
This article was downloaded by: [71.145.210.72] On: 23 July 2018, At: 08:13
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Transportation Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Simulation-Based Optimization Algorithm for Dynamic
Large-Scale Urban Transportation Problems
Linsen Chong, Carolina Osorio

To cite this article:
Linsen Chong, Carolina Osorio (2018) A Simulation-Based Optimization Algorithm for Dynamic Large-Scale Urban
Transportation Problems. Transportation Science 52(3):637-656. https://doi.org/10.1287/trsc.2016.0717

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2017, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/trsc.2016.0717
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org


TRANSPORTATION SCIENCE
Vol. 52, No. 3, May–June 2018, pp. 637–656

http://pubsonline.informs.org/journal/trsc/ ISSN 0041-1655 (print), ISSN 1526-5447 (online)

A Simulation-Based Optimization Algorithm for Dynamic
Large-Scale Urban Transportation Problems
Linsen Chong,a Carolina Osorioa

a
Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Contact: linsenc@mit.edu (LC); osorioc@mit.edu (CO)

Received: June 26, 2015
Revised: April 26, 2016
Accepted: July 14, 2016
Published Online in Articles in Advance:
July 19, 2017

https://doi.org/10.1287/trsc.2016.0717

Copyright: © 2017 INFORMS

Abstract. This paper addresses large-scale urban transportation optimization problems

with time-dependent continuous decision variables, a stochastic simulation-based objec-

tive function, and general analytical differentiable constraints. We propose a meta-

model approach to address, in a computationally efficient way, these large-scale dynamic

simulation-based optimization problems. We formulate an analytical dynamic network

model that is used as part of the metamodel. The network model formulation combines

ideas from transient queueing theory and traffic flow theory. The model is formulated

as a system of equations. The model complexity is linear in the number of road links

and is independent of the link space capacities. This makes it a scalable model suitable

for the analysis of large-scale problems. The proposed dynamic metamodel approach is

used to address a time-dependent large-scale traffic signal control problem for the city of

Lausanne. Its performance is compared to that of a stationary metamodel approach. The

proposed approach outperforms the stationary approach. This comparison illustrates the

added value of providing the algorithm with analytical dynamic problem-specific struc-

tural information. The performance of a signal plan derived by the proposed approach is

also compared to that of an existing signal plan for the city of Lausanne, and to that of

a signal plan derived by a mainstream commercial signal control software. The proposed

method can systematically identify signal plans with good performance.

Funding: This material is based on work partly supported by the National Science Foundation under
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1. Introduction
In the field of urban transportation, dynamic optimiza-

tion problems, i.e., optimization problems with time-

dependent decision variables, have been addressed

through the use of analytical dynamic and, mostly

deterministic, trafficmodels. Suchmodels are based on

an aggregate, i.e., low-resolution, description of traffic

dynamics. They are computationally efficient to eval-

uate, yet lack a detailed description of heterogeneous

traveler behavior, of vehicle-infrastructure interactions,

and thus of intricate traffic dynamics observed in urban

areas. A detailed description of these dynamics is

provided by a family of high-resolution simulation-

based traffic models, known as stochastic microscopic

or mesoscopic traffic simulators. Nonetheless, these

simulators are computationally inefficient to evaluate.

Hence, their use to address optimization problems has

been limited. This paper proposes a methodology that

enables high-resolution traffic simulators to be used, in

a computationally efficient way, to address large-scale

dynamic transportation optimization problems.

The complexity of the spatial-temporal vehicle-to-

vehicle and vehicle-to-infrastructure interactions has

led to the development of these high-resolution

simulation-based trafficmodels. These simulators emu-

late the behavior of individual travelers, e.g., how they

make pretrip travel decisions (e.g., departure time,

travel mode, travel route) and en route travel decisions

(e.g., driving behavior). They describe traffic dynam-

ics at the scale of individual, and heterogeneous, vehi-

cles and travelers. Additionally, stochastic microscopic

or mesoscopic models can account for uncertainties in

both demand and supply components.

Given the increasingcomplexityofbothnetwork sup-

ply (e.g., traffic-responsive priority-based traffic con-

trol strategies) and network demand (e.g., ubiquitous

access and reaction to real-time traffic information by

individual travelers), major urban transportation agen-

cies, such as the New York City Department of Trans-

portation (Chen et al. 2015), have resorted to the use

of such models to inform their network design and

network operations. Nonetheless, this high-resolution

description of traffic dynamics comes with a signifi-

cant increase in the model complexity and the compu-

tational cost of evaluating the model. Hence, the use

of these high-resolution trafficmodels for optimization

is limited. To the best of our knowledge, they have not
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been used to address dynamic transportation optimiza-

tion problems, let alone large-scale dynamic problems.

This paper focuses on optimization problems of the

following form:

min

x
1
,...,xL

f (x , y; p) � 1

L

L∑̀
�1

E[F`(x` , y` ; p)] (1)

g`(x` ; p) � 0, ∀ ` ∈L. (2)

The time horizon is decomposed into a set of L dis-

joint time intervals L. Each time interval ` consid-

ers a continuous decision vector x` (e.g., traffic signal

plan), an objective function defined as the expecta-

tion of a network performance function F` (e.g., trip

travel time, network throughput within interval `).
The latter depends on a vector of interval-dependent

decision variables x` and endogenous variables y`
(e.g., link travel times, traffic assignment), and a vec-

tor of interval-independent exogenous parameters p
(e.g., network topology). The decision vector for all

time intervals is denoted x � (x
1
, . . . , xL), similarly we

denote y � (y
1
, . . . , yL). For time interval `, the fea-

sible region is defined by a set of general analyti-

cal and differentiable constraints, g` . This precludes

the use of simulation-based constraints (constraints

that need to be evaluated via simulation). This is

why the function g` does not depend on the endoge-

nous simulation variables y` . A discussion on prob-

lems with simulation-based constraints is given in

the conclusions of this paper (Section 5). Note that

Constraint (2) is a general formulation for any type

of constraint, i.e., inequality constraints can be trans-

formed and expressed as equality constraints of the

form (2). To summarize, Problem (1)–(2) considers

a time-dependent decision vector with a simulation-

based objective function and general, analytical, dif-

ferentiable constraints. Hereafter, Problem (1)–(2) is

referred to as a dynamic simulation-based optimiza-

tion (SO) problem.

The main challenges of addressing Problem (1)–(2)

lie in the objective function, f (x , y; p). The challenges

are the following:

• The function f has no known analytical form. We

can merely estimate it by running simulation replica-

tions of the stochastic traffic simulator.

• An accurate estimation of f is computationally

costly to obtain. It involves running numerous simu-

lation replications. In a high-resolution urban traffic

simulator, such as the one used in this paper, running a

single replication is costly because it involves simulat-

ing the travel behavior of typically tens of thousands of

individual travelers. The behavior of a single traveler

is defined by hundreds of pre-trip and en-route travel

decisions (e.g., route choice, lane-changing), which

are each simulated by sampling from stochastic travel

behavioral models.

• The function f is typically nonconvex. For exam-

ple, in Section 4 we study a signal control problem

where f represents the expected trip travel time of the

travelers. In the simulation model, the travel decisions

of a given traveler (e.g., route choice) can depend on the

state of the network (e.g., congestion patterns), which

itself is a consequence of the past decisions of numer-

ous travelers. Hence, the mapping of a signal plan

(the decision vector) to network-wide traffic assign-

ment and to the corresponding expected trip travel

time (the objective function) is intricate.

This highlights the general complexity of simulation-

based problems across all application fields, as well

as the additional challenges that are unique to urban

transportation problems.

The focus of this paper is to propose computa-

tionally efficient algorithms for large-scale dynamic

simulation-based problems, i.e., algorithms that can

identify solutions with significantly improved objec-

tive function values within a tight computational bud-

get (e.g., few simulation runs).

The remainder of this section reviews past work on

addressing dynamic SO problems, not limited to trans-

portation applications, followed by a review of SO

algorithms for urban transportation problems.We con-

clude this section by stating the main contributions of

this paper.

Dynamic Simulation-Based Optimization Problems
The field of supply chain logistics has extensively

used detailed stochastic simulators to describe intri-

cate spatial-temporal processes within supply chain

networks. Schwartz, Wang, and Rivera (2006) and

Jung et al. (2004) both consider a dynamic inven-

tory management problem and resort to the use of

gradient-based SO algorithms. In both cases, the sim-

ulator is seen as a black-box. It is used to obtain

objective function and first-order derivative estimates.

Nonetheless, no problem-specific analytical structural

information is provided to the optimization algo-

rithm. Legato, Mazza, and Trunfio (2008) address a

dynamic quay crane scheduling problem at a mar-

itime container terminal. The simulator, a stochastic

queueing network model, is also used as a black-box

to derive objective function estimates. An approach

that addresses a dynamic supply chain problem and

that indeed attempts to exploit problem-specific struc-

ture is proposed by Almeder, Preusser, and Hartl

(2009). Although it is not an SO approach, it is

worth mentioning because it is also motivated by the

ideas of (i) combining efficient optimization techniques

with computationally costly simulation models; and

(ii) exploiting problem-specific structural information.

In the framework of Almeder, Preusser, and Hartl

(2009); the following two steps are carried out itera-

tively: (i) certain parameters of the analytical problems

(linear programs andmixed-integer programs) are esti-

mated via simulation; (ii) given the estimated parame-

ters, the analytical problems are solved. The iterations
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are carried out until the distance between consecutive

solutions is below a threshold.

To our knowledge, in past work in the field of dyna-

mic SO, the stochastic simulator has been seen as a

black-box. It has been coupled with general-purpose

algorithms. This allows for flexibility since the pro-

posed frameworks can be readily extended to address a

variety of problems. Nonetheless, the proposed meth-

ods are not designed to address problems within a

tight computational budget. In other words, the SO

algorithms used are designed to achieve asymptotic

performance guarantees rather than good short-term

performance. When using high-resolution computa-

tionally expensive simulation models, the simulation

run time significantly limits the scale and complexity

of the problems that can be addressed. Jung et al.

(2004, p. 2103), for instance, clearly state this limitation:

“The key limitation of the overall approach lies in the

large computing times required to address problems of

increasing scope.”

Simulation-Based Optimization for Urban
Transportation Problems
The use of high-resolution road traffic simulators for

optimization is limited. Rather, they have mostly been

used to perform what-if analysis. In other words, they

are mostly used to evaluate the performance of a,

typically small, set of predetermined alternatives (e.g.,

trafficmanagement strategies) (Bullock et al. 2004, Ben-

Akiva et al. 2003, Hasan, Jha, and Ben-Akiva 2002,

Stallard and Owen 1998, Gartner and Hou 1992, Rathi

and Lieberman 1989). Few SO methods that embed

high-resolution simulators have been developed (Li

et al. 2010, Stevanovic et al. 2008, Branke, Goldate, and

Prothmann 2007, Yun and Park 2006, Hale 2005, Joshi,

Rathi, and Tew 1995). The most common approach

is the use of general-purpose heuristic algorithms

and, in particular, the use of genetic algorithms (see

Yun and Park 2006 for a review). Such algorithms

allow to address problems with complex (e.g., non-

convex, simulation-based) objective functions. They

are designed such as to achieve suitable asymptotic

properties (e.g., convergence properties), rather than

to identify points with good performance within few

simulation runs. In other words, they are not designed

to be computationally efficient.

Genetic algorithm case studies for low-dimensional

problems report evaluating tens of thousands of points

(Kwak, Park, and Lee 2012, Stevanovic et al. 2009, Park,

Yun, and Ahn 2009). They are not suitable to address

large-scale dynamic problems efficiently.

Paper Contributions
This paper proposes an SO algorithm for large-scale

networks with high-dimensional time-dependent de-

cision variables, i.e., we propose an SO algorithm for

large-scale dynamic transportation problems. The pro-

posed approach is suitable to address a variety of

transportation problems that can be formulated as

large-scale dynamic continuous simulation-based opti-

mization problemswith general analytical constraints.

• We propose a framework to address dynamic SO

transportation problems of the form (1)–(2). The frame-

work couples information from the simulator with

analytical time-dependent problem-specific structural

information. More specifically, a time-dependent ana-

lytical traffic model is formulated and used to derive

an analytical description of the spatial-temporal con-

gestion patterns observed in the simulator. This analyt-

ical information is provided to the SO algorithm. This

coupling of information is achieved through the use

of metamodel methods. This combination leads to SO

algorithms that are computationally efficient, i.e., they

can identify solutions with good performance within a

few simulation runs.

• To the best of our knowledge, this is the first SO

algorithm designed for dynamic problems. It is also

the first to enable dynamic transportation SO problems

to be addressed in a computationally efficient man-

ner. Efficiency is achieved through the formulation of

a tractable transient analytical network model.

• The analytical network model is formulated as a

simple system of equations. The model complexity is

linear in the number of links in the network and is

independent of the link space capacities. This makes it

particularly suitable for large-scale networks.

• Our past work has developed efficient SO algo-

rithms for problems with time-independent decision

variables. Online Appendix A summarizes the main

methods, results, and insights of past work. It serves

to motivate the ideas of this paper. The present paper

is the first to design an efficient algorithm suitable

for SO problems with time-dependent decision vari-

ables. In particular, in past work the analytical traffic

models used are stationary models. They provide a

description of the spatial propagation of congestion,

yet do not describe its temporal propagation. The pro-

posed model is a transient model. It describes both the

spatial and the temporal propagation of congestion.

More specifically, it approximates the temporal vari-

ations of the spillback probabilities of each lane. The

use of a transient, rather than a stationary, model is

recommended for scenarios where congestion varies

substantially within each time period (e.g., congestion

build-up or dissipation periods). The case study of

this paper indicates that providing the SO algorithm

with a temporal description of congestion propagation

enables it to identify solutions that delay the onset and

the propagation of congestion. The proposed analyti-

cal model builds on the stationarymodel of Osorio and

Chong (2015). A description of their main differences

is given in Section 2.4.
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• The proposed algorithm is used to address a time-

dependent traffic signal control problem. This problem

controls the signal plans of 17 intersections distributed

across a city with over 600 roads. This is consid-

ered large-scale for urban traffic signal control prob-

lems (Aboudolas et al. 2010, Aboudolas, Papageorgiou,

and Kosmatopoulos 2007, Dinopoulou, Diakaki, and

Papageorgiou 2006). This problem is a constrained non-

convex problem with a decision vector of dimension

198; this is also considered a challenging and large-scale

problem in the field of SO. The case study indicates that

the proposed method identifies signal plans that out-

perform: (i) a signal plan prevailing in the field, (ii) a

signal plan derived by a commercial signal control soft-

ware, and (iii) signal plans derived by the SOmethod of

Osorio and Chong (2015), which is designed for time-

independent problems.

We present the proposed DSO framework in Sec-

tion 2. We then apply the framework to address a traf-

fic signal control problem for the city of Lausanne.

The optimization problem is formulated in Section 3;

the Lausanne city results are presented in Section 4.

Themain conclusions are presented in Section 5. In our

past work, we have developed efficient SO algorithms

for various transportation problems with case stud-

ies of Lausanne (Switzerland), Manhattan (New York

City), and Berlin (Germany). Online Appendix A sum-

marizes the main insights obtained from past work.

The formulation presented in this paper is motivated

by these insights. Online Appendix B details the for-

mulation of the trust region (TR) subproblem that is

solved at every iteration of the SO algorithm. Online

Appendix C illustrates with an example how the ana-

lytical derivatives of the metamodel are derived.

2. Methodology
This paper proposes a newmetamodel formulation for

SO problems with time-dependent variables. This new

formulation is then embeddedwithin the SO algorithm

ofOsorio and Bierlaire (2013) and used to address a sig-

nal control problem. In Section 2.1, we summarize the

main ideas of a metamodel SO algorithm. Sections 2.2

and 2.3 describe the proposed model. A summary of

the new model is given in Section 2.4.

2.1. Metamodel Framework
Metamodel SO Algorithms. The main idea of a meta-

model SO algorithm is to approximate the unknown

simulation-based objective function (Equation (1))

with an analytical function known as the metamodel.

The main steps of a metamodel SO algorithm are dis-

played in Figure 1. At a given iteration k, there are a set
of points that have been simulated prior to iteration k.
We call these points, and their performance estimates,

the current sample. Step 1 determines which point of

Figure 1. Metamodel Simulation-Based Optimization

Framework

1. Determine current iterate

2. Fit metamodel mk

3a. Optimize mk(x ) 3b. Sampling strategy

4. Simulate

xk

�k

Trial point Model improvement
point

Evaluate new point x

New performance estimate: f (x )

the current sample is considered to have the best per-

formance. This point is referred to as the current iterate
and is denoted xk . In step 2, the parameters, βk , of the

metamodel, mk , are fitted based on the current sample.

For example, in the algorithm used in the case study

of this paper, the vector βk is obtained as the solution

of a least squares problem that minimizes the distance,

over the current sample, between metamodel values

and simulation-based objective function estimates.

Step 3a solves the following problem (or a subprob-

lem of it):

min

x
1
,...,xL

mk(x , y; q , βk) (3)

g`(x` ; q)� 0, ∀ ` ∈L. (4)

This problem differs from Problem (1)–(2) in that

the simulation-based objective function f of (1) is

replaced with the metamodel function mk . The latter

is an analytical, and often differentiable, function that

depends on the decision vector x � (x
1
, . . . , xL), on a

vector of endogenous variables y � (y
1
, . . . , yL), a vector

of exogenous parameters, q, and an iteration-specific

metamodel parameter vector, βk . The solution to this

problem is called the trial point.
Step 3b allows to simulate points that may not be

solutions to the approximate problem (3)–(4). These are

known as model improvement points. The correspond-

ing sampling strategy that defines these points may,

for instance, have the goal of improving the properties

of the sampled space (e.g., increase the dimension of

the space spanned, sample uniformly, etc.). The new

points (trial and model improvement) are simulated in

step 4 to obtain an estimate of the objective function,

denoted f̂ (x). As the iterations advance, more points

are sampled, leading to an improved metamodel and

to points with improved objective function estimates.

One feature of the metamodel methods is that the

trial points are derived by solving Problem (3)–(4),
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which is analytical and differentiable. Hence, it can be

solved with a variety of mainstream solvers. Addition-

ally, the algorithm we use in this paper (Osorio and

Bierlaire 2013) is a derivative-free algorithm. Hence,

it does not require the estimation of first- or second-

order derivatives of the SO objective function, f (x).
Many traditional SO algorithms rely on derivative esti-

mations, which can be computationally costly to obtain

in high-dimensional spaces. The use of a derivative-

free algorithm is important to achieve computational

efficiency.

More generally, SO methods can be classified into

three families: (i) direct-search methods, (ii) direct

gradient, and (iii) metamodel methods. For reviews,

see Conn, Scheinberg, and Vicente (2009), Balakrishna

(2006), Barton and Meckesheimer (2006), and Kolda,

Lewis, and Torczon (2003). Direct search methods rely

only on simulation-based objective function estima-

tions without fitting an analytical model. Direct gradi-

ent methods use estimates of both the objective func-

tion and its derivatives to search the feasible region.

To the best of our knowledge, existing direct-search

and direct gradient techniques do not perform well for

high-dimensional transportation problems and tight

computational budgets; see Balakrishna (2006) for a

more detailed discussion. As is detailed in Online

Appendix A, metamodel approaches have performed

well for such problems.

Metamodel Functions This section describes the main

classes of metamodels and their properties. A review

of metamodel functions is given in Conn, Scheinberg,

and Vicente (2009) and Barton and Meckesheimer

(2006).Mostmetamodel SOwork uses general-purpose

metamodels (e.g., polynomials). For such models, the

functional form of mk is problem independent and

is typically chosen based on mathematical properties

(e.g., tractability). This generality allows the models to

be used for a variety of problems, yet it comes at the

cost of not capturing problem-specific structure.

Osorio and Bierlaire (2013) proposed the follow-

ing functional form for the metamodel, at a given

iteration k:

mk(x , y; q , βk)� βk , 0 fA(x , y; q)+φ(x; βk , 1 , . . . , βk ,D). (5)

It consists of a linear combination of a problem-specific

component (also known as a physical component),

denoted fA, and a general-purpose component, de-

notedφ. The functionφ is apolynomial that is quadratic

in x, and has D coefficients (βk ,1 , . . . , βk ,D). The problem-

specific component fA is defined as the approximation

of f (Equation (1)). It is derived by an analytical macro-

scopic traffic network model. It is scaled by the scalar

coefficient βk ,0. The parameter vector of the metamodel

is represented by βk �(βk ,0 , . . . , βk ,D).

The metamodel mk can be interpreted as an analyt-

ical and macroscopic approximation of the objective

function provided by fA, which is corrected parametri-

cally by both a scaling factor βk , 0 and a separable error

term φ(x` ; βk , 1 , . . . , βk ,D). The general-purpose approx-
imation φ also allows to ensure asymptotic algorithmic

convergence properties; for more details on this see

Osorio and Bierlaire (2013).

The problem solved at a given iteration k of the SO

algorithm is of the form

min

x
1
,...,xL

mk(x , y; q , βk) (6)

g`(x` ; q)� 0, ∀ ` ∈L, (7)

h(x , y; q)� 0. (8)

This problem differs from Problem (3)–(4) in the Con-

straint (8). This constraint represents the analytical

traffic networkmodel used to derive the physical meta-

model component (i.e., term fA of Equation (5)). The

traffic model used in this paper is a transient network

model that is also analytical and differentiable. It is

defined as a system of nonlinear equations and is rep-

resented by the function h of Constraint (8).

Problem (6)–(8) is solved at every iteration of the SO

algorithm. Therefore, the development of a computa-

tionally efficient SO algorithm requires solving Prob-

lem (6)–(8) efficiently. Hence, the analytical network

model (represented by (8)) needs to be tractable.

The problem-specific approximation fA contributes

to the computational efficiency of the algorithm in

various ways. First, as an analytical and differentiable

model, it allows for the use of traditional and computa-

tionally efficient algorithms (e.g., gradient-based algo-

rithms) to solve Problem (6)–(8). Second, it provides an

approximation of f in the entire feasible region, i.e.,

it provides a global approximation. This is in contrast

with traditional general-purpose functions (e.g., poly-

nomial functions) that are designed to provide good

local approximations of f . Third, the accuracy of this

global approximation is independent of the availability

of simulation observations. In particular, if few or even

no simulation observations are available, this approx-

imation may still provide a suitable approximation of

the objective function f . Fourth, if the networkmodel h
(Equation (8)) is tractable, then Problem (6)–(8) can be

solved efficiently.

This paper proposes an analytical, differentiable, and

transient network model h (System of Equations (8)),

that indeed is computationally efficient to evaluate.

The proposed transient network model combines ideas

from transient queueing theory, queueing network

theory, and traffic flow theory. It is analytical and

differentiable. The model is formulated as a system of
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nonlinear equations. The model complexity is linear in

the number of links in the network and is independent

of the individual link space capacities. Hence, it is a

scalable model.

The proposed time-dependent network model ex-

tends the time-independent network model of Osorio

and Chong (2015), which is described in Section 2.2.

Traffic dynamics are described by combining tran-

sient queueing theoretic ideas inspired from the works

of Morse (1958), Cohen (1982), and Odoni and Roth

(1983). These ideas are described in Section 2.3.2.

Recently, link models that are both based on transient

queueing theory and are fully consistent with tradi-

tional deterministic traffic flow theoretic link mod-

els have been proposed (e.g., Osorio, Flötteröd, and

Bierlaire 2011, Osorio and Flötteröd 2015). Their exten-

sion to full network models is a topic of ongoing

research.

2.2. Stationary Network Model
The proposed transient model builds on the station-

ary model formulated in Osorio and Chong (2015).

The latter model combines ideas from finite capacity

queueing network theory, traffic flow theory, and var-

ious national transportation norms. The detailed for-

mulation is given in Osorio and Chong (2015). In what

follows, we outline the key ideas of the formulation.

Each lane of an urban road network is modeled as

one or two queues. To account for the limited phys-

ical space that a queue of vehicles may occupy, we

use finite capacity queueing theory, where there is a

finite upper bound on the length of each queue. Each

queue is an M/M/1/k queue. The queue-length upper

bound k is determined by the length of the underly-

ing lane. The network model analytically describes the

occurrence and impact of vehicular spillbacks with the

queueing-theoretic notion of blocking. A vehicular spill-

back occurs when a lane is full and, hence, blocks or

inhibits vehicular arrivals from upstream lanes. The

model describes the occurrence of blocking, as well as

its networkwide impact.

The stationary model is defined as the following sys-

tem of nonlinear equations, where index i refers to a

given queue:

γi external arrival rate;

λ̂i effective arrival rate;

µi service rate;

ρ̂i effective traffic intensity;

ki upper bound of the queue length;

Ni total number of vehicles in queue i;
P(Ni � ki) probability of queue i being full, also

known as the blocking or spillback

probability;

pi j turning probability from queue i to
queue j;

¤i set of downstream queues of queue i;

λ̂i � γi(1−P(Ni � ki))+
∑

j
p ji λ̂ j , (9a)

ρ̂i �
λ̂i

µi
+

(∑
j∈¤i

pi jP(N j � k j)
) (∑

j∈¤i

ρ̂ j

)
, (9b)

P(Ni � ki)�
1− ρ̂i

1− ρ̂ki+1

i

ρ̂ki
i . (9c)

Equation (9a) is a flow conservation equation. It

describes flow transmission between upstream and

downstream queues. Equation (9b) defines the effec-

tive traffic intensity of queue i (denoted ρ̂i). The first

term on the right-hand side of Equation (9b) repre-

sents the traffic intensity of queue i when none of the

queues downstream of queue i spillback. It is given

by the ratio of the effective arrival rate of queue i, λ̂i ,

and the service rate of queue i, µi . The latter represents

the flow capacity of the underlying lane when there

are no downstream spillbacks. It is determined from

national transportation norms. For instance, for signal-

ized lanes, the service rate is defined as a function of

the duration of green time allocated to the underly-

ing lane. The second term on the right-hand side of

Equation (9b) accounts for the occurrence and impact

of downstream spillbacks. The effective traffic intensity

of queue i, ρ̂i , can be interpreted as the ratio of the

expected demand to the expected supply. Equation (9c)

defines the probability that queue i is full. This is also
referred to as the spillback probability or the block-

ing probability. This expression is derived from finite

capacity queueing theory (e.g., Bocharov et al. 2004).

For a given queue i, the exogenous parameters are

γi , µi , pi j , and ki , and the endogenous variables are λ̂i ,

ρ̂i , and P(Ni � ki). In the signal control problem stud-

ied in Section 3.1, the flow capacities, µi , of the signal-

ized lanes become endogenous variables. Hereafter, we

assume µi to be endogenous.

For a network with n queues, this model consists of

3n equations. The model complexity is linear in the

number of queues, and is independent of the space

capacity of the queues. This has made it suitable for

the analysis of large-scale problems.

2.3. Transient Network Model
The stationary model uses time-independent endoge-

nous variables and parameters. It does not provide any

temporal information and is therefore not suitable to

address dynamic optimization problems. In this paper,

we propose a transient network model. This model

is then used to approximate the physical component

of the metamodel, i.e., fA of Equation (5). The tran-

sient metamodel is used in Section 4 to address a DSO

problem.

This section formulates the transient networkmodel.

We discretize the time horizon of interest into a setL of

disjoint equal-length time intervals. In this section, we
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present themodel formulation for a given time interval

`, ` ∈L.

Section 2.3.1 defines, for interval `, a set of endoge-

nous queueing variables. Sections 2.3.2 and 2.3.3

describe how these variables are used to derive time-

dependent spillback probabilities, which describe traf-

fic dynamics throughout the network.

2.3.1. Interval-Specific Queueing Variables. The pro-

posed transient model extends the above stationary

model by accounting for the temporal variations of the

spillback probability. For a given time interval ` and

queue i, we consider the following interval-specific

variables:

λ̂i , ` effective arrival rate;

ρ̂i , ` effective traffic intensity;

µi , ` service rate;

P`(Ni � ki) stationary spillback probability.

These variables are defined by solving the following

system of equations:

λ̂i , ` � γi(1−P`(Ni � ki))+
∑

j
p ji λ̂ j,` , (10a)

ρ̂i , ` �
λ̂i , `

µi , `
+

(∑
j∈¤i

pi jP`(N j � k j)
) (∑

j∈¤i

ρ̂ j,`

)
, (10b)

P`(Ni � ki)�
1− ρ̂i , `

1− ρ̂ki+1

i , `

ρ̂ki
i , ` . (10c)

This system of equations is the interval-specific ver-

sion of the System of Equations (9). It assumes that the

exogenous parameters (γi , pi j , and ki) do not change

across time intervals. This assumption can be easily

relaxed. By solving the above system of equations,

we obtain interval-specific endogenous variables for

each queue: λ̂i , ` , ρ̂i , ` , and P`(Ni � ki). These variables

may vary from one time interval to the next, yet are

assumed constant within a time interval. This assump-

tion significantly reduces model complexity and pre-

serves model tractability.

In the case study of this paper, the decision vec-

tor consists of the green times of the signalized lanes.

There is a one-to-one mapping between the total green

time of a lane and the service rate of the corresponding

queue (denoted µi , `). Given a specific decision vector

value (and hence a specific set of µi , ` values), the above

System of Equations (10) can be solved simultaneously

for all queues, yet independently for each time inter-

val. Therefore, given a decision vector value, a set of L
decoupled systems of equations can be solved to obtain

the endogenous variables for all time intervals. The for-

mulation of these variables as decoupled systems of

equations contributes to the tractability and scalability

of the proposed formulation.

Consider a network with a total of n queues. For a

given decision vector value and a given time-interval `,
the System of Equations (10) consists of a total of

3n variables, 3n equations: n linear (10a), n quadra-

tic (10b), and n nonquadratic convex (10c). The system

can therefore be solved efficiently. For any feasible set

of demand and supply parameters, i.e., {γ ≥ 0, µ ≥ 0},
the system contains at least one solution. In particular,

the use of finite capacity queues ensures that for any

positive value of the traffic intensity (i.e., the ratio of

the expected demand to the expected supply) of each

queue, there exists a stationary regime for the network

of queues, and hence the stationary probabilities are

well defined. If we had resorted to the use of infinite

capacity queues, then the traffic intensities would need

to be strictly smaller than one to ensure stationarity.

2.3.2. Observations from Existing Transient Queueing
Models. The goal is to describe the temporal variations

of the spillback probabilities. Such time-dependent

probabilities are referred to in queueing theory as tran-

sient probabilities. In the field of transportation, mod-

els based on transient queueing theory have focused on

infinite capacity queues: Heidemann (2001), Peterson,

Bertsimas, and Odoni (1995), and Odoni and Roth

(1983). More broadly, in the field of queueing network

theory, research has focused mostly on (i) networks

with infinite capacity queues, and (ii) the analysis

of the stationary regime. This is, arguably, because

between-queue (i.e., spatial) dependencies are intri-

cate to describe analytically, let alone their temporal

variations.

The analytical transient analysis of a single isolated

finite capacity queue is presented in the seminal work

of Morse (1958) and Cohen (1982). The formulation of

the proposed transient network model builds on ideas

from these two works.

Morse (1958) considers an isolated M/M/1/k queue,

with fixed arrival rate λ, service rate µ, traffic intensity

ρ � λ/µ, and a given queue-length distribution at the

beginning of a time interval (i.e., initial conditions). The

latter is called the initial queue-length distribution. We

denote the beginning of the time interval by t
0
. Morse

(1958, Equation (6.13)) derives an exact closed-form

expression for the transient queue-length distribution.

More specifically, t time units after t
0
, the probability of

observing a queue of length m is given by

P(N � m , t)� P(N � m)+ · · ·

· · ·+ ρm/2
k∑

s�1

Cs

[
sin

(
smπ
k + 1

)
−√ρ sin

(
s(m + 1)π

k + 1

)]
e−ws t , (11a)

ws � λ+ µ− 2

√
λµ cos

(
sπ

k + 1

)
. (11b)

The probability that the queue is of length m at time t
is denoted P(N �m , t), which is also known as the tran-

sient probability. The corresponding stationary prob-

ability is denoted P(N � m). The coefficients Cs are
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determined by solving a linear system of equations that

ensure initial boundary conditions

P(N � m , 0)� P0(N � m), (12)

where P0(N � m) denotes the given initial conditions,

i.e., the probability that the queue is of length m at

time t
0
.

The System of Equations (11) could be used within

a network setting to approximate the marginal queue-

length distribution of each queue in a network. The

main challenge of such an approach is that to compute

the coefficients Cs , the full queue-length distribution

of each queue would need to be computed. In other

words, for each queue i, a set of ki + 1 probabilities

would need to be computed, and this would need to

be done for every time interval. This would lead to a

model complexity that depends on the space capac-

ity, ki , of each queue. For instance, in a network with

n queues, and a problem with L time intervals, the

total number of probabilities to approximate would be∑n
i�1
(ki + 1)L. Such an approach would not scale well

for large-scale urban networks.

The factor 1/ws of Equation (11a) is known in queue-

ing theory as the relaxation time. It is the time needed

for a given performance metric to reach its station-

ary value. Equation (11a) states that the transient

queue-length distribution converges exponentially to

the stationary distribution. Seminal papers that have

studied the relaxation time of an isolated infinite capac-

ity queue include Cohen (1982) and Odoni and Roth

(1983), where the exponential decay term is written as

e−t/τ̃
, and τ̃ is the relaxation time. Cohen (1982) consid-

ers an isolated M/M/1 queue and proposes

τ̃ � 1/(µ(1−√ρ)2). (13)

Odoni and Roth (1983) propose an approximation of τ̃
for an isolated G/G/1 queue. For an M/M/1 queue,

their approximation is similar to that of Cohen (1982)

and is given by τ̃ � 2/(2.8µ(1−√ρ)2).
These approximations share the following proper-

ties, which will be preserved in our proposed relax-

ation time approximation.

• The relaxation time increases as congestion in-

creases (for an infinite capacity queue the stationary

state is only defined if ρ < 1, and increasing congestion

corresponds to ρ→ 1).

• For a fixed traffic intensity ρ, the relaxation time

should be proportional to the time units of the queue-

ing system parameters. In other words, it should be

inversely proportional to either the arrival or the ser-

vice rates. For example, in the above approximations,

τ̃ is proportional to 1/µ.
2.3.3. Transient Queueing Model. This section formu-

lates a transient queueing model that preserves the

following properties of the stationary queueing model

of Section 2.2.

• The focus is on the approximation of the transient

spillback probabilities. In other words, for each time

interval ` and each queue i, our objective is to approxi-

mate P`(Ni � ki , t) rather than the full distribution. This

leads to a model complexity in the order of nL (instead

of

∑n
i�1
(ki + 1)L). The model complexity is linear in the

number of queues, and more importantly, is indepen-

dent of the space capacities.

• The between-queue dependencies are captured

through the queueing variables (λ̂, ρ̂). Given these

queueing variables, the spillback probability of a given

queue does not depend on any information from other

queues. These variables describe, respectively, the ex-

pected demand and the ratio of expected demand to

expected supply. They capture problem structure, and

are therefore referred to as structural variables.

• The structural variables of the queues can be de-

rived by solving a simple system of equations.

Consider time interval ` that begins at time t` and
a given queue i. The spillback probability t time units

after t` is approximated by

P`(Ni � ki , t)� P`(Ni � ki)+ (P`(Ni � ki , t`)
−P`(Ni � ki))e−t/τi , ` , (14a)

τi , ` �
cρ̂i , `ki

λ̂i , `(1−
√
ρ̂i , `)2

. (14b)

Equation (14a) is inspired from Equation (11a) in

that the transient probability of a queue is defined as

the sum of its stationary probability (term P`(Ni � ki))
and a term that decays exponentially with time. The

stationary probability is defined by the System of

Equations (10).

Equation (14b) is inspired from Equation (13) in

that the relaxation time is (i) directly proportional to

1/(1−
√
ρ̂)2, and (ii) proportional to the service rate

termgivenby ρ̂/λ̂. Equation (14b) is inspired from(11b)

in that the relaxation time depends on the space capac-

ity k. Note that the works of Cohen (1982) and Odoni

andRoth (1983) consider infinite capacityqueues,hence

their relaxation time approximations do not depend on

space capacity. In Equation (14b), the term c is an exoge-
nous scaling parameter, that is fitted based on traffic

simulation outputs.

For any set of feasible initial conditions (i.e., 0 ≤
P`(Ni � ki , t`) ≤ 1), System (14) converges asymptoti-

cally to P`(Ni � ki). Convergence is guaranteed for any

positive value of the traffic intensity (even for values

larger than 1).

2.4. Methodology Summary
Let us summarize the proposed methodology. A dy-

namic extension of the metamodel SO framework of

Osorio and Bierlaire (2013) is used. The metamodel
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is defined by Equation (5). The key to developing

a computationally efficient SO algorithm lies in the

formulation of an analytical and tractable problem-

specific approximation (denoted fA in Equation (5))

of the objective function (denoted f in Equation (1)).

This paper proposes a transient queueing network

model that yields a tractable approximation of fA.

The model considers, for each time interval `, a set

of endogenous queueing model variables defined by

the System of Equations (10). These variables approxi-

mate the between-queue dependencies, e.g., how spill-

back at a given queue impacts the performance of

upstream queues. Given this set of variables, the spill-

back probability of each queue varies across time,

within time interval `, following Equation (14). The

transient queueing network model is then used to

derive the functional form of fA. An example of the

derivation of an expression for fA is given in Section 3.2

for a traffic signal control problem.

An algorithmic summary of the transient network

model is given in Algorithm 1. For a network with L
time intervals and n queues, the number of endoge-

nous variables is 3nL. In other words, for each queue

and each time interval, the endogenous variables are

λ̂i , ` , ρ̂i , ` , and P`(Ni � ki).

Algorithm 1 (Algorithm to Evaluate the Transient Network
Model).
Carry out each of the following steps for all queues i

before proceeding to the next step.

Steps:

1. Define the exogenous parameters γi , ki , pi j , µi .

2. Define the start of each time interval t
1
, t

2
, . . . , tL.

3. Define the initial condition of each queue:

P(Ni � ki , t1
).

4. Repeat the following for time intervals ` � 1, 2, . . . , L
(a) Solve the System of Equations (10) to obtain

λ̂i , ` , ρ̂i , ` , and P`(Ni � ki).
(b) Compute the spillback probabilities

at the end of the time interval

according to (14) with t � t`+1
.

We now summarize the main differences between

the proposed transient and the stationary analyt-

ical network model of Osorio and Chong (2015).

The stationary model yields stationary (hence, time-

independent) lane spillback probabilities, while time-

dependent probabilities are derived by the transient

queueing model. Thus, the proposed model provides

a temporal description of congestion propagation. The

queueing variables that describe demand and supply

(e.g., arrival rates, traffic intensities) are time indepen-

dent for the stationary model; they are constant for the

entire time horizon. The transient model uses a set of

variables for each time period; this allows to describe

temporal changes in demand and supply.

The proposed analytical model builds on the station-

ary model of Osorio and Chong (2015). For a network

with n lanes and a set of L time intervals, the station-

ary model consists of a system of 3n equations with 3n
endogenous variables, while the transient model con-

sists of a system of L systems of equations that are

solved sequentially and each have a dimension 3n.
The transient model consists of 3nL endogenous vari-

ables. The complexity of the proposedmodel scales lin-

early with the number of time intervals. Thus, it is less

tractable than the stationary model. The complexity of

both models is linear in n and is independent of the

link space capacities. This makes them both suitable

for large-scale network analysis.

3. Time-Dependent Traffic Signal
Control Problem

The proposedmethod is suitable to address a variety of

simulation-based dynamic transportation problems. In

this section, we illustrate the computational efficiency

of the methodology by considering a large-scale traf-

fic signal control problem with time-dependent deci-

sion variables. Section 3.1 formulates the traffic control

problem. Section 3.2 presents the analytical expression

for fA (of Equation (5)) for this specific problem. Sec-

tion 3.3 discusses implementation details.

3.1. Optimization Problem Formulation
A detailed review of traffic signal control terminology

is given inAppendixA ofOsorio (2010) or in Lin (2011).

We consider fixed-time (also called time of day or pre-

timed) signal control plans. A fixed-time signal plan is

a periodic plan that repeats itself in a certain interval

(e.g., evening peak hour). Fixed-time signal plans are

predetermined based on historical or simulation-based

traffic patterns. They are determined offline. Unlike

traffic-responsive strategies, they do not respond to

prevailing real-time traffic conditions. Congested net-

works with complex traffic dynamics (e.g., grid topol-

ogy, congested multimodal traffic) often resort to the

use of fixed-time plans (Chen et al. 2015).

We divide the time horizon of interest (e.g., evening

peak period) into L time intervals. For each time inter-

val, we determine a fixed-time signal plan. The signal

plans for all intersections and all L time intervals are

determined jointly.

The main decision variables of fixed-time signal con-

trol problems are green splits, cycle lengths, and off-

sets. The cycle length of a given intersection is the

period of the signal plan, i.e., the time required to com-

plete one sequence of signals. The green split of a given

lane corresponds to the ratio of the total green time

allocated to that lane during the cycle and the cycle

length. The offsets are defined as the differences in the

starting time of a cycle for a sequence of intersections.

They enable the coordination of adjacent signals.
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This paper focuses on the optimization of green

splits, i.e., the decision variables are the green splits

of the signal controlled lanes. Cycle lengths and off-

sets are fixed. All other signal plan variables (e.g., stage

structure) are also assumed fixed.

To formulate this problem, we introduce the follow-

ing notation:

bi ratio of available cycle time to total cycle time

for intersection i;
x` vector of green splits for time interval `;

x`( j) green split of signal phase j for time interval `;
xLB vector of lower bounds for green splits;

© set of intersection indices;

°I(i) set of endogenous signal phase indices of

intersection i.
The problem is formulated as follows:

min

x
1
,...,xL

f (x , y; p)� 1

L

L∑̀
�1

E[F`(x` , y` ; p)] (15)

subject to

∑
j∈°I (i)

x`( j)� bi , ∀ i ∈ ©, ` ∈L, (16)

x` ≥ xLB , ∀ ` ∈L. (17)

The decision vector x consists of the green splits of

all signal phases in all L time intervals. The objective

is to minimize the expected trip travel time, where

E[F`(x` , y` ; p)] represents the expected trip travel time

during time interval `.
The linear constraints (16) ensure that, for each inter-

section, the sum of the green times for each signal

phase is equal to the available (i.e., non-fixed) cycle

time. Equation (17) ensures lower bounds for the green

splits. These boundsmay vary according to the city, the

time horizon of interest, and even the intersection.

3.2. Derivation of the Analytical Objective
Function, fA

Recall that the transient network model of Section 2

is used to derive the analytical approximation ( fA of

Equation (5)) of the simulation-based objective func-

tion ( f of Equation (15)). We now derive the analytical

expression for fA for the specific objective function (15).

More specifically, we derive the analytical approxima-

tion of the term E[F`(x` , y` ; p)] in Equation (15). Let

fA, ` denote this approximation.

For time interval `, we can derive the expected time

in the network per user by applying Little’s law (Little

1961) to the entire road network. This leads to

fA, ` �

∑
i E`[Ni]

(1/(t`+1
− t`))

∫ t`+1

t`

∑
i γi(1−P`(Ni � ki , t))dt

, (18)

where E`[Ni] represents the expected number of vehi-

cles in queue i during time interval `, t` denotes the

start time of time interval `, and t`+1
denotes the end

time of time interval `. The numerator is the expected

number of vehicles in the network during time inter-

val `. The denominator is the effective external arrival

rate to the network during time interval `. In the

denominator, the term within the integral represents

the instantaneous effective external arrival rate to

queue i at time t. The external arrival rate γi is an

exogenous parameter, and the transient spillback prob-

ability P`(Ni � ki , t) is given by Equation (14a).

We now derive the closed-form expression used to

approximate the numerator of Equation (18); we then

derive a closed-form expression for the denominator.

The closed-form expression for E`[Ni] of the numer-

ator is derived as follows. For an isolated queue i of

type M/M/1/ki , with traffic intensity ρi , the stationary

expected number of vehicles is given by:

E[Ni]� ρi

(
1

1− ρi
−
(ki + 1)ρi

ki

1− ρi
ki+1

)
. (19)

An analytical derivation of Equation (19) is given in

Osorio and Chong (2015). We assume this functional

form holds within a given time interval, i.e., we use the

following approximation:

E`[Ni]� ρi , `

(
1

1− ρi , `
−
(ki + 1)ρi , `

ki

1− ρi , `
ki+1

)
. (20)

An analytical expression for ρi , ` is obtained as

follows. The model of Osorio and Chong (2015)

(presented in Section 2.2) is formulated based on the

effective traffic intensity ρ̂i , rather than the traffic inten-

sity ρi of a queue. The effective traffic intensity is

related to the traffic intensity ρi as follows: ρi � ρ̂i/(1−
P(Ni � ki)). We therefore approximate the traffic inten-

sity of queue i during time-interval ` by:

ρi , ` �
ρ̂i , `

(1/(t`+1
− t`))

∫ t`+1

t`
(1−P`(Ni � ki , t)) dt

, (21)

where ρ̂i , ` is defined by Equation (10b). A closed-form

expression for the integral in the denominator of Equa-

tion (21) is obtained as follows. We insert the expres-

sion for P`(Ni � ki , t) given by Equation (14a) to obtain:

A �

∫ t`+1

t`

(1−P`(Ni � ki , t)) dt (22)

�

∫ t`+1

t`

(
1−[P`(Ni � ki)+ (P`(Ni � ki , t`)

−P`(Ni � ki))e−t/τi , ` ]
)

dt (23)

�

∫ t`+1

t`

(1−P`(Ni � ki)) dt

−(P`(Ni � ki , t`)−P`(Ni � ki))
∫ t`+1

t`

e−t/τi , ` dt (24)

� (t`+1
− t`)(1−P`(Ni � ki))

+ τi , `(P`(Ni � ki , t`)−P`(Ni � ki))
· (e−t`+1

/τi , ` − e−t`/τi , ` ). (25)
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In summary, the term E`[Ni] of the numerator of

Equation (18) is given by Equations (20), (21), and (25).

The denominator of Equation (18) can be rewritten

by interchanging the summation with the integral to

obtain:

B �
1

t`+1
− t`

∫ t`+1

t`

∑
i
γi(1−P`(Ni � ki , t)) dt (26)

�
1

t`+1
− t`

∑
i
γi

∫ t`+1

t`

(1−P`(Ni � ki , t)) dt . (27)

A closed-form expression for the integral of Equa-

tion (27) is given by Equation (25).

Note that the analytical expressions derived above

allow us to approximate the expected trip travel time

(i.e., the objective function) based on the knowledge

of spillback probabilities P`(Ni � ki , t) rather than the

knowledge of full queue-length distributions. This con-

tributes to the tractability and scalability of the pro-

posed approach. This leads to a model complexity that

is linear in the number of queues and that is indepen-

dent of the space capacity of each queue.

3.3. Implementation Notes
We implement the lower bound constraints (17) as non-

linear equality constraints by introducing a new vari-

able v and implementing

x` � xLB + v2

` . (28)

In addition, we enforce the positivity of the endoge-

nous variables ρ̂i , ` by introducing a new variable ui , `
and adding the equalities

ρ̂i , ` � u2

i , ` . (29)

We do not enforce the positivity of the other endoge-

nous variables, rather we check a posteriori that all

other endogenous variables are positive. In our numer-

ous experiments, all solutions to the system of equa-

tions obtained by the solver have consisted of positive

values.

Note that the green splits are related to the service

rate of the underlying queue i through the following

equation:

µi , ` �

(
ei +

∑
j∈°I (i)

x`( j)
)

s , (30)

where °I(i) represents the set of endogenous phase

indices of the lane represented by queue i, ei is the ratio

of fixed green time to cycle time of signalized queue i,
and s is the saturation flow rate. We assume a com-

mon saturation flow for all signalized lanes. For each

signalized queue, Equation (30) is inserted into Equa-

tion (10b), to implement both constraints as a single

constraint.

To further enhance tractability, for the large-scale

case study of Section 4, we approximate the arrival rate

to each queue (denoted λ̂i , `) as exogenous; i.e., it does

not vary with the decision vector values. The exoge-

nous value is obtained by considering the prevailing

fixed-time signal plan of the city for the whole time

horizon; this yields a set of µi , ` values (through Equa-

tion (30)). Then the System of Equations (10) is solved,

and the corresponding λ̂i , ` values obtained are used as

fixed values throughout the optimization. This simpli-

fication enhances model tractability. Nonetheless, the

assumption of arrival patterns to the links indepen-

dent of the signal plans may lead to a misestimation

of the link spillback probabilities. Online Appendix C

derives, as an example, the expression of the derivative

of the objective function with regards to an endoge-

nous variable.

For a problem with L time intervals, n lanes (where

each lane is modeled as a single queue), where we

determine r endogenous signal phases at a total of o
signalized intersections per time interval, our imple-

mentation leads to a total of (2n + r)L endogenous

variables. These consist of two endogenous queue-

ing variables per queue per time interval (ui , ` and

P`(Ni � ki)), and one green split variable (vl( j)) for each
signal phase. The corresponding optimization problem

(i.e., a trust region subproblem) solved at every iter-

ation of the SO algorithm consists of (2n + o)L non-

linear equality constraints and one nonlinear inequal-

ity constraint (which is the trust region constraint).

Of the nonlinear equality constraints, 2nL correspond

to Equations (10b) and (10c), and oL correspond to

Equation (16) (the latter becomes nonlinear since v`
is implemented instead of x`). The trust region sub-

problem, that is solved at every iteration, is a variation

of the signal control problem formulated in Section

3.1. The detailed formulation of the TR subproblem is

described in Online Appendix B.

4. Lausanne City Case Study
This section addresses a traffic signal control prob-

lem for the city of Lausanne, Switzerland. Section 4.1

describes the network. Section 4.2 benchmarks the pro-

posed transient metamodel SOmethod against the sta-

tionary metamodel SO method proposed by Osorio

and Chong (2015). Sections 4.3 and 4.4, respectively,

compare the performance of a signal plan derived by

the proposed method to that of an existing signal plan

for the city of Lausanne, and to that of a signal plan

derived by a mainstream commercial signal control

software.

4.1. Network
We evaluate the performance of the proposed SO

algorithm by considering a large-scale signal control

problem for the entire city of Lausanne. The city map is

displayed in Figure 2(a), the considered area is delim-

ited in white. We use a microscopic traffic simulation
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Figure 2. (Color online) Lausanne City Network and Network Model

(a) Lausanne city road network (b) Lausanne network model

Source. Figure 2(a) is adapted from Dumont and Bert (2006).

model of the Lausanne city developed by Dumont

and Bert (2006). It is implemented with the Aimsun

simulator (TSS 2011) and is calibrated for evening peak

period demand. The modeled road network is dis-

played in Figure 2(b).

Details regarding this Lausanne network are given in

Osorio (2010, Chapter 4). We consider the first hour of

the evening peak period: 5 p.m.–6 p.m. During this hour,

congestion gradually builds up. Hence, it is important

to design a signal plan that accounts for this temporal

propagation of congestion. We use the proposed algo-

rithm to determine one signal plan for 5 p.m.–5:30 p.m.

and a second signal plan for 5:30 p.m.–6 p.m. In other

words, we decompose the hour into two 30-minute

intervals and determine a signal plan for each of the

two intervals.

The road network consists of 603 links and 231 inter-

sections. The signals of 17 intersections are controlled

in this case study. These 17 intersections are depicted

as filled squares in Figure 2(b). The controlled intersec-

tions are located throughout the entire city. The cycle

times of these intersections are 80 seconds (for 2 inter-

sections), 90 seconds (for 13 intersections), and 100 sec-

onds (for 2 intersections). The signal control problem

has a total of 198 endogenous signal phase variables

(99 signal phases per time interval), i.e., the dimen-

sion of the decision vector is 198. The phase variable is

defined as the ratio of green time (i.e., the total dura-

tion of a phase) to cycle time.

The transient queueing model of this network con-

sists of 902 queues. The trust region subproblem solved

at every iteration of the SO algorithm consists of 3,806

endogenous variables with 3,642 nonlinear equality

constraints, and one trust region inequality. The lower

bounds of the green splits (Equation (17)) are set to four

seconds according to the Swiss transportation norm

(VSS 1992).

In the field of urban traffic signal control, networks

in the order of 70 links and 16 controlled intersections

are considered large-scale problems (Aboudolas et al.

2010, Aboudolas, Papageorgiou, and Kosmatopoulos

2007, Dinopoulou, Diakaki, and Papageorgiou 2006).

The problem considered in this paper is therefore a

large-scale signal control problem. The SO algorithm

of this paper is based on the use of a derivative-free

algorithm. Unconstrained deterministic problems in

the order of 200 variables are considered large scale

for derivative-free algorithms (Conn, Scheinberg, and

Vicente 2009). Additionally, the considered problem is

constrained and simulation-based; it is particularly dif-

ficult to address.

4.2. Comparison of the Dynamic SO Method with
the Stationary SO Method

To benchmark the performance of the dynamic SO

(DSO) method, we compare its performance to that

of an SO method that has been successfully used to

address large-scale SO problems. We benchmark the

performance of the DSO method against the perfor-

mance of the stationary SO (SSO) method proposed

in Osorio and Chong (2015). Both methods consider a

metamodel defined by Equation (5). They differ only in

the physical component of the metamodel ( fA of Equa-

tion (5)). The proposed DSO method considers the

transient networkmodel formulated in Section 2.3. The

SSO method considers the stationary network model

defined by the System of Equations (9). All other algo-

rithmic details and parameters are identical in both

methods. The difference between these two methods is

also described in Table 1. This comparison allows us to

evaluate and quantify the added value of using tran-

sient analytical information in the metamodel (i.e., the

added value of using a time-dependent networkmodel

to derive fA of Equation (5)).
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Table 1. Traffic Models Used by Each of the Compared SO

Methods

Macroscopic

Microscopic Analytical Analytical

simulation-based stationary transient

Dynamic SO Ø Ø
Stationary SO Ø Ø

For bothmethods, we consider a tight computational

budget, which is defined as a maximum of 100 simu-

lation runs that can be carried out. In other words, the

SO algorithm is initialized with no simulation observa-

tions available, and it stops once a total of 100 simula-

tion runs have been carried out. We refer the readers to

Osorio and Chong (2015) for more information about

the SSO algorithm, and for a comparison of its perfor-

mance to that of a traditional SO algorithm.

Figure 3. Cumulative Distribution Functions of the Average Travel Times Considering Different Initial Signal Plans
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(a) Initial point 1 (b) Initial point 2

(c) Initial point 3 (d) Initial point 4

We consider four different initial points (i.e., ini-

tial signal plans) to initialize the SO algorithms. These

points are uniformly randomly drawn from the feasible

space defined by Equations (16) and (17). This uni-

form sampling is carried out according to the code

of Stafford (2006). For each initial point, we run each

SO method (i.e., SSO and DSO) three times, each time

allowing for a total of 100 simulation runs. Thus, for

each method and each initial point, we derive three

proposed signal plans. To evaluate the performance of

a proposed signal plan, we embed it within the traf-

fic simulator and run 50 simulation replications. We

then compare the performance of the proposed signal

plans both with statistical tests, and by comparing the

cumulative distribution function (cdf) of the objective

function realizations (i.e., the average trip travel times)

obtained from these 50 simulation replications.

Each plot of Figure 3 considers a different initial

point. Each curve of each plot displays the cdf of a
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given signal plan. For each plot, the x-axis displays the
average trip travel time (ATTT). For a given x value, the

y-axis displays the proportion of simulation replica-

tions (out of the 50 replications) that have ATTT values

smaller than x. Hence, the more a cdf curve is located

to the left, the higher the proportion of small ATTT

values; i.e., the better the performance of the corre-

sponding signal plan.

For each plot, the solid thick curve corresponds to

the cdf of the initial signal plan, the solid thin curves

are the cdf’s of signal plans proposed by DSO, and the

dashed curves are the cdf’s of signal plans proposed

by SSO.

For all four initial points (Figures 3(a)–3(d)), all three

plans derived by both DSO and SSO yield improved

performance when compared to the initial signal plan.

For three of the four initial points (Figures 3(a)–3(c)),

all three plans derived by DSO outperform all three

plans derived by SSO. For Figure 3(d), two out of the

three DSO plans outperform all three SSO plans. The

third DSO plan performs similarly to two of the SSO

plans. It outperforms the third plan proposed by SSO.

In summary, for all four initial points, DSO systemat-

ically derives signal plans with improved performance

when compared to the initial plan, and most often,

when compared to the plans derived by SSO.

We study the robustness of the DSO solutions to the

initial points. Figure 4 displays the cdf’s of the 12 solu-

tions derived byDSO (solid thin curves) and all 4 initial

points (solid thick curves). In other words, all curves of

all four plots of Figure 3 are displayed here in a single

plot in Figure 4. The plot shows that (i) the DSO solu-

tions systematically outperform the initial solutions,

and (ii) all DSO solutions have similar performance.

The DSO plans have good and consistent performance

across all SO runs and all initial points. This illustrates

Figure 4. Cumulative Distribution Functions of the Average

Travel Times for all 4 Initial Points and All 12 Proposed

Solutions
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the robustness of the proposed method to both the ini-

tial points and to the stochasticity of the simulator.

To test whether the performance of DSO is statis-

tically significantly better than that of SSO, we carry

out, for each initial point, a one-sided paired t-test.
We choose a performance metric that accounts for the

overall performance of an SO method over all three

SO runs. The 50 simulation replications used to derive

each of the cdf curves of Figure 3 use the same 50 ran-

dom seeds. Hence, we use a statistic that aggregates the

performance of a given SO method for a given random

seed. For a given SOmethod, let Xi j denote the average

travel time obtained under the jth run ( j ∈ {1, 2, 3}) and
the ith simulation replication seed (i ∈ {1, 2, . . . , 50}).
The considered performance metric is defined as

Yi �
1

3

3∑
j�1

Xi j , ∀ i ∈ {1, 2, . . . , 50}. (31)

We treat Yi as the average algorithmic performance of

an SO method (DSO or SSO) under replication i.
We use a paired one-sided t-test that assumes

that the simulation observations are independent and

arise from a normal distribution with common but

unknown variance.We pair the observationswith com-

mon random replication seeds. The null hypothesis

assumes equal expected trip travel times for both DSO

and SSO (i.e., equal expected value of Y for each

method). The alternative hypothesis assumes that the

expectation of the DSO method is lower than that of

the SSO method.

The test significance level is 0.05. It has 49 degrees

of freedom. The corresponding critical value is −1.677.
Table 2 summarizes the test statistics. Each row of the

table displays the result of the t-test for a given initial

point (i.e., one test for each plot of Figure 3). Columns 1

to 5 display, respectively, the initial point index, the

t-statistic, the p-value, the average paired difference,

and the standard deviation of the paired differences.

All t-statistics (column 2) are smaller than −1.677,
hence the null hypothesis of all four tests is rejected.

In other words, for each initial point, the signal plans

derived by DSO lead to average travel times that are

statistically significantly lower than those of the signal

plans derived by SSO.

Table 2. Paired One-Sided t-Test Results That Compare the

Performance of DSO and SSO

Standard

Initial point t-statistic p-value Average deviation

1 −4.23 5e−5 −0.35 0.58

2 −9.31 1e−12 −0.65 0.49

3 −3.92 1e−4 −0.28 0.51

4 −4.01 1e−4 −0.26 0.46
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Performance Under Increasing Congestion Levels We

now analyze how the performance of the proposed sig-

nal plans varies over time. The traffic simulation con-

siders the first hour of peak period traffic (5 p.m.–6 p.m.).

Over this hour, congestion gradually increases (for

more details regarding the temporal evolution of con-

gestion in this network, see Osorio 2010, Chapter 4).

This temporal analysis allows us to understand how

the proposed signal plans perform under increasingly

congested conditions.

For a given signal plan, we estimate the expected trip

travel time in 10 minute increments. In other words,

we consider six time windows indexed, respectively,

1 through 6. The corresponding time windows are

5 p.m.–5:10 p.m., 5 p.m.–5:20 p.m., 5 p.m.–5:30 p.m., 5 p.m.–

5:40 p.m., 5 p.m.–5:50 p.m., and 5 p.m.–6 p.m.

In Figure 5, each plot displays the results considering

the same initial plans and the same proposed signal plans
as in Figure 3. The x-axis corresponds to the time win-

dow index. The y-axis represents the average trip travel

Figure 5. Time-Dependent Average Trip Travel Times for Different Initial Signal Plans
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time during the corresponding timewindow. These are

averages obtained over the same 50 simulation replica-

tions used in the previous analysis. Each of the solid

curves corresponds to one of the three signal plans pro-

posed by DSO. Each of the dashed curves corresponds

to one of the three signal plans proposed by SSO. In

each curve, the dots represent the average travel time

during the corresponding time windows. The curves

are interpolated from the dots.

Note that the average travel time estimate for the last

time window (time window 6) is the trip travel time

averaged over all trips from 5 p.m.–6 p.m. This corre-

sponds to an estimate of the objective function of the

optimization problem. This estimate also equals the

average of all 50 simulation replications used to con-

struct a given cdf curve of Figure 3.

In Figures 5(a)–5(c), all three plans derived by DSO

have better performance compared to the three plans

of SSO throughout all six time windows. This holds for

two of the three plans derived by DSO in Figure 5(d).
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In Figure 5(d), the third plan derived by DSO has a

worse performance than the three SSO plans for the

first three time windows, and a worse performance

than two of the SSO plans for the remaining three

time windows. For all DSO plans of Figures 5(a)–5(c),

their performance seems stable for congested condi-

tions (time windows 4–6). Overall, the difference in

performance between theDSOplans and the SSOplans

seems to increase with increasing levels of conges-

tion. This illustrates again the added value of using an

analytical model that is time dependent, such that it

describes this temporal evolution of congestion within

the time horizon of interest (5 p.m.–6 p.m.).

To test the statistical significance of the difference

in performance over time, we proceed as before: we

carry out for each initial point and each time window

a paired one-sided t-test. For each t-test, the metric we

use is the average algorithmic performance of an SO

method (DSO or SSO) during the corresponding time

window.

Table 3 contains four subtables (a)–(d) that dis-

play, respectively, the corresponding t-test statistics,

the p-values, the average paired differences, and the

standard deviation of the paired differences. For a

given table, a row corresponds to an initial point and

a column corresponds to a time window. As before,

the test significance level is 0.05, it has 49 degrees of

freedom, and the critical t-value is −1.677.
Table 3(b) (or equivalently Table 3(a)) shows that for

initial points 1–3, the null hypothesis of equal expec-

tation for DSO and SSO is rejected for initial points

1–3, at all timewindows. This means that as congestion

increases (i.e., as time advances from 5 p.m. to 6 p.m.),

the DSO signal plans consistently outperform the SSO

plans. For initial point 4, the null hypothesis is rejected

for time windows 3–6, and not rejected for time win-

dows 1 and 2. This means that for initial point 4 at

low levels of congestion (i.e., the first 20 minutes of the

peak hour), the DSO plans do not outperform the SSO

plans. Additionally, Table 3(c) shows that for a given

initial point (i.e., a given row), the average difference

Table 3. Paired One-Sided t-Tests That Compare the Time-Dependent Performance of DSO and SSO

Time window index Time window index

Initial point 1 2 3 4 5 6 Initial point 1 2 3 4 5 6

(a) t-statistics (b) p-values
1 −9.64 −8.95 −5.11 −4.36 −4.36 −4.23 1 3e−13 3e−12 3e−6 3e−5 3e−5 5e−5
2 −16.31 −13.42 −10.84 −9.56 −9.28 −9.31 2 9e−22 2e−18 6e−15 4e−13 1e−12 1e−12
3 −9.78 −7.97 −5.37 −4.33 −4.11 −3.92 3 2e−13 1e−10 1e−6 4e−5 7e−5 1e−4
4 0.38 −1.55 −1.83 −2.59 −3.58 −4.01 4 0.65 0.063 0.036 0.006 4e−4 1e−4

(c) Average paired differences (d) Standard deviation of paired differences

1 −0.14 −0.25 −0.25 −0.29 −0.34 −0.35 1 0.1 0.19 0.35 0.47 0.55 0.58

2 −0.24 −0.37 −0.43 −0.50 −0.57 −0.65 2 0.1 0.2 0.28 0.37 0.43 0.49

3 −0.13 −0.21 −0.21 −0.23 −0.25 −0.28 3 0.1 0.19 0.28 0.37 0.44 0.51

4 −0.01 −0.04 −0.07 −0.13 −0.21 −0.26 4 0.11 0.18 0.25 0.35 0.42 0.46

increases with the time window index. This shows that

the difference in performance between DSO and SSO

increases as congestion increases.

Computational Runtime of DSO The steps of the DSO

algorithm that are the most computationally demand-

ing are (i) evaluating the simulator, and (ii) solving the

trust region subproblem. Details on the formulation

and numerical solver used to solve the TR subproblem

are given in Online Appendix B. To illustrate the com-

putational runtimes for each of these steps, we consider

the three SO runs of the DSO method carried out with

initial point 2. Each of the three SO runs allows for

100 simulation evaluations. We use a standard laptop

with an Intel Core i7-2960XM 2.7 GHz processor and

8 GB RAM. The average runtime for one simulation

replication is 1.2 minutes with a standard deviation

of 0.2 minutes. The average time to solve the TR sub-

problem is 5.5 minutes with a standard deviation of 3.6

minutes. These runtimes are suitable for solving the

problem off-line. As part of our ongoing work, we are

formulating real-time SO frameworks, where the run-

time of both steps needs to be improved. For instance,

we currently use the standard Matlab routine for non-

linear constrained problems (fmincon) to solve the TR

subproblem. The use of a standard TR method would

reduce the computational runtime for solving the TR

subproblem. For real-time SO methods, the main run-

time constraint remains the number of sequential sim-

ulation evaluations that can be carried out in real time.

4.3. Comparison with an Existing Signal Plan of
the City of Lausanne

We now compare the performance of the best signal

plan derived by DSO with that of an existing signal

plan for the city of Lausanne. The best DSO signal plan

is defined as the one (among the 12 DSO signal plans

analyzed in the previous section) with the lowest aver-

age travel time over the 50 simulation replications. This

corresponds to the left-most cdf curve of Figure 3(b), or
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Figure 6. Comparison of the Performance of a DSO Signal

Plan and an Existing Signal Plan of the City of Lausanne
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equivalently the signal plan with the smallest y-value
at time window 6 of Figure 5(b). Figure 6 displays the

cdf of this DSO plan (solid line) and of the Lausanne

plan (dashed line). The DSO plan outperforms the

Lausanne plan. To test whether these differences are

statistically significant, we carry out a paired one-sided

t-test as before. The t-test has, once again, a significance
level of 0.05, 49 degrees of freedom, and a critical value

of −1.677. The average trip travel time (average over

all 50 simulation replications) of the DSO plan is 5.52

minutes, and that of the Lausanne signal plan is 5.77

minutes. The average paired difference is 0.25, and the

corresponding standard deviation is 0.94. This leads to

a t-statistic of −1.83, and a p-value of 0.037. The null

hypothesis is rejected. Therefore, the DSO approach

can derive signal plans that perform significantly bet-

ter than the Lausanne plan.

Figure 7. Total Green Time (in Seconds) per Signalized Lane for the Best DSO, Best SSO, and Lausanne Signal Plans

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Total green time per lane for the DSO plan (sec)

0 20 40 60 80 100

Total green time per lane for the DSO plan (sec)

T
ot

al
 g

re
en

 ti
m

e 
pe

r 
la

ne
fo

r 
th

e 
S

S
O

 p
la

n 
(s

ec
)

0

10

20

30

40

50

60

70

80

90

100

T
ot

al
 g

re
en

 ti
m

e 
pe

r 
la

ne
 fo

r
th

e 
La

us
an

ne
 p

la
n 

(s
ec

)

(a) Comparison of the best DSO and
the best SSO signal plans

(b) Comparison of the best DSO and
the Lausanne plans

We now compare the values of the signal plans of

the best DSO plan, the best SSO plan, and the current

Lausanne plan. The best DSO plan is defined as that

with the lowest average travel time over the 50 simula-

tion replications. This corresponds to the left-most cdf

curve of Figure 3(b). Similarly, the best SSO plan is the

left-most dashed cdf curve in Figure 3(d).

The x-axis of Figure 7(a) displays, for each sig-

nal controlled lane at a time interval, the total green

time (in seconds), under the DSO plan. Since the DSO

plan yields two different plans for the two intervals,

Figure 7(a) displays one point for each of these two

time intervals. The y-axis displays the total green time

under the SSO plan. The diagonal line y � x is also

plotted. The points close to the diagonal line indicate

lanes that have similar green time values under both

plans. Similarly, Figure 7(b) displays the green times

for the DSO plan (x-axis) and the Lausanne plan (y-
axis). The plots indicate that there are many lanes with

significantly different green times.

We have also studied the variations of the green

times over time for the DSO plan, but have not found

any interesting temporal trends.

Figure 8(a) displays, for each of these three signal

plans, the average trip travel time as a function of time.

Figure 8(b) displays the average link density of the 60

controlled links. For both plots, the x-axis corresponds
to a time window index, and for each estimate, the

confidence intervals (obtained from the 50 simulation

replications) are displayed. The trip travel time met-

ric of Figure 8(a) is defined just as that of Figure 5.

Note that the objective function corresponds to the

average travel time estimated at time interval 6 (i.e.,

it is the average travel time from 5 p.m.–6 p.m.). Fig-

ure 8(b) displays the average link density of the 60

controlled links. For time intervals 1 through 6, this
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Figure 8. Time-Dependent Congestion Metrics of the Best DSO, Best SSO, and Lausanne Plans
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(a) Time-dependent average trip travel time
(b) Time-dependent average link density of

the signal controlled links

average is computed during time 5:00 p.m.–5:10 p.m.,

5:10 p.m.–5:20 p.m., 5:20 p.m.–5:30 p.m., 5:30 p.m.–5:40 p.m.,

5:40 p.m.–5:50 p.m., and 5:50 p.m.–6:00 p.m., respectively.

This figure illustrates the impact of the signal plans on

local (link-level) performance.

Figure 8(a) indicates that as congestion increases, so

does the difference in performance between the DSO

plan and the two other plans. Figure 8(b) indicates

that the main difference between the DSO plan and

the two other plans is that the DSO plan leads to sig-

nificantly lower levels of congestion at the start of the

peak period. As a consequence, it delays the onset

and the propagation of congestion. This is observed

in Figure 8(a), where the travel times at 6 p.m. under

the DSO plan are those observed under the Lausanne

plan around 5:30 p.m., and under the SSO plan around

5:40 p.m. Figures 8(a) and 8(b) indicate that as con-

gestion increases, so does the variance of the esti-

mators. This increased variance illustrates one of the

challenges of performing SO for congested scenarios,

where the objective function estimators tend to have

high variance.

4.4. Comparison with a Signal Plan Derived by
Commercial Signal Control Software

We compare the performance of the best DSO signal

plan with that of a signal plan derived with the sig-

nal control software Synchro, which is a mainstream,

commercial and popular signal control software (Traf-

ficware 2011). It is widely used across theUnited States.

Major cities, such as NewYork, rely on it to design their

signal plans (NYCDOT 2012). For details on Synchro’s

green split optimization technique, we refer the reader

to (Trafficware 2011, Chapter 14). Synchro is based on a

macroscopic, deterministic, and local traffic model. We

give Synchro the same input data (e.g., network and

traffic data) as for the DSO method. The details on the

Synchro input configuration used are given in Osorio

and Chong (Section 5.3, 2015). As before, the best DSO

signal plan is that with the lowest average trip travel

time among the 12 plans derived by DSO (i.e., left-most

cdf curve of Figure 3(b)).

To evaluate the performance of the Synchro and the

DSO signal plans, we proceed as in Section 4.3. Fig-

ure 9(a) displays the cdf of the average trip travel time

of the DSO signal plan (solid curve) and of the Synchro

plan (dashed curve). The DSO plan yields a signifi-

cant improvement in the average trip travel times. The

average objective function value, among the 50 simula-

tion replications, is 5.5 minutes for the DSO plan and

7.3 minutes for the Synchro plan. The DSO plan yields

a 25% reduction in the trip travel times compared to

the Synchro plan.

Figure 9(b) evaluates the performance of the plans

as a function of time. This figure considers the same

performance metrics as the plots of Figure 5, i.e., the

x-axis considers the 5 p.m.–6 p.m. period discretized in

10 minute time increments, and the y-axis displays the
average trip travel time. As a result, the best DSO plan

outperforms the Synchro plan for all six time intervals.

This figure indicates that, as congestion increases, the

DSO plan mitigates the increase in the travel times,

while the Synchro plan leads to higher travel times.

5. Conclusions
This paper proposes a novel metamodel method that

addresses large-scale simulation-based urban trans-

portation optimization problems with time-dependent

decision variables. The proposed metamodel embeds

a tractable transient network model that accounts for

the time variations of traffic flow and the tempo-

ral propagation of congestion in the underlying road

network. The transient network model is formulated

based on transient queueing theory. The proposed
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Figure 9. Comparison of the Performance Metric of the Best DSO Signal Plan and the Signal Plan Derived by Synchro
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(a) Comparison of the expected trip travel time of the best
DSO signal plan and the signal plan derived by Synchro

(b) Comparison of the time-dependent expected trip travel
time of the best DSO signal plan and the signal plan

derived by Synchro

transient metamodel method is a computationally effi-

cient technique that identifies good solutions (e.g., sig-

nal plans) under a tight computational budget.

We evaluate the performance of this approach by

addressing a large-scale networkwide time-dependent

signal control problem for the city of Lausanne. This

problem considers a congested network (evening peak

period demand) with an intricate topology. We com-

pare the performance of the proposed dynamic meta-

model SO method with that of a stationary metamodel

SOmethod proposed by Osorio and Chong (2015). The

dynamic metamodel SOmethod identifies signal plans

that outperform both the initial signal plans, and most

often, the signal plans derived by the stationary meta-

model SOmethod. The analysis of this paper also illus-

trates that the best DSO plan outperforms an existing

signal plan for the city of Lausanne, as well as a plan

derived by Synchro.

This paper allows practitioners to use a computa-

tionally efficient SO method to address a variety of

dynamic large-scale transportation problems. In this

paper, the analytical transient networkmodel is used to

approximate the simulation-based objective function.

Of current interest is the study of the use of this model

to enhance other algorithmic steps, such as sampling

strategies and ranking and selection strategies to sta-

tistically compare the performance of multiple points.

As part of our ongoing research, we are extending the

use of the proposed transientmetamodel SOmethod to

address traffic-responsive simulation-based optimiza-

tion problems.

This paper considers SO problems where the con-

straints are available in analytical, rather than simula-

tion-based form. Problems with simulation-based (i.e.,

stochastic) constraints require evaluating the feasibility

of a point via simulation. The feasibility of a point can-

not be guaranteed. It can be tested statistically but at the

computational cost of obtaining an accurate estimate

of the simulation-based constraints. In other words,

numerous simulation replications need to be run to

test for feasibility. For this reason, SO problems with

simulation-based constraints can be computationally

more challenging to address.

In transportation, examples of stochastic constraints

would be, for instance, bounds on link or network per-

formance metrics (e.g., travel times, emissions, energy

consumption). Efficient algorithms for such problems

are needed. The metamodel ideas of this paper could

be used to formulate computationally efficient algo-

rithms for SO problems with stochastic constraints.

In other words, problem-specific analytical metamod-

els of the stochastic constraints can be formulated.

Discrete SO problems are another family of prob-

lems, where these metamodel ideas could prove be-

neficial. There is a lack of efficient methods for such

problems, yet many network design problems are nat-

urally formulated as discrete problems. As part of our

ongoing work in bike-sharing and car-sharing prob-

lems, we are exploring ideas in this area.
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