shown) in each
spacecraft.

VIII. New Momentum Dumping Method for Saturated Wheels

If the linear velocity or angular velocity of each spacecraft is held constant, the increase

of the tether length and external disturbance torque inevitably lead to the saturation of the

wheel speed. For satellites in orbit, a pair of thrusters is conventionally used to dump the

angular momentum of the saturated momentum wheel. This section focuses on the issue

associated with managing the saturated angular momentum once a tethered array spun by

reaction wheels reaches its maximum size. A new technique that can be used to extend

the array beyond this size is proposed. The proposed method maintains the desired array

spin-rate and zero compound pendulum mode during the momentum dumping operation.

Maintaining the zero compound pendulum mode without torque-generating thrusters poses a

challenge since the reaction wheel, which directly controls the pendulum mode, is decelerated

continuously in one direction.

Let us now assume that the tethered formation flight spacecraft shown in Fig. 9 are

equipped with only a reaction wheel (u), a tangential force thruster (F ), and a high-

bandwidth translational actuator on the tether (P ) in each spacecraft. The direction of

F is perpendicular to the line between the tether attachment point and the CM of the

spacecraft. It is shown in the first paper1 that a planar rotating array of tethered spacecraft

can control all relevant degrees of freedom using only one reaction wheel (u) in each space-

craft. Due to the Coriolis force exerted on the spacecraft, a radial motion of the tether can

exert torque with respect to the compound pendulum mode φ in Fig. 9. Oscillatory motions
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of the tether from the force P can then be used as a means of controlling the pendulum

mode. From the linearized dyanamics of Eq. (1), the dynamics of φ is coupled with ˙̀ as

φ̈+
rω2
(
Ir +m`(2r + `)

)
`IG

φ̇ = 2
v

`
θ̇ + 2

ω

`
˙̀− 1

m`
F +

r + `

IG`
u (53)

where v is the nominal tether speed, which is zero here.

Since ˙̀ is mainly driven by the force P , we can control the compound pendulum mode

φ by exerting the force P on the tether. Such an actuation method can be employed to

dump the angular momentum stored on the reaction wheels. While constantly decelerating

the wheel speed, the linear force P on the tether can be exerted in an oscillatory fashion to

minimize the associated compound pendulum mode, while the linear thruster F maintains

a constant array angular rate. In other words, it is straightforward to show that the system

shown in Fig. 9 is fully controllable by F and P when u is not available (see Ref. 13).

Hence, the momentum dumping method provides an alternative method for stabilizing the

compound pendulum mode during momentum dumping operations.

A simulation of such a momentum dumping operation is presented in Fig. 10. The torque

by reaction wheel (u) is set as u = −0.01 (Nm) such that the wheel speed can constantly

be decelerated to zero. The tangential force thruster (F ) and the translational actuator on

the tether (P ) exert the control forces in order to maintain the same angular rate θ̇ and zero

compound pendulum mode (φ, φ̇ = 0):

F = −10φ− 10φ̇− 10(θ̇ − θ̇d)

u = −0.01 (54)

P = −10φ− 10φ̇− 10(θ̇ − θ̇d)− 40(`− `d)− 40 ˙̀

The top plot of Fig. 10(a) shows the change in the angular momentum of the reaction

wheel due to the constant deceleration u = −0.01 (Nm) while the control forces F and P

effectively maintain the control states at the reference points (bottom plot). Figure 10(b)

shows that the usage of the linear thruster (F ) to maintain the array angular rate is relatively

small. In contrast, large P is required to stabilize the compound pendulum mode in the

absence of the RWA torque u. Small oscillations of both the control states and the tether

length are acceptable since no interferometric observation is scheduled during the momentum

dumping operation.
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IX. Conclusions

We proposed a new approach for controlling the array spin rate and relative attitude with-

out thrusters by exploiting the coupled dynamics. Such a tethered system without thrusters

is underactuated since it has fewer inputs than configuration variables. This work reports the

first propellant-free underactuated control results for tethered formation flying spacecraft.

Such an underactuated control approach is particularly beneficial to stellar interferometers

due to the increased mission life span and reduced optical contamination by exhaust from

the thrusters. As discussed in the first paper,1 the effectiveness of the underactuated method

decreases as the array size increases. This article also fulfilled the potential of the proposed

underactuated strategy by providing a new momentum dumping method that does not use

torque-generating thrusters.

In contrast with linear systems, in which an underactuated control law can be synthe-

sized easily, designing a nonlinear controller for nonlinear underactuated systems is a difficult

control problem, mainly due to the lack of full state feedback linearizability. In this paper,

we derived several nonlinear control laws for spinning tethered systems: partial feedback

linearization, feedback linearization via momentum decoupling, and backstepping. Simula-

tion results indicate that the nonlinear control methods are much more efficient in tracking

time-varying trajectories than LQR control.

For future work, developing a robust nonlinear underactuated control method that deals

with model uncertainties and sensor noise would be an interesting and challenging research

topic. Even though the modeling on the two-dimensional rotational plane is justified by the

decoupling presented in the first paper of this series,1 it would also be useful to extend such

an underactuated control strategy to three-dimensional attitude dynamics. In particular,

precessing the array rotation might also be achievable using underactuated tethered systems.
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Appendix: Contraction Theory

We exploit partial contraction theory24 to prove the stability of coupled nonlinear dy-

namics. Lyapunov’s linearization method indicates that the local stability of the nonlinear

system can be analyzed using its differential approximation. What is new in contraction the-

ory is that a differential stability analysis can be made exact, thereby yielding global results

on the nonlinear system. A brief review of the results from23,24 is presented in this section.

Readers are referred to these references for detailed descriptions and proofs on the follow-

ing theorems. Note that contraction theory is a generalization of the classical Krasovskii’s

theorem.22

Consider a smooth nonlinear system

ẋ(t) = f(x(t),u(x, t), t) (55)

where x(t) ∈ Rn, and f : Rn × Rm × R+ → Rn. A virtual displacement, δx is defined

as an infinitesimal displacement at a fixed time– a common supposition in the calculus of

variations.

Theorem IX.1 For the system in (55), if there exists a uniformly positive definite metric,

M(x, t) = Θ(x, t)TΘ(x, t) (56)

where Θ is some smooth coordinate transformation of the virtual displacement, δz = Θδx,

such that the associated generalized Jacobian, F is uniformly negative definite, i.e., ∃λ > 0

such that

F =

(
Θ̇(x, t) + Θ(x, t)

∂f

∂x

)
Θ(x, t)−1 ≤ −λI, (57)

then all system trajectories converge globally to a single trajectory exponentially fast re-

gardless of the initial conditions, with a global exponential convergence rate of the largest

eigenvalues of the symmetric part of F.

Such a system is said to be contracting. The proof is given in.23 Equivalently, the system is

contracting if ∃λ > 0 such that

Ṁ +

(
∂f

∂x

)T
M + M

∂f

∂x
≤ −2λM (58)

It can also be shown that for a contracting autonomous system of the form ẋ = f(x,u(x)),

all trajectories converge to an equilibrium point exponentially fast. In essence, contraction

analysis implies that stability of nonlinear systems can be analyzed more simply by checking
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the negative definiteness of a proper matrix, rather than finding some implicit motion integral

as in Lyapunov theory.

The following theorems are used to derive stability and synchronization of the coupled

dynamics systems.

Theorem IX.2 Partial contraction24

Consider a nonlinear system of the form ẋ = f(x,x, t) and assume that the auxiliary system

ẏ = f(y,x, t) is contracting with respect to y. If a particular solution of the auxiliary y-

system verifies a specific smooth property, then all trajectories of the original x-system verify

this property exponentially. The original system is said to be partially contracting.

Theorem IX.3 Synchronization24

Consider two coupled systems. If the dynamics equations verify

ẋ1 − f(x1, t) = ẋ2 − f(x2, t)

where the function f(x, t) is contracting in an input-independent metric, then x1 and x2 will

converge to each other exponentially, regardless of the initial conditions. This proof can be

derived by Theorem IX.2.
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Figure 10. Momentum dumping operation with stabilization
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