Multiperiod Pricing for Perishable Products
A Robust Optimization Approach

Presented by Anshul Sood
Joint work with Georgia Perakis

4th Annual INFORMS Revenue Management and Pricing Section Conference, Boston
June 10-11, 2004
Agenda

- Description of model
- Literature review
- Terminology and problem formulation
- Robust demand case
- Computational algorithm
- Numerical examples
Description of model

- We study models for competitive pricing in a multi-period, oligopolistic market where each seller has predetermined starting inventory of a single perishable product for sale and demand is uncertain.

- We give theoretical and numerical results for the robust demand model.
Goals

- Modeling of competition in the market.
- Modeling of uncertainty in demand and concept of a robust policy.
- Existence of market equilibrium policies.
- Performance of algorithm for computing equilibrium.
- Numerical study of robust policies.
Agenda

- Description of model
- Literature review
- Terminology and problem formulation
- Robust demand case
- Computational algorithm
- Numerical examples
Research Areas

- Monopolistic
 - Periodic production review
- Competitive
 - Fixed inventory
Literature review

- Periodic production-review models
 - Monopolist
 - Zipkin (2000)
 - Federgruen and Heching (1997)
 - Chen and Simchi-Levi (2002)
 - Competitive
 - Chan, Shen, Simchi-Levi and Swann (2001)
 - Cachon and Netessine (2003)
 - Vives (1999)
 - Petruzzi and Dada (1999)
Literature review

- Fixed inventory models
 - Non-competitive
 - McGill and van Ryzin (1999)
 - Bitran and Caldentey (2002)
 - Bitran and Mondschein (1997)
 - Bitran, Caldentey and Mondschein (1998)
 - Feng and Gallego (1995)
 - Gallego and Van Ryzin (1994)
 - Zhao and Zheng (2000)
 - Competitive
 - ???
Literature review

- Robust Optimization
 - Soyster (1973)
 - Bertsimas and Sim (2002)
 - Bertsimas and Thiele (2003)
Agenda

- Description of model
- Literature review
- **Terminology and problem formulation**
- Robust demand case
- Computational algorithm
- Numerical examples
Terminology used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i \in I$</td>
<td>seller</td>
</tr>
<tr>
<td>$t \in T$</td>
<td>period</td>
</tr>
<tr>
<td>C_i^t</td>
<td>starting inventory of seller i</td>
</tr>
<tr>
<td>p_i^t</td>
<td>price set by seller i for period t</td>
</tr>
<tr>
<td>D_i^t</td>
<td>protection level set by seller i for period t</td>
</tr>
<tr>
<td>d_i^t</td>
<td>amount sold by seller i in period t</td>
</tr>
</tbody>
</table>

Protection level D_i^t is the amount of inventory reserved for sale in periods $t + 1$ or later by seller i.
$h_1^t(p_1^t, p_2^t, \ldots, p_I^t)$
Seller i

p_i

Period 1

Period t

Period T
Seller 1 \(\ldots \) Seller \(i \) \(\ldots \) Seller \(I \)

\(p_1 \) \(\ldots \) \(p_i \) \(\ldots \) \(p_I \)

Period 1 \(\ldots \) Period \(t \) \(\ldots \) Period \(T \)
Problems

- **Best response problem**
 - What is the any individual seller’s best policy if she somehow knew the policy set by other sellers?

- **Market equilibrium problem**
 - Do there exist Nash equilibrium policies for the market?
 - Is there a set of policies – one for each seller such that no seller has the incentive to unilaterally deviate?
Applications

- Transportation
 - Single leg one way airfare pricing
- Communication
 - Bandwidth pricing
- Energy trading
 - Pricing of future contracts
- Hospitality
 - Advance hotel reservation pricing
Assumptions

- Single product and fixed perishability deadline.
- Perfect information about starting inventories of competitors, demand structure, etc.
- Demand is a function of only prices in current period.
- Objective of all sellers is revenue maximization over time horizon.
- Policies are declared at the beginning of time horizon.
Agenda

- Description of model
- Literature review
- Terminology and problem formulation
- Robust demand case
- Computational algorithm
- Numerical examples
Robust demand

- The form of the demand function is known but the parameters are uncertain and assumed to be within an uncertainty set.

- Robust policy gives optimal payoff under adverse values of uncertain parameters (It is robust to the variation of parameters within the uncertainty set.)
Uncertainty set

- The uncertainty set for any ξ_i is a general closed and convex set.

- We restrict the uncertainty set for the ξ_i's for all periods jointly to be a Cartesian product of the uncertainty sets for each period separately.

$$u_i = u_i^1 \times u_i^2 \times \cdots \times u_i^T$$
Best response problem

$$\begin{align*}
\max_{p_i, d_i, D_i} & \quad \sum_{t=1}^{T} d_i^t p_i^t \\
\text{such that} & \quad d_i^t \leq h_i^t(p_i^t, \bar{p}_{-i}^t, \xi_i^t) \quad \forall \xi_i^t \in \mathcal{U}_i^t, \forall t \in T \\
& \quad \sum_{\tau=1}^{t} d_i^\tau \leq C_i - D_i^t \quad \forall t \in T \\
& \quad C_i \geq D_i^1 \geq \cdots \geq D_i^T = 0 \\
& \quad p_i^{t_{\min}} \leq p_i^t \leq p_i^{t_{\max}} \quad \forall t \in T \\
& \quad d_i^t \geq d_i^{t_{\min}} \quad \forall t \in T
\end{align*}$$
Conditions

1. Price is bounded.
2. d_i^t is not allowed to fall to zero in any period.
3. $h_i^t()$ is a concave function for any fixed ξ.
4. $h_i^t()$ is decreasing in p_i^t for any fixed ξ.
5. $-h()$ is strictly monotone for any fixed ξ.
Results

- The best response problem and the variational inequality are equivalent and the variational inequality has a unique solution.
Results

- Joint quasi-variational inequality is equivalent to solving the variational inequalities for all sellers simultaneously.

- Joint quasi-variational inequality gives Nash equilibrium policy.
Agenda

- Description of model
- Literature review
- Terminology and problem formulation
- Robust demand case
- Computational algorithm
- Numerical examples
Computation of equilibrium

Iterative Learning Algorithm
Convergence result

The iterative learning algorithm converges to an equilibrium pricing policy under some conditions.
Convergence rate

- Number of iterations of algorithm required to converge to a solution ε-close to the equilibrium is

$$O(c \ln(\varepsilon)), \text{ where } c = F(D, A, L)$$

- Each iteration involves solving N robust best response problems

D: diam. of K,
L: Lipsch. Cont. h,
A: s-mon. $-h$
Agenda

- Description of model
- Literature review
- Terminology and problem formulation
- Robust demand case
- Computational algorithm
- **Numerical examples**
Numerical examples

4 sellers $I = \{1, 2, 3, 4\}$
10 time periods $T = \{1, \cdots, 10\}$
Starting inventories $C = \{1000, 1300, 1500, 2800\}$

$$h_i^t(p_i^t, p_{-i}^t, \xi_i^t) = D_{i_{base}}^t - \beta_i^t p_i^t + \sum_{j \in I, j \neq i} \alpha_j^t p_j^t \quad \forall \ i \in I, \ t \in T$$

where $\xi_i^t = (D_{i_{base}}^t, \beta_i^t, \alpha_{-i}^t)$ can take any value in an uncertainty set \mathcal{U}_i^t given by

$$\mathcal{U}_i^t = \left\{ (D_{i_{base}}^t, \beta_i^t, \alpha_{-i}^t) \left| \begin{array}{l} D_{i_{base}}^t = \bar{D}_{i_{base}}^t, \\
\beta_i^t \in (\beta_{i_{min}}^t, \beta_{i_{max}}^t), \\
\alpha_j^t \in (\alpha_{j_{min}}^t, \alpha_{j_{max}}^t) \\
\forall j \neq i \end{array} \right. \right\}$$
Numerical examples

The values of β (top) and α (bottom) chosen for the numerical example and the allowed range for uncertainty.
Numerical examples

<table>
<thead>
<tr>
<th>t</th>
<th>$\bar{D}_{i,\text{base}}$</th>
<th>$\beta_{i,\text{min}}^t$</th>
<th>$\beta_{i,\text{nominal}}^t$</th>
<th>$\beta_{i,\text{max}}^t$</th>
<th>$\alpha_{i,\text{min}}^t$</th>
<th>$\alpha_{i,\text{nominal}}^t$</th>
<th>$\alpha_{i,\text{max}}^t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>107.66</td>
<td>119.62</td>
<td>131.58</td>
<td>27.19</td>
<td>30.21</td>
<td>33.24</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>88.16</td>
<td>97.95</td>
<td>107.75</td>
<td>19.25</td>
<td>21.39</td>
<td>23.53</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>69.18</td>
<td>76.86</td>
<td>84.55</td>
<td>11.52</td>
<td>12.80</td>
<td>14.08</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>65.95</td>
<td>73.28</td>
<td>80.61</td>
<td>10.20</td>
<td>11.34</td>
<td>12.47</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>65.44</td>
<td>72.71</td>
<td>79.98</td>
<td>9.99</td>
<td>11.10</td>
<td>12.21</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>55.82</td>
<td>62.02</td>
<td>68.22</td>
<td>6.07</td>
<td>6.75</td>
<td>7.42</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>52.28</td>
<td>58.09</td>
<td>63.90</td>
<td>4.63</td>
<td>5.15</td>
<td>5.66</td>
</tr>
<tr>
<td>8</td>
<td>250</td>
<td>50.67</td>
<td>56.30</td>
<td>61.93</td>
<td>3.98</td>
<td>4.42</td>
<td>4.86</td>
</tr>
<tr>
<td>9</td>
<td>250</td>
<td>43.77</td>
<td>48.64</td>
<td>53.50</td>
<td>1.17</td>
<td>1.30</td>
<td>1.43</td>
</tr>
<tr>
<td>10</td>
<td>250</td>
<td>42.91</td>
<td>47.68</td>
<td>52.45</td>
<td>0.82</td>
<td>0.91</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Ranges for uncertain parameters.
Numerical examples

Convergence of policies through successive iterations for each seller.
Numerical examples

Equilibrium policies for each seller

Equilibrium policy of sellers

Price (P)

Period (t)
Numerical examples

<table>
<thead>
<tr>
<th>t</th>
<th>Seller 1</th>
<th>Seller 2</th>
<th>Seller 3</th>
<th>Seller 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.13</td>
<td>1.80</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>2.32</td>
<td>1.99</td>
<td>1.77</td>
<td>1.70</td>
</tr>
<tr>
<td>3</td>
<td>2.57</td>
<td>2.23</td>
<td>2.01</td>
<td>1.94</td>
</tr>
<tr>
<td>4</td>
<td>2.62</td>
<td>2.28</td>
<td>2.06</td>
<td>1.99</td>
</tr>
<tr>
<td>5</td>
<td>2.63</td>
<td>2.29</td>
<td>2.07</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>2.81</td>
<td>2.46</td>
<td>2.23</td>
<td>2.17</td>
</tr>
<tr>
<td>7</td>
<td>2.89</td>
<td>2.54</td>
<td>2.30</td>
<td>2.24</td>
</tr>
<tr>
<td>8</td>
<td>2.92</td>
<td>2.57</td>
<td>2.34</td>
<td>2.27</td>
</tr>
<tr>
<td>9</td>
<td>3.09</td>
<td>2.73</td>
<td>2.50</td>
<td>2.43</td>
</tr>
<tr>
<td>10</td>
<td>3.12</td>
<td>2.76</td>
<td>2.52</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Equilibrium prices
Numerical examples
Numerical examples

<table>
<thead>
<tr>
<th>t</th>
<th>Price</th>
<th>Protection Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.13</td>
<td>896.88</td>
</tr>
<tr>
<td>2</td>
<td>2.32</td>
<td>791.88</td>
</tr>
<tr>
<td>3</td>
<td>2.57</td>
<td>688.18</td>
</tr>
<tr>
<td>4</td>
<td>2.62</td>
<td>585.13</td>
</tr>
<tr>
<td>5</td>
<td>2.63</td>
<td>482.2</td>
</tr>
<tr>
<td>6</td>
<td>2.81</td>
<td>382.27</td>
</tr>
<tr>
<td>7</td>
<td>2.89</td>
<td>283.89</td>
</tr>
<tr>
<td>8</td>
<td>2.92</td>
<td>186.31</td>
</tr>
<tr>
<td>9</td>
<td>3.09</td>
<td>92.85</td>
</tr>
<tr>
<td>10</td>
<td>3.12</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Robust Policy for Seller 1.
Numerical examples

<table>
<thead>
<tr>
<th>t</th>
<th>Price</th>
<th>Protection Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.40</td>
<td>822.86</td>
</tr>
<tr>
<td>2</td>
<td>4.37</td>
<td>680.32</td>
</tr>
<tr>
<td>3</td>
<td>4.33</td>
<td>571.46</td>
</tr>
<tr>
<td>4</td>
<td>4.32</td>
<td>468.32</td>
</tr>
<tr>
<td>5</td>
<td>4.32</td>
<td>366.09</td>
</tr>
<tr>
<td>6</td>
<td>4.29</td>
<td>280.94</td>
</tr>
<tr>
<td>7</td>
<td>4.28</td>
<td>202.06</td>
</tr>
<tr>
<td>8</td>
<td>4.27</td>
<td>126.04</td>
</tr>
<tr>
<td>9</td>
<td>4.23</td>
<td>62.26</td>
</tr>
<tr>
<td>10</td>
<td>4.22</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Nominal Policy for Seller 1.
Numerical examples
Changing budget
Changing budget
Insights

- Prices are higher in periods of lower price sensitivity.
- Sellers with more starting inventory set lower prices but earn higher revenues.
- Robust policies are less sensitive to variation in uncertain parameters.
- Robust policies give better worst case performance.
- The budget will help decrease variance with small tradeoff in average payoff.
- Iterative learning algorithm converges to equilibrium very fast in practice.
- Starting guess for prices doesn’t affect convergence of algorithm.
Thank you!