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Coherence patterns originating from
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We derive the complex degree of coherence that originates from generalized incoherent two- and three-
dimensional sources. Further, we find the locus of maximum coherence and analyze the dependence of
the decay of coherence on source thickness. © 2004 Optical Society of America
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Fast-spinning random phase masks are often used to
make the behavior of light sources that are inherently
spatially coherent (e.g., a monochromatic laser source)
emulate spatially incoherent behavior. The coherence
pattern generated by such a source can be well charac-
terized by the Airy function1,2 on a plane perpendicu-
lar to the optical axis. Here we derive the off-plane
behavior of the coherence function for two-dimensional
(such as a spinning disk) and three-dimensional gen-
eralized incoherent sources. We find that maximum
coherence off plane is obtained along radial lines that
diverge from the source center, branching out at cer-
tain locations. The decay of coherence as a function
of source thickness is also characterized.

Consider a field in the half-space z . 0 originat-
ing from a quasi-monochromatic, spatially incoherent
volume source, as shown in Fig. 1. Mutual intensity
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The complex degree of coherence of the field at any
pair of points P �r1� and Q�r2� in half-space z . 0 past
the source is1,2
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Consider the geometry in Fig. 1 again. We are in-
terested in the degree of coherence between point P �r1�
at reference plane P1 located a distance z1 from the co-
ordinate origin and point Q�r2� located at a different
plane, P2. Dz is the distance between the two planes.
Assuming that the paraxial approximation is valid for
0146-9592/04/070670-03$15.00/0
both P �r1� and Q�r2�, Eq. (2) can be written as
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Coeff icients A�z10�, Bx�z10�, By �z10�, and C�z10� are ex-
pressed as
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The special case when the source is a cylinder of
radius R and thickness L centered at the coordinate
origin with uniform intensity is shown in Fig. 2. We
introduce Fresnel number NF � R2�lz1 (Ref. 3) and
thickness�distance ratio a � L�z1 and express all

Fig. 1. Illustration of the coherence that originates from a
quasi-monochromatic, spatially incoherent volume source.
© 2004 Optical Society of America
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Fig. 2. Illustration of the coherence that originates from
a cylindrical, quasi-monochromatic, spatially incoherent
source: The parameters that we used to calculate the
locus of maximum coherence are l � 488 nm, R � 5 mm,
L � 10 mm, and r1 � �10, 10, 100 mm�, which led to
N � 512.3, a � 0.1, vx1 � 6437.7, and vy1 � 6437.7.
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Then expression (4) can be integrated explicitly in
cylindrical coordinates, leading to
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where B�j� � �Bx�j�2 1 By �j�2�1�2 and LLL � � is a func-
tion that also describes the three-dimensional field dis-
tribution in the focal vicinity of an ideal lens.4 The
derivation is similar to that which is used to obtain the
field diffracted from a volume hologram.5 Modulus
j j �r1,r2�j indicates how coherent the two points P �r1�
and Q�r2� are with respect to each other. A straight-
forward deduction from Eq. (10) is in the limit a ! 0,
i.e., a disk source that can be emulated by a laser
source and a spinning random phase mask in the labo-
ratory.2 The result is
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Then Eq. (10) has an interesting interpretation. Be-
cause LLL � � describes the complex degree of coherence
from a disk source, Eq. (10) means that the complex
degree of coherence from the cylinder volume is the co-
herent superposition of many disk sources stacked in
the z direction.

For a disk source, with one reference point P �r1�
fixed as in Fig. 3 we can calculate the coherence dis-
tribution as a function of Q�r2�. If Q�r2� is on the
P1 plane, the maximum coherence occurs at P �r1� and
decays like an Airy pattern. If Q�r2� is not on the
same plane as P �r1� but is near P1, coherence is maxi-
mized if

vx2 � �1 1 d�vx1 , vy2 � �1 1 d�vy1 , (12)

which we found by setting Bx�0� � 0 and By �0� � 0. We
can see that near P1 the locus of points that are maxi-
mally coherent with P �r1� is a line passing through the
center of the disk source and through P �r1� (Fig. 3).
The modulus of the degree of coherence along that
line is
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Thus for d ,, 1 the upper limit of the coherence
between two planes is a monotonic decreasing function
of NFd or, equivalently, �R�z1�2. This result verifies
the intuitive notion that if we want the illumination
to be effectively incoherent we should use a large
spinning disk or bring the illuminated object closer
to the spinning disk. The exact contour of the co-
herence in the cross section at plane S is identical
to Fig. 8.41 of Ref. 4. When d ,, 1, the coherence
distribution is mirror symmetric with respect to plane
P1 and rotationally symmetric about the line defined
by Eqs. (12). From Fig. 3 we can also see that at
distance d � 1.5219��NF 2 1.5219� away from P1 the
locus branches into two segments. The reason for
the branching is the peak-null configuration of jLLL � �j
(Fig. 8.41 of Ref. 4).

We now turn to the case of the thick cylinder, a . 0.
To get the locus of maximum coherence we maximize
the slowly varying components A�j� and B�j� of the
integrand by setting the arguments to LLL � � equal to
zero, which gives the same result as Eqs. (12), and we
replace C�j� with its Taylor expansion about j � 0:
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Fig. 3. Illustration of the coherence that originates
from a quasi-monochromatic, spatially incoherent disk
source: The parameters that we used to calculate the
locus of maximum coherence are l � 488 nm, R � 5 mm,
and r1 � �10, 10, 100 mm�, which led to N � 512.3,
vx1 � 6437.7, and vy1 � 6437.7.
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Fig. 4. Modulus of the degree of coherence along the line
defined by Eqs. (12): The degree of coherence along the
line is calculated for a disk source and three cylindrical
sources with different values of a. The parameters used
in the simulation were N � 512.3, vx1 � 6437.7, and
vy1 � 6437.7.

The result is
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and F � � is the Fresnel integral.4 Because of the weak
dependence of the term 1�ajF �2a�2� 2 F �a�2�j on a
(Fig. 4, inset), we can conclude that the effect of thick-
ness on the degree of coherence along the line defined
by Eqs. (12) is minimal. The exact effect of thickness
on the maximal degree of coherence is shown in Fig. 4.
Fig. 5. Contour map of the coherence that originates from
a cylindrical source in the cross section at plane S along
the line defined by Eqs. (12): The parameters used in the
simulation are the same as for Fig. 2.

The exact contour of the coherence in the cross sec-
tion at plane S for a relatively thick cylinder is shown
in Fig. 5. The distribution of coherence is not rota-
tionally symmetric about the line given by Eqs. (12).
Instead, it looks elliptical, similar to the diffraction
pattern from volume holograms.
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