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1 Abstract 
 

Mergers and acquisitions (M&As) have become a key strategy for many companies.  Possible 

reasons for M&As include entrance into a new market, growth, intellectual capital, and the elimination of 

competitors.  However, over 80% of mergers have failed to create value for the shareholders and the 

merging companies.  One reason for this failure might be in the integration of the companies.  A current 

method is the use of a transition team to carry out the integration issues.  These teams look at issues 

such as restructuring the company or creating best of practice policies.  Sometimes consulting firms are 

used to develop strategies for the merger.  They may focus on different strategies, such as generating 

company synergies.  Our belief is that the lack of value created may be due to the lack of knowledge 

transfer.  By improving this transfer of knowledge, individuals within the company can operate more 

effectively.  These improvements in the overall performance of the organization should bring more value 

to the company and shareholders.  Here, we suggest the use of an evolutionary approach, as suggested 

by Hines and House, where members from both organizations are mixed together onto teams to work on 

projects.  We believe that by repeatedly mixing individuals from both organizations to work on team 

projects, knowledge transfer will improve and the company will evolve to a better state.  However, since it 

may not be possible to fully mix two companies together in this manner, it is suggested that the use of a 

small number of mixed teams will be just as effective as fully mixing two companies. 
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“There is no law of progress.  Our future is in our own hands, to make or to mar.  It will be an uphill fight to 

the end, and would we have it otherwise?  Let no one suppose that evolution will ever exempt us from 

struggles. 'You forget,' said the Devil, with a chuckle, 'that I have been evolving too.'” 

- William Ralph Inge 

 

 

 

 "A complex system that works is invariably found to have evolved from a simple system that worked."  

                   - John Gall 
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5 Introduction 
 
5.1 Motivation 
 

Mergers and acquisitions (M&A) have recently become a growing trend among companies.  Over 

26,000 mergers occurred worldwide in 1998, which was estimated to be worth $2.4 trillion dollars.  

Compare this to the 11,300 mergers that had occurred in 1990, which was worth around a half trillion 

dollars (“After the Deal”).  Not only has the number of mergers increased, the size of the mergers have 

grown also.  As of 1998, eight of the ten largest mergers had occurred in 1998 (Spitzer 4).  In 1999, Cisco 

had performed 18 acquisitions valued at $14.5 Billion (Barker 138).  So why are companies so eager to 

perform these mergers?  This can be for several reasons, including the acquisition of new technologies, 

improving their competitive advantage, growth, or other factors.  In the end, companies expect to gain 

added value through an M&A.  However, in the last 10 years, 83% of M&A deals have never created the 

value that the companies or shareholders had expected (Kelly 7).  This is astonishing, considering the 

number of mergers that have taken place and the size of some mergers.   

One might think that this high failure is a result of poor evaluation strategy; however, this may not 

be so.  According to David Jemison, a professor at the University of Texas, “…organizations whose 

transactions have failed have typically done as well with evaluating strategy and crunching numbers as 

those whose have succeeded” (Spitzer 9).  Another possible reason for failure may be due to how the 

companies are integrated.  Edgar Schein believes that mergers are difficult for a cultural reason: 

Ideally we look for blending, by which the new organization takes the most functional 

elements of each culture.  But this presumes ability to decipher the cultures, which is 

rarely present until long after the new organization has been formed (184). 

Some companies attempt to capture these “functional elements” by having members from both 

companies work together on a team, often known as a transition team.  These transition teams are 

usually tasked to reorganize the company and to decide upon best of practice policies.  Policies are 

implicit (sometimes explicit) rules that individuals use to make decisions (Hines and House, “Harnessing” 

3).  Unfortunately, the task of the transition team can be difficult since they may fall into a cultural trap of 

falsely understanding the other company (Schein 179) or they may lack “maximum insight into their own 

culture” (Schein 184).  In the end, it is difficult for any one individual or small group of individuals to 

understand all of these complexities in order to create effective policies for the company. 

Another reason for the lack of value gained by mergers may be attributed to ineffective 

knowledge transfer of policies between individuals of the merged companies.  If we are able to create an 

effective and simple method to improve knowledge transfer of policies between two merging companies, 

we can then perhaps improve the effectiveness of how these merged companies operate, thus, 

increasing the value of the merger.  To explore this possibility, an organizational evolutionary approach 

was taken, as suggested by Hines and House’s paper on Organizational Management (“Harnessing” 3).  
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Specifically, Hines suggests “five rules for evolutionary management.”  One possible rule is to mix 

individuals together in a company so that knowledge can be transferred (Hines, “Five Rules” 4).  For 

mergers, this would imply that all of the individuals at one company would need to relocate to the other 

company, or that half of the individuals from each company would need to switch.  This could be very 

expensive to implement and may not be practical to do.  What we suggest is to mix a small number of 

individuals from both companies onto a few project teams, known as mixed teams.   We expect that these 

mixed teams will be just as effective in transferring knowledge as fully mixing two companies. 

 

 

5.2 Goals 
 

The work performed in this thesis attempts to apply organizational evolutionary ideas to improve 

the performance of mergers and acquisitions.  Specifically, a small mixed team structure is proposed as 

an effective way to transfer knowledge across organizations.  To test this proposed idea, a simulator was 

developed, based on an existing simulator.  Insight gained from simulation will be used to recommend 

practical policies for applying the evolutionary method to an M&A. 

 

The thesis output will consist of: 

• An explanation of the mixed team structure. 

• Overview of the simulation structure. 

• Simulation code written in Matlab. 

• Analysis of simulation data. 

• Recommendations for applying the mixed team structure for M&As. 

• Recommendations for further research and study. 
 
 
 

5.3 Assumptions and Scope 
 

The scope of this work is the application of organizational evolution to improve the knowledge 

transfer of good policies in an M&A.  When individuals copy part or all of a policy from other individuals, it 

is known as learning.  Team policies are affected by the different individual policies that each member 

has.   Depending how a team performs relative to other teams within the company, individuals on that 

team will be promoted or demoted.  Promotion and learning will be studied as methods to improve 

knowledge transfer.  The process when an individual creates a new policy or comes up with a new idea is 

known as innovation.  This will not be studied. 
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5.4 Work Process 
 

The author used a practical problem and research problem appraoch (Booth, Colomb, and 

Williams 49).  This process is shown in Figure 5-1.  The practical problem of improving the effectiveness 

of a merger using an organizational evolutionary approach was chosen as the topic of this study.  A 

mixed team structure was proposed as a solution to this practical problem.  It is believed that this mixed 

team structure, compared to fully mixing two organizations, would be just as effective in improving 

knowledge transfer but easier to implement.  To see if this was feasible, an understanding of how the 

knowledge transfer of policies within an organization was required.  This motivated us to develop a model 

of the mixed team structure and the fully mixed company structure.  The effects of promoting and learning 

were studied using these models.  Several experiments were performed to gather insights.  These 

insights were then applied to the solution of the practical problem, the use of mixed teams.     

 

 

 

 

Practical Problem:
How to imrprove knowedge
transfer in M&As using an
organizational evolution
approach.

Research Question:
How do learning and
promotion influence policy
making and the spread of
effective policies within an
organization?

Research Problem:
Need to run controlled
experiments on leanring and
promotion.

Research Answer:
Insights gained from
experiments.

Motivates

DefinesFinds

Helps to solve

 

 

Figure 5-1.  Work process for thesis includes a practical problem and a research problem. 
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6 Foundations 

This chapter is intended to provide the reader with some basic background knowledge of how the 

simulator works and of other needed concepts.  An introduction to genetic algorithms is given, where 

basic concepts and terminology will be discussed.  Next, the structure of the simulator will be discussed, 

followed by the data types used in the simulator.  Then team policymaking, promotion, and learning will 

be explained.  A brief overview of the central limit theorem will be given.  Finally a brief discussion of the 

use of the system dynamics project model will be provided. 

 

 
6.1 Genetic Algorithms 
 

In essence, “Genetic algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics” (Goldberg 1).  Genetic Algorithms (GAs) were derived from the work of 

computer scientists that studied evolutionary systems in the 1950s and 1960s.  Their motivation for 

studying evolutionary systems was to find an optimization tool for engineering problems.  The basic 

characteristic of these evolutionary systems was to evolve a population of solutions toward an optimal 

value (Mitchell 2).  In the 1960s, John Holland and his students at the University of Michigan developed 

the genetic algorithm.  Two major goals of their research included: 

1. “To abstract and rigorously explain the adaptive process of natural systems.” 

2. “To design artificial systems software that retains the important mechanisms of natural 

systems” (Goldberg 1). 

As suggested by Melanie Mitchell, the evolutionary approach used by GAs is attractive for several 

reasons (4).  First, the evolutionary approach is robust in nature.  Given a large solution space, GAs are 

able to effectively search multiple solution points in that space in parallel.  Unlike other optimization 

methods, GAs have a low probability of getting stuck at a local maximum or minimum solution.  Second, 

the evolutionary approach allows for the design of innovative solutions to problems.  Due to its random 

nature, GAs are able to create new solutions by producing offspring or by mutation.  Third, the 

evolutionary approach is adaptive and will perform in a changing environment.  If the fitness function 

changes, the population of solutions will evolve with the fitness function.  Finally, the evolutionary rules 

are simple to implement and program, even for complex problems.  The fittest solutions within the 

population survive.  At the same time, new solutions are randomly being created within the population, 

with the possibility that they will be more fit.  

The mechanics behind how a GA works is based on biology.  Basic elements of a GA include 

“chromosomes,” population, and a fitness function.  Chromosomes contain a particular solution to an 

optimization problem.  This solution can be a set of parameters or a point in the solution space and is 

usually encoded as a binary string (Goldberg 21).  A set of chromosomes makes up a population.  This 

population represents many solutions within a solution space.  Each chromosome within the population is 
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evaluated by the fitness function to determine its fitness value.  The fitness function is a measure of how 

fit an individual chromosome is.  The idea is to maximize this fitness value.  A more fit chromosome 

represents a solution that performs better relative to some objective function.  A less fit chromosome 

represents a solution that performs worse relative to that objective function. 

To evolve the population, basic evolutionary functions are carried out:  selection, crossover, and 

mutation.  Selection is the process where chromosomes are randomly selected for reproduction.  Like 

biological evolution, the more fit individuals survive to produce offspring.  In the GA, individuals with 

higher fitness values will more likely be chosen for reproduction.  Once the individuals have been 

selected for reproduction, known as parents, the offspring is created.  In reproduction, parents (pairs of 

individuals) transfer segments of their chromosome with each other to create two new children.  This is 

known as a crossover.  Finally, a few bits within the offspring chromosomes are flipped randomly to 

represent mutations.  Mutations occur with a very low probability and represent a jump to a new point in 

the solution space.  When selection, crossover, and mutation has occurred for the population, a 

generation has occurred.  GAs will run for several generations, while the population evolves towards a 

more optimal state. 

 
 
     
6.2 Simulation Structure 

New code was developed and added to the original Organizational Evolution simulator to allow 

for simulation of merging companies.  Matlab was used as the programming language, due to its flexibility 

and its abundance of mathematical functions.  This newer code differs from the original code in that the 

data structures have been designed to allow for simulation of two legacy companies merging together, 

along with the use of mixed teams.  To help improve the simulation speed, vectors are used as much as 

possible.  Furthermore, more control is given to the user to turn on and off the learning and promotion 

functions at a specified number of generations.  This allows one to clearly see the before and after effects 

of learning and promoting. 

Construction of this simulator consists of an agent based modified genetic algorithm, wrapped 

around a system dynamics project model.  The modified genetic algorithm was written in Matlab.  

Differences exist between the modified genetic algorithm and the standard genetic algorithm.  First, the 

population is divided into teams, where individuals learn from other team members.  Second, mutations 

were not implemented to simplify the analysis.  Third, the fitness function evaluates the team policies, not 

the individual policies.  Fourth, individuals are never replaced within the population.  Finally, a simplified 

system dynamics project model was used as a fitness function.  The project model was used to evaluate 

the team policies.  More detail of this is given in the paper by House, Kain, and Hines, “Metaphor for 

Learning:  An Evolutionary Algorithm.” 
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A high level flow diagram of the Matlab code is shown in Figure 6-1.  This basic flow is the same 

for the single, fully merged company case or for the split companies with mixed team case.  More detail 

about the company structure will be given later on.  At the start of the simulation, various simulation 

parameters are loaded and used to create the data structures.  Some of these parameters include, 

number of generations, team size, number of mixed teams, number of teams in the company, and 

probability of learning.  Once the data structures for the company, teams, and mixed teams have been 

created, each individual is given an initial policy value.  The simulator now begins the iterative part of the 

simulation.  It first begins by checking to see if it is at the last generation or not.  If so, the simulation ends, 

else the simulator continues onward.  In the next step, the team policy is computed, based on a weighted 

average.  Team policy computation will be discussed later on.  Next, each team’s policy is then evaluated.  

A simplified project model is used to evaluate how fit a policy is.  This project model was created in 

Simulink, a Matlab block diagram simulator, and interfaces directly to the Matlab code.  Matlab feeds the 

number of programmers into the project model.  Simulink will then return the project completion time to 

Matlab.  In the project model used, more programmers will complete a project faster.  Thus, teams with 

policies of more programmers will perform better than teams with policies with fewer programmers.  

Teams are then ranked based on their project completion time.  Next, the simulator checks to see if 

promotion for teams is enabled.  If so, promotion values are computed for all teams and the members are 

then updated by this value.  Individuals are then randomly assigned to new teams.  Next, the simulator 

checks to see if learning is enabled.  If so, individuals randomly select another team member to learn 

from.  A “roulette wheel” is used to select another individual to learn from.  However, an individual’s status 

will determine how much of the roulette wheel an individual has, thus, changing their probability of being 

selected.  An individual with high status will be given more of the wheel and improving their chances of 

selection.  An individual with low status will be given a smaller portion of the wheel, thus making it harder 

for other individuals to select them for learning.  This is analogous to real life, where individuals who want 

to do well tend to learn from people with more knowledge and experience than them.  After learning has 

been performed, the generation is checked to see if the iterative loop is to be executed again. 
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Figure 6-1.  High-level flow of simulator. 

 
 
6.3 Company, Team, and Individual Structures 
 

To help organize the data in the simulator, three basic structures were created:  the company 

structure, the team structure, and the individual structure.  This allowed for the creation of a simulator that 

could operate as a fully merged company (single company mode) or a mixed team company.   

The single company simulation mode operates as if learning and promoting occur within a single 

company.  This is also identical to two merging companies completely immerse themselves into one 

single company.  By doing this, we are allowing all members from both companies to mix and to work with 

each other on projects.  This also creates a boundaryless organization, which allows for easy assignment 

of members from both companies onto a team.  Ultimately, this looks just like a single company as shown 

in Figure 6-2.  In this simulation mode, a company structure with m teams will be setup according to the 

specified simulation parameters.  Each team will have the same number of individuals, which is also set 

by the simulation parameters.  The team size and number of individuals per team will remain fixed 

throughout the simulation, but the specific individuals on a team will change each generation. 
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Team 1

Team 2

Team 3

Team m

Company

 
 

Figure 6-2.  Fully merged or single company structure with m number of teams.  

 
 
 In contrast to the single company case, a different situation was created in which a small number 

of project teams contained a mix of individuals from both companies.  Instead of diffusing knowledge by 

mixing all of the individuals from both companies, knowledge was spread between companies through the 

use of these mixed teams.  In the mixed team simulation mode, the simulator generates two company 

structures and a mixed team structure, as shown in Figure 6-3.  This mode of simulation simulates the 

case when two merging companies remain separate; however, each company assigns a small number of 

individuals to work on projects with members of the opposite company.  Working on these mixed teams 

will hopefully be an effective way for individuals from both companies to learn from each other.  These 

mixed teams, along with the teams in the legacy companies, will be rated on how well their project 

performs.  This rating translates to a promotional value.  Each team’s promotional value will then be 

applied to all the team members.  After the completion of a project, individuals who had been on mixed 

teams may rotate back to their original companies, hence, taking and spreading their new knowledge.  

For the simulator, the number of individuals per team, the number of mixed teams, and the number of 

teams per company are specified.  Both companies have the same number of teams.  These parameters 

remain constant during the simulation.  Furthermore, individuals are not allowed to switch companies, i.e., 

an individual from company A cannot be assigned to a team in company B.  However, an individual from 

company A can be assigned to a mixed team, which has individuals from company B.  Mixed teams are 

represented by an equal number of members from both companies.  Thus, the mixed team acts as a 
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conduit for transferring knowledge or policies between both companies.  Once an individual returns to 

their home team with their newly learned policy, that information can then be transferred to other 

members of that company via learning. 

 

Team 1

Team 2

Team 3

Team m

Team 1

Team 2

Team 3

Team n

Company A Company B

Team 1

Team 2

Team p

Mixed Teams

 
 
 

Figure 6-3.  Mixed team structure with two legacy corporations.  Company A has m teams, 
Company B has n teams, and there are p mixed teams.  

 
 
 
 

Member 1 - A
Member 1 - B

Member j - A
Member j - B
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Team 1
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Member 1 - A
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...
Member i - A

Company A
Team 1

Member 3 - A

Member 1 - B
Member 2 - B

...
Member i - B

Company B
Team 1

Member 3 - B

 
 

 

Figure 6-4.  Team structure for both corporations and the mixed team. 



  

  18  

Figure 6-4 illustrates a more detailed view of the team structure.  Teams from the legacy companies 

consist of members from that company only.  On the other hand, mixed teams have an equal 

representation of members from both companies.  As stated before, all team sizes are the same. 

 Information for each individual is tracked at each generation throughout the simulation.  Figure 

6-5 is a list of attributes kept on each individual.  The chromosome, or individual’s policy (knowledge) is 

tracked at every generation.  For this simulation, this policy is the number of programmers to assign to a 

project.  Each individual has a unique ID to track them by and a team ID to identify which team that 

individual is assigned to.  The individual’s status1 is also kept track of throughout the simulation.  A short 

history of whom an individual learns from is stored in the personal network attribute.  For individuals on 

mixed teams, identification of which home company they came from is stored.  Finally, team policies and 

team rankings are stored. 

 
 

Chromosome
Team ID

Individual ID
Position (Status)

Personal Network

Company ID (for
mixed teams only

Individual
Information

Team Policy
Team Ranking

Other
Information

 
 

Figure 6-5.  Attributes for each individual in the simulation. 

 
 
6.4 Team Policy Making 
 

Team policies are generated using a weighted average of all the team members as specified in 

House, Kain, and Hines (3).  These weights are the individual statuses of all team members at the 

beginning of a project.  Figure 6-6 shows a block diagram for how a team policy is created.  A weighted 

policy value is created for each individual on the team by taking the weighting factor or status, W i, and 

multiplied by his or her policy value, Pi.  The weighted policy value is then added up for the team.  At the 

same time, a sum of each individual’s weighting factor is computed.  The team policy value is the sum of 

the weighted policy value divided by the sum of the weighting factors.  Thus, an individual with a high 

                                                 
1 “Status” is a more general idea of what Hines and House refers to as “position.”  The author chooses to 
use status rather than position in order to minimize possible confusion with a title or a position on an 
organizational chart.  This change in terminology does not change any underlying mathematics.   
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status value will have more influence on the team policy than an individual with a low status value.  For 

example, lets say that an engineering team is composed of a principle engineer and a young engineer 

who is the early stages of their career.  Though the young engineer may be well regarded by other 

engineers within the company, we would expect the principle engineer to have a much greater status than 

the young engineer.  Thus, we would expect that the decisions and actions of this team to be heavily 

influenced by the principle engineer.  
 

W1 W2 WiP1 P2 Pi

X X X

ΣΣWiPi

1/Σ1/ΣWi

X

Team Policy

Pi - Policy of individual i.

W i - Weighting of individual i.

Pi - Policy of individual i.

Wi - Weighting of individual i.

 
 
 

Figure 6-6.  Block diagram for computing weighted team policy. 
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6.5 Promotion 
 

When a team has good policies and performs well on a project, that team is looked favorably upon by 

other members within that company.  Likewise, if a team that has poor policies and performs poorly on a 

project, other members of that company look down upon that team.  This favorable or non-favorable 

impression on the team is transferred to the individuals on that team.  If a team performs well, individuals 

on that team improve their status.  If a team performs poorly, the individuals on that team lose some 

status.  In the simulator, teams within the company are evaluated on how their policy effects the 

completion time of a project.  The faster the completion time of the project, the better the team evaluation.  

Once all of the teams have completed the project, they are ranked based on the project completion time.  

The promotion scheme used in this simulator is the same as the one specified in the “Metaphor for 

learning:  an evolutionary algorithm” (House, Kain, and Hines 3).  This promotion uses a base 2 and is 

defined as: 

K
oldnew StatusStatus 2×=  

 
Where K is defined as: 

 
 

The best performing team will double its status value, while the worst performing team will half its 

status value.  Thus, all of the individuals on the best performing team will double their status value, while 

all the individuals on the worst performing team will have their status values cut in half. 

 
 
 
6.6 Learning 
 

Learning allows the genetic information from one individual to be transferred to another individual 

and is much like the crossover function in a standard genetic algorithm (House, “Metaphor” 2).  In a 

standard crossover, two individuals exchange parts of their chromosome, which imitates a biological 

recombination between two single-chromosome organisms (Mitchell 3).  In organizational evolution, 

policies are encoded into the individual’s chromosome.  Like crossover, learning transfers part of the 

genetic material; however, only the chromosome for the individual that is learning changes.  This learning 

process is illustrated in Figure 6-7.  In this example, team member 2 is selected to learn from team 

member i.  Copies of chromosomes are made for members 2 and i.  The simulator then generates a 

random crossover point; in this case, the crossover point is four bits into the chromosome.  Next, a 

segment up to the transfer point of member i’s chromosome is copied over member 2’s chromosome.  As 

1
)1(

)1(2
−

−
−×

=
TeamsOfNumber
RankTeam

K
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shown in the figure, “1101” from member i is copied to member 2, yielding a new policy of “01001101.”  

This new chromosome is then copied back to member 2’s chromosome attribute. 

 
 

Member 1
Member 2

...
Member i

Team n

Member 3

0100  0011

1010  1101

0100  1101
Crossover

Point

Member 2's Policy

Member i's Policy

Member 2's New
Policy

Copy Sequence
Over

 
 

Figure 6-7.  Member 2 learns from Member i. 

 
 

 Another very important part of the learning process is selecting whom an individual learns from.  

In the simulator, team members learn from another team member by a random selection.  However, a 

team member’s status will greatly influence if they are selected to be the source of learning by another 

memeber.  At the beginning of the simulation, each individual on the team has equal status, thus, there is 

an equal probability for each member to be selected.  As each project is completed, promotional values 

will be assigned to members of a team, which will change their status.  As an individual achieves higher 

status, the probability that he or she will be selected for learning increases.  Conversely, as an individual’s 

status is reduced, the probability that that individual will be selected decreases.  This probability of being 

selected is calculated by taking an individual’s status and dividing it by the sum all the individual statuses 

on that team.  Table 6-1 lists each individual’s status and probability of being learned from for a particular 

team.  Figure 6-8 represents the percent chance that a particular individual will be selected for learning. 
 
 

 
Individual 

Status 
(Weighting) 

Probability of 
Being Selected 

I-1 0.4244 0.09 
I-2 0.8816 0.19 
I-3 0.3137 0.07 
I-4 2.0771 0.44 
I-5 0.3742 0.08 
I-6 0.6353 0.13 

 

Table 6-1.  Sample data for individuals on a team. 
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I -1,  9%

I-2,  19%

I-3,  7%

I-4,  44%

I-5,  8%

I-6,  13%

 
Figure 6-8.  Pie chart showing the percent chance an individual will be selected to be learned 

from. 

 
Suppose a team consists of a principle engineer and several new engineers.  Recall that the principle 

engineer’s status will be extremely high, while the status of the new engineer’s will be quite low.  

Consequently, the probability that individuals on the team will select the principle engineer to learn from 

will be higher than the probability of selecting another new engineer.  There is a small probability that the 

principle engineer might select a new engineer to learn from.  This could improve or worsen the principle 

engineer’s policy; however, in most cases, the principle engineer would select his or herself to learn from, 

in which case we do not change.  Now suppose that this team had the highest ranking within the 

company.  Then the status for each individual on a team would be doubled.  When the team members are 

assigned to their next project and team, the probability of that individual being selected to be learned from 

increases.  If however that team performed the worst of all teams within the company, then the status of 

each individual would be halved.  When individuals are assigned to their next team, there is now less of a 

probability that they would be selected for learning.  It would also be more probable for those individuals 

with low status to learn from other individuals with higher status on the new team.   
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6.7 Central Limit Theorem 
 
 

Team policies are created using a weighted average.  Since the statuses of all individuals are the 

same at the beginning of a simulation, an interesting phenomenon in the distribution of all team policies 

occurs.  The central limit theorem is used to explain this phenomenon and will be applied later on. 

  Suppose we have a sequence of identically independently distributed (iid) random variables, X1, 

X2,…, that have a finite mean of µ and a finite variance of σ2.  Lets then sum up the first n random 

variables in the sequence, such that: 

 

Sn = X1 + X2 + … + Xn. 

 

Then according to the central limit theorem, as n becomes large, the cumulative distribution function (cdf) 

of Sn approaches the cdf of a normal distribution (Leon-Garcia 280).  As long as the Xi’s are iid, then Sn 

has a mean of nµ and variance of nσ2.  If we are looking at averages, where 

 

Mn = Sn/n, 

 

then the mean is µ and variance is σ2 (Walpole 210). 

 
 
 
 

 

6.8 System Dynamics Project Model 
The system dynamics project model is not the core of this study; however, we will briefly mention 

its use in the simulator.  Figure 6-9 shows a simple project model created in Simulink, based on the 

project model described by Hines and House (“Source of Poor Policy” 9).  This project model represents a 

software project.  On this project, there are an assigned number of computer programmers that must 

complete a specified number of tasks in order to finish this project.  The team of programmers has a 

productivity value, which allows them to complete each task at a certain rate.  Unfortunately, 

programmers make mistakes that create bugs in the software code.  The number of bugs is affected by 

the quality of work by the group.  These bugs take time to discover and once they bugs found, they 

become rework or tasks that need to be corrected.  The policy value of the teams in the simulator is to 

decide upon the number of programmers to assign to this software project.  Valid policy values are 

anywhere from 11 to 20 programmers.  In this simple policy, the more programmers assigned, the faster 

the project completes.  Project completion time is used to evaluate the team policies.  The shortest 

completion times represent the most fit group, while the longest completion time represents the least fit 
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group.  Other parameters, such as quality, productivity, time to discover rework, and initial tasks remain 

constant for all projects. 

 

add  
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Figure 6-9.  A simple project model represented in Simulink. 
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7 Experiments 

To help gain further insight on the effectiveness of the mixed team structure, a series of 

experimental simulations were run.  These simulations are divided into two major categories.  In the first 

category, we will look at a single company situation, which is analogous to fully merging two companies 

together.  The second category is the mixed team simulation, where a small number of individuals from 

both companies are mixed together on a team to work on a project.  To help us gain more insight, each 

category is broken down into four situations.  We look at how a company evolves with no learning and no 

promotion, with promotion only, with learning only, and with learning and promotion.  The experiments are 

summarized in Table 7-1.  We hope to understand the effects of learning and promotion in the mixed 

team structure and to see if it will evolve as well as a fully merged company. 

 The setup is consistent for all of the experiments.  In the simulations, the teams must decide on 

the number of programmers to staff on a project.  Each team policy will then be fed into its system 

dynamics project model.  This is the basic project model as described earlier.  Recall that the project has 

a faster completion time when there are more programmers assigned to the project.  Teams are allowed 

to staff anywhere between 11 to 20 programmers.  This range of programmers was constrained by the 

author and is not a limitation of the simulator.  Thus, a team policy of 20 programmers would yield the 

fastest project completion time, while a team policy with the value of 11 would yield the slowest project 

completion time.  Each individual’s initial policy for staffing is generated randomly, using a uniform 

distribution over the valid range of 11 to 20 programmers.  Recall how the individual’s status will affect the 

weighting of the team policy.  Initial status values for all individuals start off equal.  After all of the teams 

have completed their projects, teams are assigned promotional values, and the individuals are then 

promoted and randomly assigned to a new project.  This process is repeated again for the specified 

number of generations. 

In both the single company and the mixed team company case, there are six members to a team.  

In the mixed team case, each company has 3 members per mixed team.  Furthermore, there are a total of 

six mixed teams plus 25 additional teams per company (a total of 56 teams).  In the single company case, 

there are 50 teams total.  Finally simulations were run for a total of 100 generations. 

 To evaluate performance, it is convenient to have a method to determine if a company is evolving 

to a better state.  One method of measuring this evolution is to compute the average of all the teams’ 

policy values.  If this value improves, say toward the optimal value, we can say that the organization as a 

whole is evolving to a better state.  In our case, the average team policy value would be around 15 

programmers.  The optimal value is 20 programmers.   

Finally, simulations of the single company case (fully mixing) and the mixed team case were 

studied.  The single company case provided us with a baseline, in which the mixed team case was 

compared to.   
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Experiment Main Section Fully Merged 
Team 

Mixed Team 

No Learning and 
No Promotion 

7.1 7.1.1 7.1.2 

Promotion Only 7.2 7.2.1 7.2.2 

Learning Only 7.3 7.3.1 7.3.2 

Learning and 
Promotion 7.4 7.4.1 7.4.2 

Good/Bad Policy 7.5 - 7.5 

 

 

Table 7-1.  A Summary of All Experiments.  

 

 

7.1 No Learning and No Promotion 
To better understand how promotion and learning effects the evolution of a merging company, it 

will be helpful to understand how a baseline case of no learning and no promotion behaves.  Since no 

learning occurs, individuals do not change their policies.  Since no promotion occurs, no one individual 

has more influence over the team policy than another individual, regardless if their policy is very good or 

very bad.  Since a uniform distribution (11 to 20 programmers) is used to set the individual’s polices, we 

would expect an average around 15 programmers to be staffed. 

Randomly mixing good and poor performers on a project is somewhat realistic.  One would hope 

that the individuals with poor policies would learn from individuals with good policies.  Furthermore, it 

would be uncommon for a company to have all of its good people on one project and poor people on 

another project.  This could cause some projects to be extremely successful, while the other projects fail.  

In an engineering firm, it’s like putting all of the principle engineers on one project, and all of the new hires 

on another project.  

 

 

7.1.1 Fully Merged, Single Company 

When a company lacks methods for improving individual’s policies, we would not expect the 

company to evolve to a better state, nor do we expect it to get worse.  Suppose there exists a company 

that has just fully merged (single company case), if no learning occurs, nor do we give more weight to any 

one individual in the decision making process, there will be no improvement in team policies.  Individuals 

on teams that perform well do not get promoted, even though they probably carry a good policy.  On the 
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flip side, individuals with poor policies do not become demoted for their poor performance.  Since the 

policies within the company are equally good as well as bad, we expect that on average, the teams will 

select 15 programmers on a project.  This will lead to average project performance by the teams.  Figure 

7-1 shows the histogram for all individuals within a company, in generation 1 and generation 100. 
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Figure 7-1.  Histograms for individual policies show a uniform distribution for the first and last 
generation (s_nlnp_r1p50u_4_11). 
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Since no learning is going on, we expect that everybody’s policy will remain the same from 

generation to generation.  As we can see in Figure 7-1, the histogram for the first generation is identical to 

the histogram of the last generation. 

 In companies, projects tend to be run by teams, thus, a team will develop a policy based on each 

member’s input.  When a team policy is created, each member of that team has a certain amount of 

influence over the team policy.  This influence is usually based on the individual’s status.  If an individual 

has performed well in the past by having good policies, they are usually rewarded and gain a higher 

status within a company.  If an individual has a poor policy and has not performed well in the past, they 

will most likely be demoted and have a lower status within the company.  Thus, if status is based on 

performance, than we expect individuals with good policies to be more influential over the team’s policy 

than individuals with poor policies.  However, since there is no promotion in this specific case, each 

individual within the company will have the same influence over their team’s policy.  Since no learning 

and promotion is being performed in this case and individuals are randomly assigned to teams, we would 

expect that half the members of a team to have a good policy and the other half to have poor policies.  

Individuals with policies that are between the good policy and bad policy have average policies.  Because 

everyone has the same influence on the team policy, we would expect the team to create an “average” 

policy.  Thus, this policy is just as good as it is bad.  In fact, we would expect most of the teams within the 

company to produce a policy that is around the average.  A few teams may produce team policies higher 

than the average, while some other teams may produce team policies below the average.  If all of the 

projects were completed and the company policy was to randomly reassign individuals to new teams, we 

would expect roughly the same team policy results within the company.  Since we would not expect the 

average policy for all the teams within the company to get better, we do not expect the company to evolve 

to a better state.  That is, we do not expect the average of all the teams to improve. 

 If we look at Figure 7-2, which shows the distribution of teams from the simulation, we see that 

the histogram of the team policies within a company follows a normal distribution, with an average of 

about 15 programmers.  Recall that the each individual can have a policy of anywhere from 11 to 20 

programmers.  Since every individual within the company has the same status, regardless of whether 

their policy is good or bad, the team policy is just an average of each person’s policy.  Because we are 

looking at the averages of several policies that were generated using a uniform distribution, we expect a 

normal distribution about the mean of the uniform distribution, due to the Central Limit Theorem.  This 

reflects what we would expect the distribution of team policies to be, namely most team policies are 

average.  As we expect, the histograms in Figure 7-2 have a normal distribution in generation 1 and 

generation 100.  The average and variance for all team polices over 100 generations (projects) is shown 

in Figure 7-3.  As expected, both the average and variance remain constant, thus no evolution.   
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Figure 7-2.  Histogram of team policies at generation 1 and at generation 100.  Note how 
distribution is not uniform but normal.  Generation 100 looks a little less normal due to sampling 
error (s_nlnp_r1p50u_4_11). 
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Figure 7-3.  Average team policies and the variance over 100 generations (s_nlnp_r1p50u_4_11). 

 

 

7.1.2 Mixed Team Company 

Just as in the single or fully merged company case, it is desirable to understand how promotion 

and learning affects the evolution of a mixed team company.  Once again, lets assume that policies for all 

individuals are randomly initialized using a uniform distribution over the range of 11 to 20 programmers.  If 

this company uses a small number of mixed teams where there is no learning or promotion of individuals, 

we would still not expect the company to evolve.  Though individuals from both companies are randomly 

selected to work together on team projects, new policies are not created, due to the lack of learning.  

Also, people with good policies have just as much say into the team policy as people with poor policies.  

Again, due to the random initialization of people’s initial policy, we would expect each team to contain 

individuals with good, bad, and average policies.  Thus, most of the team policies in the company would 

be “average,” while some teams are above average and some are below.  Therefore, this case is identical 

to the single company case, and we would expect the same results as before.   

Figure 7-4 shows the histogram for all individuals within the company at generation 1 and at 

generation 100.  Since learning does not occur, no individuals within the company will learn new policies, 
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thus, the histogram for individual policies should remain the same over the generations.  Finally, we 

would expect the average of all the team policies to be around the average (15 programmers).  We see 

that in Figure 7-6 (A-D), this is true for the whole company, each of the legacy companies, and within the 

mixed teams. 
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Figure 7-4.  Histograms for individual policies in a mixed team company show a uniform 
distribution for the first and last generation.  Note how the distribution remains the same over the 
generations (d_nlnp_r3m6p25u_4_11). 
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Figure 7-5.  Histogram of team policies at generation 1 and at generation 100 for a mixed team 
company.  Distribution of team policies should follow a normal distribution shape due to the 
central limit theorem.  These distributions do not look perfectly normal because of sampling size 
and bin spacing (d_nlnp_r3m6p25u_4_11). 
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Figure 7-6.  Average and variances of the team policies over 100 generations.  (A) Whole 
company.  (B) Legacy company A.  (C)  Legacy company B.  (D)  Mixed teams.   The average and 
variance over generations is not as smooth as Company A or Company B’s due to the small 
sample size (6 mixed teams). 

 

Though it is nearly impossible to find a company where nobody learns from each other and individuals 

have equal status, it is important to understand how this company evolves over time.  By understanding 

this very basic case, we can see how promotion and learning will affect merging companies.   

 

7.2 Promotion Only 
When a promotion scheme is used, we would expect that the policies generated by teams in a 

merged company to evolve to a better state.  Lets assume that there is a company where no learning 

occurs; however, people’s status within the company affects how much influence they have on a team 

policy.   

Like before, we assume that initially there is a uniform distribution of policies over the range of 11 to 

20 programmers.  Since no learning occurs, no new policies are being created, and we expect the 
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histogram of individual policies in the first generation to be identical to the histogram of policies of the last 

generation.  Again, this situation is not realistic, but it allows us to understand what the effects of 

promotion are in a controlled manner.   

Promotion has an interesting effect on the team policies and how the company evolves.  Initially, all 

individuals start off with the same status; hence, the team policies are just an average of all individual 

policies.  As promotion occurs, individuals on teams that perform better become promoted, while 

individuals on teams that do not perform well become demoted.  Recall from before that we expect this 

distribution of team policies to be a normal distribution.  A few teams will be above average, because they 

consist of more individuals with better policies.  A few teams will be below the average, because they 

consist of more individuals with worse policies.  The rest of the teams will have about average policies.  

Since individuals do not learn and policies do not change between generations, we expect to have a 

normal distribution of team policies.  However, as more generations go by, the weighting becomes more 

influential on the team policy creation.  That is, individuals on teams that perform well are promoted, while 

individuals on teams that do not perform well are demoted.  After several generations, we expect that 

some individuals in the population to have an extremely high status, while other individuals to have an 

extremely low status.   Individuals with extremely high statuses will dominate the team policy, while the 

individuals with extremely low statuses will become insignificant in the creation of the team policy.  As a 

result, we expect the average of all team policies to improve but never reach the optimal value.  This is 

because there are teams that consist of individuals with just poor policies, thus, pulling the average of the 

team policies down.  What is interesting is that even though promotions are based on teams, this process 

still identifies how individuals perform.   

 

  

7.2.1 Fully Merged, Single Company 

In this case, we have a promotion scheme in a company that has fully mixed all of the individuals.  

We expect the individuals to have the same policy distribution over the generations.  Since the 

individual’s weights influence team policies, in the condition where everybody has the same weighting, we 

expect a normal distribution of team policies.  As weighting becomes more significant, the distribution 

shifts toward the better policies.  As mentioned above, this is because individuals with good policies 

become more influential in team policy making, while individuals with poor policies become less influential 

in team policy making.  Since individuals with poor policies become less significant and individuals with 

good policies become more significant, we would expect the average for all the team policies to be 

somewhere between the average policy and best policy.  Thus, the company has evolved to a better 

state.   

Figure 7-7 shows the histogram for policies of all individuals within the company at generation 1 

and at generation 100.  Policies were assigned to individuals using a uniform distribution.  Since no 
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learning has taken place, no individual policies have changed, thus keeping the same individual policy 

distribution throughout the simulation.  In Figure 7-8, we have the distribution of team policies at 

generation 1 and at generation 100.  At generation 1, promotion has not taken effect yet, so we have a 

normal shaped distribution.  As an individual’s status begins to change, individuals with stronger policies 

have more influence on team policies, due to their weighting value.  Individuals with weaker policies have 

less influence on the outcome of the team policy.  Therefore, the distribution for the team policies shifts 

towards the more optimal policy value, as shown in generation 100 of Figure 7-8.  Since there is no 

learning, we still expect some teams to create poor policies.  Figure 7-9 shows the average of team 

policies over 100 generations.  Promotion is turned off for the first 10 generations.  From generation 10 to 

30, we see an increase of the average of team policies.  From there, a steady state value of around 17 

programmers is reached.  Note the increase in the variance of team policies.  Looking at Figure 7-8, we 

can see that the cause of this variance increase is due to the increased spread of team policies between 

generation 1 and generation 100.  This spread in team policies is due to the initial wide range of individual 

policies along with the effects of promoting. 
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Figure 7-7.  Histograms of individual policies in a company with promotion only.  Note the 
identical policy distributions at generation 1 and at generation 100 (s_p_r10p50u_4_11). 
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Figure 7-8.  Histogram of team policies in a company with promotion.  In generation 1, the 
distribution of team policies follows a normal distribution.  By generation 100, weighting to 
individual policies has skewed the team policy distribution toward better values 
(s_p_r10p50u_4_11). 
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Figure 7-9.  Average and variance of company team policies over 100 generations.  Promotion is 
turned on after 10 generations (s_p_r10p50u_4_11). 

 

7.2.2 Mixed Team Company 

In the mixed team case, there are different ways to rank teams.  One method is to rank teams 

from each company separately.  Another method is to rank all teams from both companies together.  

Depending upon the goal of the merger, both methods are valid.  For example, suppose a defense 

company that specialized in missiles and radars developed a new cooking method and wanted to enter a 

new market (this is actually how the microwave oven was introduced).  To do this, they acquire an 

appliance company and setup mixed teams to develop this product.  In this case, it makes sense to 

evaluate each of the company’s teams separately.  Since the defense market is quite different from the 

washer and dryer market, these products vastly differ in their requirements, resources, manufacturing 

needs, development time, functions, and much more.  It would be very difficult to determine if a missile 

project was more or less successful than a washer project.  However, suppose that this defense company 

had also acquired another missile company because they were able to build better heat seeking missiles.  

Mixed teams would be used to improve the knowledge transfer between companies.  In this case, it would 

make sense for all the project teams from both companies to be evaluated against each other.  These 

projects would most likely have similar development times, resource requirements, manufacturing needs, 
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etc.  Because of this, it is easier to determine if one project team performed better than another.  Also, we 

can look at the single company approach, where individuals from two companies are fully mixed together.  

It makes more sense to mix two missile companies together than it does mixing a missile company with 

an appliance company.  As a result, we will rank all team from both companies together in the 

simulations.   

In the mixed team case, we would expect promotion to have the same effects on average team 

policies as in the fully merged company case.  As mentioned above, promotion is being performed on the 

whole company, i.e., all teams are evaluated against each other.  Figure 7-10 shows the histogram for 

policies of all individuals within the company at generation 1 and at generation 100.  Policies were 

assigned to individuals using a uniform distribution.  Since no learning has taken place, no individual 

policies have changed, thus keeping the same individual policy distribution throughout the simulation.  In 

Figure 7-11, we have the distribution of team policies at generation 1 and at generation 100.  At 

generation 1, promotion has not yet taken effect, so we have a normal shaped distribution.  As an 

individual’s status begins to change, the individuals with stronger policies will have more influence over 

team policies, due to their weighting value.  Individuals with weaker policies will have less influence on 

the outcome of the team policy.  This causes the distribution of team policies to shift toward the more 

optimal policy value, as shown in generation 100 of Figure 7-11.  Since there is no learning, we still 

expect some teams to create poor policies.  Figure 7-12 (A) shows the average of all team policies over 

100 generations.  Figure 7-12 (B) and (C) show the average for each legacy company, and Figure 7-12 

(D) show the average of the mixed teams only.  Promotion is turned off for the first 10 generations.  From 

generation 11 to 30, we see an increase of the average of team policies, where it seems to reach a 

steady state value of around 17 programmers.  The average team policy has improved but has not 

reached the optimal value.  Note the increase in the variance of team policies.  This is due to the wider 

spread of team policies. 
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Figure 7-10.  Distribution of individual policies in a mixed team company with promotion, at 
generation 1 and generation 100.  Note how the distribution remains the same 
(d_p_r10m6p25u_4_11). 
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Figure 7-11.  Team policies evolve from a normal distribution to a skewed distribution due to the 
effects of promotion (d_p_r10m6p25u_4_11). 
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Figure 7-12.  Average and variance of team policies over 100 generations.  Promotion is turned on 
after 10 generations.  (A)  Whole company.  (B)  Legacy company A.  (C)  Legacy company B.  (D) 
Mixed teams (d_p_r10m6p25u_4_11). 

 

 

7.3 Learning Only 
To understand the effects of learning on a population, let us assume that there is no promotion 

within a company.  This is also another unrealistic situation; however, it will let us understand the affects 

of learning under controlled conditions.  Since there is no promotion, individuals with good policies will 

have the same influence on the team policy as individuals with poor policies.  This also means that 

individuals on a team would randomly learn from each other.  As a consequence, an individual will be just 

as likely to learn from someone with a good policy as a poor one.  Hence, we would expect the average 

for all team policies within the company to be around average (around 15 programmers in this case).  

Depending upon the initial distribution of the individual policies and who learns from whom, this average 
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can be higher or lower than expected.  For the most part, we would expect that polices generated by the 

teams to be about average, whether we are looking at a mixed team structure or fully merged company.   

 

 
 
 
 

7.3.1 Fully Merged, Single Company 

 As mentioned above, we do not expect to see any improvement in the average of the team 

policies.  In the fully merged, single company case, we initialize the individual’s policy using a uniform 

distribution.  Figure 7-13 shows the distribution of the policy for individuals at generation 1 and at 

generation 100.  Since learning is occurring, individuals are learning new policies at each generation; 

thus, the policy distribution at generation 1 is different from the policy distribution at generation 100.  

Figure 7-14 shows the distribution of team policies at generation 1 and at generation 100.  As we can see 

from Figure 7-14, the average of the team policies is around 15 programmers.  Finally, Figure 7-15 and 

Figure 7-16 shows how the average policy can improve or become worse in two different runs.  Due to 

the randomness, the average of team policies will drift around.  If we introduced promotion into the 

simulation, we would expect that the status of individuals would provide direction for learning.   

Taking a closer look at generation 100 in Figure 7-13, we see that the distribution is no longer 

uniform.  Specifically, many individuals in the population seemed to have come to a consensus of around 

17 programmers.  To understand consensus of a policy better, lets look at the population size and the 

range of policy values.  Within this organization, there are 300 individuals (50 teams of 6 individuals) and 

10 valid policy values (11 to 20 programmers).  Due to the limited number of policy choices, it is easier for 

one policy to be more randomly selected by individuals for recombination.  This causes the policy to 

spread throughout the population, hence, causing consensus.  An everyday example of this would be 

trying to get a large group of people to decide on a restaurant to eat at in Boston.  Since everybody’s 

preferences are different and the selection of restaurants is large, it would be very difficult for the group to 

come to a consensus.  However, if we limit the group’s choice of restaurants to the Kendall Square area, 

it would be much easier for the group to come to a consensus.  
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Figure 7-13.  Learning causes individuals to change their policies over the generations 
(s_l_r10p50u_4_11). 
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Figure 7-14.  Learning causes the team policy distribution to vary (s_l_r10p50u_4_11). 
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Figure 7-15.  Average and variance of team policies over 100 generations.  In this simulation, 
learning is turned on after 10 generations, and the average team policy drifts toward a worse state 
(s_l_r10p50u_4_11). 
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Figure 7-16  Average team policy drifts toward an improved state (s_l_r7p50u_4_11). 

7.3.2 Mixed Team Company 

 Like the fully merged company case, we expect that having mixed teams with learning to react in 

the same way.  Policies for the individuals are initialized randomly, using a uniform distribution.  Figure 

7-17 shows the distribution of the policy for individuals at generation 1 and at generation 100.  Since 

learning is occurring, individuals are learning new policies at each generation; thus, the policy distribution 

at generation 1 is different from the policy distribution at generation 100.  Again, we see the effects of 

consensus.  Figure 7-18 shows the distribution of team policies at generation 1 and at generation 100.  

As we can see from Figure 7-18, the average of the team policies is around 15 programmers.  Finally, 

Figure 7-19 (A) shows the average of team policies of the whole company over 100 generations.  Due to 

the randomness of learning, this average drifts around; however, it remains around 15 programmers.  In 

Figure 7-19 (B) and (C), we see the average team policy in both legacy company.  Figure 7-19 (D) shows 

the average team policy within the mixed teams over 100 generations. 



  

  48  

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
0

5

1 0

1 5

2 0

2 5

3 0

His togram For  A l l  I nd iv idua l  Po l i c ies

A t  1  G e n e r a t i o n

Ind i v i dua l  Po l i c y  (Number  o f  P rog rammers )

N
um

. 
of

 I
nd

iv
id

ua
ls

 W
it

h 
P

ol
ic

y

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0
0

1 0

2 0

3 0

4 0

5 0

6 0

His togram For  A l l  I nd iv idua l  Po l i c ies

A t  1 0 0  G e n e r a t i o n s

Ind i v i dua l  Po l i c y  (Number  o f  P rog rammers )

N
um

. 
of

 I
nd

iv
id

ua
ls

 W
it

h 
P

ol
ic

y

 
 

Figure 7-17.  Distribution of individual's policies change with learning.  Generation 1 and 
generation 100 is shown here (d_l_r10m6p25u_4_11). 
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Figure 7-18.  Distribution of team policies at generation 1 and generation 100 
(d_l_r10m6p25u_4_11). 
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Figure 7-19.  In this simulation, learning is turned on after 10 generations.  Note how average team 
policy drifts around.  (A)  Whole company.  (B)  Legacy company A.  (C)  Legacy company B.  (D) 
Mixed teams (d_l_r10m6p25u_4_11). 

 

 

 

 

7.4 Learning and Promotion 
Now that we have investigated the effects of promotion and learning alone, let’s see what 

happens when we put them together.  In a company where promotion and learning takes place, we would 

expect to see that the company would evolve to a much better state.  Promotions allows for individuals 

with good policies to gain more status and individuals with poor policies to lose status.  Because of this, 

we would expect to see some improvement within the company.  Individuals with good policies will have 

greater influence over the team policies than individuals with poor policies.  If we now introduce learning, 

individuals are now able to change their policies.  An individual with high status on a team will have a 

greater probability of being selected by another individual for learning.  Thus, an individual with a poor 
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policy might improve their policy from learning from an individual with a good policy.  If that team is ranked 

high, individuals on that team will be promoted and their status will go up.  This does two things for when 

individuals move onto their next project.  It increases their influence on the team policy.  It also improves 

the probability that they will be selected by another individual to learn from.  Learning (recombination) 

allows an individual with a poor policy to create a good policy.  Furthermore, individuals with good policies 

that may not be optimal can recombine with other individuals to create an even better policy than before.  

Because of this, we would expect that the average of team policies to improve over several generations.  

Eventually, we would expect individual policies to converge to some optimal value because of the 

learning and promoting. 

 
 

7.4.1 Fully Merged, Single Company 

 As mentioned above, we expect to see improvement in team policies and individual policies due 

to the effects of promotion and learning.  In this fully merged, single company case, we initialize the 

individual’s policy using a uniform distribution.  Figure 7-20 shows the distribution of the policy for 

individuals at generation 1 and at generation 100.  Since promotion and learning occur, individuals will 

tend to learn good policies at each generation.  We expect that the distribution of individual and team 

policies to improve.  At generation 100, we see that all of the individual policies have converged to 20 

programmers.  This is the best policy value and we had expected this due to the learning and promotion.  

Figure 7-21 shows the distribution of team policies at generation 1 and at generation 100.  As we can see 

from Figure 7-21, the average of the team policies at generation 1 is a normal distribution around 15 

programmers.  By generation 100, the team policies have also converged to the best policy of 20 

programmers on the project.  Finally, Figure 7-22 shows the average of team policies over 100 

generations.  Promotion and learning is turned off for the first 10 generations.  As expected, the average 

team policy value is 15 programmers.  From generation 11 to 40, promotion is turned on and we see an 

improvement of team policy values.  Under these conditions, the average of the team policy plateaus out 

at around 17 programmers.  However, since no learning occurs, the variance increases due to the wider 

spread of team policies (recall from the promoting section).  From generation 41 to 100, promotion and 

learning is turned on and we see another rise in the average team policy value.  This value approaches 

20 programmers.  Also, the variance drops back down to zero, since the individuals have recombined to 

learn the best policy.  By having promotion and learning in the simulation, we are able to provide direction 

and drive for the evolution of policies within a fully merged company.   

One other point to note here is the effect of turning promotion on before learning.  Though we 

would expect the same results if promoting and learning were turned on at the same time, there could be 

several generations of “counterproductive learning” before teams begin to improve.  In Figure 7-22, we 

see that promoting is performed in generations 10 to 40, and that learning is turned on after generation 

40.  Notice how rapidly we converge when learning is turned on.  Under these conditions, an individual’s 
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status has already been determined within the company, due to the pre-promotion.  Therefore, individuals 

with good policies will already have a higher status and will most likely be selected for recombination by 

others.  If we turned on learning at the same time as promotion, there would be no clear initial distinction 

between individuals with good or bad policies, because everyone starts off with equal status.  The 

question now becomes do we promote first?  That is, does it make sense to sort out individuals with good 

and bad policies before learning is applied?  It can be argued that promoting before learning has already 

been done to a limited extent, since companies have already evolved somewhat before a merger.  What 

is not known is the status of individuals in one company relative to the other.  An individual in Company A 

could be an outstanding performer; however, compared to Company B’s standards, this individual would 

be just average.  Because of this ambiguity of status between companies, it would be a good idea to sort 

out individuals with good and bad policies before learning, and to rank all teams from both companies 

together.   
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Figure 7-20.  With learning and promotion, individual policies improve over the generations 
(s_lp_r1p50u_4_12). 
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Figure 7-21.  Team policies also evolve over the generations with learning and promotion 
(s_lp_r1p50u_4_12). 
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Figure 7-22.  Average team policy and variance over 100 generations.  Promotion is turned on 
after 10 generations and learning is turned on after 40 generations (s_lp_r1p50u_4_12). 

 
 

7.4.2 Mixed Team Company 

 
In the mixed team case, individuals are randomly assigned a policy value using a uniform distribution.  

Figure 7-23 shows the distribution of the policy for individuals at generation 1 and at generation 100.  

Since promotion and learning occurs, individuals will tend to learn good policies at each generation; thus, 

we expect that the distribution of policies to improve.  At generation 100, we see that all of the individual 

policies have converged to 20 programmers.  This is the best policy value and we had expected this due 

to learning and promoting.  Figure 7-24 shows the distribution of team policies at generation 1 and at 

generation 100.  As we can see from Figure 7-24, the average of the team policies at generation 1 is a 

normal distribution around 15 programmers.  By generation 100, the team policies have also converged 

to the best policy of 20 programmers on the project.  Finally, Figure 7-25 (A), (B), and (C) shows the 

average of team policies over 100 generations for all the teams within the company, all the teams in 

legacy company A, and all the teams in legacy company B respectively.  Promotion and learning is turned 

off for the first 10 generations.  As expected, the average team policy value is 15 programmers.  From 

generation 11 to 40, promotion is turned on and we see an improvement of team policy values.  Under 
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these conditions, the average of the team policy plateaus out at around 17 programmers.  Since no 

learning occurs, the variance increases due to the spreading of team policies over a wider range.  From 

generation 41 to 100, promotion and learning is turned on and we see another rise in the average team 

policy value.  This is when individuals with poor policies learn from individuals with good policies.  This 

improves the average team policy value, and over time, this value approaches 20 programmers.  Notice 

that the rate of improvement from learning and promoting in the mixed team case (after generation 40) is 

slower than in the single company case in Figure 7-22.  This is because a smaller number of individuals 

are mixing in the mixed team structure as compared to the single company structure.  Also, the variance 

drops back down to zero, since all of the individuals have learned the same policy.  As we can see, the 

mixed team case produces the same results as the fully merged company case.    
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Figure 7-23.  With promotion and learning, individual policies evolve over the generations 
(d_lp_r1m6p25u_4_12). 
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Figure 7-24.  Team policies evolve from a normal distribution to a single policy due to learning and 
promotion (d_lp_r1m6p25u_4_12). 
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Figure 7-25.  Evolution of the average team policy in a mixed team structure over 100 generations.  
Promotion is turned on after 10 generations and learning is turned on after 40 generations.  (A)  
Whole company.  (B)  Legacy company A.  (C)  Legacy company B.  (D) Mixed teams 
(d_lp_r1m6p25u_4_12). 
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7.5 Mixed Team Policy With Good and Bad Policy 
 

Now that we understand the effects of learning and promotion in the fully mixed company structure 

and the mixed team structure, lets see what happens when we merge a poor policy company with a good 

policy company in the mixed team structure.  

Suppose Company A is a company with poor policies and Company B is a company with good 

policies.  In Company A, individuals have a policy value of around 12 programmers on a project.  

Individuals in Company B have a policy value of 19 programmers on a project.  This individual policy 

distribution is shown in Figure 7-26 at generation 1.  Policies are clustered either around 12 or 19 

programmers.  If we look at the team policy distribution at generation 1, we would expect that team 

policies in Company A to be around 12 programmers per team policies in Company B to be around 19 

programmers per team.  Since individuals in Company A and Company B are equally represented on 

mixed teams and everybody has equal weighting, we would expect the mixed teams to produce policies 

around 15.  Figure 7-27, generation 1 shows the initial distribution of team policies.   

   From what has been learned so far, we would expect that the company with poor policies to 

evolve to a better state.  The key to making this happen is to allow the effect of promoting and learning on 

the mixed teams.  Since the teams in Company B already have good policies, learning will not have a 

great effect there.  Company A will not be able to evolve also, since individuals in that company will only 

learn poor policies, which they already know.  Since promoting on the whole company has been 

implemented first, the status of the individuals in Company B improves, while the status of the individuals 

in Company A worsens.  Initially, we expect the policy of mixed teams to be somewhere between the best 

policy and the worst policy, since mixed teams are equally represented by both companies.  Eventually, 

the individuals from Company B that are sent to the mixed teams will have a higher status than the 

individuals sent by Company A.  This shift in status causes the policies created on the mixed teams to be 

much closer to the better policies created by the teams in Company B.  We expect to see an 

improvement in the overall company performance, due to the effects of promoting.  Once learning occurs 

with promoting, good policies on the mixed teams will be transferred effectively and the organization as a 

whole will evolve even further.  Because individuals from Company B on the mixed teams have higher 

status than individuals from Company A, the individuals from Company A will tend to learn from 

individuals from Company B.  Since the mixed teams perform better than Company A’s teams, individuals 

from Company A are able to improve their policies through learning.  Individuals return back to Company 

A with improved policies and higher status.  Their improved status will cause other individuals on their 

new team to select them for learning.  Furthermore, their improved status will also cause their policy to be 

weighted heavier in the creation of the team policy.  Thus, these teams perform better, and individuals in 

Company A are able to learn better policies.  After several generations, we expect that the individuals in 

Company A to learn the good policies of Company B.  If an individual from Company B learns a poor 

policy from and individual in Company A while on a mixed team, we don’t expect that to be a problem.  
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When that individual returns to Company B, they will relearn the better policies from other members of 

their company.  

 Figure 7-28 shows the average team policy over 100 generations.  For the first 10 generations, 

there is no learning and no promotion.  As we would expect, an average of all the team policies yields an 

average policy value of about 15.  Promotion is turned on after 10 generations; however, we do not see a 

large overall affect to the company. Since the mixed teams accounts for only a small percentage of the 

total teams, we do not see a drastic increase in the total company performance.  Learning is turned on 

after generation 40.  This has a dramatic effect on the average team policies in Company A, as shown in 

Figure 7-28 (B).  After a few generations, policies in Company A improve and eventually become identical 

to policies in Company B.  Figure 7-26 and Figure 7-27 show that individual policies and team policies 

have all conformed to the best policy by generation 100. 
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Figure 7-26.  Looking at one company with a good policy and another with a poor policy at 
generation 1 and generation 100.  Individual policy distribution (d_bias_pol).  
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Figure 7-27.  Team policy distribution at generation 1 and generation 100 (d_bias_pol). 
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Figure 7-28.  Evolution of the average team policy in a mixed team structure over 100 generations.  
Promotion is turned on after 10 generations and learning is turned on after 40 generations.  (A)  
Whole company.  (B)  Legacy company A.  (C)  Legacy company B.  (D) Mixed Teams (d_bias_pol). 
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8 Conclusion 

As stated earlier, we believe that an organizational evolutionary approach to improve the transfer 

of knowledge between merging companies will result in a more successful merger, as a result, creating 

more value for the company and its shareholders.  One way of implementing an evolutionary approach 

would be to fully mix indivi duals from both companies together.  However, the use of a small number of 

mixed teams should be just as effective as fully mixing the individuals from two companies but at a slower 

rate.   

 To gain a better understanding of how knowledge is transferred between companies, simulations 

were performed to gain insight on how learning and promoting affects the transfer of policies in a mixed 

team structure.  As we have found, the results from the mixed team structure indicate that it is as effective 

as fully mixing two companies together.  Here is a summary of the results: 

 

1. No Learning and No promoting – This is the baseline case.  As expected, the company does not 

evolve at all.  No learning takes place and everybody has the same status. 

 

2. Promotion only – Here we look at the effects of status and promotions.  Though status changes, 

policies do not.  This will affect an individual’s weight or influence on a team’s policy.  Teams that 

perform above average will be promoted, while teams that perform below average are demoted.  

Hence, individuals with good policies will have better status.  When these individuals are 

assigned to the next project, they will be more influential on the team policy.  This influence shifts 

the team policy closer to their policy. Individuals with poor policies lose status, thus they will be 

less influential on the team policy.  With promotion only, the company evolves some but won’t 

reach the optimal value.  The optimal value is never reached, since this would require individuals 

to learn better policies.  Though individuals do not change policies, good policies become more 

influential in team decisions than poor policies. 

 

3. Learning only – Here we look at the effects of individuals randomly learning.  This is not good, 

since the overall evolution of the company can evolve to a better state, a worse state, or remain 

in the same.  Individuals change policies but with no direction of who to learn from.  Depending 

upon the conditions, we may see consensus by individuals within the population. 

 

4. Learning and promoting – Here we have status influencing how individuals learn new policies.  

Individuals with good policies will eventually gain higher status through promotion.  When mixed 

onto the next project, individuals with good policies will have more influence over the team policy.  

This creates a better team policy.  Also, individuals with poor policies will tend to learn from 

individuals with higher status, thus, improving their policy.  Individuals with good policies can also 
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learn from other individuals, which as a result could create an even better policy.  Eventually, the 

whole organization evolves in a positive direction, more so than just promoting alone.  We also 

expect a faster convergence in this case due to two factors.  First, we perform ranking on the 

merged company as a whole.  When we do this, an individual’s status is known in both 

companies, instead of their own company only.  If we had ranked individuals against their 

respective company only, there is an initial ambiguity of not knowing which company performs 

better.  Thus, there is the possibility that an individual could be highly ranked one company but 

average in the other, which could slow down evolution.  Ranking the company as a whole 

eliminates this initial ambiguity.  Second, promoting is turned on before learning.  This allows 

individuals with good and poor policies to be identified before learning takes place.  When 

learning does occur, individuals will have a better idea of who to learn from; as a result, speeding 

up convergence. 

 

5. Good Policy/Poor Policy – In this experiment, we initialize the individuals at one company to have 

good policies, while the individuals at the other company to have poor policies.  As we expected, 

the learning that occurred on the mixed teams allowed for the company with poor policies to 

evolve.  When individuals with poor policies worked on a mixed team, they were able to learn 

from individuals with good policies.  When these individuals returned to their companies, their 

higher status influenced other individuals to learn from them.  Eventually, the company with poor 

policies evolved to the same level as the company with good policies. 

 

From these experiments, we see that promoting provides direction for individuals to learn from and 

learning provides a way for these individuals to improve their policies.  We can use the metaphor of a 

sailboat to describe the effects of learning and promoting.  Say one’s organization is a sailboat, and the 

goal of the sailboat is to reach a certain landmark.  The sail on the boat is analogous to learning, while the 

rudder is analogous to promoting.  If you could just control the rudder, the most you could do is point your 

boat toward the landmark.  The sailboat is unable to reach the landmark without a force to move it.  With 

just a sail, the boat can move around, but there is no method to guide the boat toward the landmark.  With 

a sail and rudder, the sailboat is able to capture the wind and navigate toward the landmark.   

 

From the analysis of the simulations, we were able to make suggestions on how to implement the 

mixed team structure for merging companies. 

 

1. The mixed teams provide a conduit for passing information between organizations; thus, we 

would like the least amount of resistance in this mixed team structure.  Individuals on the mixed 

team should be willing to learn from others as well as teach others. 
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2. If it makes sense, rank all projects and individuals together, not with respect to their own 

company only.  This will help to identify individuals with good or bad policies for both companies. 

3. Once individuals with good policies have been identified from both companies (from step 2), 

encourage others to learn from them.  This is analogous to promoting first and then learning. 

4. Individuals that are good performers and are highly respected within their own company should 

be used on the mixed teams.  Chances are, these individuals will have something to teach other 

individuals on the mixed teams.  The real benefit is when they return to their own companies.  

Since they are good performers and are well regarded by their peers, more individuals will likely 

try to learn from them or imitate them.  

5. Mix individuals frequently on the mixed teams.  This allows for more information to be diffused 

between companies.   

6. Try to keep the mixed team project lengths short in nature; however don’t make the projects 

trivial.  Shorter projects will help speed up the mixing of individuals.  Yet, the project needs to be 

of some significance.  We want individuals to transfer hard to learn knowledge; however, this may 

not happen when teams work on simple projects.  There may be another benefit for having short 

projects.  Since some individuals do not wish to relocate, they may be willing to work at another 

site for a short period of time.  One suggestion is to have a few mixed teams at each location.  

Another possibility is if the project is long, have the individuals switch sites in the middle of a 

project.   

 

There are several benefits for using this mixed team structure for merging companies. 

 

1. This mixed team structure is not as costly to implement as fully mixing two companies together.  

The merged company would only need to support the few individuals on the mixed teams that 

are changing locations.   

2. Individuals are able to create a network of people to learn from, which would span over both 

companies.  Though this was not investigated in this study, we believe that individuals that use 

this network will improve the transfer of knowledge and speed up the evolutionary process. 

3. Companies are very dynamic and could change goals after a merger or when changes in the 

market occur.  Policies that individuals had before these changes may not be as optimal after 

the changes.  This evolutionary approach allows for individuals to evolve their policies when the 

goals of the company have changed. 

 

If we look beyond the scope of mergers and acquisitions, it may be possible to apply the idea of 

using mixed teams to improve the transfer of knowledge in other areas.  This concept may be a valid way 

to transfer information between organizational boundaries.  For example, many large engineering firms 

have both an R&D group as well as a design engineering group.  The R&D group develops new 
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technologies, while the design group develops products based on these technologies.  Having mixed 

teams of R&D individuals with design individuals to work on R&D or design projects should improve how 

knowledge is transferred.  Not only is it important to transfer R&D knowledge to design, but vice versa. 

Analysis from the simulation has suggested that the mixed team approach is an effective method for 

improving knowledge transfer between two merging companies.  Suggestions on how to implement the 

mixed team approach were also given.  To further understand how evolution affects knowledge transfer 

within merging organizations, organizational evolutionists should further study various promotional 

policies, learning behavior, network of individuals that people learn from, and insights from simulation and 

how well they apply to the real world.   
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10.2 Matlab Code 
 
This section contains the main sections of the Matlab code.   
 
 
 
 

teamExp_mod
.m

Control.m

net_alive.m

network_sim.
m

FunLib.m net_fitness.m

net_project2.mdl
(Simulink)

team_policy.m

net_shuffler2.
m

split.m

combine.m

rip.m

swap.m

 
 
 
 

Figure 10-1.  Matlab code modules and their relationship. 
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10.2.1 TeamExp_mod.m 
 
function E=teamExp_mod() 
 
 
% load function library 
funlib 
 
 
% Format: fun, mode, teams, gen, pop, pc, pm, init_switch 
 
% Sub-Team Format:  funct, mode, num subteams, subteam size, teams in company 
A/B,  
%  generations, network size, p-xover, pmutation, pnetwork, init_switch 
 
E={ ...  
      % control 
    
   % Single company simulation 
   % {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ...  
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
   %   {projectMdl_st,'st', 6, 6, 50, 50, 5, 1, 0, .5, 1} ... 
 
 
   % Merging company simulation 
%      {projectMdl_st,'st', 3, 4, 5, 2, 5, 1, 0, .5, 1} ... 
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ...       
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ... 
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ... 
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ... 
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ... 
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ...       
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ... 
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ... 
%      {projectMdl_st,'st', 6, 6, 25, 100, 5, 1, 0, .5, 1} ...      
    
    
}; 
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10.2.2 Control.m 
 
% control center 
 
% load experiment 
%E=gecco2000; % Format: fun, mode, teams, pop, pc, pm 
%E=GECCOtest; 
%E=teamAssignExp; 
 
 
clear; 
pack; 
 
% * * * * * * * * * * * * * * * * * * * * 
% cdat = 1 - collect data 
% cdat = 0 - don't collect data 
cdat = 0; 
% * * * * * * * * * * * * * * * * * * * * 
 
 
   % **********   Sets the Single or Merging company mode.   ********** 
   % Mode   Desc. 
   % ----   ----- 
   %  1    Single company mode. 
   %   
   %  2    Merging compnay mode. 
 company = 2; 
 % ********************************************** 
 
 
 
%E=teamExp; 
E=teamExp_mod; 
 
% Gives the number of cells (rows) in E.  Each cell contains multiple 
attributes. 
len_E = length(E); 
 
% Control Variables  
%slength = 1;  % Made this a variable, which is set here. 
 
%action='create'; % create, stat, collect 
ver='2'; 
% perform actions 
for cntra = 1:len_E 
   %   j=char(112+i); 
%  j=char(cntra); 
%  switch action 
%  case 'create' 
%     for seed=1:slength  % Call alive_mod - Sends all of the control 
parameters 
         
%        switch lower(E{cntra}{2}) 
%        case ('st') 
%           disp('This is the networked version') 
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           disp(lower(E{cntra}{2}))        
            
%           n = 
net_alive(E{i}{1},E{i}{2},E{i}{3},E{i}{4},E{i}{5},E{i}{6},E{i}{7},E{i}{8},E{i
}{9},... 
%              E{i}{10}, E{i}{11}, seed); 
 
    % Forcing into the random state 
    seed = -1; 
 
net_alive; 
 
if cdat == 1 
            ravg(cntra).lavg = mean(avg_teamp(1:10)); 
            ravg(cntra).havg = mean(avg_teamp(25:experiment.generation_max)); 
            ravg(cntra).mixsize = E{cntra}{3}; 
            ravg(cntra).puresize = E{cntra}{5}; 
            ravg(cntra).percent = abs((ravg(cntra).lavg-
ravg(cntra).havg)/ravg(cntra).lavg)*100; 
            switch company 
            case 1 
               save (['s_l_r' num2str(cntra) 'm' num2str(E{cntra}{3}) 'p' 
num2str(E{cntra}{5}) 'u_4_11']); 
                
            case 2 
                  save (['d_lp_r' num2str(cntra) 'm' num2str(E{cntra}{3}) 'p' 
num2str(E{cntra}{5}) 'u_4_12']);  
            otherwise 
                  disp('Error in writing selection') 
            end 
                
                   
            %close(gcf) 
            %close(gcf) 
            %close(gcf) 
            disp('End of Run: ') 
            cntra 
end 
          
            % save(['nv' ver '_e' num2str(i)  '_s' num2str(seed)],'e'); 
%        otherwise 
%          disp('Standard Case')  
          % 
e=alive(E{i}{1},E{i}{2},E{i}{3},E{i}{4},E{i}{5},E{i}{6},E{i}{7},E{i}{8},seed)
; 
    % save(['v' ver '_e' num2str(i)  '_s' num2str(seed)],'e'); 
%        end 
   end   
     
%  case 'stat' 
%     for seed=1:slength   
%        i 
%      load(['v' ver '_e' num2str(i) '_s' num2str(seed)]); 
%      e=stat(e); 
%      e=stat2(e); 
%      save(['v' ver '_e' num2str(i) '_s' num2str(seed)],'e'); 
%    end 
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%  case 'collect' 
    % load desired stats variables into memory for easy plotting 
%    for seed=1:slength        
%       load(['v' ver '_e' num2str(i) '_s' num2str(seed)]); 
%      F(i,seed)=e.stat; 
%    end 
     
%  end 
%end 
 
 
 
if cdat == 1 
    
disp('* * * Simulation Complete * * *'); 
 
 save apr12_d_lp ravg; 
end 
 
%clear len_E, slength; 
%pack; 
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10.2.3 Net_alive.m 
 
%function experiment=net_alive(fun, mode, sub_teams, team_size, 
corp_teama,... 
%   gen, net_size, pc, pm, pn, init, seed) 
 
% This function includes the network size for each individual. 
 
% fitness function def 
 
 
 
%  These parameters comes from the file funlib.m 
experiment.domain=E{1}{1}.d; % function defined over this domain 
experiment.epsilon=E{1}{1}.e; % simulation accuracy 
experiment.fitness=E{1}{1}.f; % fitness  
 
 
% experiment mode 
experiment.mode=E{1}{2}; % st - Network and sub-teams 
experiment.sub_teams=E{1}{3}; % number of sub-teams 
experiment.sub_team_size=E{1}{4}; % size of the teams 
experiment.corp_teama = E{1}{5}; % Number of teams in company A 
experiment.corp_teamb = E{1}{5}; % Number of teams in company B.  Equal to A 
for now. 
experiment.teammode='random'; % for tm mode: random/best/equal 
 
% other 
experiment.init=E{1}{11}; 
experiment.generation_max=E{1}{6}; % number of generations to simulate 
experiment.net_size = E{1}{7};  % sets an individual's network size 
 
% disp('**************** Network size *********************') 
% disp(experiment.net_size) 
 
experiment.p_crossover=E{1}{8}; % probability of crossover (or learning) 
experiment.p_mutation=E{1}{9}; % probability of mutation 
experiment.p_network=E{1}{10}; % probability of learning from a network. 
 
% experiment label 
experiment.label='ALIVE Genetic Simulator'; 
experiment.seed=seed; % -1 for "truly random", nonnegative number is seed for 
"deterministic random" 
 
 
% Generating fitness function 
F=['function [y, track]=fitness(x, generation)\n' ... 
    '%% This file is created automatically, manual edits will be lost\n' ... 
    'track=[];\n' ... 
    experiment.fitness ';\n' ... 
    %'if y<0, error(''Negative fitness not allowed''), end' ... % guard 
against negative fitness 
]; 
fid=fopen('fitness.m','w'); 
fprintf(fid,F,'%s'); 
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fclose(fid); 
clear fitness 
 
 
% Checking 
 
%This checks to see if the members per team is even. 
if rem(experiment.sub_team_size,2) 
   error('Number of individuals per team must be even') 
end 
 
 
% Echo 
fprintf('Simulation: %s\n\n',experiment.label'); 
fprintf('Mode: %s\n',experiment.mode'); 
fprintf('Number of generations to simulate: %i\n',experiment.generation_max); 
fprintf('Total number of individuals in simulation: %i\n',... 
   
2*((experiment.sub_teams/2+experiment.corp_teama)*experiment.sub_team_size));    
fprintf('Number of individuals per company: %i\n',... 
   (experiment.sub_teams/2+experiment.corp_teama)*experiment.sub_team_size); 
fprintf('Number of subteams: %i\n',experiment.sub_teams); 
fprintf('Number of individuals per subteam: %i\n',experiment.sub_team_size); 
fprintf('Number of teams per company: %i\n',experiment.corp_teama); 
fprintf('Team mode: %s\n',experiment.teammode); 
fprintf('Network size per individual: %i\n',experiment.net_size); 
fprintf('Probability of crossover: %f\n',experiment.p_crossover); 
fprintf('Probability of using network: %f\n',experiment.p_network); 
fprintf('Probability of mutation: %f\n',experiment.p_mutation); 
fprintf('Domain: \n'); disp(experiment.domain); 
fprintf('Epsilons: \n'); disp(experiment.epsilon'); 
 
 
% Forcing into the random state 
% experiment.seed = -1; 
 
% Randomness 
if experiment.seed<0 
  experiment.seed=sum(100*clock); % "truly random" 
end 
rand('state',experiment.seed); 
 
 
 
% do it 
 
switch company 
case 1 
   disp('Performing a Single Company Simulation') 
   network_sim1; 
case 2 
   disp('Performing a Merged Company Simulation')    
   network_sim; 
otherwise 
   error('>>> This is not a valid company simulation case <<<') 
end    
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10.2.4 FunLib.m 
 
% funlib - a place to store often used fitness functions 
% in "def" structure: domain, epsilon, function 
 
disp('Loading function librabry') 
 
peak_norm=struct('d',[-3 3; -3 3],'e',[.1 .1],'f','y = 
abs(peaks(x(1),x(2)))'); 
peak_same=struct('d',[-10 10; -10 10],'e',[.5 .5],'f','y=x(2);x=x(1);y=exp(-
(x-6).^2-(y-6).^2)+exp(-(x-6).^2-(y-0).^2)+exp(-(x-6).^2-(y+6).^2)+exp(-
(x+6).^2-(y-6).^2)+exp(-(x+6).^2-(y-0).^2)+exp(-(x+6).^2-(y+6).^2)'); 
 
 
DeJong(1)=struct('d',[-5.12 5.12; -5.12 5.12],'e',[.1 .1],'f','y=x(2);x=x(1); 
y =50-(x.^2+y.^2)'); 
DeJong(2)=struct('d',repmat([-2.048 2.048],2,1),'e',repmat(.1,2,1),'f','y = 
100*(x(1)^2-x(2))^2+(1-x(1))^2'); 
DeJong(3)=struct('d',repmat([-5.12 5.12],5,1),'e',repmat(.1,5,1),'f','y = 
sum(floor(abs(x)))'); 
DeJong(4)=struct('d',repmat([-1.28 1.28],30,1),'e',repmat(.1,30,1),'f','y=0; 
for i=1:30, y=y+i*x(i)^4+randn(1); end'); 
DeJong(5)=struct('d',repmat([-65.536 
65.536],2,1),'e',repmat(.001,2,1),'f','y=0; incomplete'); 
 
ProjectMdl=struct('d',[0.25 10; 0.25 10],'e',[1 
1],'f','y=projectSim(x(1),x(2))'); 
projectMdl2=struct('d',[0 15],'e',[1],'f','y=projectSim2(x(1))'); 
ProjectMdl3=struct('d',[0 15 0 15],'e',[1 
1],'f','y=projectSim3(x(1),generation)'); 
 
% ********************************************************************* 
% This is the fitness function that I'm using right now - R.R. 
projectMdl_st=struct('d',[10 20],'e',[1],'f','y=projectSim2(x(1))'); 
% ********************************************************************* 
 
MrktMdl=struct('d',[0.1 1; 100 5000],'e',[0.1 
100],'f','y=mrktSim(x(1),x(2))'); 
wfSalesMdl=struct('d',[0.1 1; 0.1 1],'e',[0.1 0.1],'f','y=wfSim(x(1),x(2))'); 
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10.2.5 Net_fitness.m 
 
function [finalTime]= net_fitness(programmers) 
 
%This function determines the final time for the project model 
%simulation in simulink. 7/26/99 
%In the genetic algorithm -- the final time is used as the measure 
%of fitness 
simTime=80;  % Is this how long it's suppose to run for - rro? 
 
lb = '['; 
rb = ']'; 
prgms = [lb num2str(programmers) rb]; 
 
set_param('net_project2/Programmers','Value', prgms); 
 
%set_param('net_project2/Programmers','Value', num2str(programmers)); 
 
 
 
%run project model. 
[T,X,Y] = sim('net_project2',simTime);  % Run the simulation for simTime and 
collect state - rro 
done= (FinalTime); 
 
 
finalTimeMatrix=[T,done]; 
 
[y, indx] = max(done); 
 
for j = 1:length(indx) 
   u(j,:) = [T(indx(j)) simTime-T(indx(j))]; 
end 
 
% The better the performance the larger the number 
finalTime = round(u(:,2)); 
 
%%find out when the amount left of code to write falls to zero 
%%codeToWrite=X(:,1); 
%i=1; 
%while i<(length(T))  
%   if finalTimeMatrix(i,2)==1 
%      finalTime=finalTimeMatrix(i,1); 
%      i=length(T)+10; 
%   else 
%      i=i+10; 
%      finalTime=simTime; 
%   end 
%end 
%finalTime=simTime-finalTime; 
%finalTime; 
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10.2.6 Network_sim.m – Core of Mixed Team Company Simulator 
 
% Raymond Ro, 2001    
% Multiple company simulator 
    
 
   disp('*************** Merged Company Simulator ******************') 
    
   
   % ***************************************************    
  
   % **********   Sets the promotion mode.   ********** 
   % Mode   Desc. 
   % ----   ----- 
   %  1    Teams are evaluated against other teams in their respective 
companies. 
   %     Mixed teams (subteams) are evaluated against each other 
only. 
   %   
   %  2    Teams from popa, popb, and the subteams are all evaluated 
together. 
   % 
   %  3    No promotional value is used (no weighting); however, teams 
are sorted 
   %      within their companies only.  This is only effects how the 
data is kept. 
   % 
   %  4    No promotional value is used (no weighting); however, all 
teams are sorted 
   %      together, regardless of company.  This is only effects how 
the data is kept.  
   % 
   %  5    Weighting is turned on after a specified number of 
generations.  The variable 
   %     step is used to specify the number of generations w/o 
weighting.  Mode 1 is  
   %     used for the type of weighting. 
   % 
   %  6    Weighting is turned on after a specified number of 
generations.  The variable 
   %     step is used to specify the number of generations w/o 
weighting.  Mode 2 is  
   %     used for the type of weighting.  
   % 
 
    
 prom_mode = 6; 
   step = 10; 
    
   % ***************************************************    
    
    
    
   % **********   Sets the Learning mode.   ********** 
   % Mode   Desc. 
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   % ----   ----- 
   %  1    No learning occurs. 
   %   
   %  2    Learning in all teams occur. 
   %   
   %  3    Only learning in mixed teams occur. 
   % 
   %  4    Learning in ALL teams occur after a certain time.   
   %     Variable stepl is used to indicate when learning is turned 
on. 
   % 
   %  5    Learning in MIXED teams occur after a certain time.   
   %     Variable stepl is used to indicate when learning is turned 
on. 
   % 
   %  6    Learning in all teams occur along with using a network. 
   % 
   %  7    Learning in all teams occur along with using a network.  
This will be 
   %     turned on after a specified time. 
    
 learning = 4; 
   stepl = 40; 
   % ***************************************************    
    
   % ***************************************************    
    
   % **********   Sets the Histogram movie mode.   ********** 
   % Mode   Desc. 
   % ----   -----  
   %  0    No movie.  
   % 
   %  1    Movieswitch is set to 1 and a movie is recorded. 
 
 movieswitch = 1; 
 % ***************************************************       
    
 
    
% ********** Dimensional Resolution ********** 
 
% This section calculates the number of bits needed for each gene in the 
chromosome. 
locus=zeros(size(experiment.domain,1),3);  
for dim=1:size(locus,1) % 1 to length of locus (rows) 
   locus(dim,3)=ceil(log2(abs(experiment.domain(dim,1)-
experiment.domain(dim,2))/experiment.epsilon(dim))); 
end 
 
% Now we start to build the String loci definition 
%  (Starting bit | Stopping bit | Segment length) for each gene 
locus(1,1)=1; 
locus(1,2)=locus(1,3); 
for dim=2:size(locus,1) 
   locus(dim,1)=locus(dim-1,2)+1; 
   locus(dim,2)=locus(dim,1)+locus(dim,3)-1; 
end 
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fprintf('String loci (left, right, and lengths) per dimension:\n'); 
disp(locus); 
 
timer=cputime; % start 
 
 
% Initialize populations 
 
generation = 1; 
 
chrom_len = locus(end,2); 
comp_size = experiment.corp_teama*experiment.sub_team_size; 
 
 
 
 
   % **********   Sets the initial population policy distribution.   
********** 
   % Mode   Desc. 
   % ----   ----- 
   %  1    Creates policies based on a uniform distribution over the 
whole 
   %     dynamic range. 
   %   
   %  2    Creates polices based on two uniform distributions.  
Company 'a' will 
   %      have a mean of u1 and 'b' will have a mean of u2. Margin 
specifies 
   %      how wide the distribution should spread around the means. 
    
    
   distribution = 2; 
   base = 2; 
   drange = base^chrom_len;    
   u1 = 2; 
   u2 = drange-2; 
   margin = 1;    
    
 
 
% Index (Generations) 
 
% This allocates memory ahead of time for the various population attributes 
for generation=1:experiment.generation_max+1 
   popa(generation).chromosome = zeros(comp_size,chrom_len); 
   popa(generation).team_id = zeros(comp_size,1); 
   popa(generation).id = zeros(comp_size,1);  
   popa(generation).rank = zeros(comp_size,1);   
   popa(generation).network = zeros(comp_size,experiment.net_size); 
   % which pop a individual in the network is from  1 - other population 
   % Descibes the company an individual is from 
   popa(generation).net_team = zeros(comp_size,experiment.net_size);  
   popa(generation).team_policy = zeros(experiment.corp_teama,chrom_len); 
   popa(generation).team_ranking = zeros(experiment.corp_teama,1); 
   % For Debugging purposes. 
   popa(generation).xover = zeros(comp_size,1); 
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   popb(generation).chromosome = zeros(comp_size,chrom_len); 
   popb(generation).team_id = zeros(comp_size,1); 
   popb(generation).id = zeros(comp_size,1);    
   popb(generation).rank = zeros(comp_size,1);    
   popb(generation).network = zeros(comp_size,experiment.net_size); 
   % which pop a individual in the network is from.  1 - other population 
   popb(generation).net_team = zeros(comp_size,experiment.net_size);     
   popb(generation).team_policy = zeros(experiment.corp_teama,chrom_len); 
   popb(generation).team_ranking = zeros(experiment.corp_teamb,1); 
   % For Debugging purposes. 
   popb(generation).xover = zeros(comp_size,1);    
end 
 
 
 
 
%  Create an initial value for each individual 
%popa(1).chromosome = ceil(rand(comp_size,locus(end,2))*2)-1; 
%popb(1).chromosome = ceil(rand(comp_size,locus(end,2))*2)-1; 
 
popa(1).rank = ones(comp_size,1); 
popb(1).rank = ones(comp_size,1); 
 
%  Assign ID's to all individuals 
popa(1).id(1:comp_size) = 1:comp_size; 
popb(1).id(1:comp_size) = 1:comp_size; 
 
 
%  Assign each member to a team 
 
%  This is just picking a batch of individuals and then assigning them to a 
team 
for team = 1:experiment.corp_teama 
   popa(1).team_id(experiment.sub_team_size*team-
experiment.sub_team_size+1:team*experiment.sub_team_size)=team*... 
      ones(experiment.sub_team_size,1); 
   popb(1).team_id(experiment.sub_team_size*team-
experiment.sub_team_size+1:team*experiment.sub_team_size)=team*... 
      ones(experiment.sub_team_size,1); 
end 
 
 
 
% Build sub-teams now 
 
% Number of individuals in the subteams 
sub_size = experiment.sub_teams*experiment.sub_team_size; 
 
 
 
% This allocates memory ahead of time for the various population attributes 
for generation=1:experiment.generation_max+1 
   subteam(generation).chromosome = zeros(sub_size,chrom_len); 
   subteam(generation).team_id = zeros(sub_size,1); 
   subteam(generation).id = zeros(sub_size,1);  
   subteam(generation).rank = zeros(sub_size,1);   
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   subteam(generation).network = zeros(sub_size,experiment.net_size); 
   % which pop a individual in the network is from.  1 - other population 
   subteam(generation).net_team = zeros(sub_size,experiment.net_size);    
   subteam(generation).corp_id = zeros(sub_size,1); 
   subteam(generation).team_policy = zeros(experiment.sub_teams,chrom_len); 
   subteam(generation).team_ranking = zeros(experiment.sub_teams,1); 
   % For Debugging purposes. 
   subteam(generation).xover = zeros(sub_size,1); 
end 
 
%  Create an initial value for each individual 
%subteam(1).chromosome = ceil(rand(sub_size,locus(end,2))*2)-1; 
 
% Initialize everybody's rank to 1. 
subteam(1).rank = ones(sub_size,1); 
 
 
%  Assign ID's to all individuals 
cntr = 1; 
for i = 1:2:sub_size 
   subteam(1).id(i) = cntr + comp_size; 
   subteam(1).id(i+1) = cntr + comp_size; 
   cntr = cntr + 1; 
end 
clear cntr; 
 
%  This is just picking a batch of individuals and then assigning them to a 
subteam 
for team = 1:experiment.sub_teams 
    
   subteam(1).team_id(experiment.sub_team_size*team-
experiment.sub_team_size+1:team*experiment.sub_team_size)=team*... 
      ones(experiment.sub_team_size,1); 
    
end 
 
 
for team = 1:sub_size 
    
   % Take team and divide by 2 and assign by vectors 
   % Identifying which company an individual came from. 
   if mod(team,2) 
  subteam(1).corp_id(team) = 'a'; 
 else 
    subteam(1).corp_id(team) = 'b'; 
 end 
 
end 
 
 
%  Create an initial value for each individual 
 
switch distribution 
case 1 
   disp('Using a uniform distribution to create policies') 
 popa(1).chromosome = ceil(rand(comp_size,locus(end,2))*2)-1; 
 popb(1).chromosome = ceil(rand(comp_size,locus(end,2))*2)-1; 
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 subteam(1).chromosome = ceil(rand(sub_size,locus(end,2))*2)-1; 
case 2 
   disp('Using a uniform distribution to create policies around 2 means') 
   [popa(1).chromosome, popb(1).chromosome, subteam(1).chromosome] = ... 
      bias_policy(popa(1).chromosome, popb(1).chromosome, 
subteam(1).chromosome,... 
      u1, u2, drange, margin);    
otherwise 
   error('>>> This is not a valid initialization case <<<') 
end 
 
 
 
% ************************* This is the main loop *************************  
% experiment.generation_max = 3; 
 
% Creates a handle for the figure 
 
switch movieswitch 
 case 0 
    
   case 1 
  movie_fig = figure; 
 otherwise 
      error('>>> This is not a valid movie option <<<') 
 
end 
 
for gen = 1:experiment.generation_max  % Need to expand this for the total 
number of generations 
 
    
% ******************* Create team policies ******************* 
% This computes the team policy for the subteams (mixed teams) 
 
for i = 1:experiment.sub_team_size:sub_size 
 
subteam(gen).team_policy((i+experiment.sub_team_size-
1)/experiment.sub_team_size,:) = ... 
   team_policy(subteam(gen).chromosome(i:i+experiment.sub_team_size-
1,1:chrom_len),... 
   subteam(gen).rank(i:i+experiment.sub_team_size-1))-48;    
end 
 
 
%disp('Return from Sub-routine') 
%subteam(1).team_policy 
 
% This computes the team policy for both corporations 
for i = 1:experiment.sub_team_size:comp_size 
 
popa(gen).team_policy((i+experiment.sub_team_size-
1)/experiment.sub_team_size,:) = ... 
   team_policy(popa(gen).chromosome(i:i+experiment.sub_team_size-
1,1:chrom_len),... 
   popa(gen).rank(i:i+experiment.sub_team_size-1))-48;    
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popb(gen).team_policy((i+experiment.sub_team_size-
1)/experiment.sub_team_size,:) = ... 
   team_policy(popb(gen).chromosome(i:i+experiment.sub_team_size-
1,1:chrom_len),... 
   popb(gen).rank(i:i+experiment.sub_team_size-1))-48;    
end 
 
 
% ******************* Evaluate Team Fitnesses ******************* 
 
% Convert policies to actual numbers 
% Contains team policies in this order: popa, popb, & subteam 
%policy_vec = [bin2dec(char(popa(1).team_policy+48));... 
%      bin2dec(char(popb(1).team_policy+48));... 
%  bin2dec(char(subteam(1).team_policy+48))]'; 
%policy_vec = (policy_vec/2^(chrom_len)); 
%policy_vec = policy_vec*diff(experiment.domain) + experiment.domain(1); 
    
    
policy_veca = [bin2dec(char(popa(gen).team_policy+48))]'; 
policy_vecb = [bin2dec(char(popb(gen).team_policy+48))]'; 
policy_vecs = [bin2dec(char(subteam(gen).team_policy+48))]'; 
 
policy_veca = (policy_veca/base^(chrom_len)); 
policy_vecb = (policy_vecb/base^(chrom_len)); 
policy_vecs = (policy_vecs/base^(chrom_len)); 
 
policy_veca = policy_veca*diff(experiment.domain) + experiment.domain(1); 
policy_vecb = policy_vecb*diff(experiment.domain) + experiment.domain(1); 
policy_vecs = policy_vecs*diff(experiment.domain) + experiment.domain(1); 
 
% This is to capture the histogram 
tpolicy = [policy_veca policy_vecb policy_vecs]; 
 % subplot(211) 
  
 tpol(gen,:) = tpolicy; 
 avg_teamp(gen) = mean(tpolicy); 
 var_teamp(gen) = var(tpolicy); 
  
 avga(gen) = mean(policy_veca); 
 vara(gen) = var(policy_veca); 
  
 avgb(gen) = mean(policy_vecb); 
 varb(gen) = var(policy_vecb); 
  
 avgs(gen) = mean(policy_vecs); 
 vars(gen) = var(policy_vecs); 
  
  
 switch movieswitch 
 case 0 
     
 case 1 
     
 % Creating a movie of the histogram 
 [n(gen,:), bincen(gen,:)] = hist(tpolicy); 
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 %subplot(221) 
 hist(tpolicy); 
   title('Histogram For All Teams') 
   axis([experiment.domain(1) experiment.domain(2) 0 max(n(gen,:))+2]) 
 xlabel('Team Policy (Number of Programmers)') 
 ylabel('Number of Teams With Policy') 
 grid; 
 
 figure(movie_fig); 
 m(gen) = getframe; 
 
 %subplot(222) 
 %hist(policy_veca); 
 %title('Corp A Teams') 
 %grid; 
 
 %ma(gen) = getframe; 
 
 %subplot(223) 
 %hist(policy_vecb); 
 %title('Corp B Teams') 
 %grid; 
 
 %mb(gen) = getframe; 
 
 %subplot(224) 
 %hist(policy_vecs); 
 %title('Mixed Teams') 
 %grid; 
 
 %ms(gen) = getframe; 
 
 % subplot(212) 
 % hist(policy_vec) 
 
 otherwise 
      error('>>> This is not a valid movie option <<<') 
 
end 
 
 
 
% This returns the fitness of each team policy 
fit_a = net_fitness(policy_veca); 
fit_b = net_fitness(policy_vecb); 
fit_s = net_fitness(policy_vecs); 
 
% *** This is used to turn on ranking *** 
%if gen <= 20 
% % Use net_promotion2 for non-promotion 
% [prom_vala, popa(gen).team_ranking] = net_promotion2(fit_a); 
% [prom_valb, popb(gen).team_ranking] = net_promotion2(fit_b); 
% [prom_vals, subteam(gen).team_ranking] = net_promotion2(fit_s); 
%else 
% % Use net_promotion to allow for promotion of individuals 
% [prom_vala, popa(gen).team_ranking] = net_promotion(fit_a); 
% [prom_valb, popb(gen).team_ranking] = net_promotion(fit_b); 
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% [prom_vals, subteam(gen).team_ranking] = net_promotion(fit_s); 
%end 
 
% *** Promotion is calculated here *** 
 
switch prom_mode 
 case 1 
  disp('Case 1 - Separate team evaluation between corporations');    
  [prom_vala, popa(gen).team_ranking] = net_promotion(fit_a); 
  [prom_valb, popb(gen).team_ranking] = net_promotion(fit_b); 
  [prom_vals, subteam(gen).team_ranking] = net_promotion(fit_s); 
 
  % These variables are for monitoring purposes 
  m_vala(:,gen) = prom_vala; 
  m_valb(:,gen) = prom_valb; 
      m_vals(:,gen) = prom_vals; 
       
   case 2 
      disp('Case 2 - All teams are evaluated together');   
      alength = length(fit_a); 
      blength = length(fit_b); 
      slength = length(fit_s); 
      fit_all = [fit_a; fit_b; fit_s]; 
      [prom_val, team_rankings] = net_promotion(fit_all); 
       
      prom_vala = prom_val(1:alength); 
      prom_valb = prom_val(alength+1:alength+blength); 
      prom_vals = prom_val(alength+blength+1:alength+blength+slength); 
       
      popa(gen).team_ranking = team_rankings(1:alength); 
      popb(gen).team_ranking = team_rankings(alength+1:blength); 
      subteam(gen).team_ranking = team_rankings(... 
         alength+blength+1:alength+blength+slength); 
       
      %team_rankings 
      %prom_vala' 
      %prom_valb' 
      %prom_vals' 
      %prom_val' 
      %pause;      
       
  % These variables are for monitoring purposes 
  m_vala(:,gen) = prom_vala; 
  m_valb(:,gen) = prom_valb; 
      m_vals(:,gen) = prom_vals; 
       
 case 3 
  disp('Case 3 - Separate team evaluation between corporations but no 
promotion');    
  [prom_vala, popa(gen).team_ranking] = net_promotion2(fit_a); 
  [prom_valb, popb(gen).team_ranking] = net_promotion2(fit_b); 
  [prom_vals, subteam(gen).team_ranking] = net_promotion2(fit_s); 
 
  % These variables are for monitoring purposes 
  m_vala(:,gen) = prom_vala; 
  m_valb(:,gen) = prom_valb; 
      m_vals(:,gen) = prom_vals;       



  

  87  

       
   case 4 
       
      disp('Case 4 - All teams evaluated together but no promotion');   
      alength = length(fit_a); 
      blength = length(fit_b); 
      slength = length(fit_s); 
      fit_all = [fit_a; fit_b; fit_s]; 
      [prom_val, team_rankings] = net_promotion2(fit_all); 
       
      prom_vala = prom_val(1:alength); 
      prom_valb = prom_val(alength+1:alength+blength); 
      prom_vals = prom_val(alength+blength+1:alength+blength+slength); 
       
      popa(gen).team_ranking = team_rankings(1:alength); 
      popb(gen).team_ranking = team_rankings(alength+1:blength); 
      subteam(gen).team_ranking = team_rankings(... 
         alength+blength+1:alength+blength+slength); 
       
      %team_rankings 
      %prom_vala' 
      %prom_valb' 
      %prom_vals' 
      %prom_val' 
      %pause;      
       
  % These variables are for monitoring purposes 
  m_vala(:,gen) = prom_vala; 
  m_valb(:,gen) = prom_valb; 
      m_vals(:,gen) = prom_vals;      
       
   case 5 
       
      % *** This is used to turn on ranking.  Companies are ranked 
separately. *** 
       
      disp('Case 5 - Promotion is turned on with a delay.  Companies are 
ranked separately');  
      if gen <= step 
         % Use net_promotion2 for non-promotion 
         [prom_vala, popa(gen).team_ranking] = net_promotion2(fit_a); 
         [prom_valb, popb(gen).team_ranking] = net_promotion2(fit_b); 
         [prom_vals, subteam(gen).team_ranking] = net_promotion2(fit_s); 
      else 
         disp('Promotion is enabled') 
         % Use net_promotion to allow for promotion of individuals 
         [prom_vala, popa(gen).team_ranking] = net_promotion(fit_a); 
         [prom_valb, popb(gen).team_ranking] = net_promotion(fit_b); 
         [prom_vals, subteam(gen).team_ranking] = net_promotion(fit_s); 
      end 
       
   % These variables are for monitoring purposes 
  m_vala(:,gen) = prom_vala; 
  m_valb(:,gen) = prom_valb; 
      m_vals(:,gen) = prom_vals;      
       
   case 6 
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      % *** This is used to turn on ranking.  Companies are ranked together. 
*** 
       
      disp('Case 6 - Promotion is turned on with a delay.  Companies are 
ranked together');  
      if gen <= step 
          
         % Use net_promotion2 for non-promotion 
         alength = length(fit_a);  
         blength = length(fit_b);  
         slength = length(fit_s); 
          
         fit_all = [fit_a; fit_b; fit_s]; 
          
         [prom_val, team_rankings] = net_promotion2(fit_all);   
          
         prom_vala = prom_val(1:alength); 
         prom_valb = prom_val(alength+1:alength+blength); 
         prom_vals = prom_val(alength+blength+1:alength+blength+slength); 
         popa(gen).team_ranking = team_rankings(1:alength); 
          
         popb(gen).team_ranking = team_rankings(alength+1:blength); 
         subteam(gen).team_ranking = team_rankings(... 
            alength+blength+1:alength+blength+slength); 
          
      else 
         disp('Promotion is enabled') 
         % Use net_promotion to allow for promotion of individuals 
         alength = length(fit_a);  
         blength = length(fit_b);  
         slength = length(fit_s); 
          
         fit_all = [fit_a; fit_b; fit_s]; 
          
         [prom_val, team_rankings] = net_promotion(fit_all);   
          
         prom_vala = prom_val(1:alength); 
         prom_valb = prom_val(alength+1:alength+blength); 
         prom_vals = prom_val(alength+blength+1:alength+blength+slength); 
         popa(gen).team_ranking = team_rankings(1:alength); 
          
         popb(gen).team_ranking = team_rankings(alength+1:blength); 
         subteam(gen).team_ranking = team_rankings(... 
            alength+blength+1:alength+blength+slength); 
      end 
       
   % These variables are for monitoring purposes 
  m_vala(:,gen) = prom_vala; 
  m_valb(:,gen) = prom_valb; 
      m_vals(:,gen) = prom_vals;        
        
   otherwise 
      error('>>> This is not a valid promotion case <<<') 
 
   end 
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for i = 1:experiment.sub_team_size:comp_size 
   % We are taking the promotion values for the teams 
   % and then multiplying them to the individual's rank on the teams.    
   % Stores the current generation rank in variable arank, because the new 
ranking is  
   % computed in this current generation and overwrites the old information.  
The 
   % new ranking is passed over to the net_shuffler routine and is moved with 
the 
   % individual to the new team.  After the shuffle, the old ranking 
information 
   % is placed back into the current generation.   
 
   arank(i:(i+experiment.sub_team_size-1),1) = 
popa(gen).rank(i:(i+experiment.sub_team_size-1)); 
   popa(gen).rank(i:(i+experiment.sub_team_size-1)) = ... 
      popa(gen).rank(i:(i+experiment.sub_team_size-1))*... 
      prom_vala((i+experiment.sub_team_size-1)/experiment.sub_team_size); 
    
   brank(i:(i+experiment.sub_team_size-1),1) = 
popb(gen).rank(i:(i+experiment.sub_team_size-1)); 
   popb(gen).rank(i:(i+experiment.sub_team_size-1)) = ... 
      popb(gen).rank(i:(i+experiment.sub_team_size-1))*... 
      prom_valb((i+experiment.sub_team_size-1)/experiment.sub_team_size);     
    
end 
 
%uk = 4; 
%monitor(gen,:) = [prom_vala(uk) popa(gen).rank(uk*experiment.sub_team_size) 
popa(gen+1).rank(uk*experiment.sub_team_size)]; 
 
for i = 1:experiment.sub_team_size:sub_size 
   % We are taking the promotion values for the teams 
   % and then multiplying them to the individual's rank on the teams.    
   % Stores the current generation rank in variable arank, because the new 
ranking is  
   % computed in this current generation and overwrites the old information.  
The 
   % new ranking is passed over to the net_shuffler routine and is moved with 
the 
   % individual to the new team.  After the shuffle, the old ranking 
information 
   % is placed back into the current generation. 
    
   srank(i:(i+experiment.sub_team_size-1),1) = 
subteam(gen).rank(i:(i+experiment.sub_team_size-1)); 
   subteam(gen).rank(i:(i+experiment.sub_team_size-1)) = ... 
      subteam(gen).rank(i:(i+experiment.sub_team_size-1))*... 
      prom_vals((i+experiment.sub_team_size-1)/experiment.sub_team_size); 
end 
 
 
% This section randomly assigns individuals to new teams, using the routine 
% net_shuffler2.  Afterwards,  
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[popa(gen+1),popb(gen+1),subteam(gen+1)] = 
net_shuffler2(popa(gen),popb(gen),subteam(gen)); 
 
 
for i = 1:experiment.sub_team_size:sub_size   
   subteam(gen).rank(i:(i+experiment.sub_team_size-1)) = ... 
      srank(i:(i+experiment.sub_team_size-1),1); 
end 
 
for i = 1:experiment.sub_team_size:comp_size 
   popa(gen).rank(i:(i+experiment.sub_team_size-1)) = 
arank(i:(i+experiment.sub_team_size-1),1); 
   popb(gen).rank(i:(i+experiment.sub_team_size-1)) = 
brank(i:(i+experiment.sub_team_size-1),1); 
end 
 
 
% ********** Learning Procedure ********** 
 
switch learning 
case 1 
    
    disp('Case 1 - No Learning') 
    
case 2 
    
   disp('Case 2 - Learning in all teams') 
   % Learning in Popa 
   [popa(gen+1)] = net_learning1(popa(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
      experiment.p_mutation, experiment.p_network); 
   % Learning in Popb 
   [popb(gen+1)] = net_learning1(popb(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
      experiment.p_mutation, experiment.p_network); 
   % Learning in Subteams (Mixed teams) 
   [subteam(gen+1)] = net_learning1(subteam(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
      experiment.p_mutation, experiment.p_network); 
    
    
case 3 
   % Mixed team learning only 
   disp('Case 3 - Learning in mixed teams only') 
   [subteam(gen+1)] = net_learning1(subteam(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
      experiment.p_mutation, experiment.p_network); 
 
case 4 
   disp('Case 4 - Learning in all teams after a delay') 
    
   if gen > stepl 
      disp('Learning Enabled') 
    % Learning in Popa 
    [popa(gen+1)] = net_learning1(popa(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
       experiment.p_mutation, experiment.p_network); 
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    % Learning in Popb 
    [popb(gen+1)] = net_learning1(popb(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
       experiment.p_mutation, experiment.p_network); 
    % Learning in Subteams (Mixed teams) 
    [subteam(gen+1)] = 
net_learning1(subteam(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
         experiment.p_mutation, experiment.p_network);    
   end 
    
case 5 
    
   disp('Case 5 - Learning in mixed teams after a delay') 
   if gen > stepl 
      disp('Learning Enabled') 
      % Mixed team learning only 
    [subteam(gen+1)] = 
net_learning1(subteam(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
         experiment.p_mutation, experiment.p_network); 
   end 
    
case 6 
   disp('Case 6 - Learning and using the network') 
   [popa(gen+1), popb(gen+1), subteam(gen+1)] = net_learning(... 
      popa(gen+1), popb(gen+1), subteam(gen+1), experiment.sub_team_size,... 
      experiment.p_crossover, experiment.p_mutation, experiment.p_network,1); 
   [popb(gen+1), popa(gen+1), subteam(gen+1)] = net_learning(... 
      popb(gen+1), popa(gen+1), subteam(gen+1), experiment.sub_team_size,... 
      experiment.p_crossover, experiment.p_mutation, experiment.p_network,0);   
    
case 7 
   disp('Case 7 - Learning and using the network after a delay') 
    
   if (gen > stepl) 
      disp('Learning and Network is Enabled') 
   [popa(gen+1), popb(gen+1), subteam(gen+1)] = net_learning(... 
      popa(gen+1), popb(gen+1), subteam(gen+1), experiment.sub_team_size,... 
      experiment.p_crossover, experiment.p_mutation, experiment.p_network,1); 
   [popb(gen+1), popa(gen+1), subteam(gen+1)] = net_learning(... 
      popb(gen+1), popa(gen+1), subteam(gen+1), experiment.sub_team_size,... 
      experiment.p_crossover, experiment.p_mutation, experiment.p_network,0);      
 end 
 
otherwise 
      error('>>> This is not a valid promotion case <<<') 
 
end 
 
 
disp('This is generation: ') 
gen 
 
end % End of generation for loop 
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avg_fig = figure; 
figure(avg_fig); 
 
subplot(221) 
plot(1:experiment.generation_max,avg_teamp,'r-
',1:experiment.generation_max,var_teamp,'b:') 
xlabel('Generations') 
ylabel('Average - Red & Variance - Blue') 
title('Population Avg & Var over Gens') 
grid; 
 
subplot(222) 
plot(1:experiment.generation_max,avga,'r-
',1:experiment.generation_max,vara,'b:') 
xlabel('Generations') 
ylabel('Average - Red & Variance - Blue') 
title('Population A Avg & Var over Gens') 
grid; 
 
subplot(223) 
plot(1:experiment.generation_max,avgb,'r-
',1:experiment.generation_max,varb,'b:') 
xlabel('Generations') 
ylabel('Average - Red & Variance - Blue') 
title('Population B Avg & Var over Gens') 
grid; 
 
subplot(224) 
plot(1:experiment.generation_max,avgs,'r-
',1:experiment.generation_max,vars,'b:') 
xlabel('Generations') 
ylabel('Average - Red & Variance - Blue') 
title('Population Mix Avg & Var over Gens') 
grid; 
 
 
disp('Simulation Time') 
ftimer=cputime-timer % Finished 
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10.2.7 Network1_sim.m – Core of Fully Merged Company Simulator 
 
%  Raymond Ro, 2001    
%  Single company simulator 
 
   disp('*************** Single Company Simulator ******************') 
    
   
    
   % ***************************************************       
   % **********   Sets the promotion mode.   ********** 
   % Mode   Desc. 
   % ----   ----- 
   %  1    No promotional value is used (no weighting). 
   % 
   %  2    Promotion is used (weighting). 
   % 
   %  3    Promotion (weighting) is turned on after a specified number 
of generations.   
   %     The variable step is used to specify the number of 
generations w/o weighting.   
   % 
   %  4    Demotion (weighting) is turned on after a specified number 
of generations.   
   %     The variable step is used to specify the number of 
generations w/o weighting.     
    
   prom_mode = 3; 
   step = 10; 
   % ***************************************************    
    
    
    
   % **********   Sets the Learning mode.   ********** 
   % Mode   Desc. 
   % ----   ----- 
   %  1    No learning occurs. 
   %   
   %  2    Learning in all teams occur. 
   %   
   %  3    Learning in all teams occur after a certain time.   
   %     Variable stepl is used to indicate when learning is turned 
on. 
    
 learning = 3; 
   stepl = 40; 
   % ***************************************************    
    
   % **********   Sets the Histogram movie mode.   ********** 
   % Mode   Desc. 
   % ----   -----  
   %  0    No movie.  
   % 
   %  1    Movieswitch is set to 1 and a movie is recorded. 
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 movieswitch = 1; 
 % ***************************************************       
 
 
    
% ********** Dimensional Resolution ********** 
 
% This section calculates the number of bits needed for each gene in the 
chromosome. 
locus=zeros(size(experiment.domain,1),3);  
for dim=1:size(locus,1) % 1 to length of locus (rows) 
   locus(dim,3)=ceil(log2(abs(experiment.domain(dim,1)-
experiment.domain(dim,2))/experiment.epsilon(dim))); 
end 
 
% Now we start to build the String loci definition 
%  (Starting bit | Stopping bit | Segment length) for each gene 
locus(1,1)=1; 
locus(1,2)=locus(1,3); 
for dim=2:size(locus,1) 
   locus(dim,1)=locus(dim-1,2)+1; 
   locus(dim,2)=locus(dim,1)+locus(dim,3)-1; 
end 
fprintf('String loci (left, right, and lengths) per dimension:\n'); 
disp(locus); 
 
timer=cputime; % start 
 
 
% Initialize populations 
 
generation = 1; 
 
chrom_len = locus(end,2); 
comp_size = experiment.corp_teama*experiment.sub_team_size; 
 
 
 
 
   % **********   Sets the initial population policy distribution.   
********** 
   % Mode   Desc. 
   % ----   ----- 
   %  1    Creates policies based on a uniform distribution over the 
whole 
   %     dynamic range. 
   %   
   %  2    Creates polices based on a uniform distribution.  The 
company will 
   %      have a mean of u1. Margin specifies how wide the 
distribution  
   %     should spread around the mean. 
    
    
   distribution = 1; 
   base = 2; 
   drange = base^chrom_len;    
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   u1 = 2; 
   margin = 1;    
    
    
    
   % Index (Generations) 
 
% This allocates memory ahead of time for the various population attributes 
 
for generation=1:experiment.generation_max+1 
   popa(generation).chromosome = zeros(comp_size,chrom_len); 
   popa(generation).team_id = zeros(comp_size,1); 
   popa(generation).id = zeros(comp_size,1);  
   popa(generation).rank = zeros(comp_size,1);   
   popa(generation).network = zeros(comp_size,experiment.net_size); 
   % which pop a individual in the network is from  1 - other population 
   % Descibes the company an individual is from 
   popa(generation).net_team = zeros(comp_size,experiment.net_size);  
   popa(generation).team_policy = zeros(experiment.corp_teama,chrom_len); 
   popa(generation).team_ranking = zeros(experiment.corp_teama,1); 
   % For Debugging purposes. 
   popa(generation).xover = zeros(comp_size,1);    
end 
 
 
 
 
%  Create an initial value for each individual 
popa(1).rank = ones(comp_size,1); 
 
%  Assign ID's to all individuals 
popa(1).id(1:comp_size) = 1:comp_size; 
 
 
%  Assign each member to a team 
 
%  This is just picking a batch of individuals and then assigning them to a 
team 
for team = 1:experiment.corp_teama 
   popa(1).team_id(experiment.sub_team_size*team-
experiment.sub_team_size+1:team*experiment.sub_team_size)=team*... 
      ones(experiment.sub_team_size,1); 
end 
 
 
%  Create an initial value for each individual 
 
switch distribution 
case 1 
   disp('Using a uniform distribution to create policies') 
 popa(1).chromosome = ceil(rand(comp_size,locus(end,2))*2)-1; 
case 2 
   disp('Using a uniform distribution to create a biased policy around a 
mean') 
   [popa(1).chromosome] = bias_policy_one(popa(1).chromosome, u1, drange, 
margin);    
otherwise 
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   error('>>> This is not a valid initialization case <<<') 
end 
 
 
 
% ************************* This is the main loop *************************  
 
% Creates a handle for the figure 
 
 
switch movieswitch 
 case 0 
    
   case 1 
  movie_fig = figure; 
 otherwise 
      error('>>> This is not a valid movie option <<<') 
 
end 
 
 
for gen = 1:experiment.generation_max  % Need to expand this for the total 
number of generations 
 
    
% ******************* Create team policies ******************* 
% This computes the team policy for the corporation 
for i = 1:experiment.sub_team_size:comp_size 
 
popa(gen).team_policy((i+experiment.sub_team_size-
1)/experiment.sub_team_size,:) = ... 
   team_policy(popa(gen).chromosome(i:i+experiment.sub_team_size-
1,1:chrom_len),... 
   popa(gen).rank(i:i+experiment.sub_team_size-1))-48;    
 
end 
 
 
% ******************* Evaluate Team Fitnesses ******************* 
    
policy_veca = [bin2dec(char(popa(gen).team_policy+48))]'; 
policy_veca = (policy_veca/base^(chrom_len)); 
policy_veca = policy_veca*diff(experiment.domain) + experiment.domain(1); 
 
% This is to capture the histogram 
tpolicy = [policy_veca]; 
 % subplot(211) 
  
 tpol(gen,:) = tpolicy; 
 avg_teamp(gen) = mean(tpolicy); 
 var_teamp(gen) = var(tpolicy); 
  
 
 
switch movieswitch 
 case 0 
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   case 1 
  % Creating a movie of the histogram 
  [n(gen,:), bincen(gen,:)] = hist(tpolicy); 
      hist(tpolicy); 
      axis([experiment.domain(1) experiment.domain(2) 0 max(n(gen,:))+2]) 
  title('Histogram For All Teams') 
  xlabel('Team Policy (Number of Programmers)') 
  ylabel('Number of Teams With Policy') 
  grid; 
 
  figure(movie_fig); 
  m(gen) = getframe; 
 otherwise 
      error('>>> This is not a valid movie option <<<') 
 
end 
 
% This returns the fitness of each team policy 
fit_a = net_fitness(policy_veca); 
 
 
% *** Promotion is calculated here *** 
 
switch prom_mode 
 case 1 
  disp('Case 1 - No promotion used');    
  [prom_vala, popa(gen).team_ranking] = net_promotion2(fit_a); 
 
 
  % This variable are for monitoring purposes 
  m_vala(:,gen) = prom_vala; 
      
   case 2 
      disp('Case 2 - Promotion used');   
       
  [prom_vala, popa(gen).team_ranking] = net_promotion(fit_a); 
 
 
  % This variable are for monitoring purposes 
      m_vala(:,gen) = prom_vala; 
       
             
 case 3 
       
      % *** This is used to turn on ranking. *** 
       
      disp('Case 3 - Promotion is turned on with a delay.');  
      if gen <= step 
         % Use net_promotion2 for non-promotion 
         [prom_vala, popa(gen).team_ranking] = net_promotion2(fit_a); 
      else 
         disp('Promotion enabled') 
         % Use net_promotion to allow for promotion of individuals 
         [prom_vala, popa(gen).team_ranking] = net_promotion(fit_a); 
      end 
       
   % These variables are for monitoring purposes 
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       m_vala(:,gen) = prom_vala;     
        
 case 4 
       
      % *** This is used to turn on ranking. *** 
       
      disp('Case 4 - Demotion is turned on with a delay.');  
      if gen <= step 
         % Use net_promotion2 for non-promotion 
         [prom_vala, popa(gen).team_ranking] = net_promotion2(fit_a); 
      else 
         disp('Demotion enabled') 
         % Use net_promotion to allow for promotion of individuals 
         [prom_vala, popa(gen).team_ranking] = net_demotion(fit_a); 
      end 
       
   % These variables are for monitoring purposes 
       m_vala(:,gen) = prom_vala;  
        
   otherwise 
      error('>>> This is not a valid promotion case <<<') 
 
   end 
    
 
for i = 1:experiment.sub_team_size:comp_size 
   % We are taking the promotion values for the teams 
   % and then multiplying them to the individual's rank on the teams.    
   % Stores the current generation rank in variable arank, because the new 
ranking is  
   % computed in this current generation and overwrites the old information.  
The 
   % new ranking is passed over to the net_shuffler routine and is moved with 
the 
   % individual to the new team.  After the shuffle, the old ranking 
information 
   % is placed back into the current generation. 
    
   arank(i:(i+experiment.sub_team_size-1),1) = 
popa(gen).rank(i:(i+experiment.sub_team_size-1)); 
   popa(gen).rank(i:(i+experiment.sub_team_size-1)) = ... 
      popa(gen).rank(i:(i+experiment.sub_team_size-1))*... 
      prom_vala((i+experiment.sub_team_size-1)/experiment.sub_team_size); 
    
end 
 
 
[popa(gen+1)] = net_shuffler(popa(gen)); 
 
% Copies proper ranking back to the current generation 
for i = 1:experiment.sub_team_size:comp_size 
   popa(gen).rank(i:(i+experiment.sub_team_size-1)) = 
arank(i:(i+experiment.sub_team_size-1),1); 
end 
 
 
% ********** Learning Procedure ********** 
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switch learning 
case 1 
    
    disp('Case 1 - No Learning') 
    
case 2 
    
   disp('Case 2 - Learning in all teams') 
   % Learning in Popa 
   [popa(gen+1)] = net_learning1(popa(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
      experiment.p_mutation, experiment.p_network); 
    
case 3 
   disp('Case 3 - Learning in all teams after a delay') 
    
   if gen > stepl 
      disp('Learning Enabled') 
    % Learning in Popa 
    [popa(gen+1)] = net_learning1(popa(gen+1),experiment.sub_team_size, 
experiment.p_crossover,... 
       experiment.p_mutation, experiment.p_network); 
   end 
    
otherwise 
      error('>>> This is not a valid promotion case <<<') 
 
end 
 
 
disp('This is generation: ') 
gen 
 
end % End of generation for loop 
 
 
avg_fig = figure; 
figure(avg_fig); 
 
plot(1:experiment.generation_max,avg_teamp,'r-
',1:experiment.generation_max,var_teamp,'b:') 
xlabel('Generations') 
ylabel('Average - Red & Variance - Blue') 
title('Population Avg & Var over Gens') 
axis([1 experiment.generation_max 0 max(avg_teamp)+2]) 
grid; 
 
disp('Simulation Time') 
ftimer=cputime-timer % Finished 
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10.2.8 Team_policy.m 
 
 
 
function [chromosome] = team_policy(team,trank) 
% This creates the net team policy, given a team. 
 
%temp = bin2dec(char(48+team)) 
%trank(1:length(trank)) = 1:length(trank) 
%wsump = sum((bin2dec(char(48+team)).*trank)) 
%sump = sum(trank) 
 
team_pol = round(sum((bin2dec(char(48+team)).*trank))/sum(trank)); 
chromosome = dec2bin(team_pol,length(team(1,:))); 
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10.2.9 Rip.m 
 
 
function [a, b] = rip(subt) 
% rip.m subroutine 
% This subroutine is used to break-up the mixed subteam group 
% into the popa and popb group.  These subgroups are then returned 
% to be incorporated with the populations for the A and B corporations. 
 
%disp('*** This is the length in the rip subroutine ***') 
 
len = length(subt.chromosome(:,1)); 
 
%disp('*** Subteam ID info ***') 
%subt.corp_id 
 
cnta = 1; 
cntb = 1; 
for i = 1:len 
    
   if subt.corp_id(i) == 97 
      a.chromosome(cnta,:) = subt.chromosome(i,:); 
      a.id(cnta) = subt.id(i); 
      a.rank(cnta) = subt.rank(i); 
      a.network(cnta,:) = subt.network(i,:); 
      % Debug purposes 
      a.net_team(cnta,:) = subt.net_team(i,:); 
      a.xover(cnta,:) = subt.xover(i,:); 
      cnta = cnta + 1; 
   else 
      b.chromosome(cntb,:) = subt.chromosome(i,:); 
      b.id(cntb) = subt.id(i); 
      b.rank(cntb) = subt.rank(i); 
      b.network(cntb,:) = subt.network(i,:); 
      % Debug purposes 
      b.net_team(cntb,:) = subt.net_team(i,:); 
      b.xover(cntb,:) = subt.xover(i,:); 
      cntb = cntb + 1;    
   end 
    
end 
 
% Debug stuff 
%disp('*** Size of pop A ***') 
%size(a.chromosome(:,1)) 
%disp('*** Size of pop B ***') 
%size(b.chromosome(:,1)) 
 



  

  102  

10.2.10 Net_shuffler2.m 
 
function [popa, popb, subt] = net_shuffler2(popa, popb, subt) 
% Only the current generation is passed over. 
 
 
lenpa = length(popa.chromosome(:,1)); 
lenpb = length(popb.chromosome(:,1)); 
 
lens = length(subt.chromosome(:,1)); 
 
% This rips the combined subteam apart 
[suba, subb] = rip(subt); 
sublen = length(suba.chromosome(:,1)); 
 
% Now we combine the subteam members with the rest of the population 
[tpopa] = combine(popa, suba); 
[tpopb] = combine(popb, subb); 
 
 
range = length(tpopa.chromosome(:,1)); 
 
% Now we swap all of the individuals 
for i = 1:range 
   rndposa = ceil(range*rand(1,1)); 
   rndposb = ceil(range*rand(1,1)); 
    
   tpopa = swap(tpopa, i, rndposa); 
   tpopb = swap(tpopb, i, rndposb);    
end 
 
% We split the new subteam members from the population 
[tmpa,suba] = split(tpopa, lenpa, sublen); 
[tmpb,subb] = split(tpopb, lenpb, sublen); 
 
   % Now we combine the subteam members 
   temp = sew(suba,subb); 
    
   % Add attributes that have changed back to the populations 
 subt.chromosome = temp.chromosome; 
 subt.id = temp.id; 
 subt.rank = temp.rank; 
 subt.network = temp.network; 
   subt.net_team = temp.net_team; 
   subt.xover = temp.xover; 
    
   popa.chromosome = tmpa.chromosome; 
   popa.id = tmpa.id; 
   popa.rank = tmpa.rank; 
   popa.network = tmpa.network; 
   popa.net_team = tmpa.net_team; 
   popa.xover = tmpa.xover; 
    
   popb.chromosome = tmpb.chromosome; 
   popb.id = tmpb.id; 
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   popb.rank = tmpb.rank; 
   popb.network = tmpb.network;   
   popb.net_team = tmpb.net_team; 
   popb.xover = tmpb.xover; 
    
   % Add in sew routine and then recombine routine, or put recombine into sew 
and pass over 
   % the subteam variable. 
    
 
popa; 
popb; 
subt; 
 



  

  104  

10.2.11 Combine.m 
 
function [tpop] = combine(pop, sub) 
 
lenp = length(pop.chromosome(:,1)); 
lens = length(sub.chromosome(:,1)); 
tpop = pop; 
 
for i = 1:lens 
   tpop.chromosome(i+lenp,:) = sub.chromosome(i,:); 
   tpop.id(i+lenp) = sub.id(i); 
   tpop.rank(i+lenp) = sub.rank(i); 
   tpop.network(i+lenp,:) = sub.network(i,:); 
   % Debug purposes 
   tpop.net_team(i+lenp,:) = sub.net_team(i,:); 
   tpop.xover(i+lenp,:) = sub.xover(i,:); 
end 
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10.2.12 Swap.m 
 
function [pop] = swap(pop, p1, p2) 
%  Will swap 2 individuals given their location within the population 
 
%size(pop.chromosome) 
%p1 
%p2 
%pause 
 
temp.chromosome(1,:) = pop.chromosome(p2,:); 
temp.id = pop.id(p2); 
temp.rank = pop.rank(p2); 
temp.network(1,:) = pop.network(p2,:); 
% Debug terms 
temp.net_team(1,:) = pop.net_team(p2,:); 
temp.xover(1,:) = pop.xover(p2,:); 
 
pop.chromosome(p2,:) = pop.chromosome(p1,:); 
pop.id(p2) = pop.id(p1); 
pop.rank(p2) = pop.rank(p1); 
pop.network(p2,:) = pop.network(p1,:); 
% Debug 
pop.net_team(p2,:) = pop.net_team(p1,:); 
pop.xover(p2,:) = pop.xover(p1,:); 
 
pop.chromosome(p1,:) = temp.chromosome(1,:); 
pop.id(p1) = temp.id; 
pop.rank(p1) = temp.rank; 
pop.network(p1,:) = temp.network(1,:); 
% Debug 
pop.net_team(p1,:) = temp.net_team(1,:); 
pop.xover(p1,:) = temp.xover(1,:); 
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10.2.13 Split.m 
 
function [pop, sub] = split(tpop, lenp, lens) 
% This splits tpop into the sub pop and pop components 
 
% disp('**************** SPLIT FUNCTION *****************') 
 
 
pop.chromosome(1:lenp,:) = tpop.chromosome(1:lenp,:); 
pop.id(1:lenp,1) = tpop.id(1:lenp); 
pop.rank(1:lenp,1) = tpop.rank(1:lenp); 
pop.network(1:lenp,:) = tpop.network(1:lenp,:); 
% Debug purposes 
pop.net_team(1:lenp,:) = tpop.network(1:lenp,:); 
pop.xover(1:lenp,:) = tpop.xover(1:lenp,:); 
%size(tpop.chromosome) 
%lenp+1 
%lenp 
%lens 
 
 
sub.chromosome(1:lens,:) = tpop.chromosome(lenp+1:lenp+lens,:); 
sub.id(1:lens,1) = tpop.id(lenp+1:lenp+lens); 
sub.rank(1:lens,1) = tpop.rank(lenp+1:lenp+lens); 
sub.network(1:lens,:) = tpop.network(lenp+1:lenp+lens,:); 
% Debug purposes 
sub.net_team(1:lens,:) = tpop.net_team(lenp+1:lenp+lens,:); 
sub.xover(1:lens,:) = tpop.xover(lenp+1:lenp+lens,:); 
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