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Abstract

Much recent functional modelling of the central nervous system, beyond traditional “neural net”
approaches, focuses on its distributed computational architecture. This paper discusses extensions
of our recent work aimed at understanding this architecturefrom an overall nonlinear stability and
convergence point of view, and at constructing artificial devices exploiting similar modularity. Appli-
cations to synchronisation and to schooling are also described. The development makes extensive use
of nonlinear contraction theory.

Keywords: Contraction theory, modularity, synchronisation, networks.

1 Introduction

Any biological object, and specifically the brain, is the result of evolution. Evolution proceeds by accumu-
lation and combination of stable intermediate states: Darwin’s survival of the fittest really means survival
of the stable (Simon, 1962; Dawkins, 1976). In the process, systems of increasing complexity are created
(Kirschner and Gerhart, 1998; Ridley, 2000). Simple examples abound: for instance, motion control ar-
chitecture in vertebrates is believed to involve combinations of simple motor primitives (Bernstein, 1967;
Bizzi, et al., 1995); human emotional response involves both fast archaic loops bypassing the cortex, and
slower cortical loops (Ledoux, 1996; Damasio, 2001). However, in themselves, accumulations and com-
binations of stable elements have no reason to be stable. Hence our hypothesis in (Slotine and Lohmiller,
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2001) that evolution will favor a particular form of state stability, which automatically guarantees stability
in combinations, such as parallel, series, feedback, or multiresolution. Such a form of nonlinear stability,
which we refer to as ”contraction” (Lohmiller and Slotine, 1998), can be characterized mathematically.

Conceptually, accumulations of stable dynamics have also been a recurrent theme in cybernetics and
AI history (Walter, 1950, 1951; Chomsky, 1957; Wiener, 1961; Simon, 1962, 1981; Ashby, 1966; Braiten-
berg, 1984; Minsky, 1986) under various guises (Brooks, 1986, 1999). They also form the basis of several
recent theories of brain function (Tononi, et al., 1998; Dehaene, et al., 1998; Crick and Koch, 1998; Edel-
man and Tononi, 2000; Grossberg, 2000) and of biological motor control (Bernstein, 1967; Bizzi, et al.,
1995; Mussa-Ivaldi, 1997; Wolpert and Kawato, 1998; Tresch, et al., 1999; Jordan and Wolpert, 1999;
Thoroughman and Shadmer, 2000; Giszter, et al., 2000). In control theory, passivity (Popov, 1973) was
originally motivated by similar concerns.

This suggests that contraction theory may both guide functional modelling of the central nervous sys-
tem beyond basic “neural net” approaches, and provide a systematic method to build arbitrarily complex
robots out of simpler elements. Furthermore, it may shed light on the problem of perceptual unity (bind-
ing problem) by providing simple models and conditions for the overall convergence of a large number of
specialized processing elements connected through networks of feedback loops (Slotine and Lohmiller,
2001). This paper discusses further examples along these lines.

Section 2 defines nonlinear contraction, reviews its basic properties (Lohmiller and Slotine, 1998), and
presents some elementary applications. Section 3 further examines combinations properties of contracting
systems and some of their implications. Section 4 discussesapplications to oscillator synchronisation, an-
other type of computation occuring in the central nervous system, and to schooling and flocking. Section
5 offers brief concluding remarks.

2 Modularity and Stability

Basically, a nonlinear time-varying dynamic system will becalled contracting if initial conditions or tem-
porary disturbances are forgotten exponentially fast, i.e., if trajectories of the perturbed system return to
their nominal behavior with an exponential convergence rate. It turns out that relatively simple conditions
can be given for this stability-like property to be verified,and furthermore that this property is preserved
through basic system combinations, such as parallel combinations, feedback combinations, and series or
hierarchies.

Incidentally, such a definition fits rather naturally with known data on biological motion perturbation,
e.g. perturbation of arm movement (Soechting and Lacquaniti, 1988; Won and Hogan, 1995). Further-
more, it is intrinsic, in the sense that the system’s “nominal” behavior needs not be known. Finally, such
a form of stability, at least in a local sense, is also a basic prerequisite for any learning, since it guaran-
tees the consistency of the system’s behavior in the presence of small disturbances or variations in initial
conditions.
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2.1 Contraction Analysis

In this section, we summarize the basic results of (Lohmiller and Slotine, 1998), to which the reader is
referred for more details. We consider general time-varying deterministic systems of the form

ẋ = f(x, t) (1)

wheref is ann × 1 nonlinear vector function andx is then × 1 state vector. The above equation may
also represent the closed-loop dynamics of a controlled system with state feedbacku(x, t). All quantities
are assumed to be real and smooth, by which it is meant that anyrequired derivative or partial derivative
exists and is continuous. The basic result of (Lohmiller andSlotine, 1998) can then be stated as

Theorem 1 Consider the system (1). If theres exist a uniformly positive definite metric

M(x, t) = Θ(x, t)T Θ(x, t)

such that the associated generalized Jacobian

F =
(

Θ̇ + Θ ∂f
∂x

)

Θ−1

is uniformly negative definite, then all system trajectories then converge exponentially to a single trajec-
tory, with convergence rate|λmax|, whereλmax is the largest eigenvalue of the symmetric part ofF. The
system is said to be contracting.

It can be shown conversely that the existence of a uniformly positive definite metric with respect
to which the system is contracting is also a necessary condition for global exponential convergence of
trajectories. In the linear time-invariant case, a system is globally contracting if and only if it is strictly
stable, withF simply being a normal Jordan form of the system andΘ the coordinate transformation to
that form.

In this paper, for simplicity we shall concentrate on the global convergence result above. In the case
that F is uniformly negative definite only in a finite region, then the result can be shown to hold for
all trajectories starting in the largest ball (with respectto the metricM) contained in that region. Note
that sinceΘ is invertible, requiring thatF be uniformly negative definite is equivalent to requiring that
Ṁ + 2 M ∂f

∂x
be uniformly negative definite. Furthermore, since

Θ−1 Fs Θ =
1

2
M−1 (Ṁ + M

∂f

∂x
+

∂f

∂x

T

M)

where isFs the symmetric part ofF, all transformationsΘ corresponding to the sameM lead to the same
eigenvalues forFs , and therefore to the same contraction rate|λmax|. In particular one may always define
or redefine the transformationΘ to be lower triangular, using a Cholesky decomposition ofM.
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2.2 Examples

Example 2.1: Time-invariant contracting systems converge to a unique equilibrium point. Indeed, consider the
systemẋ = f(x), contracting with respect toΘ. One can easily verify that

d

dt
(Θf) = F(Θf )

which implies thatΘf and thusf = ẋ converge exponentially to zero, and therefore thatx converges exponen-
tially to a constant vector.

Consider now an autonomous contracting systemẋ = f(x) , with constantΘ, and a constant vectorc of the
same dimension. The above implies that the dynamics

ẋ = f(x) − c

converges exponentially to the unique solution of the algebraic systemf(x) = c. 2

Similarly, contracting systems of the form

ẋ = f(x,u(t))

where the inputu(t) is periodic in time, can be shown to converge towards a periodic state of the same
period as the input.

Example 2.2: Consider a time-varying cost functionV (x− r(t)), strictly convex inx, and the dynamic system

x = x̄ + r(t)

˙̄x = − grad V(x − r(t))

One has
d

dt
(x − r(t)) = − grad V (x − r(t))

This dynamics is contracting, since its Jacobian−∂2V
∂x2 is uniformly negative definite Thus,x tracks the minimum

of V after an exponential transient. 2

Example 2.3: In biological modelling, one frequently encounters (Tresch, 2002) so-called activation functions
x(t), driven by an electrical signalu(t) according to a dynamics of the form

τ ẋ + [β + (1 − β)u(t)] x = u(t) 0 ≤ u(t) ≤ 1

with β a constant,0 < β ≤ 1, and constantτ > 0. Intuitively, such systems, found e.g. in muscle models (Zajac,
1989) and in dynamic synapse models (Fuhrmann, et al., 2001), respond faster whenu(t) smoothly transitions
from 0 to 1, and slower on the way back. This dynamics is contracting since its scalar Jacobian is upper bounded
by −β/τ . 2
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Example 2.4: Contraction can also be defined in open connected subsets of the state space. For instance, the
system

ẋ = x(u2 − x2)

with u a constant, is contracting forx > ǫ andx < − ǫ for arbitrary 0 < ǫ < |u| , with metric 1/x2 , and
thus converges accordingly to±u.

Partial contraction may also be defined, corresponding a metric of partial rank. Consider for instance the classical
limit cycle dynamics (Luenberger, 1979)

ẋ = y − x (x2 + y2 − 1)

ẏ = − x − y (x2 + y2 − 1)

Letting r =
√

x2 + y2 , one has

ṙ = r (r2 − 1)

implying exponential convergence ofr to 1 in any regionr > ǫ, with arbitrary0 < ǫ < 1. The corresponding
metric ΘTΘ for the original system is given byΘ = ( x y )/(x2 + y2) . 2

Example 2.5: Chaotic synchronisation

Starting with (Pecora and Carroll, 1990), much attention has been devoted to synchronisation in “chaotic” sys-
tems. Consider the Lorenz system

ẋ = σ (y − x)

ẏ = ρ x − y − x z

ż = − β z + x y

with strictly positive constantsσ, ρ, β, and, as in (Pecora and Carroll, 1990; Nijmejier, 2001), a reduced-order
identity observer for this system based on an available measurement of the variablex,

˙̂y = ρ x − ŷ − x ẑ

˙̂z = − β ẑ + x ŷ

The symmetric part of the observer’s Jacobian is− diag(1, β), and thus the observer is contracting with an
identity metric. Since by construction(ŷ, ẑ) = (y, z) is a particular solution, the estimated state converges
exponentially to the actual state. 2

3 Combinations of contracting systems

As a form of stability, one of the main features of nonlinear contraction is that it is automatically preserved
through a variety of system combinations (Lohmiller and Slotine, 1998; 2000a), a state-space property
reminiscent of input-output passivity (Popov, 1973). In this section we illustrate these properties with
simple applications to modular design. An interesting recent discussion of the application of passivity
tools to recursive refinement of the control of movement can be found in (Arimoto and Naniwa, 2002).
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Formally, some of the combination properties of contracting systems are most easily stated used the
notion of a virtual displacement, from classical physics. Avirtual displacementδx is an infinitesimal
displacementat fixed time− formally, if we view the position of the system at timet as a smooth function
of the initial conditionxo and of time, x = x(xo, t) , then δx = ∂x

∂xo

dxo . Coordinate transformations
of the formδz = Θ(x, t)δx can be performed on virtual displacements. These are much more general
than simple coordinate changes, since an explicitz need not need exist, i.e., the transformation need not
be integrable.Θ(x, t)T Θ(x, t) defines the metric in Theorem 1.

By contrast with linear theory, contraction analysis does not use differentiation as local approximation,
but rather as a formal tool to yield global results on the nonlinear system.

3.1 Parallel combination

Consider two systems of the same dimension, contractingin the same metric,

ẋ = fi(x, t) i = 1, 2

Assume further that the metric depends only the statex and not explicitly on time. Then, any uniformly
positive superposition (where∃ α > 0, ∀t ≥ 0, ∃ i, αi(t) ≥ α)

ẋ = α1(t) f1(x, t) + α2(t) f2(x, t)

is contracting in the same metric. By recursion, this property can be extended to any number of systems.

Example 3.1: Control primitives

Recently, there has been considerable interest in analyzing feedback controllers for biological motor control sys-
tems as combinations of simpler elements, or primitives (Bizzi, et al., 1995; Mussa-Ivaldi, 1997; d’Avella and
Bizzi, 1998; Tresch, et al., 1999; Giszter and Kargo, 2000; Kargo and Giszter, 2000). Besides being biological
plausible, such a structure is intuitively appealing, as itmay yield considerable dimensionality reduction in learn-
ing and planning. Similar goals motivate e.g. (Atkeson et al., 1997; Schaal, 1999; Fod et al., 2000). The structure
is also reminiscent of potential fields in robotics (Khatib,1986), although typically the control primitives or their
modulating coefficients are time-varying and thus do not lend themselves easily to an energy-based analysis.

Consider more generally the system
ẋ = f(x, t) + B(x, t) u

and assume that there exist control primitivesu = pi(x, t) which, for anyi, make the closed-loop system
contracting in some common metric. Multiplying each equation

ẋ = f(x, t) + B(x, t) pi(x, t)

by a positive coefficientαi(t), and summing, shows that any convex combination of the control primitivespi(x, t)

ẋ = f(x, t) + B(x, t)
∑

i

αi(t) pi(x, t) ∀i, αi(t) ≥ 0
∑

i

αi(t) = 1
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also leads to a contracting dynamics in the same metric.

The time-varying convex combination may correspond, for instance, to smoothly turning on and off primitives,
as e.g. in (D’Avella, et al. 2003). 2

3.2 Hierarchical Combination

Consider two contracting systems, of possibly different dimensions and metrics, and connect them in
series, leading to a smooth virtual dynamics of the form

d

dt

(

δz1

δz2

)

=

(

F11 0

F21 F22

)(

δz1

δz2

)

Then the overall system is contracting, as long asF21 is bounded, as can be seen for instance by using

Θ =

(

In1
O

O ǫ In2

)

for ǫ > 0 sufficiently small. By recursion, the result extends to hierarchies or cascades of contracting
systems of arbitrary depths.

Example 3.2: Composite variables

Composite signals, i.e., signals representing mixtures ofmore obvious physical quantities such as position or
velocity, are pervasive in the nervous system (Berthoz, 1999), and also exploited in methodologies such as sliding
control (see e.g., (Slotine and Li, 1991)). Using such combinations can often be interpreted as enforcing a
hierarchy of contracting systems, so as to reduce the complexity of control or estimation problems.

In a second-order mechanical system, for instance, choosing a sliding variable s = ˙̃x + λx̃ , wherex̃(t) is
the tracking error andλ is a strictly positive constant, simply corresponds to creating a hierarchy of contracting
systems

ṡ = φ(s, t) nominally contracting by choice of control law

˙̃x + λx̃ = s contracting by definition ofs

where “nominally” refers to the uncertainty-free case. Theactual choice of the composite variable can be shaped
according to the desired qualitative behavior of the contracting system. For instance, a system using instead

˙̃x + (λ1 + λ2|x̃|)x̃ = s

(with constantsλi > 0) reacts faster to larger errors, since the corresponding scalar Jacobian is−(λ1 + 2λ2|x̃|).

Similarly, selecting transfer functionsG(p) andL(p), wherep is the Laplace variable, and defining

ẋ − G(p) ẋd + L(p) (x − xd) = s

with xd(t) an external input, leads to the hierarchical layer

x =
1

p + L(p)
s +

p G(p) + L(p)

p + L(p)
xd
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This definition ofs corresponds to the classical problem of selecting, for a plant 1/p, a feedback compensator
L(p) and a feedforward compensatorG(p) to obtain appropriate frequency shaping ofx and “disturbance atten-
uation” of s (Young and Ozguner, 1993; Zuo and Slotine, 2003). Note that in this case the target dynamics is of
order nL + 1 , wherenL is the order ofL(p). 2

Example 3.3: In Example 2.5, consider constructing a full-state identity observer by augmenting the dynamics
with

˙̂x = σ (ŷ − x̂)

Then, the observer corresponds to a hierarchy of contracting systems, and thus the full estimated state converges
exponentially to the actual state. 2

3.3 Static nonlinear maps

Consider a smooth map
y = f(x1, . . . ,xn, t)

where thexi are states of contracting systems (of possibly different metrics). Thenδy → 0 exponentially
as long as all∂y

∂xi

are bounded.

Similarly, given a contracting system of statex, boundedness of the Jacobian and its time-derivatives
up to orderj implies exponential convergence to zero of any time-derivative of δx up to orderj +1. Thus
the nonlinear maps above may depend accordingly on time-derivatives of thexi.

Example 3.4: Full-order target dynamics

Extending Example 3.2, for an uncertain nonlinear systemx(n) = f(x, ẋ, ..., x(n−1), u, t) to be controlled, the
desired dynamicss = 0 can be selected to correspond to any contracting systemx(n) = g(x, ẋ, ..., x(n−1), t)
of the same order. This may be a natural choice, e.g., when the system is controlled intermitently, when it
must exhibit specific disturbance responses (Zuo and Slotine, 2003), when robot impedances must be accurately
controlled based on sensed interaction forces, or when control is used to simplify a subsystem dynamics as seen
from other subsystems. It can be achieved by defining, based on state measurements alone

s = x(n−1) − s̄

˙̄s = − k (s̄ − x(n−1)) + g(x, ẋ, ..., x(n−1), t)

with constantk > 0. Indeed one then has

x(n) − g(x, ẋ, ..., x(n−1), t) = ṡ + k s

Note that this also suggests that the nominal (uncertainty free) dynamics ofs, one layer above, should be best
selected aṡs = − k s , although other choices are possible as long as nominallyṡ + k s → 0 . 2

Example 3.5: If x is the state of a contracting system, then so isxTx. Such positive scalars may be used
hierarchically to define the coefficientsαi(t) in control primitives, for instance. 2
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Example 3.6: Multi-stream processing

Combining the above properties, contraction can be preserved if one first “splits” a signal into parallel streams
through linear or nonlinear maps, processes each stream through contracting dynamics (e.g., sequences of non-
linear filters and maps), and then “recombine” the streams.

By analogy, recall that visual information flow is processedby 108 neurons on the retina, compressed (or partially
discarded) as input to106 neurons in the optic nerve, analyzed by1010 neurons within several specialized areas in
the cortex, before being shared between areas and with the whole brain (Keat, et al., 2001). Similar compression
and distributed filtering occurs for auditory processing (Watts, 2002). 2

3.4 Feedback Combination

Consider two contracting systems, of possibly different dimensions and metrics, and connect them in
feedback, in such a way that the overall virtual dynamics is of the form

d

dt

(

δz1

δz2

)

=

(

F1 G

− GT F2

)(

δz1

δz2

)

where the matrixG(x1,x2, t) is arbitrary (other than being a matrix of partial derivatives). Then the
overall system is contracting. The result can of course be extended to any number of systems: with
obvious notations, overall contraction is achieved ifGij + GT

ji = 0, ∀i, j, i 6= j.

Example 3.7: A system of the form

ẋ = f(x, t) −
∑

i

λi ∇gi

λ̇ = g(x, t) + h(λ, t)

with f −
∑

i λi∇gi contracting inx, and h contracting inλ, is contracting. Similar dynamics occur in
constrained optimization. 2

Example 3.8: Feedback as above is a very efficient way to share informationand distribute computation among
specialized contracting subdynamics, since the overall convergence rate is simply the slowest of the individual
convergence rates.

Similar feedback configurations may be involved when binding information from different specialized areas in
the visual cortex (processing edges, others shape, motion,depth, color, and so on (Kandel, et al., 2000)) or in the
auditory system (time-frequency analysis, spectral edges, interaural time difference, and so on (Watts, 2002)), as
well as in merging information from different senses. 2

More generally, consider two contracting systems and an arbitrary feedback connection between them
(Wang and Slotine, 2001). The overall virtual dynamics can be written

d

dt

(

δz1

δz2

)

= F

(

δz1

δz2

)
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Compute the symmetric part ofF, in the form

1

2
( F + FT ) =

(

F1s Gs

GT
s F2s

)

where by hypothesis the matricesFis are uniformly negative definite. ThenF is uniformly negative
definite if and only if F2s < GT

s F−1
1s Gs , a standard result from matrix algebra (Horn and Johnson,

1985). Thus, a sufficient condition for contraction of the overall system is that

σ2(Gs) < λ(F1) λ(F2) uniformly ∀x, ∀t ≥ 0

where λ(Fi) is the contraction rate ofFi andσ(Gs) is the largest singular value ofGs.

Furthermore, applying this result to the matrix(F + λI) for an arbitrary λ ≥ 0 yields an explicit
lower bound on the overall contraction rate

|λmax| ≥
λ(F1) + λ(F2)

2
−

√

√

√

√

(

λ(F1) − λ(F2)

2

)2

+ σ2(Gs)

The results can be applied recursively to combinations of arbitrary size.

3.5 Translation and scaling

In space

It is straightforward to show that iff(x, t) defines a contracting dynamics with respect to aconstant
metric, so does any scaled and translated versionf(a(t)x − b(t), t), wherea(t) andb(t) are arbitrary
differentiable functions anda(t) is uniformly positive definite. This property, combined with the parallel
combination property above, can allow contracting dynamics to be used as wavelet-like basis functions in
problems of dynamic approximation, estimation, and adaptive control,

ẋ =
∑

i

αi(t) f(ai(t)x − bi(t), t)

and thus can provide practical tools for progressive refinement and learning.

In time

One immediately sees that iḟx = f(x, t) is contracting, so is

ǫ(t) ẋ = f(x, β(t))

whereǫ(t) > 0 andβ(t) ≥ 0 are arbitrary functions of time. Note thatβ(t) may be discontinuous.
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Of course, contraction is also preserved byanycombination of all the above. External inputs can be
provided through any subsytem dynamics. Overall contraction also implies that the system will recover
exponentially fast from temporary disturbances in any subsystem.

Note that, essentially, the convergence rate of parallel combinations is the weighted sum of the indi-
vidual convergence rates, the convergence rate of skew-symmetric feedback combinations is the slowest
of the individual convergence rates, and the convergence time-constant of hierarchical combinations is the
sum of the individual layer time-constants.

Also note that contraction is preserved even though the network’s topology and/or connections strengths
can be time-varying, possibly in a discontinuous fashion. In particular, contraction can be preserved
through system growth and pruning, and similarly differentaggregates may be recruited according to the
task. By analogy, subdynamics in the central nervous systemare constantly re-used and recombined as
part of different overall circuits and behaviors, plausibly as an efficient result of evolutionary “tinkering”.
This reutilisation or nesting principle (Tononi, et al., 1998; Berthoz, 1999; Damasio, 2003) may also
account in part for the pervasiveness of inhibition mechanisms in the central nervous system.

Finally, although for simplicity we concentrate on systemsdescribed by ordinary differential equa-
tions, the discussion extends to large classes of partial differential equations (Lohmiller and Slotine, 1999,
2001). Ultimately, networks of massively parallel dynamic“neurons” may be best represented by p.d.e.’s.

3.6 Adaptive combinations

It is straightforward to incorporate adaptive techniques in contraction-based designs if part of the system’s
uncertainty consists of a vectora of unknown but constant (or slowly-varying) parameters (Lohmiller and
Slotine, 2000b). For instance, consider a closed-loop plant dynamics with statez(t), desired state vector
zd(t), parameter estimate vectorâ(t), in the form

ż = żd + f(z, t) − f(zd, t) −W(z, t)ã (2)

whereã(t) = â(t) − a. Letting z̃ = z − zd and choosing the parameter adaptation law

˙̂a = PWT(z, t) z̃

whereP is a constant symmetric positive definite (s.p.d.) gain matrix, Barbalat’s lemma (Slotine and Li,
1991) and the Lyapunov-like analysis

V̇ =
d

dt

(

z̃T z̃ + ãTP−1ã
)

= 2 z̃T

∫ 1

o

∂f

∂z
(zd + λz̃)dλ z̃

show asymptotic convergence ofz̃ to zero for uniformly negative definite∂f
∂z

and bounded̈V .

Assume now thatf is indeed contracting, and further that some or all of the termsW(z, t)a are con-
tracting in the same metric. Faster convergence can then be achieved by exploiting these terms, similarly
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to exploiting viscous friction in mechanical systems (Slotine and Li, 1991). Specifically, let

W(z, t)a = Wc(z, t)ac + Wo(z, t)ao

whereWc(z, t)ac is contracting in the same metric asf , and let us useWc(zd, t) instead ofWc(z, t) in
the adaptive cancellation, leading to

ż = żd + f(z, t) − f(zd, t) + W(z, t)a− Wc(zd, t)âc −Wo(z, t)âo

Choosing the parameter adaptation
˙̂ac = Pc WT

c (zd, t) z̃

˙̂ao = Po WT
o (z, t) z̃

leads to

V̇ =
d

dt

(

z̃T z̃ + ãT P−1ã
)

= 2 z̃T

∫ 1

o

∂fc

∂z
(zd + λz̃)dλ z̃

where the matrixP is block-composed of the constant s.p.d. matricesPc andPo, and

fc(z, t) = f(z, t) + Wc(z, t)ac

and thus to a faster convergence rate.

The discussion extends immediately to the case wherez is a composite variable in a hierarchy, simi-
larly to adaptive sliding control for instance. Also, in thecase thatao andac contain some parameters in
common, the parameter estimates can be updated by simply adding the corresponding adaptation rates.
Convergence of̃z can be further accelerated by imposing known convex constraints on the parameter
estimates.

In system combinations such as those described in the previous subsections, local adaptation loops
may be added both to achieve some desired behavior, and to ensure contraction of the local dynamics
itself. The overall sytem can then be viewed as the nominal contracting network (i.e., the contracting
network obtained in the case all parameters are known), driven by terms of the typeW(z, t)ã, each of
which tends asymptotically to zero thanks to the local adaptation process. Asymptotic convergence of the
overall system to a unique trajectory is thus achieved.

4 Oscillator Synchronisation

Rythmic phenomena are pervasive in physiology. These include, for instance, the rhythmic motor behav-
iors used in locomotion, as in walking, swimming, or flying, automatic mechanisms such as breathing
and heart cycles, and intrinsic pacemakers in the brain (Kandel, et al., 2000; Dowling, 1992; Kopell and
Ermentrout, 2002). Although in general individual oscillator dynamics are not contracting, contraction
theory can provide convenient tools to analyze synchronisation and coupling phenomena between oscil-
lators. The results of this section are based on (Wang and Slotine, 2002).
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4.1 Basic examples

Example 4.1: Consider two identical Van der Pol oscillators, coupled as

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = αk1(ẋ2 − ẋ1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = αk2(ẋ1 − ẋ2)

whereα > 0, ω > 0, k1 andk2 are arbitrary constants. Letxi = (xi ẋi)
T for i = 1, 2. Grouping terms inxi

leads to
ẍ1 + α(x2

1 + k1 + k2 − 1)ẋ1 + ω2x1 = ẍ2 + α(x2
2 + k1 + k2 − 1)ẋ2 + ω2x2 (3)

Now the system
ẍ + α(x2 + k)ẋ + ω2x = α u(t)

can be shown to be contracting fork > 0 (Combescot and Slotine, 2000), using

Θ =

(

ω 0
α(x2 + k) 1

)

(4)

Thus, with k1 + k2 > 1 , equation (3) implies thatx1 tends tox2 as t → +∞, and thus that the oscillators
synchronize (Wang and Slotine, 2001).

Note that the above system may be viewed as a two-way observer, where each sub-system uses the other’s velocity
as a measurement.

The synchronisation result immediately extends to systemsof n coupled oscillators of the form

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = αk (−ẋ1 +

∑

i6=1 ẋi)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = αk (−ẋ2 +

∑

i6=2 ẋi)

. . . . .

ẍn + α(x2
n − 1)ẋn + ω2xn = αk (−ẋn +

∑

i6=n ẋi)

where an identical coupling term is “broadcast” from each oscillator to the others.

Similar mechanisms may occur in collective synchronisation phenomena (Murray, 1993; Strogatz, 1994, 2001),
as we shall further discuss. Also note that, comparing (2) with (3), implementing adaptation mechanisms is
straightforward. Conversely, two uncertain second-ordernonlinear systems of states(xi ẋi)

T can be controlled
to mimic specific coupled oscillators as above, by defining asin Example 3.4

s1 = ẋ1 − s̄1 ˙̄s1 = − k (s̄1 − ẋ1) − α(x2
1 + k1 − 1)ẋ1 − ω2x1 + αk1ẋ2

s2 = ẋ2 − s̄2 ˙̄s2 = − k (s̄2 − ẋ2) − α(x2
2 + k2 − 1)ẋ2 − ω2x2 + αk2ẋ1

with constantk > 0. The overall target dynamics corresponds to the coupled oscillators. 2

The very elementary model above is also suggestive of a reutilisation mechanism, as we now illustrate.

Example 4.2: Switch connection signs, and consider instead the system

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = − αk1(ẋ1 + ẋ2)
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ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = − αk2(ẋ1 + ẋ2)

Thenx1 synchronizes exponentially to−x2 (180o phase shift), as can be seen by applying the result of Example
4.1 to x1 and x3 = −x2 .

Switch signs again, now according to

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = αk1(ẋ2 − ẋ1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = αk2(−ẋ1 − ẋ2)

Then, fork1 = k2 > 1, the statesx1 andx2 both tend to zero. Indeed, one has

ẍ1 + α(x2
1 + k1 − 1)ẋ1 + ω2x1 = αk1ẋ2

ẍ2 + α(x2
2 + k1 − 1)ẋ2 + ω2x2 = − αk1ẋ1

and furthermore, sinceΘ in (4) varies only withx, the feedback terms on the right-hand side only add a skew-
symmetric term to the overallṀ + 2 M ∂f

∂x
, thus preserving contraction. Alternatively, the result can also

be shown using the invariant set theorem with the Lyapunov-like function V =
∑

i (ẋ2
i + ω2xi) , since this

particular coupling is “energy” conserving.

Similar mechanisms may also occur in the control of animal gaits in walking or swimming (Winfree, 2001).2

Example 4.3: The previous results can be generalized. Consider the system

ẍ1 + α(x2
1 − 1)ẋ1 + ω2x1 = α (γẋ2 − κẋ1)

ẍ2 + α(x2
2 − 1)ẋ2 + ω2x2 = α (γẋ1 − κẋ2)

whereα andκ are strictly positive constants andγ is an arbitrary coupling gain. Using the same reasoning as
before, under the condition

|γ| + κ > 1

x1 converges tox2 for all γ ≥ 0 (excitatory coupling), and to−x2 for all γ ≤ 0 (inhibitory coupling). Note that
if γ = 0 (no coupling),x1 andx2 both converge to zero, consistent with the previous cases. Whether the systems
actually tend to synchronized oscillations or to the origindepends on the value ofγ. If γ > 0, the limit behavior
is

ẍi + α(x2
i + κ − γ − 1)ẋi + ω2xi = 0 i = 1, 2

which tends (for non-zero initial conditions) to a stable limit cycle if γ > κ− 1 and to a stable equilibrium at the
origin otherwise. Similarly, ifγ < 0, x1 andx2 reach anti-synchrony ifγ < 1 − κ and tend to zero otherwise.

Note that ifκ = 1, the convergence to the origin as the system transitions between synchrony and antisynchrony
is limited toγ = 0. 2

Conversely, the same mathematics shows that two nonlinear systems initially at rest can be made to
oscillate by simple coupling.

Example 4.4: Consider two independent contracting nonlinear systems, initially at equilibrium,

ẍi + α(x2
i + 2k − 1)ẋi + ω2xi = 0 i = 1, 2
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and couple them according to

ẍ1 + α(x2
1 + 2k − 1)ẋ1 + ω2x1 = αk(ẋ1 − ẋ2)

ẍ2 + α(x2
2 + 2k − 1)ẋ2 + ω2x2 = αk(ẋ2 − ẋ1)

Then, from Example 4.2, the system will tend to anti-synchronized (180o phase shift) oscillations. Strictly
speaking, of course, initially the coupled system should bedisturbed slightly away from its unstable equilibrium
at the origin.

In robotic locomotion, for instance, the above could serve as elementary models of pattern generators, or of the
legs themselves. 2

Example 4.5: In a seminal paper, (Smale, 1976) showed that two nonlinear systems initially at rest could
actually be made to oscillate bydiffusioncoupling, a property suggestive of biological behavior along the lines
of (Turing, 1952). This can be easily analyzed using contraction theory (Wang and Slotine, 2002). Using results
from (Leonov, et al., 1996), (Pogromsky and Nijmeijer, 2001; Pogromski, et al. 2002) give another instance of
such systems, which can also be studied using contraction theory. 2

4.2 Extensions

As discussed extensively in (Wang and Slotine, 2002) and as we now summarize, the results extend to
oscillator networks of various coupling topologies through basic matrix algebra calculations. Two cases
are of particular interest.

The first is modelling locomotion, a subject with a considerable literature, where simple variations of
coupling gains within small networks of oscillators can give rise to typical gaits in vertebrates and insects,
extending Examples 4.2 and 4.3.

The second involves very large networks of oscillators, a topic of active current research (Strogatz,
2003), and a possible model of pacemakers (Kandel, et al., 2000) and binding mechanisms (Llinas, 2001)
in the brain. For identical oscillators with possibly distinct coupling strengths, one result is that, un-
der simple conditions on the individual Jacobians and the couplings, synchronization will always occurs
for strong enough coupling. An explicit upper bound on the corresponding threshold can be computed
through eigenvalue analysis, and the effect of adding or removing specific links or nodes can be quantified
and related to recent results on “small world” and network robustness (Strogatz, 2001; Barabasi, 2002;
Watts, 2003). Another result is that synchronised networksof increasing complexity can be generated
through combinations of smaller networks, similarly to theaggregation properties of contracting systems.

The development is based on a simple extension of the techniques above, which we illustrate here on
a particular example.

Example 4.6: Consider a unidirectional closed ring of the form

ẋ1 = f(x1, t) + K(x4 − x1)
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ẋ2 = f(x2, t) + K(x1 − x2)

ẋ3 = f(x3, t) + K(x2 − x3)

ẋ4 = f(x4, t) + K(x3 − x4)

with K = KT > 0. We can write

ẋ1 = f(x1, t) − K(2x1 + x2 + x3) + K
∑4

i=1 xi

ẋ2 = f(x2, t) − K(2x2 + x3 + x4) + K
∑4

i=1 xi

ẋ3 = f(x3, t) − K(2x3 + x4 + x1) + K
∑4

i=1 xi

ẋ4 = f(x4, t) − K(2x4 + x1 + x2) + K
∑4

i=1 xi

Consider now the auxiliary system, driven by thexi ,

ẏ1 = f(y1, t) − K(2y1 + y2 + y3) + K
∑4

i=1 xi

ẏ2 = f(y2, t) − K(2y2 + y3 + y4) + K
∑4

i=1 xi

ẏ3 = f(y3, t) − K(2y3 + y4 + y1) + K
∑4

i=1 xi

ẏ4 = f(y4, t) − K(2y4 + y1 + y2) + K
∑4

i=1 xi

and assume that it can be shown that this system is contracting. Then∀i , yi(t) tends toxi(t) (since for the
overall systems one can write as usualẏ−g(y, t) = ẋ−g(x, t) , with g a contracting dynamics). Furthermore,
the system tends to the particular solution∀i , yi(t) = y∞(t) with

ẏ∞ = f(y∞, t) − 4 Ky∞ + K

4
∑

i=1

xi (5)

Hence allxi(t) tend towardsy∞(t) and thus synchronise.

Thus, synchronisation can be determined by examining the negative definiteness of the generalized Jacobian of
the overally system in some appropriate metric. Consider for simplicitythe identity metric, and thus the matrix

J =









J1 − 2K −K −K 0
0 J2 − 2K −K −K

−K 0 J3 − 2K −K

−K −K 0 J4 − 2K









whereJi = ∂f(xi, t)/∂xi for i = 1, 2, 3, 4. The symmetric part ofJ can be written

1

2
( J + JT ) = diag(Jis − K) −

1

2
K









I I I I

I I I I

I I I I

I I I I









−
1

2
K









I 0 I 0

0 I 0 I

I 0 I 0

0 I 0 I









whereJis is the symmetric part ofJi , andI is the identity matrix in the dimension of the subsystems. Assuming
K ≥ 0, the last two matrices are negative semi-definite, and thus the system is contracting if the(Ji − K) are
uniformly negative definite. Note that this implies that dynamics (5) is contracting as well (as it should, since
synchronization defines both a linear constraint and an invariant set). All thexi will then synchronize.
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Specializing this computation to a unidirectional ring of identical van der Pol oscillators shows that the oscillators
synchronise fork ≥ 1 .

This type of manipulation, extending the principle of Example 4.1 by exhibiting an auxiliary contracting system,
can be made very general. Furthermore, although coupling symmetries simplify calculations, they are not of
fundamental importance for synchronisation. 2

It should be clear from the above example that the development is not restricted to oscillators, but
applies to general networks of “partially” contracting subsystems.

Example 4.7: Consider for instance a simplified model of schooling or flocking similar to (Jadbabaie, et al.,
2003), in continuous-time

ẋi = − K
∑

j∈Ni(t)

(xi − xj) i = 1, ..., n

where thexi denote heading vectors of the subsystems,Ni(t) the set of indices of the nearest neighbours of
subsystemi at current timet (defined for instance as the subsystems within a certain distance of subsystem
i), andK > 0 is a constant matrix. The setsNi(t) can change abruptly andasynchronously. We assume for
notational simplicity thatn is constant and that the group remains connected.

Construct as in the previous example the auxiliary system (with Ni(t) unchanged)

ẏi = − K
∑

j∈Ni(t)

(yi − yj) − K

n
∑

j=1

yj + K

n
∑

j=1

xj i = 1, ..., n

Although it can be discontinuous in time, the correspondingJacobianJ(t) is symmetric and uniformly negative
definite

∀t ≥ 0, ∀v, vT J(t)v = −
∑

active links

(vj − vi)
T K (vj − vi) − (

n
∑

i=1

vi)
T K (

n
∑

i=1

vi)

This implies thatδyT δy (which is continuous in time, but whose time-derivative canbe discontinuous at discrete
instants) is upper bounded by a vanishing exponential. Thusy converges exponentially to the particular solution
∀i , yi(t) = y∞(t) , with

ẏ∞ + n K y∞ = K

n
∑

j=1

xj

Since by constructiony tends tox exponentially, this implies in turn that the headingsxi tend exponentially
towards a constant common value.

Note that the analysis carries on straightforwardly to nonlinear couplings, for instance

ẋi = −
∑

j∈Ni(t)

(xi − xj) ( K + R |xi − xj| )
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with constantK > 0, R > 0, corresponding to subsystems reacting faster to larger deviations. It also extend
immediately to time-varying or link-dependent coupling gains

ẋi = −
∑

j∈Ni(t)

(xi − xj) ( Kij(t) + Rij(t) |xi − xj | )

as long as these gains are uniformly strictly positive and symmetric ini, j. For instance the gains may depend
smoothly on distance.

While in this particular case the final behavior is actually known (since
∑

i xi is constant), the reasoning applies
just as well to asynchronous oscillator synchronisation for large enough interaction gain, in a way reminiscent
e.g. of Bose-Einstein condensation. 2

Finally, one can easily verify that the above results can be viewed as particular instances of the fol-
lowing very general principle (Wang and Slotine, 2002). Consider a nonlinear system of the form

ẋ = f(x,x, t)

and the auxiliary, observer-like contracting system

ẏ = f(y,x, t)

If a particular solution of the auxiliary system verifies a smooth specific property, then all trajectories of
the original system verify this property exponentially− indeed, another particular solution of the auxiliary
contracting system isy(t) = x(t), ∀t ≥ 0.

5 Concluding remarks

Extending (Slotine and Lohmiller, 2001), this paper surveys further examples of biologically motivated
stable distributed computations. Further work will study applications of locally contracting systems with
singular metrics, as can occur in hierarchies of dynamic classifiers or in phase-locking of diverse oscilla-
tors, as well as p.d.e. versions of the results.

Acknowledgments:This research was supported in part by grants from the National Institutes of Health
and the National Science Foundation (KDI initiative).

REFERENCES

Arnold, V.I. (1978). Mathematical Methods of Classical Mechanics,Springer Verlag.
Arimoto, S., and Naniwa, T. (2002). Learnability and Adaptability from the Viewpoint of Passivity Analysis, In-
telligent Automation and Soft Computing, Vol. 8, No. 2 2002.
Ashby, W.R. (1966). Design for a Brain : the Origin of Adaptive Behavior, 2nd ed.,Science Paperbacks

18



Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally Weighted Learning for Control,Artificial Intelli-
gence Review, 11.
Barabasi, A.L. (2002).Linked: The New Science of Networks,Perseus.
Bernstein, N. (1967).The Coordination and Regulation of Movements,Pergamon.
Berthoz, A. (1999).The Sense of Movement,Harvard University Press.
Bertsekas, D., and Tsitsiklis, J. (1989). Parallel and Distributed Computation,Prentice-Hall.
Bizzi E., Giszter S.F., Loeb E., Mussa-Ivaldi F.A., SaltielP (1995). Modular organization of motor behavior in
the frog’s spinal cord,Trends in Neurosciences. Review 18:442-445.
Burridge R., Rizzi, A., and Koditschek, D. (1999). Sequential Composition of Dynamically Dexterous Robot
Behaviors,Int. J. Robotics Res. 18(6).
Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology,MIT Press.
Brooks, R. (1986).A Robust Layered Control System for a Mobile Robot,I.E.E.E. J. Robotics and Automation,
2(1).
Brooks, R. (1999).Cambrian Intelligence,M.I.T. Press.
Chomsky, N. (1957).Syntactic Structures.Mouton, The Hague.
Combescot, C., and Slotine, J.J.E. (2000). A Study of Coupled Oscillators Using Contraction Theory,MIT Non-
linear Systems Laboratory, Report MIT-NSL-000801.
Crick, F. (1994). The Astonishing Hypothesis,Scribner
Crick, F., and Koch, C. (1998). Constraints on Cortical and Thalamic projections: the No-Strong-Loops Hypothe-
sis,Nature, 491.
Damasio, A. (2001). Fundamental feelings,Nature, 413.
Damasio, A. (2003). Looking for Spinoza,Harcourt.
D’Avella, A., and Bizzi, E. (1998).Low Dimensionality of Supraspinally Induced Force Fields,Proc. Natl. Acad.
Sci. USA 95.
D’Avella, A., Saltiel, P., Bizzi, E. (2003).Combinations of muscle synergies in the construction of a natural motor
behavior,Nature Neuroscience.
Dawkins, R. (1976)., The Selfish Gene,Oxford University Press.
Dennett, D. (1995).Darwin’s Dangerous Idea,Simon and Schuster.
Dehaene, S., Kerzberg, M., and Changeux, J.-P. (1998), Proc. Natl. Acad. Sci. USA 95, pp. 14529-14534.
Dickmanns, E. (1998).Dynamic Vision for Intelligent Vehicles,M.I.T. Course Notes.
Dowling, J.E. (1992).Neurons and Networks,Belknap.
Droulez, J., et al. (1983).Motor Control,7th International Symposium of the International Society of Posturogra-
phy, Houston, Karger, 1985.
Edelman, G., and Tononi, G. (2000). A Universe of Consciousness,Basic Books.
Floreano, D., and Nolfi, S. (2000). Evolutionary Robotics,MIT Press.
Fod, A., Mataric, M., Jenkins, O.C. (2000). Automated Extraction of Primitives for Movement Classification,
I.E.E.E. Int. Conf. Humanoid Robots, Cambridge, MA.
Fuhrmann, G., Segev, I., Markram, H. and Tsodyks, M. (2001). Coding of Temporal Information by Activity
Dependent Synapses.Journal of Neurophysiology.
Giszter, S., and Kargo, W. (2000).Conserved Temporal Dynamics and Vector Superposition of Primitives in Frog
Wiping Reflexes During Spontaneous Extensor Deletions,Neurocomputing 32-33.
Grossberg, S. (2000). The complementary brain: A unifying view of brain specialization and modularity.Trends
in Cognitive Sciences, in press.
Hartmann, P. (1982).Ordinary differential equations, second ed.,Birkhauser.

19



Horn, R.A., and Johnson C.R. (1985).Matrix Analysis,Cambridge University Press.
Jadbabaie A., Lin J., and Morse A.S. (2003).Coordination of groups of mobile autonomous agents using nearest
neighbour rules,I.E.E.E. Trans. Autom. Control, 14(5).
Jordan, M., and Wolpert D. (1999). Computational Motion Control,The Cognitive Neurosciences, Gazzaniga
(Ed.), M.I.T. Press.
Kandel, E.R., Schwartz, J.H., and Jessel, T.M. (2000).Principles of Neural Science, 4th ed.McGraw-Hill.
Kargo, W., and Giszter, S. (2000).Rapid Correction of Aimed Movements by Summation oof Force-Field Primi-
tives,J. Neuroscience 2(1).
Keat, J., P. Reinagel, R. C. Reid, and M. Meister (2001). Predicting every spike: a model for the responses of
visual neurons,Neuron. 30:803-17.
Khatib, O. (1986) Real-time obstacle avoidance for manipulators and mobile robots. International Journal of
Robotics Research, 5(1).
Kirschner, M., and Gerhart, J. (1998). Evolvability. Proc. Nat. Acad. Sci. 95:8420-8427.
Kopell N., and Ermentrout, G.B. (2002). Mechanisms of phase-locking and frequency control in pairs of coupled
neural oscillators,Handbook on Dynamical Systems, vol. 2: Toward applications. Ed. B. Fiedler, Elsevier.
Ledoux, J. (1996).The Emotional Brain.Simon and Schuster.
Leonov, G., Burkin I., and Shepeljavyi A. (1996). Frequency methods in oscillation theory,Kluwer.
Llinas, R. (2001). I of the Vortex: From Neurons to Self,MIT Press.
Lohmiller, W., and Slotine, J.J.E. (1998).On Contraction Analysis for Nonlinear Systems,Automatica 34(6).
Lohmiller, W., and Slotine, J.J.E. (1999). Contraction Analysis and Observer Design for Nonlinear Partial Dif-
ferential Equations,New Directions in Nonlinear Observer Design, Niejmeijer H.and Fossen T., Eds., LNCIS 244,
Springer-Verlag.
Lohmiller, W., and Slotine, J.J.E. (2000a). Control System Design for Mechanical Systems Using Contraction
Theory,I.E.E.E. Transactions on Automatic Control 45(5).
Lohmiller, W., and Slotine, J.J.E. (2000b).Nonlinear Process Control Using Contraction Theory,A.I.Ch.E. Jour-
nal.
Lohmiller, W., and Slotine, J.J.E. (2001).Contraction Analysis of Nonlinear Partial Differential Systems,I.E.E.E.
M.M.A.R., Poland.
Luenberger, D.G. (1979).Introduction to dynamic systems,Wiley.
Minsky, M. (1986). The Society of Mind,M.I.T. Press.
Murray, J.D. (1993). Mathematical Biology, 2nd Ed.,Springer Verlag.
Mussa-Ivaldi, F.A. (1997).1997 I.E.E.E. International Symposium on Computational Intelligence in Robotics and
Automation, pp. 84-90.
Nijmeijer, H. (2001). A dynamical control view on synchronisation,Physica D, 154, 219-228.
Pecora, L.M., and Carroll, T.L. (1990). Synchronisation in chaotic systems,Phys. Rev. Letter, 64, 821-824.
Pecora, L.M., Carroll, T.L. , Johnson, G.A., and Mar, D.J. (1997). Fundamentals of synchronisation in chaotic
systems,Chaos 7(4).
Pogromsky, A., and Nijmeijer, H. (2001). Cooperative oscillatory behavior of mutually coupled dynamical sys-
tems,I.E.E.E. Trans. Circuits and Systems, 48(2), 152-162.
Pogromsky, A. Santoboni, G, and Nijmeijer H. (2002)Partial synchronization: from symmetry towards stability.
Physica D, 172, 65-87.
Popov, V.M. (1973). Hyperstability of Control Systems,Springer-Verlag.
Raibert, M. (1986). Legged robots that balance,M.I.T. Press.
Raibert, M., et al. (1983). 3-D balance using 2-D algorithms,Int. Symp. Rob. Res., M.I.T. Press.

20



Ridley, M. (2000). Mendel’s demon,Free Press.
Schaal, S. (1999). Is imitation learning the route to humanoid robots?Trends in Cognitive Sciences, 3(6).
Soechting J., and Lacquaniti F. (1988).Quantitative evaluation of the electromyographic responses to multidirec-
tional load perturbations of the human arm,J Neurophysiol. 59(4).
Simon, H.A. (1962).The Architecture of Complexity,Proc. Am. Philo. Soc. 106.
Simon, H.A. (1981).The Sciences of the Artificial, 2nd edition,M.I.T. Press.
Schwartz, L. (1993).Analyse,Hermann, Paris.
Slotine, J.J.E., and Li, W. (1991). Applied Nonlinear Control,Prentice-Hall.
Slotine, J.J.E., and Lohmiller, W. (2001).Modularity, Evolution, and the Binding Problem: A View fromStability
Theory,Neural Networks, 14.
Smale, S. (1976). A mathematical model of two cells via Turing’s equation,The Hopf Bifurcation and its Applica-
tions, Mardsen, J. and Mc Cracken M. Eds, Springer-Verlag.
Strogatz, S. (1994). Nonlinear dynamics and chaos,Addison Wesley.
Strogatz, S. (2001). Exploring complex networks,Nature, 410.
Strogatz, S. (2003).Sync, The Emerging Science of Spontaneous Order,Hyperion.
Thoroughman, K.A., and Shadmer, R. (2000). Learning of action through adaptive combination of motor primi-
tives,Nature.
Tononi, G., et al. (1998). Proc. Natl. Acad. Sci. USA 95, pp. 3198-3203.
Tresch, M., Saltiel, P. , and Bizzi, E. (1999). The Construction of Movement by the Spinal Cord,Nature Neuro-
science 2.
Tresch, M. (2002).Personal communication.
Turing, A. (1952). The Chemical Basis of Morphogenesis,Phil. Trans. Roy. Soc. Lond., B237.
Walter, W.G. (1950). An Imitation of Life, Scientific American.
Walter, W.G. (1951). A Machine that Learns,Scientific American.
Wang, W., and Slotine, J.J.E. (2001).Synchronisation of bilaterally coupled oscillators,MIT Nonlinear Systems
Laboratory, Report MIT-NSL-010201.
Wang, W., and Slotine, J.J.E. (2002).A Study of Synchronisation and Phase Locking using Contraction Theory,
MIT Nonlinear Systems Laboratory, Report MIT-NSL-021201, submitted.
Watts, D.J.(2003).Six Degrees: The Science of a Connected Age,W.W. Norton & Company.
Watts, L. (2002). http://www.lloydwatts.com/neuroscience.shtml.
Wiener, N. (1961).Cybernetics,M.I.T. Press.
Williamson, M. (1999). Robotic Oscillators,Doctoral Thesis, M.I.T. Dept. of Electrical Engineering and Computer
Science.
Winfree, A. (2001).The Geometry of Biological Time,Springer Verlag.
Wolpert, D., and Kawato, M. (1999). Multiple Paired Forward and Inverse Models for Motor Control, Neural
Networks, 11..
Won, J., and Hogan, N. (1995). Stability properties of human reaching movements,Exp Brain Res. 107(1).
Young, K.D., and Ozguner, U. (1993). Frequency shaping compensator design for sliding mode,Int. J. Control,
57(5), 1005-1019.
Zajac (1989).Muscle and Tendon Properties,Crit. Rev. Biomed. Eng., 17.
Zuo, L., and Slotine, J.J.E. (2003). Robust vibration isolation using frequency shaped sliding variables,MIT Non-
linear Systems Laboratory, Report MIT-NSL-030201, submitted.

21


