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Abstract

Much recent functional modelling of the central nervouseays beyond traditional “neural net”
approaches, focuses on its distributed computationalitaothre. This paper discusses extensions
of our recent work aimed at understanding this architecttom an overall nonlinear stability and
convergence point of view, and at constructing artificialides exploiting similar modularity. Appli-
cations to synchronisation and to schooling are also desttriThe development makes extensive use
of nonlinear contraction theory.
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1 Introduction

Any biological object, and specifically the brain, is theulesf evolution. Evolution proceeds by accumu-
lation and combination of stable intermediate states: réswgurvival of the fittest really means survival
of the stable (Simon, 1962; Dawkins, 1976). In the procesdems of increasing complexity are created
(Kirschner and Gerhart, 1998; Ridley, 2000). Simple exa®plbound: for instance, motion control ar-
chitecture in vertebrates is believed to involve comboratiof simple motor primitives (Bernstein, 1967;
Bizzi, et al., 1995); human emotional response involves [t archaic loops bypassing the cortex, and
slower cortical loops (Ledoux, 1996; Damasio, 2001). Hoevewn themselves, accumulations and com-
binations of stable elements have no reason to be stableettem hypothesis in (Slotine and Lohmiller,
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2001) that evolution will favor a particular form of statalstiity, which automatically guarantees stability
in combinations, such as parallel, series, feedback, otiresblution. Such a form of nonlinear stability,
which we refer to as "contraction” (Lohmiller and Slotin@9B), can be characterized mathematically.

Conceptually, accumulations of stable dynamics have asa la recurrent theme in cybernetics and
Al history (Walter, 1950, 1951; Chomsky, 1957; Wiener, 196iimon, 1962, 1981; Ashby, 1966; Braiten-
berg, 1984; Minsky, 1986) under various guises (Brooks512899). They also form the basis of several
recent theories of brain function (Tononi, et al., 1998; &afe, et al., 1998; Crick and Koch, 1998; Edel-
man and Tononi, 2000; Grossberg, 2000) and of biologicabmaintrol (Bernstein, 1967; Bizzi, et al.,
1995; Mussa-lvaldi, 1997; Wolpert and Kawato, 1998; Tresttal., 1999; Jordan and Wolpert, 1999;
Thoroughman and Shadmer, 2000; Giszter, et al., 2000). ntralaheory, passivity (Popov, 1973) was
originally motivated by similar concerns.

This suggests that contraction theory may both guide fanatimodelling of the central nervous sys-
tem beyond basic “neural net” approaches, and provide armsydic method to build arbitrarily complex
robots out of simpler elements. Furthermore, it may shdu g the problem of perceptual unity (bind-
ing problem) by providing simple models and conditions for bverall convergence of a large number of
specialized processing elements connected through netwbifeedback loops (Slotine and Lohmiller,
2001). This paper discusses further examples along thess li

Section 2 defines nonlinear contraction, reviews its basipgrties (Lohmiller and Slotine, 1998), and
presents some elementary applications. Section 3 furka@eni@es combinations properties of contracting
systems and some of their implications. Section 4 discusggalgcations to oscillator synchronisation, an-
other type of computation occuring in the central nervowstesy, and to schooling and flocking. Section
5 offers brief concluding remarks.

2 Modularity and Stability

Basically, a nonlinear time-varying dynamic system willdadled contracting if initial conditions or tem-
porary disturbances are forgotten exponentially fast, if.&rajectories of the perturbed system return to
their nominal behavior with an exponential convergence. iiturns out that relatively simple conditions
can be given for this stability-like property to be verifi@ahd furthermore that this property is preserved
through basic system combinations, such as parallel catibirs, feedback combinations, and series or
hierarchies.

Incidentally, such a definition fits rather naturally withdamn data on biological motion perturbation,
e.g. perturbation of arm movement (Soechting and Lacqud®i88; Won and Hogan, 1995). Further-
more, it is intrinsic, in the sense that the system’s “norfiihahavior needs not be known. Finally, such
a form of stability, at least in a local sense, is also a baseggjuisite for any learning, since it guaran-
tees the consistency of the system'’s behavior in the presaframall disturbances or variations in initial
conditions.



2.1 Contraction Analysis

In this section, we summarize the basic results of (Lohmédled Slotine, 1998), to which the reader is
referred for more details. We consider general time-vaygeterministic systems of the form

x = f(x,1) 1)

wheref is ann x 1 nonlinear vector function angl is then x 1 state vector. The above equation may
also represent the closed-loop dynamics of a controllesywith state feedbaak(x, ¢). All quantities
are assumed to be real and smooth, by which it is meant thategyred derivative or partial derivative
exists and is continuous. The basic result of (Lohmiller Shatine, 1998) can then be stated as

Theorem 1 Consider the system (1). If theres exist a uniformly pasiiefinite metric
M(x,t) = O(x,t)T O(x,1t)

such that the associated generalized Jacobian
F = (9 - @3{) 0!

is uniformly negative definite, then all system trajectetizen converge exponentially to a single trajec-
tory, with convergence rate\,,....|, where\,,... is the largest eigenvalue of the symmetric parFofThe
system is said to be contracting.

It can be shown conversely that the existence of a unifornolsitiyve definite metric with respect
to which the system is contracting is also a necessary dgondidr global exponential convergence of
trajectories. In the linear time-invariant case, a systemglabally contracting if and only if it is strictly
stable, withF simply being a normal Jordan form of the system &hthe coordinate transformation to
that form.

In this paper, for simplicity we shall concentrate on thebglloconvergence result above. In the case
that F is uniformly negative definite only in a finite region, therethesult can be shown to hold for
all trajectories starting in the largest ball (with resptcthe metricM) contained in that region. Note
that since® is invertible, requiring tha¥ be uniformly negative definite is equivalent to requiringtth
M+2M g—i be uniformly negative definite. Furthermore, since

1 : of  ofT
-1 _ = -1 or ot
O 'F,©0 = M (M+ Mo + —— M)
where isF, the symmetric part oF, all transformation® corresponding to the sanM lead to the same
eigenvalues foF; , and therefore to the same contraction fatg,.|. In particular one may always define

or redefine the transformatid# to be lower triangular, using a Cholesky decompositioivbf



2.2 Examples

Example 2.1: Time-invariant contracting systems converge to a uniqualiegum point. Indeed, consider the
systemx = f(x), contracting with respect t®. One can easily verify that

d
— (©f) = F(ef)

which implies that®f and thusf = x converge exponentially to zero, and therefore thabnverges exponen-
tially to a constant vector.

Consider now an autonomous contracting syst&m-= f(x) , with constant®, and a constant vecter of the
same dimension. The above implies that the dynamics

x=f(x)—c

converges exponentially to the unique solution of the algietsystenf(x) = c. O

Similarly, contracting systems of the form
x = f(x,u(t))

where the inputi(?) is periodic in time, can be shown to converge towards a peristdte of the same
period as the input.

Example 2.2: Consider a time-varying cost functidn(x — r(t)), strictly convex inx, and the dynamic system

x=X+r(t)
x = —grad V(x —r(t))
One has J
a(x —r(t) = —grad V(x —r(t))
This dynamics is contracting, since its Jacobia%g is uniformly negative definite Thug,tracks the minimum
of V after an exponential transient. O

Example 2.3: In biological modelling, one frequently encounters (Tles2002) so-called activation functions
x(t), driven by an electrical signal(t) according to a dynamics of the form

T+ [B+ (1= Bu(t)] z = u(t) 0<u(t)<1

with g a constant) < g < 1, and constant > 0. Intuitively, such systems, found e.g. in muscle modelgg@a
1989) and in dynamic synapse models (Fuhrmann, et al., 26€d)ond faster when(t) smoothly transitions
from 0 to 1, and slower on the way back. This dynamics is contractingesits scalar Jacobian is upper bounded

by —3/7.



Example 2.4: Contraction can also be defined in open connected subsdig sfate space. For instance, the

system

i = z(u® —z?)

with « a constant, is contracting far > ¢ andxz < — e for arbitrary 0 < ¢ < |u|, with metric 1/22 , and
thus converges accordingly tou.

Partial contraction may also be defined, corresponding aadtpartial rank. Consider for instance the classical
limit cycle dynamics (Luenberger, 1979)

P=y —x@® + 9y - 1)

y= -z —y@®+y -1
Letting » = /22 + 32, one has

Po=r(r?—1)

implying exponential convergence ofto 1 in any region- > ¢, with arbitrary0 < ¢ < 1. The corresponding
metric ®7© for the original systemis givenb® = (z y)/(z®> + 3?). O

Example 2.5: Chaotic synchronisation

Starting with (Pecora and Carroll, 1990), much attentios een devoted to synchronisation in “chaotic” sys-
tems. Consider the Lorenz system

i =o(y—x)
Yy =pxr —Yy — Tz
i =—-0Fz+zy

with strictly positive constants, p, 3, and, as in (Pecora and Carroll, 1990; Nijmejier, 2001),duced-order
identity observer for this system based on an available uneasent of the variable,

=px —y— T2

.

=B+ ay
The symmetric part of the observer’s Jacobian-isdiag(1, 3), and thus the observer is contracting with an
identity metric. Since by constructiofy, 2) = (y, z) is a particular solution, the estimated state converges
exponentially to the actual state. O

3 Combinations of contracting systems

As a form of stability, one of the main features of nonlineamtraction is that it is automatically preserved

through a variety of system combinations (Lohmiller andtiSk 1998; 2000a), a state-space property
reminiscent of input-output passivity (Popov, 1973). Iistbection we illustrate these properties with

simple applications to modular design. An interesting néckscussion of the application of passivity

tools to recursive refinement of the control of movement aafolind in (Arimoto and Naniwa, 2002).



Formally, some of the combination properties of contracgstems are most easily stated used the
notion of a virtual displacement, from classical physicsvi&ual displacemenéx is an infinitesimal
displacemenat fixed time- formally, if we view the position of the system at timas a smooth function
of the initial conditionx, and of time, x = x(x,,t) , then dx = 59—;‘0 dx, . Coordinate transformations
of the formdz = O(x,t)dx can be performed on virtual displacements. These are muck gemeral
than simple coordinate changes, since an expliciéed not need exist, i.e., the transformation need not
be integrable®(x,t)” ©(x,t) defines the metric in Theorem 1.

By contrast with linear theory, contraction analysis doasuse differentiation as local approximation,
but rather as a formal tool to yield global results on the m@ar system.

3.1 Parallel combination

Consider two systems of the same dimension, contraatitige same metric
x = fi(x,1) i=1,2

Assume further that the metric depends only the staed not explicitly on time. Then, any uniformly
positive superposition (whetea > 0, V¢t > 0, i, o;(t) > )

X = aq(t) fi(x,1) + as(t) fa(x, 1)

is contracting in the same metric. By recursion, this propean be extended to any number of systems.

Example 3.1: Control primitives

Recently, there has been considerable interest in anglyeedback controllers for biological motor control sys-
tems as combinations of simpler elements, or primitivegZBiet al., 1995; Mussa-lvaldi, 1997; d'Avella and
Bizzi, 1998; Tresch, et al., 1999; Giszter and Kargo, 200&xgé and Giszter, 2000). Besides being biological
plausible, such a structure is intuitively appealing, asaly yield considerable dimensionality reduction in learn-
ing and planning. Similar goals motivate e.g. (Atkeson gtl#l97; Schaal, 1999; Fod et al., 2000). The structure
is also reminiscent of potential fields in robotics (Khatibg86), although typically the control primitives or their
modulating coefficients are time-varying and thus do natl ldvemselves easily to an energy-based analysis.

Consider more generally the system
x =f(x,t) + B(x,t) u

and assume that there exist control primitives= p;(x,t) which, for anyi, make the closed-loop system
contracting in some common metric. Multiplying each equrati

x =f(x,t) + B(x,t) pi(x,t)

by a positive coefficient;;(¢), and summing, shows that any convex combination of the abpimitivesp; (x, ¢)

% =f(x,t) + B(x,t) Y ai(t) pilx,1) Vi, oi(t) > 0 Zai(t) =1

(2



also leads to a contracting dynamics in the same metric.

The time-varying convex combination may correspond, fetance, to smoothly turning on and off primitives,
as e.g. in (D’Avella, et al. 2003). O

3.2 Hierarchical Combination

Consider two contracting systems, of possibly differemhehsions and metrics, and connect them in
series, leading to a smooth virtual dynamics of the form

i (SZl . Fll 0 6Z1
dt \ 0zo |\ Fa Fo 02

Then the overall system is contracting, as lon@'asis bounded, as can be seen for instance by using

I,, O
e = < O I, )
for ¢ > 0 sufficiently small. By recursion, the result extends to &iehies or cascades of contracting
systems of arbitrary depths.

Example 3.2: Composite variables

Composite signals, i.e., signals representing mixturesiafe obvious physical quantities such as position or
velocity, are pervasive in the nervous system (Berthoz9),%thd also exploited in methodologies such as sliding
control (see e.g., (Slotine and Li, 1991)). Using such comations can often be interpreted as enforcing a
hierarchy of contracting systems, so as to reduce the coityplef control or estimation problems.

In a second-order mechanical system, for instance, chpasisliding variable s = # + \i , wherez(t) is
the tracking error and is a strictly positive constant, simply corresponds to @ingaa hierarchy of contracting
systems

$=¢(s,t) nominally contracting by choice of control law
T+ANE=s contracting by definition o
where “nominally” refers to the uncertainty-free case. @btual choice of the composite variable can be shaped
according to the desired qualitative behavior of the catitng system. For instance, a system using instead
i+ A+ \li))T=s
(with constants\; > 0) reacts faster to larger errors, since the correspondiaigrsdacobian is—(A; + 22| Z|).
Similarly, selecting transfer functiong(p) and L(p), wherep is the Laplace variable, and defining

& — G(p)tq + Lp) (x —zq) = s
with z4(t) an external input, leads to the hierarchical layer

. 1 s 4 PG + LB
p + L(p) p + L(p) I




This definition ofs corresponds to the classical problem of selecting, for atdlgp, a feedback compensator
L(p) and a feedforward compensat@(p) to obtain appropriate frequency shapingecdind “disturbance atten-
uation” of s (Young and Ozguner, 1993; Zuo and Slotine, 2003). Note thttis case the target dynamics is of
order ny, + 1, whereny, is the order ofL(p). O

Example 3.3: In Example 2.5, consider constructing a full-state idgrdgitserver by augmenting the dynamics
with

i =o()—1)
Then, the observer corresponds to a hierarchy of contmastiatems, and thus the full estimated state converges
exponentially to the actual state. O

3.3 Static nonlinear maps

Consider a smooth map

y =f(xq, ... ,Xp,1)
where thex; are states of contracting systems (of possibly differeritio®. Theny — 0 exponentially
as long as aI% are bounded.

Similarly, given a contracting system of stateboundedness of the Jacobian and its time-derivatives
up to order;j implies exponential convergence to zero of any time-dévieaf ox up to order; + 1. Thus
the nonlinear maps above may depend accordingly on timeadiees of thex;.

Example 3.4: Full-order target dynamics

Extending Example 3.2, for an uncertain nonlinear systéfh = f(z,,...,z"~ Y, u,t) to be controlled, the
desired dynamicss = 0 can be selected to correspond to any contracting systét = g(x, ..., x("‘l),t)

of the same order This may be a natural choice, e.g., when the system is dmatrmmtermitently, when it
must exhibit specific disturbance responses (Zuo and 8|a2i®03), when robot impedances must be accurately
controlled based on sensed interaction forces, or whematastused to simplify a subsystem dynamics as seen
from other subsystems. It can be achieved by defining, bassthte measurements alone

s =z — 3

§=—k(z -2y + g(x,2,..,207 1)
with constantt > 0. Indeed one then has

™ — gz, g, D) = 5+ ks

Note that this also suggests that the nominal (uncertanety) fdynamics of, one layer above, should be best
selected ass = — k s, although other choices are possible as long as nominally ks — 0. O

Example 3.5: If x is the state of a contracting system, then sa’is. Such positive scalars may be used
hierarchically to define the coefficients(¢) in control primitives, for instance. (|
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Example 3.6: Multi-stream processing

Combining the above properties, contraction can be preddfwne first “splits” a signal into parallel streams
through linear or nonlinear maps, processes each streanngtinicontracting dynamics (e.g., sequences of non-
linear filters and maps), and then “recombine” the streams.

By analogy, recall that visual information flow is procesbgd 0% neurons on the retina, compressed (or partially
discarded) as input tt0® neurons in the optic nerve, analyzed18}" neurons within several specialized areas in
the cortex, before being shared between areas and with tbke Wwtain (Keat, et al., 2001). Similar compression
and distributed filtering occurs for auditory processingati&] 2002). O

3.4 Feedback Combination

Consider two contracting systems, of possibly differemhehsions and metrics, and connect them in
feedback, in such a way that the overall virtual dynamicd the form

i (5Z1 _ F1 G (5Z1
dt 522 o — GT Fs 522

where the matrixG(xi,x», t) is arbitrary (other than being a matrix of partial derivagy. Then the
overall system is contracting. The result can of course ltenebed to any number of systems: with
obvious notations, overall contraction is achievedif; + G]T,- =0, Vi, j, i # 7.

Example 3.7: A system of the form
X = f(x,t)-> X\ Vg

A = g(x,t)+h(\t)

with £ — > \;Vg; contracting inx, and h contracting in), is contracting. Similar dynamics occur in
constrained optimization. O

Example 3.8: Feedback as above is a very efficient way to share informatioindistribute computation among
specialized contracting subdynamics, since the overaN@agence rate is simply the slowest of the individual
convergence rates.

Similar feedback configurations may be involved when bigdirformation from different specialized areas in
the visual cortex (processing edges, others shape, maqmth, color, and so on (Kandel, et al., 2000)) or in the
auditory system (time-frequency analysis, spectral edgraural time difference, and so on (Watts, 2002)), as
well as in merging information from different senses.

More generally, consider two contracting systems and atranpfeedback connection between them
(Wang and Slotine, 2001). The overall virtual dynamics canvitten

d 5Z1 . 5Z1
alo)=r(i)



Compute the symmetric part &Y, in the form

1 T _ Fls Gs

where by hypothesis the matricds;; are uniformly negative definite. Thel' is uniformly negative
definite if and only if Fo, < GT Ffsl G, , a standard result from matrix algebra (Horn and Johnson,
1985). Thus, a sufficient condition for contraction of thell system is that

0% (Gy) < A(Fp) A(Fy) uniformly Vx, Vt >0

where \(F;) is the contraction rate oF'; ando(Gy) is the largest singular value 6f,.

Furthermore, applying this result to the matri¥ + AI) for an arbitrary A > 0 yields an explicit
lower bound on the overall contraction rate

o 2 AN J(ME);MB)) oG

The results can be applied recursively to combinationslafrary size.

3.5 Translation and scaling

In space

It is straightforward to show that #f(x, ¢) defines a contracting dynamics with respect tmastant
metric, so does any scaled and translated ver§faft)x — b(t¢),t), wherea(t) andb(t) are arbitrary
differentiable functions and(¢) is uniformly positive definite. This property, combined wthe parallel
combination property above, can allow contracting dynartode used as wavelet-like basis functions in
problems of dynamic approximation, estimation, and adeontrol,

X = Z o (t) Fa; ()x — by(t), )

and thus can provide practical tools for progressive refer@grand learning.
In time

One immediately sees that# = f(x, t) is contracting, so is

e(t) x = f(x, (1))

wheree(t) > 0 and3(t) > 0 are arbitrary functions of time. Note thétt) may be discontinuous.
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Of course, contraction is also preserveddny combination of all the above. External inputs can be
provided through any subsytem dynamics. Overall contvaciso implies that the system will recover
exponentially fast from temporary disturbances in any gsitesn.

Note that, essentially, the convergence rate of paralieltoations is the weighted sum of the indi-
vidual convergence rates, the convergence rate of skewnsyrnt feedback combinations is the slowest
of the individual convergence rates, and the convergenee tionstant of hierarchical combinations is the
sum of the individual layer time-constants.

Also note that contraction is preserved even though thear&tstopology and/or connections strengths
can be time-varying, possibly in a discontinuous fashion.particular, contraction can be preserved
through system growth and pruning, and similarly differeggregates may be recruited according to the
task. By analogy, subdynamics in the central nervous syatenconstantly re-used and recombined as
part of different overall circuits and behaviors, plaugia$ an efficient result of evolutionary “tinkering”.
This reutilisation or nesting principle (Tononi, et al.,98 Berthoz, 1999; Damasio, 2003) may also
account in part for the pervasiveness of inhibition mecérasiin the central nervous system.

Finally, although for simplicity we concentrate on systetescribed by ordinary differential equa-
tions, the discussion extends to large classes of parfiatelntial equations (Lohmiller and Slotine, 1999,
2001). Ultimately, networks of massively parallel dynarimeurons” may be best represented by p.d.e.s.

3.6 Adaptive combinations

It is straightforward to incorporate adaptive techniquesdntraction-based designs if part of the system’s
uncertainty consists of a vectaiof unknown but constant (or slowly-varying) parametershitndler and
Slotine, 2000b). For instance, consider a closed-looptpignamics with state(t), desired state vector
z4(t), parameter estimate vecta(t), in the form

z=12q+f(z,t) — f(zq4,t) — W(z,t)a 2
wherea(t) = a(t) — a. Lettingz = z — z, and choosing the parameter adaptation law
a=PWT(zt)z

whereP is a constant symmetric positive definite (s.p.d.) gain maBarbalat’s lemma (Slotine and Li,
1991) and the Lyapunov-like analysis

S Sy (1 Of S\ s
Vza(z z+a' P 'a) =2z a(zd—l—)\z)d)\z

show asymptotic convergence®fo zero for uniformly negative definitgg and bounded’.
Assume now thaf is indeed contracting, and further that some or all of the3W (z, t)a are con-
tracting in the same metric. Faster convergence can theahevad by exploiting these terms, similarly
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to exploiting viscous friction in mechanical systems (Bletand Li, 1991). Specifically, let
W(z,t)a= W, (z,t)a. + W,(z,t)a,

whereW ,(z, t)a,. is contracting in the same metric fisand let us usdV .(z,, t) instead ofW.(z, t) in
the adaptive cancellation, leading to

z=12q4+1(z,t) — £(z4,t) + W(z,t)a— W (zg4,t)a. — W,(z,1)a,

Choosing the parameter adaptation
a. = P.WZX(z4,t)Z

a, = Po WX(z,t)z
leads to

S, Sy [ Of N
VZE(Z z+a'P'a) =2z i E(zd%—)\z)d)\z

where the matriX¥ is block-composed of the constant s.p.d. matriegeandP,, and
f.(z,t) =1f(z,t) + W,(z,t)a,
and thus to a faster convergence rate.

The discussion extends immediately to the case whésea composite variable in a hierarchy, simi-
larly to adaptive sliding control for instance. Also, in tba&se that, anda,. contain some parameters in
common, the parameter estimates can be updated by simpilygaitheé corresponding adaptation rates.
Convergence of. can be further accelerated by imposing known convex cansiran the parameter
estimates.

In system combinations such as those described in the miegiobsections, local adaptation loops
may be added both to achieve some desired behavior, and woeermntraction of the local dynamics
itself. The overall sytem can then be viewed as the nominadraoting network (i.e., the contracting
network obtained in the case all parameters are known)ety terms of the typ&(z, t)a, each of
which tends asymptotically to zero thanks to the local aalapt process. Asymptotic convergence of the
overall system to a unique trajectory is thus achieved.

4 Oscillator Synchronisation

Rythmic phenomena are pervasive in physiology. Thesedeglor instance, the rhythmic motor behav-
iors used in locomotion, as in walking, swimming, or flyingit@matic mechanisms such as breathing
and heart cycles, and intrinsic pacemakers in the braindilaet al., 2000; Dowling, 1992; Kopell and
Ermentrout, 2002). Although in general individual osditladynamics are not contracting, contraction
theory can provide convenient tools to analyze synchrtinisand coupling phenomena between oscil-
lators. The results of this section are based on (Wang anth&|@002).
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4.1 Basic examples

Example 4.1: Consider two identical Van der Pol oscillators, coupled as
T+ Oé(SL'% — l)jjl + wsz'l = ak; (i’g — j}l)
To + Oé(l'% — l)jjg + wsz'g = Oék‘g(i’l — j}g)

wherea > 0, w > 0, k1 andk, are arbitrary constants. Let = (x; a’c,-)T for ¢ = 1,2. Grouping terms in;
leads to
i1+ a(@? +ky ke — Dy +w?r) = @+ a(zd + k + ko — 1)dg + wiao (3)

Now the system
i+ a(z® + k)i +wir = ault)

can be shown to be contracting flor> 0 (Combescot and Slotine, 2000), using

w 0
@:<a(:p2+k‘) 1> ()

Thus, with k& + k2 > 1, equation (3) implies that; tends tox, ast — +oo, and thus that the oscillators
synchronize (Wang and Slotine, 2001).

Note that the above system may be viewed as a two-way obsesvere each sub-system uses the other’s velocity
as a measurement.

The synchronisation result immediately extends to systmscoupled oscillators of the form
1+ Oé(:L'% — l)i’l + wzml = ak (—i’l + Zi;ﬁl :L'Z)
ZTo + a(m% — )9 + w2w2 = ak (—ig + Zi;ﬁ2 ;)
i +a(z? — Vi, +w?e, = ak (—i, + Zi#n ;)

where an identical coupling term is “broadcast” from eadtillador to the others.

Similar mechanisms may occur in collective synchronisapbenomena (Murray, 1993; Strogatz, 1994, 2001),
as we shall further discuss. Also note that, comparing (2h \{8), implementing adaptation mechanisms is
straightforward. Conversely, two uncertain second-oraetlinear systems of statés; i;)” can be controlled

to mimic specific coupled oscillators as above, by defininop&xample 3.4

s1 = IT1 — 51 §1 = —k (§1 — j}l) — Oé(SL'% + k1 — 1)7.}1 — w2x1 + akitg
S9g = Tg — S9 So = — k (52 — (ig) — Oé(l‘% + ko — 1)(&2 — w2x2 + akoxq
with constant: > 0. The overall target dynamics corresponds to the coupleitiaioecs. O

The very elementary model above is also suggestive of disatitbon mechanism, as we now illustrate.

Example 4.2: Switch connection signs, and consider instead the system

r1 + a(m% -1z + w2w1 = —aki () + 22)
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To + Oé(l'% — l)jjg + wsz'g = — Oék‘g(i’l + j}g)

Thenz; synchronizes exponentially te-z5 (180° phase shift), as can be seen by applying the result of Example
41tox; and z3 = —x5 .

Switch signs again, now according to
i1+ a(@? — )iy +w?z; = aky(dg — 1)
T + a(m% — 1)y + w?ze = aky(—i — i)
Then, fork, = ky > 1, the states; andx, both tend to zero. Indeed, one has
i1+ a(@? + ky — )iy +w?z; = akide
Fo + @3 + Ky — 1)ig + w?ze = — akyig

and furthermore, sinc® in (4) varies only withz, the feedback terms on the right-hand side only add a skew-
symmetric term to the overallM + 2 M g—i , thus preserving contraction. Alternatively, the resalh @lso

be shown using the invariant set theorem with the Lyapuit@vfunction V' = Y, (&2 + w?z;) , since this
particular coupling is “energy” conserving.

Similar mechanisms may also occur in the control of animasga walking or swimming (Winfree, 2001)d

Example 4.3: The previous results can be generalized. Consider thensyste
i1+ a(@? — )iy + v’z = a (yig — ki)
Fo + (w3 — 1)ig + w?ze = a (yd1 — Kidg)

wherea andk are strictly positive constants andis an arbitrary coupling gain. Using the same reasoning as
before, under the condition
v+ K >1

x1 converges ta, for all v > 0 (excitatory coupling), and te-x, for all v < 0 (inhibitory coupling). Note that
if v = 0 (no coupling),x; andz, both converge to zero, consistent with the previous caséether the systems
actually tend to synchronized oscillations or to the orig@pends on the value of If v > 0, the limit behavior
is

B4 ozl +k—~y—1)i; +w?z; =0 i=1,2

which tends (for non-zero initial conditions) to a stabfaiticycle ifv > x — 1 and to a stable equilibrium at the
origin otherwise. Similarly, ify < 0, z; andx, reach anti-synchrony if < 1 — k and tend to zero otherwise.

Note that ifx = 1, the convergence to the origin as the system transitiongdaet synchrony and antisynchrony
is limited toy = 0. O

Conversely, the same mathematics shows that two nonliysteras initially at rest can be made to
oscillate by simple coupling.

Example 4.4: Consider two independent contracting nonlinear systemitsglly at equilibrium,
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and couple them according to
i1+ a@? + 2k — )iy +w?z; = ak(d — 2)
B9+ (23 4 2k — 1)dg + w?ze = ak(ig — 1)

Then, from Example 4.2, the system will tend to anti-synoired (180° phase shift) oscillations. Strictly
speaking, of course, initially the coupled system shouldibrirbed slightly away from its unstable equilibrium
at the origin.

In robotic locomotion, for instance, the above could sewelamentary models of pattern generators, or of the
legs themselves. O

Example 4.5: In a seminal paper, (Smale, 1976) showed that two nonlingstes initially at rest could
actually be made to oscillate lmjffusioncoupling, a property suggestive of biological behaviomglthe lines

of (Turing, 1952). This can be easily analyzed using cotiacheory (Wang and Slotine, 2002). Using results
from (Leonov, et al., 1996), (Pogromsky and Nijmeijer, 20Bbgromski, et al. 2002) give another instance of
such systems, which can also be studied using contractemmyth O

4.2 Extensions

As discussed extensively in (Wang and Slotine, 2002) andeaeaw summarize, the results extend to
oscillator networks of various coupling topologies thrbuzasic matrix algebra calculations. Two cases
are of particular interest.

The first is modelling locomotion, a subject with a consitidegditerature, where simple variations of
coupling gains within small networks of oscillators canggiise to typical gaits in vertebrates and insects,
extending Examples 4.2 and 4.3.

The second involves very large networks of oscillators,@actof active current research (Strogatz,
2003), and a possible model of pacemakers (Kandel, et @&lQ)2thd binding mechanisms (Llinas, 2001)
in the brain. For identical oscillators with possibly dimsti coupling strengths, one result is that, un-
der simple conditions on the individual Jacobians and thgpliogs, synchronization will always occurs
for strong enough coupling. An explicit upper bound on theresponding threshold can be computed
through eigenvalue analysis, and the effect of adding ooxemg specific links or nodes can be quantified
and related to recent results on “small world” and netwothusiness (Strogatz, 2001; Barabasi, 2002;
Watts, 2003). Another result is that synchronised netwofkisicreasing complexity can be generated
through combinations of smaller networks, similarly to #ygregation properties of contracting systems.

The development is based on a simple extension of the tesbsi@pove, which we illustrate here on
a particular example.

Example 4.6: Consider a unidirectional closed ring of the form
X] = f(Xl,t) + K(X4 — X1)
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(x1 —x2)

X9 = f(XQ,t + K
+ K(x2 — x3)
+ K

)
x3 = f(x3,1)
x4 = f(xy,t) (x3 —x4)
with K = K7 > 0. We can write
) — K(2x1 + %2 + x3) + K Y x;
) — K(2x2 + x5+ x1) + K31y X
) —K(2x3+x4+x1) + K Z?:l Xi
% = f(xu,t) — K(2x4 + %1+ %) + K YL x;
Consider now the auxiliary system, driven by the
yi = fy1,t) —K@2y1 +y2 +y3) + KY i x5
Vo = f(y2,t) —K@2y2+ys+ya) + KX x
y3 = f(ys,t) —K@ys+ya+y1) + K>S x
Va = flyst) ~K@2ya+y1+y2) + KX xi
and assume that it can be shown that this system is congactinenVi , y;(t) tends tox;(t) (since for the

overall systems one can write as usyal g(y,t) = x—g(x,t), with g a contracting dynamics). Furthermore,
the system tends to the particular solution y;(t) = yoo(t) with

Xl = f(Xl,t
5(2 = f(XQ,t

5(3 = f(Xg, t

4

Voo = £(¥oort) — 4Ky + KDY _x; (5)
=1

Hence alkx;(t) tend towardsy..(¢) and thus synchronise.

Thus, synchronisation can be determined by examining thative definiteness of the generalized Jacobian of
the overally system in some appropriate metric. Consider for simplitityidentity metric, and thus the matrix

J-2K -K ~K 0
5 0 Jy,—2K -K -K
~K 0 J3—2K -K

~K —K 0 J;-2K

whereJ; = 0f (x;,t)/0x; fori = 1,2, 3,4. The symmetric part of can be written

I I T1TT1 I 0I O
1 . _ 1 I T1II1 01071
§(J+J )—dlag(Jis—K)—iK I 111 — - K I oI o
I I 11 0I 01

wherelJ;; is the symmetric part af; , andI is the identity matrix in the dimension of the subsystemssuhsing

K > 0, the last two matrices are negative semi-definite, and theisystem is contracting if théJ;, — K) are
uniformly negative definite. Note that this implies that dymcs (5) is contracting as well (as it should, since
synchronization defines both a linear constraint and amrianviaset). All thex; will then synchronize.
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Specializing this computation to a unidirectional ringadntical van der Pol oscillators shows that the oscillators
synchronise fork > 1.

This type of manipulation, extending the principle of Exden.1 by exhibiting an auxiliary contracting system,
can be made very general. Furthermore, although couplimgrstries simplify calculations, they are not of
fundamental importance for synchronisation. O

It should be clear from the above example that the developmarot restricted to oscillators, but
applies to general networks of “partially” contracting systems.

Example 4.7: Consider for instance a simplified model of schooling or flogksimilar to (Jadbabaie, et al.,
2003), in continuous-time

i=-K Y (xi—x) i=1,...,n

FEN(?)

where thex; denote heading vectors of the subsystefig) the set of indices of the nearest neighbours of
subsystemi at current timet (defined for instance as the subsystems within a certaiardist of subsystem
i), andK > 0 is a constant matrix. The sefg;(¢) can change abruptly arasynchronously We assume for
notational simplicity that: is constant and that the group remains connected.

Construct as in the previous example the auxiliary systeitn (W;(¢) unchanged)

n n
yi=—-K Z(Yi—Yj)_KZYj+KZXj i=1,..,n
j=1 J=1

JEN;(t)

Although it can be discontinuous in time, the correspondiagobian](¢) is symmetric and uniformly negative
definite

vVt >0, Vv, vIJ(t)v = — Z (vi —vi)T K (v; —v;) ZV, (zn: Vi)
i=1

active links

This implies that'y” §y (which is continuous in time, but whose time-derivative bardiscontinuous at discrete
instants) is upper bounded by a vanishing exponential. Jhemverges exponentially to the particular solution

Vi, yi(t) = yoolt), with
n
Yoo + Ky :Kij
j=1
Since by constructioty tends tox exponentially, this implies in turn that the headingstend exponentially
towards a constant common value.

Note that the analysis carries on straightforwardly to imaar couplings, for instance

Xi:— Z(Xi—Xj)(K—FR’XZ‘—Xj‘)
FEN(t)
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with constantK > 0, R > 0, corresponding to subsystems reacting faster to largeatitans. It also extend
immediately to time-varying or link-dependent couplingnga

X o= — > (xi—x;) (Ki(t) + Rij(t) [xi — x5 )
JEN;(t)

as long as these gains are uniformly strictly positive armdragtric iné, j. For instance the gains may depend
smoothly on distance.

While in this particular case the final behavior is actualtywn (since) . z; is constant), the reasoning applies
just as well to asynchronous oscillator synchronisatianldege enough interaction gain, in a way reminiscent
e.g. of Bose-Einstein condensation. O

Finally, one can easily verify that the above results canib&/ed as particular instances of the fol-
lowing very general principle (Wang and Slotine, 2002). §ldar a nonlinear system of the form

x = f(x,x,t)
and the auxiliary, observer-like contracting system

y = f(y,x,t)

If a particular solution of the auxiliary system verifies aaath specific property, then all trajectories of
the original system verify this property exponentiallyndeed, another particular solution of the auxiliary
contracting system is/(t) = x(t), vt > 0.

5 Concluding remarks

Extending (Slotine and Lohmiller, 2001), this paper sus/gyther examples of biologically motivated
stable distributed computations. Further work will stughpkcations of locally contracting systems with
singular metrics, as can occur in hierarchies of dynamissifi@rs or in phase-locking of diverse oscilla-
tors, as well as p.d.e. versions of the results.
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