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Abstract

In this thesis, we propose novel computationally efficient optimization algorithms that
derive effective traffic management strategies to reduce congestion and improve the
efficiency of urban transportation systems. The proposed algorithms enable the use
of high-resolution yet computationally inefficient urban traffic simulators to address
large-scale urban transportation optimization problems in a computationally efficient
manner.

The first and the second part of this thesis focus on large-scale offline transporta-
tion optimization problems with stochastic simulation-based objective functions, ana-
lytical differentiable constraints and high-dimensional decision variables. We propose
two optimization algorithms to address these problems. In the first part, we propose
a simulation-based metamodel algorithm that combines the use of an analytical sta-
tionary traffic network model and a dynamic microscopic traffic simulator. In the
second part, we propose a metamodel algorithm that combines the use of an analyt-
ical transient traffic network model and the microscopic simulator. In the first part,
we use the first metamodel algorithm to address a large-scale fixed-time traffic signal
control problem of the Swiss city of Lausanne with limited simulation runs, showing
that the proposed algorithm can derive signal plans that outperform those derived by
traditional simulation-based optimization algorithms and a commercial traffic signal
optimization software. In the second part, we use both algorithms to address a time-
dependent traffic signal control problem of Lausanne, showing that the metamodel
with the transient analytical traffic model outperforms that with the stationary traffic
model.

The third part of this thesis focuses on large-scale online transportation problems,
which need to be addressed with limited computational time. We propose a new opti-
mization framework that combines the use of a problem-specific model-driven method,
i.e., the method proposed in the first part, with a generic data-driven supervised ma-
chine learning method. We use this framework to address a traffic responsive control
problem of Lausanne. We compare the performance of the proposed framework with
the performance of an optimization framework with only the model-driven method
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and an optimization framework with only the data-driven method, showing that the
proposed framework is able to derive signal plans that outperform the signal plans
derived by the other two frameworks in most cases.

Thesis Supervisor: Carolina Osorio
Title: Assistant Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Thesis Motivation and Objective

Urban transportation systems are becoming indispensable with the surge of daily

passenger and vehicle mobility demand over the past few years. With this increase

in travel demand, urban transportation systems of many cities have faced congestion

problems, causing them to be less efficient. Congestion causes significant delays, fuel

overconsumption and high concentration of harmful emissions. According to Texas

Transportation Institute’s Urban Mobility Report (Schrank et al.; 2015), in 2014

alone, congestion in urban areas caused 6.5 billion hours of delay and 3.1 billion

gallons of wasted fuel in the Unites States.

Developing effective traffic management strategies of urban transportation systems

is considered to be a cost-effective approach to reduce congestion. Developing these

strategies can be viewed as addressing city-scale optimization problems, with the

purpose of finding strategies that improve network performance (e.g., reduce average

trip travel time, etc.).

Recently, there is an interest in using high-resolution simulation models, such as

microscopic traffic simulators, to address optimization problems. These simulation

models can describe intricate traffic dynamics observed in urban areas. However, since

they are computationally expensive to evaluate, using them to address large-scale

urban traffic management problems with limited simulation budgets (i.e., simulation
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runs) is challenging. Traditional optimization algorithms, such as many black box op-

timization algorithms (e.g., genetic algorithms), require numerous simulation runs to

address even low or medium dimensional problems (e.g., Stevanovic et al. (2009) and

Park et al. (2009)), which makes them not suitable to address many high-dimensional

optimization problems for large-scale urban networks. Therefore, there is a need to

develop optimization algorithms that use these high-resolution yet computationally

expensive simulation models to address high-dimensional optimization problems for

large-scale urban networks.

In addition, with the emergence of data from ubiquitous sensors, data-driven

methods have been received much attention in transportation research, such as in the

field of traffic estimation (see Antoniou et al. (2013) for a review), traffic management

(see Anderson (2015, Chap. 6) for a review), etc. These methods are generic methods

that are developed based mainly on historical data and do not use problem-specific

information (e.g., network topology) to address transportation problems. These data-

driven methods are computationally efficient and are likely to be more realistic. How-

ever, they may not be able to perform well (e.g., provide good estimates of traffic

conditions on the network level) when there is a low coverage of sensors in urban net-

works (i.e., data is sparse). On the other hand, model-driven optimization methods,

i.e., methods that use problem-specific traffic network models, may be able to perform

well even with sparse data. This is because they can rely on many network modelling

assumptions in order to provide good performance estimates on the unobservable

parts of the networks. Thus, we believe that there is a need to combine model-driven

methods with data-driven methods in optimization algorithms, such that they can

benefit from the advantages of both methods.

In this thesis, we develop novel computationally efficient optimization algorithms

that use high-resolution traffic simulators to address large-scale optimization prob-

lems with limited computational budgets (i.e., limited number of simulation runs).

These optimization algorithms are built upon a simulation-based metamodel algo-

rithm proposed by Osorio and Bierlaire (2013). The latter is computationally efficient

for medium scale problems yet not scalable for large-scale problems. Our algorithms,
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on the other hand, are scalable and computationally efficient for optimization prob-

lems of high dimension. This research allows transportation agencies to use their

high-resolution simulators to address a variety of practical transportation problems.

In this thesis, we are interested in addressing two types of optimization problems:

offline and online problems. For the offline problems, we are interested in problems

with high-dimensional decision variables, simulation-based stochastic objective func-

tions and analytical differentiable constraints. For online problems, we are interested

in problems that consist of a sequence of time intervals where the solution of each

interval needs to be found in a time efficient manner (e.g., in real time). The goals

of this thesis are as follows:

1. To provide practical computationally efficient optimization algorithms for large-

scale offline simulation-based transportation problems. This allows transportation

agencies to use high-resolution yet computationally expensive stochastic traffic sim-

ulators to address a variety of traffic management problems within a limited com-

putational time. These traffic management problems include fixed-time traffic signal

control problems and time-dependent traffic signal control problems.

2. To provide an optimization framework that combines real-time feasible model-

driven methods and data-driven methods to address online large-scale transportation

optimization problems, such as traffic responsive control problems. The framework

aims to combine the advantages of model-driven methods and data-driven methods in

order to make a trade-off between realism, scalability, robustness, and computational

efficiency. The framework also allows high-resolution simulators to be used for online

optimization problems, where computational time becomes a hard constraint.

1.2 Thesis Contributions

This thesis focuses on high-dimensional simulation-based optimization problems for

large-scale networks. The contributions of this thesis include:

Optimization algorithms:

This thesis proposes computationally efficient algorithms for a variety of offline
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and online transportation optimization problems.

To address offline problems, we develop novel simulation-based optimization algo-

rithms that allow the use of high-resolution yet computationally expensive traffic sim-

ulators to address high-dimensional optimization problems for large-scale networks.

Unlike traditional simulation-based optimization algorithms that normally require

thousands of simulation runs, the proposed algorithms can address high-dimensional

simulation-based optimization problems with tens or hundreds of runs. The efficiency

of the proposed algorithms is achieved through the formulation of problem-specific

analytical traffic network models, which are tractable network models. The proposed

algorithms combine the use of computationally efficient analytical traffic network

models and computationally expensive traffic simulators.

To address online problems, we propose a novel optimization framework that com-

bines the use of a problem-specific model-driven method and a data-driven method.

To the best of our knowledge, this is the first time that these two types of methods are

used jointly in an online optimization framework. In our case study, we have shown

that our framework outperforms a framework with only the model-driven method and

a framework with only the data-driven method.

Analytical traffic models:

In this thesis, we have developed two analytical traffic network models: a station-

ary model and a transient model. They are tractable models and are suitable to be

used for addressing large-scale optimization problems. Since they provide problem-

specific structural information of the underlying network, they can help our proposed

optimization algorithms identify good solutions with limited simulation runs.

The stationary traffic model is developed by combining ideas from traffic flow

theory and finite capacity queueing theory. It captures the spatial distribution of

congestion throughout the network. The transient traffic model is built upon the

stationary traffic model and it also takes into account the temporal propagation of

congestion. Thus, it can capture both spatial and temporal distributions of congestion

throughout the network.
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Applications:

The proposed optimization algorithms can be used in a variety of online and

offline optimization problems. In the case study of this thesis, we address three types

of traffic control problems of the Swiss city of Lausanne: 1) a fixed-time traffic signal

control problem, 2) a time-dependent traffic signal control problem, and 3) a traffic

responsive control problem. The network consists of over 600 links, 200 intersections

with 99 control variables. It is considered to be large-scale in the field of simulation-

based optimization and traffic signal control (Aboudolas et al.; 2007).

To address Problem (1), we develop a simulation-based optimization algorithm

that embeds the stationary analytical traffic model. We demonstrate that, in terms

of the quality of solutions (i.e., signal plans), it outperforms a traditional simulation-

based optimization algorithm, and does it with only 150 simulation runs. It also

outperforms a commercial traffic signal control software. To address Problem (2), we

develop a simulation-based optimization algorithm that embeds the transient analyti-

cal traffic model, and demonstrate that it outperforms the optimization algorithm that

embeds the stationary traffic model. To address Problem (3), we develop an online

optimization framework that combines a model-driven method (i.e., the optimization

algorithm developed for Problem (1) and a data-driven method (i.e., a supervised

classification method). The framework is able to derive signal plans that outperform

the signal plans derived by a framework with only the model-driven method and a

framework with only the data-driven method most of the time.

1.3 Thesis Structure

Chapter 2 proposes a computationally efficient simulation-based optimization algo-

rithm for large-scale simulation-based urban transportation problems. The algorithm

combines the use of the proposed stationary analytical traffic model and a micro-

scopic traffic simulator. The method of Chapter 2 has been published as: Osorio,

C. and Chong, L. (2015). A computationally efficient simulation-based optimization

algorithm for large-scale urban transportation problems, Transportation Science 49

19



(3): 623-636. Chapter 3 proposes a simulation-based optimization algorithm designed

for dynamic urban transportation problems. The algorithm combines the use of the

proposed transient traffic model and a microscopic traffic simulator. The method

of Chapter 3 has been published as: Chong, L. and Osorio, C. (forthcoming). A

simulation-based optimization algorithm for dynamic large-scale urban transportation

problems, Transportation Science Forthcoming. Chapter 4 proposes an optimization

framework for online transportation optimization problems. Chapter 5 summarizes

this thesis and presents future research directions. Appendix A is the appendix of

Chapter 2. Appendix B is the appendix of Chapter 3. Appendix C is the appendix

of Chapter 4.
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Chapter 2

A Scalable Metamodel

Simulation-based Optimization

Algorithm for Large-scale Urban

Transportation Problems

This chapter presents a novel computationally efficient optimization algorithm for

large-scale simulation-based (SO) urban optimization transportation problems with

high-dimensional decision variables. We propose a novel metamodel SO algorithm

that combines information from a stationary analytical traffic model and information

from a microscopic traffic simulator. The method of this chapter has been published

as: Osorio, C. and Chong, L. (2015). A computationally efficient simulation-based

optimization algorithm for large-scale urban transportation problems, Transportation

Science 49 (3): 623-636.

2.1 Introduction

The massive amount and variety of mobility data that can now be collected through,

for instance, ubiquitous mobile devices, is enhancing our fundamental understanding

of individual mobility. For instance, it improves our understanding of the intricate
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behavior of travelers, e.g., how they make activity and thereby travel decisions, and

how these decisions are motivated by an underlying objective to enhance their well-

being.

State-of-the-art high-resolution traffic simulation models, such as microscopic traf-

fic simulation models, embed such disaggregate models of traveler behavior (e.g., de-

parture time choice, multi-modal route choice, access and response to en-route traffic

information), and account for behavior heterogeneity. They represent individual ve-

hicles, and can therefore be coupled with vehicle-specific simulators (e.g., propulsion

simulators) to yield detailed estimates of the performance of vehicles (e.g., energy

consumption or emissions estimates) in networks with complex topologies and com-

plex traffic dynamics. Additionally, microscopic simulators provide a detailed rep-

resentation of the underlying supply (e.g., variable message signs, public transport

priorities).

Microscopic traffic simulators describe in detail the interactions between (i) vehicle

performance, (ii) traveler behavior and (iii) the underlying transportation infrastruc-

ture, and yield an elaborate description of traffic dynamics in urban networks. They

are therefore suitable tools to address transportation problems where a detailed rep-

resentation of either of these three components should be accounted for.

Microscopic simulators are popular tools used in practice to evaluate the perfor-

mance of a set of predetermined transportation strategies. Cities such as Toronto,

New York, Boston, Stockholm and Hong Kong have used these tools to inform their

planning and operations decisions (Traffic Technology International; 2012a,b; Pa-

payannoulis et al.; 2011; Toledo et al.; 2003; Hasan; 1999).

For a given strategy, these simulators can provide accurate and detailed perfor-

mance estimates. Their use is mostly limited to what-if analysis (also called scenario-

based analysis) or sensitivity analysis. That is, they are used to evaluate the perfor-

mance of a set of predetermined transportation alternatives (e.g., traffic management

or network design alternatives), such as in Bullock et al. (2004), Ben-Akiva et al.

(2003), Hasan et al. (2002), Stallard and Owen (1998), Gartner and Hou (1992) and

Rathi and Lieberman (1989). See further references in Ben-Akiva et al. (2003).
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The numerous models of disaggregate traveler behavior, vehicle-performance and

supply components lead to detailed performance estimates, yet also to models which

are expensive to develop and calibrate, and computationally expensive to evaluate.

Thus, an accurate estimation of performance is computationally costly to obtain.

Additionally, these simulators derive stochastic nonlinear, and typically nonconvex,

performance measures with no closed-form available. For these reasons, the use of

these simulators to address optimization problems is a challenge.

Currently, the use of these simulation tools is mostly limited to what-if analy-

sis. With the ubiquity of access to real-time traffic information, and the increasing

number of prevailing and interacting traffic control strategies, traffic dynamics of con-

gested networks are becoming more and more intricate. Thus, determining a priori

a set of alternatives with good local and network-wide performance is no longer fea-

sible. Thus, there is a need to embed these detailed simulators within optimization

frameworks in order to systematically identify alternatives with improved local and

network-wide performance. Additionally, given the high cost of developing large-scale

simulation tools, transportation projects would benefit from computationally efficient

methods that allow the use of simulators to go beyond a what-if analysis.

This chapter proposes a simulation-based optimization (SO) method that allows

large-scale urban transportation problems to be addressed with detailed microscopic

traffic simulators. We focus on problems where the objective function is derived

from the simulator and, thus, no closed-form analytical expression is available. The

problems have general (e.g., nonconvex) constraints. Closed-form analytical and dif-

ferentiable expressions are available for all constraints (i.e., the constraints are not

simulation-based).

These urban transportation problems can be formulated as:

min
x
f(x, z; p) = E[F (x, z; p)] (2.1)

g(x; p) = 0, (2.2)

where the purpose is to minimize the expected value of a given stochastic performance
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measure F , x denotes the deterministic continuous decision vector, z denotes other

endogenous variables, and p denotes the deterministic exogenous parameters. For

instance, in this chapter we use the proposed SO approach to solve a traffic signal

control problem where F denotes trip travel time, x represents the green times of

the signal phases, z accounts, for instance, for signalized link capacities, route choice

decisions, and p accounts, for instance, for the network topology, the total traffic

demand, and fixed lane attributes (e.g., length, grade, maximum speed). Constraint

(2.2) is a general formulation for any type of constraint (i.e., inequality constraints

can be transformed and expressed as equality constraints of the form (2.2)). To

summarize, Problem (2.1)- (2.2) considers a simulation-based objective function and

general, analytical and differentiable constraints.

The main challenges of addressing Problem (2.1)-(2.2) lie in the objective function,

f(x, z; p). The challenges are the following.

• The function f has no known analytical form. We can merely estimate it by

running simulation replications of the stochastic traffic simulator.

• An accurate estimation of f is computationally costly to obtain. It involves

running numerous simulation replications. In a high-resolution urban traffic

simulator, such as the one used in this chapter, running a single replication

is costly because it involves simulating the travel behavior of typically tens

of thousands of individual travelers. The behavior of a single traveler is de-

fined by hundreds of pre-trip and en-route travel decisions (e.g., route choice,

lane-changing), which are each simulated by sampling from stochastic travel

behavioral models.

• The function f is typically nonconvex. For example, in Section 2.4 we study

a signal control problem where f represents the expected trip travel time of

the travelers. In the simulation model, the travel decisions of a given traveler

(e.g., route choice) can depend on the state of the network (e.g., congestion pat-

terns), which itself is a consequence of the past decisions of numerous travelers.

Hence, the mapping of a signal plan (the decision vector) to network-wide traffic
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assignment and to the corresponding expected trip travel time (the objective

function) is intricate.

This highlights the general complexity of simulation-based problems across all

application fields, as well as the additional challenges that are unique to urban trans-

portation problems.

This chapter proposes a technique that can efficiently address generally con-

strained large-scale simulation-based urban transportation problems. The perfor-

mance of the technique is evaluated by considering a network-wide traffic signal con-

trol problem. This problem is considered large-scale and complex for derivative-free

algorithms, signal control algorithms and simulation-based optimization algorithms.

Additionally, the chapter focuses on SO techniques with good short-term per-

formance, i.e., computationally efficient methods that can identify alternatives with

improved performance within a tight computational budget. The computational bud-

get can be defined as a limited number of simulation runs or a limited simulation run

time. Such techniques respond to the needs of transportation practitioners by allow-

ing them to address problems in a practical manner.

The remainder of this section reviews past work in this field.

2.1.1 Literature Review

Few SO methods that embed microscopic simulators have been developed (Li et al.;

2010; Stevanovic et al.; 2008; Branke et al.; 2007; Yun and Park; 2006; Hale; 2005;

Joshi et al.; 1995). The most common approach is the use of heuristic algorithms and,

in particular, the use of genetic algorithms (see Yun and Park (2006) for a review).

These methods embed microscopic simulators within general-purpose optimization

algorithms. They treat the simulator as a black-box, using no a priori structural

information about the underlying transportation problem (e.g., network structure).

They therefore require a large number of simulated observations in order to identify

transportation strategies (i.e., trial points) with improved performance.

This chapter proposes an SO technique with good short-term performance suitable
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for microscopic traffic simulators to be used to address complex high-dimensional

problems. In order to derive computationally efficient methods that embed inefficient

simulators, information from other more efficient (i.e., tractable) models that provide

analytical structural information to the algorithm should be used throughout the

optimization process.

In general, methods to address SO problems can be classified as direct-search

methods, stochastic gradient methods and metamodel methods. For reviews of SO

methods see Hachicha et al. (2010), Barton and Meckesheimer (2006), Fu et al. (2005).

This chapter focuses on metamodel methods. For a description of why metamodel

techniques are a suitable approach to address complex simulation-based transporta-

tion problems, see Osorio and Bierlaire (2013).

Metamodel methods build an analytical approximation of the simulation-based

components of the optimization problem (e.g., objective function, constraints). In this

chapter, the objective function is simulation-based. Thus, the metamodel provides

an analytical approximation of the objective function. By resorting to a metamodel

approach, the stochastic response of the simulation is replaced by an analytical re-

sponse function (the metamodel), such that deterministic optimization techniques can

be used. Metamodel techniques use an indirect-gradient approach, i.e., they compute

the gradient of the metamodel, which is a deterministic function. Thus, traditional

deterministic gradient-based optimization algorithms for generally constrained prob-

lems can be used.

Reviews of metamodels are given by Conn et al. (2009b), Barton and Meckesheimer

(2006) and Søndergaard (2003). Metamodels can be classified as either physical or

functional metamodels (Søndergaard; 2003). Physical metamodels are application or

problem-specific metamodels. Their functional form and parameters have a physical

interpretation. Functional metamodels are general-purpose (i.e., generic) functions

chosen based on their analytical tractability. The most common general-purpose

metamodel is the use of low-order polynomials, and particularly of quadratic poly-

nomials (Conn et al.; 2009b; Kleijnen; 2008; Marti; 2008). Other general-purpose

metamodels include spline models, radial basis functions and Kriging models (Kleij-
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nen et al.; 2010; Wild et al.; 2008; Barton and Meckesheimer; 2006).

The existing metamodels consist of either physical or functional components. Re-

cent work has proposed a metamodel that is a combination of a functional and a

physical metamodel (Osorio and Bierlaire; 2013). The functional component en-

sures asymptotic metamodel properties necessary for convergence analysis (such as

full linearity (Conn et al.; 2009a)). The physical component is an analytical and

differentiable macroscopic traffic model. It provides a problem-specific analytical ap-

proximation of the objective function, unlike the generic approximation provided by

the functional component. The physical component therefore yields structural infor-

mation about the problem at hand, which enables the identification of well performing

alternatives (i.e., trial points) with very small samples (i.e., good short-term algorith-

mic performance). The physical component used here is an analytical differentiable

queueing network model. This macroscopic traffic model is less detailed and accurate

than the simulator, yet is computationally efficient to evaluate.

This combined use of functional and physical metamodels allows information from

the detailed, yet inefficient, microscopic simulator to be combined with analytical

information from a more efficient macroscopic model. This leads to an algorithm

with a good detail-tractability trade-off and good short-term performance.

This physical and functional metamodel approach has been used to efficiently ad-

dress complex urban transportation problems, such as signal control problems that

account for detailed (also called microscopic) vehicle-specific energy consumption pat-

terns (Osorio and Nanduri; 2015a), emissions patterns (Osorio and Nanduri; 2015b),

and reliable signal control problems that used detailed full distributional travel time

estimates provided by the simulator to improve both average trip travel times and

travel time reliability (Osorio et al.; 2016).

This approach has been successfully used to control networks with approximately

50 roads, yet is not suitable to address problems for much larger scale networks.

This chapter builds upon this existing metamodel SO technique (hereafter referred

to as the initial method), and proposes a metamodel that can efficiently address

high-dimensional simulation-based problems.
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In Section 2.2 of this chapter, we present the proposed metamodel framework. We

then present the traffic signal control problem which is used to evaluate the scalability

and short-term performance of this approach (Section 2.3). Empirical results are

detailed in Section 2.4, followed by conclusions (Section 2.5).

2.2 Methodology

The main steps of a metamodel SO algorithm are displayed in Figure 2-1. At a given

iteration k, there are a set of points that have been simulated prior to iteration k. We

call this set of points the current sample. Step 1 determines which point of the current

sample is considered to have the best performance. This point is referred to as the

current iterate and is denoted xk. In step 2, the parameters, βk, of the metamodel,

mk, are fitted based on the current sample. For example, in the algorithm used in the

case study of this chapter, the vector βk is obtained as the solution of a least squares

problem that minimizes the distance, over the current sample, between metamodel

values and simulation-based objective function estimates. Step 3a solves the following

problem (or a subproblem of it):

min
x
mk(x, z; p, βk) (2.3)

g(x; p) = 0. (2.4)

This problem differs from Problem (2.1)-(2.2) in that the simulation-based objective

function f of (2.1) is replaced with the metamodel function mk. The latter is an

analytical, and often differentiable, function that depends on the decision vector x,

on a vector of endogenous variables z, a vector of exogenous parameters, q, and an

iteration-specific metamodel parameter vector, βk. The solution to this problem is

called the trial point. Step 3b allows to simulate points that may not be solutions to

the approximate problem (2.3)-(2.4). These are known as model improvement points.

The corresponding sampling strategy that defines these points may, for instance,

have the goal of improving the properties of the sampled space (e.g., increase the
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1. Determine current iterate

2. Fit metamodel mk

3a. Optimize mk(x) 3b. Sampling strategy

4. Simulate

xk

βk

Trial point
Model improvement

point

Evaluate new point x

New performance estimate: f̂(x)

Figure 2-1: Metamodel simulation-based optimization framework (Chong and
Osorio; forthcoming)

dimension of the space spanned, sample uniformly, etc.). The new points (trial or

model improvement) are simulated in step 4 to obtain an estimate of the objective

function, denoted f̂(x). As the iterations advance, more points are sampled, leading

to an improved metamodel and to points with improved objective function estimates.

One feature of metamodel methods is that the trial points are derived by solving

Problem (2.3)-(2.4), which is analytical and differentiable. Hence, it can be solved

with a variety of mainstream solvers. Additionally, the algorithm we use in this

chapter (Osorio and Bierlaire; 2013) is a derivative-free algorithm. Hence, it does

not require the estimation of first- or second-order derivatives of the SO objective

function. Many traditional SO algorithms rely on derivative estimations, which can be

computationally costly to obtain in high-dimensional spaces. The use of a derivative-

free algorithm is important to achieve computational efficiency.
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2.2.1 Metamodel Functional Form

Recall the general form of the urban transportation problems that we address (Prob-

lem (2.1)-(2.2)). Since there is no closed-form available for the objective function,

f , we use a metamodel to approximate it. The functional form of the metamodel

used in this chapter is that proposed by Osorio and Bierlaire (2013). It combines a

physical and a functional component. The functional form of the metamodel, at a

given iteration k is given by:

mk(x, z; βk, p) = βk,0fA(x, z; p) + φ(x; βk,1, . . . , βk,D), (2.5)

where φ (the functional component) is a quadratic polynomial in x, and has D coef-

ficients (βk,1, . . . , βk,D), fA (the physical component) represents the approximation of

the objective function derived by an analytical macroscopic traffic model. It is scaled

by the scalar coefficient βk,0. The parameter vector of the metamodel is represented

by βk = (βk,0, . . . , βk,D).

The metamodel mk can be interpreted as an analytical and macroscopic approx-

imation of the objective function provided by fA, which is corrected parametrically

by both a scaling factor βk,0 and a separable error term φ(x; βk,1, . . . , βk,D). For de-

tails regarding the choice of this functional form, we refer the reader to Osorio and

Bierlaire (2013).

The problem solved at a given iteration k of the SO algorithm is of the form:

min
x
mk(x, z; p, βk) (2.6)

g(x; p) = 0 (2.7)

h(x, z; p) = 0. (2.8)

This problem differs from Problem (2.3)- (2.4) in the Constraint (2.8). This

constraint represents the analytical traffic network model used to derive the physical

metamodel component (i.e., term fA of Equation (2.5)). The traffic model used

in this chapter is a tractable stationary network model, that is also analytical and
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differentiable. It is defined as a system of nonlinear equations.

Problem (2.6)-(2.8) is solved at every iteration of the SO algorithm. Therefore,

the development of a computationally efficient SO algorithm requires solving Prob-

lem (2.6)-(2.8) efficiently. Hence, the analytical network model (represented by (2.8))

needs to be tractable.

The problem-specific approximation fA contributes to the computational efficiency

of the algorithm in various ways. First, as an analytical and differentiable model, it al-

lows for the use of traditional and computationally efficient algorithms (e.g., gradient-

based algorithms) to solve Problem (2.6)-(2.8). Second, it provides an approximation

of f in the entire feasible region, i.e., it provides a global approximation. This is in

contrast with traditional general-purpose functions (e.g., polynomial functions) that

are designed to provide good local approximations of f . Third, the accuracy of this

global approximation is independent of the availability of simulation observations. In

particular, if few or even no simulation observations are available, this approximation

may still provide a suitable approximation of the objective function f . Fourth, if the

network model h (Equation (2.8)) is tractable, then Problem (2.6)-(2.8) can be solved

efficiently.

In this chapter, we use the same functional component as in Osorio and Bierlaire

(2013) (i.e., the quadratic polynomial φ). We propose a novel scalable physical com-

ponent. In Section 2.2.2 we recall the formulation of the physical component of the

initial metamodel and describe its limitations. We then present the new formulation

of the physical component in Section 2.2.3.

2.2.2 Initial Queueing Network Model

The physical component of the initial metamodel is an urban traffic model based

on queueing network theory. It combines ideas from existing traffic models, various

national urban transportation norms, and queueing models. The detailed formulation

of the model is given in Osorio (2010, Chap. 4) (which is based on the more general

queueing network model of Osorio and Bierlaire (2009)). We outline here the main

ideas of its formulation.
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Each lane of an urban road network is modeled as a queue (and in some cases

as a set of queues). In order to account for the limited physical space that a queue

of vehicles may occupy we resort to finite capacity queueing theory, where there is

a finite upper bound on the length of each queue. Each lane is modeled as a finite

capacity M/M/1/k queue. The network model analytically approximates the queue

interactions among adjacent lanes. Congestion and spillbacks are modeled by what

is known in queueing theory as blocking. This occurs when a queue is full, and thus

blocks arrivals from upstream queues at their current location. This blocking process

is described by endogenous variables such as blocking probabilities and unblocking

rates. The model consists of a set of nonlinear equations that capture these between-

queue interactions.

In the following notation the index i refers to a given queue.

γi external arrival rate;

λi total arrival rate;

µi service rate;

µ̃i unblocking rate;

µ̂i effective service rate (accounts for both service and eventual blocking);

ρi traffic intensity;

P f
i probability of being blocked at queue i;

ki upper bound of the queue length;

Ni total number of vehicles in queue i;

P (Ni = ki) probability of queue i being full, also known as the blocking or spillback probability;

pij transition probability from queue i to queue j;

Di set of downstream queues of queue i.
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The queueing network model is formulated as follows.



























































































λi = γi +

∑

j pjiλj(1− P (Nj = kj))

(1− P (Ni = ki))
, (2.9a)

1

µ̃i
=
∑

j∈Di

λj(1− P (Nj = kj))

λi(1− P (Ni = ki))µ̂j
, (2.9b)

1

µ̂i

=
1

µi

+ P f
i

1

µ̃i

, (2.9c)

P (Ni = ki) =
1− ρi

1− ρki+1
i

ρkii , (2.9d)

P f
i =

∑

j∈Di

pijP (Nj = kj), (2.9e)

ρi =
λi
µ̂i

. (2.9f)

Equation (2.9a) is a flow conservation equation, it relates flow transmission be-

tween upstream and downstream queues. The factor (1 − P (Ni = ki)) represents

the probability that queue i is not full (i.e., the queue can receive flow from its up-

stream queues). If the queue is full, it cannot receive flow from upstream queues,

which may lead to spillbacks. Equation (2.9b) defines the rate at which spillbacks

at queue i dissipate, µ̃i. Equation (2.9c) defines the rate at which queue i dissipates

accounting for both spillback and non-spillback states, µ̂i. It is defined as a function

of the service rate of the queue, µi. The latter is determined by combining ideas

from national transportation norms, and is a function, for instance, of the free flow

capacity of the underlying lane. Equation (2.9d) defines the probability that a queue

is full, i.e., the spillback probability of the underlying lane. This expression is derived

from finite capacity queueing theory (Bocharov et al.; 2004). Equation (2.9e) defines

the probability of a vehicle being blocked while at queue i, i.e., the probability that a

vehicle at the underlying lane is affected by spillback from a downstream lane. Equa-

tion (2.9f) defines the traffic intensity of a queue, it is also derived from traditional

finite capacity queueing formulae.

In this model, the exogenous parameters of a given queue are γi, µi, pij and ki.

All other parameters are endogenous. When used to solve a signal control problem,

the flow capacity of the signalized lanes become endogenous, which makes the corre-
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sponding service rates, µi, endogenous. In that case, the exogenous parameters are

γi, pij and ki. This is a stationary model with exogenous traffic assignment (the turn-

ing probabilities pij are exogenous). As described in Section 2.5, analytical tractable

formulations that describe traffic dynamics are developed in Chapter 3.

As described in Section 2.1.1, this model has been used to solve signal control

problems for medium-scale networks. However, it is not sufficiently tractable to ad-

dress large-scale network problems. For instance, in the case of the Lausanne city

network (with over 600 links and 200 intersections), the time needed by a standard

nonlinear optimization algorithm to solve the trust region (TR) subproblem (detailed

in Section 2.3.2) exceeds 20 minutes. Since this TR subproblem is solved at every

iteration of the SO algorithm, it is critical to solve it efficiently.

In this chapter, we propose a more tractable and scalable physical component of

the metamodel. It is an approximation of this initial queueing network model. It

consists of a simple system of one linear and two nonlinear equations. In particular,

as is detailed in Section 2.4.2, the TR subproblem is now solved on average within less

than 2 minutes. This significantly enhances the computational efficiency of the SO al-

gorithm, and allows to efficiently address more complex high-dimensional constrained

transportation problems.

2.2.3 Tractable Stationary Queueing Network Model

We introduce the following two variables:

λ̂i effective arrival rate;

ρ̂i effective traffic intensity.

These two new variables are defined by:

λ̂i = λi(1− P (Ni = ki)) (2.10)

ρ̂i =
λ̂i
µ̂i
. (2.11)

34



The tractable stationary queueing network model is given by:







































λ̂i = γi(1− P (Ni = ki)) +
∑

j

pjiλ̂j (2.12a)

ρ̂i =
λ̂i
µi

+

(

∑

j∈Di

pijP (Nj = kj)

)(

∑

j∈Di

ρ̂j

)

(2.12b)

P (Ni = ki) =
1− ρ̂i

1− (ρ̂i)ki+1
(ρ̂i)

ki . (2.12c)

Equation (2.12a) is obtained directly by inserting Equation (2.10) into Equation

(2.9a). Equation (2.12b) is obtained as follows. Multiply Equation (2.9b) and (2.9c),

respectively, by λ̂i to obtain:

λ̂i
µ̃i

=
∑

j∈Di

λ̂j
µ̂j
, (2.13)

ρ̂i =
λ̂i
µi

+ P f
i

λ̂i
µ̃i
. (2.14)

Insert Equation (2.13) into (2.14) to obtain:

ρ̂i =
λ̂i
µi

+ P f
i (
∑

j∈Di

ρ̂j). (2.15)

Insert the expression of P f
i given by Equation (2.9e), and Equation (2.12b) results.

Equation (2.12c) is an approximation of Equation (2.9d) which is obtained by

replacing the traffic intensity ρ, by the effective traffic intensity ρ̂. That is, we use

the expression of the blocking probability of a finite capacity queue, yet approximate

the traffic intensity with the effective traffic intensity.

Equation (2.11) defines ρ̂ and shows that it may underestimate ρ. For queues with

light traffic, we have ρ̂ ≈ ρ, and the two models will yield similar network performance

estimates. For congested links, the scalable approximation may underestimate link

congestion.

The proposed model consists of three endogenous variables per queue (λ̂i, ρ̂i, P (Ni =

ki)). When using this model to address signal control problems, µi also becomes en-
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dogenous. This model is defined by one linear and two nonlinear equations. This

formulation results in increased computational efficiency, enabling us to address a full

city-scale microscopic simulation-based optimization problem.

2.2.4 Example of Functional Form of fA

As described in Section 2.1.1, one of the advantages of using a physical component

in the metamodel is to have problem-specific approximations of the objective func-

tion. In this section, we give an example of the functional form of the analytical

approximation of the objective function provided by the queueing model, fA(x, z; p).

In Section 2.3, we address a signal control problem, where the objective is to mini-

mize the expected trip travel time. The queueing approximation of this expectation

is obtained by applying Little’s law (Little; 2011, 1961) to the entire network. It is

given by:

∑

iE[Ni]
∑

i γi(1− P (Ni = ki))
, (2.16)

where E[Ni] represents the expected number of vehicles in lane i, γi is the rate of ve-

hicles entering the network via lane i (i.e., the external arrival rate), and P (Ni = ki)

is the probability that lane i is full (i.e., spillback or blocking probability). The nu-

merator of Equation (2.16) represents the expected number of vehicles in the network,

whereas the denominator represents the effective arrival rate to the network. Their

ratio yields the expected time in the network.

The expected number of vehicles on lane i, E[Ni], is given by:

E[Ni] = ρi

(

1

1− ρi
− (ki + 1)ρkii

1− ρki+1
i

)

. (2.17)

This expression is derived in Appendix A.1. In the scalable model proposed in this

chapter, ρi is approximated by ρ̂i in Equation (2.17).
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2.2.5 SO Algorithm

The SO algorithm used in this chapter is that of Osorio and Bierlaire (2013). It is

given in Appendix A.2. It is based on the derivative-free trust region (TR) algorithm

proposed by Conn et al. (2009a). For an introduction to trust region (TR) methods,

we refer the reader to Conn et al. (2000). They summarize the main steps of a TR

method in the Basic trust region algorithm. The derivative-free method proposed by

Conn et al. (2009a) builds upon the Basic trust region algorithm by adding two addi-

tional steps: a model improvement step and a criticality step. This algorithm allows

for arbitrary metamodels to be used and, unlike traditional TR algorithms, it makes

no assumptions on how these metamodels are fitted (interpolation or regression). It

is therefore particularly appealing for the simulation-based context where derivatives

are costly to estimate and where metamodels fitted via regression are more suitable

than their interpolated versions.

At a given iteration k of the SO algorithm, it solves a trust region subproblem

and approximates the objective function by the current metamodel mk (defined in

Equation (2.5)). The metamodel parameters (βk) are fitted via regression based on

the simulated observations collected so far. For a detailed description of the algorithm,

see Osorio and Bierlaire (2013).

2.3 Traffic Signal Control Problem

This methodology is suitable to address a variety of simulation-based urban trans-

portation optimization problems. In this section, we evaluate the performance of the

methodology by considering a large-scale network-wide traffic signal control problem.

2.3.1 Problem Formulation

A detailed review of traffic signal control formulations is given in Appendix A of

Osorio (2010). In this chapter, we consider a fixed-time strategy. Fixed-time (also

called time of day or pre-timed) strategies are pre-determined based on historical
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traffic patterns. They yield one traffic signal setting for the considered time of day.

The traffic signal optimization problem is solved offline.

In this chapter, the signal plans of several intersections are determined jointly.

For a given intersection and a given time interval (e.g., evening peak period), a fixed-

time signal plan is a cyclic (i.e., periodic) plan that is repeated throughout the time

interval. The duration of the cycle is the time required to complete one sequence of

signals. The cycle times of the intersections controlled in the Lausanne network (used

in the case study of this chapter) are 80, 90 or 100 seconds.

A phase is defined as a set of traffic streams that are mutually compatible and

that receive identical control. The cycle of a signal plan is divided into a sequence of

periods called stages. Each stage consists of a set of mutually compatible phases that

all have green. The stage sequence is defined such as to separate conflicting traffic

movements at intersections. The cycle may also contain all-red periods, where all

streams have red indications, as well as stages with fixed durations (e.g., for safety

reasons). The sum of the all-red periods and the fixed periods is called the fixed cycle

time.

Cycle times, green splits and offsets are the three main signal timing control

variables. The green split corresponds to the ratio of green times (i.e., total duration

of a phase) to cycle time. Offsets are defined as the difference in time between the

start of cycles for a pair of intersections. Offset settings are especially important in

coordinating the signals of adjacent intersections (e.g., to create green waves along

arterials or corridors).

In this chapter, cycle times, offsets and all-red durations are kept constant. The

stage structure is also given, i.e., the set of lanes associated with each stage as well as

the sequence of stages are both known. This is known as a stage-based approach. The

decision variables consist of the endogenous green splits of the different intersections.
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To formulate this problem we introduce the following notation:

ci cycle time of intersection i;

di fixed cycle time of intersection i;

en ratio of fixed green time to cycle time of signalized lane n;

s saturation flow rate [veh/h];

x(j) green split of phase j;

xLB vector of minimal green splits;

I set of intersection indices;

N set of indices of the signalized lanes;

PI(i) set of endogenous phase indices of intersection i;

PN (n) set of endogenous phase indices of lane n.

The problem is traditionally formulated as follows:

min
x
f(x; p) = E[F (x; p)] (2.18)

subject to

∑

j∈PI(i)

x(j) =
ci − di
ci

, ∀i ∈ I (2.19)

x ≥ xLB. (2.20)

The decision vector x consists of the green splits for each phase. The objective is

to minimize the expected trip travel time (Equation (2.18)). The linear constraints

(2.19) link the green times of the phases with the available (i.e., non-fixed) cycle

time for each intersection. Equation (2.20) ensures lower bounds for the green splits.

These bounds are determined based on the prevailing transportation norms.
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2.3.2 Trust Region Subproblem

This section presents the trust region (TR) subproblem that is solved at each iter-

ation of the SO algorithm. It is a variation of the signal control problem defined

in Section 2.3.1. At a given iteration k, the SO algorithm considers a metamodel

mk(x, z; βk, p), an iterate xk (point considered to have best performance so far) and

a TR radius ∆k. The TR subproblem is formulated as follows:

min
x,z

mk = βk,0fA(x, z; p) + φ(x; βk,1, . . . , βk,D) (2.21)

subject to

∑

j∈PI(i)

x(j) =
ci − di
ci

∀i ∈ I (2.22)

h(x, z; p) = 0 (2.23)

µn −
∑

j∈PN (n)

xjs = ens, ∀n ∈ N (2.24)

‖x− xk‖2 ≤ ∆k (2.25)

z ≥ 0 (2.26)

x ≥ xLB. (2.27)

The TR subproblem approximates the objective functions by the metamodel at

iteration k, mk. It contains the constraints of the signal control problem, and in-

cludes three additional constraints. Equations (2.22) and (2.27) are the signal con-

trol constraints, they correspond to Equations (2.19) and (2.20). The function h of

Equation (2.23) represents the queueing network model (Equations (2.12a)-(2.12c)).

Equation (2.24) relates the green splits of a phase to the flow capacity of the under-

lying lanes (i.e., the service rate of the queues). Constraint (2.25) is the trust region

constraint. The endogenous variables of the queueing model are subject to positivity

constraints (Equation (2.26)). Thus, the TR subproblem consists of a nonlinear ob-

jective function subject to nonlinear and linear equalities, a nonlinear inequality and
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bound constraints.

2.3.3 Implementation Notes

This problem is solved with the Matlab routine for constrained nonlinear problems,

fmincon, and its sequential quadratic programming method (Coleman and Li; 1996,

1994). We set the tolerance for relative change in the objective function to 10−3 and

the tolerance for the maximum constraint violation to 10−2. For further details on the

TR subproblem formulation and its implementation, see Osorio and Bierlaire (2013).

We implement the lower bound constraints of Equation (2.27) as nonlinear equa-

tions by introducing a new variable v and implementing Equation (2.27) as:

x = xLB + v2. (2.28)

We do not enforce the positivity of all endogenous variables (Equation (2.26)) yet

check a posteriori that all endogenous variables are positive. In our numerous ex-

periments, we have not encountered a case with a negative value. We insert Equa-

tion (2.24) into Equation (2.12b), and implement the two constraints as a single

constraint.

For a problem with r endogenous phases, n lanes, o signalized intersections, where

each lane is modeled by a single queue (i.e., we have n queues), there are 3n + r

endogenous variables, which consist of 3 endogenous queueing variables per lane,

and the green splits for each phase. There are n linear equations, 2n + o nonlinear

equations and 1 nonlinear inequality (trust-region constraint).

2.4 Empirical Analysis: Lausanne City Case Study

2.4.1 Lausanne City Network

We evaluate the scalability and short-term algorithmic performance of this framework

by solving a large-scale signal control problem. We solve a problem for the entire Swiss
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Figure 2-2: Lausanne city road network (adapted from Dumont and Bert (2006))

city of Lausanne. The map is displayed in Figure 2-2, the considered area is delimited

in white.

We use a microscopic traffic simulation model of the Lausanne city center de-

veloped by Dumont and Bert (2006). It is implemented with the Aimsun simulator

(TSS; 2011), and is calibrated for evening peak period demand. Details regarding

this Lausanne network are given in Osorio (2010, Chap. 4). In this chapter, the

considered demand scenario consists of the first hour of peak period traffic, 5-6 pm.

The road network consists of 603 links and 231 intersections. The signals of 17

intersections are controlled in this problem. The modeled road network is displayed in

Figure 2-3, where the 17 intersections are depicted as filled squares. The cycle times of

these intersections are 80 seconds (for 2 intersections), 90 seconds (for 13 intersections)

and 100 seconds (for 2 intersections). This leads to a total of 99 endogenous phase

variables (i.e., the dimension of decision vector is 99).

The queueing model consists of 902 queues. The TR subproblem consists of 2805

endogenous variables with 1821 nonlinear equality constraints, 902 linear equality

constraints. The lower bounds of the green splits (Equation (2.20)) are set to 4

seconds according to the Swiss transportation norm (VSS; 1992).
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Figure 2-3: Lausanne network model

Performing network-wide signal control of networks with around 70 links and

16 intersections is currently considered large-scale in the field of signal control, as

illustrated by recent studies (Aboudolas et al.; 2010, 2007). Thus, the simulation-

based signal control problem of this chapter is a challenging large-scale network-wide

signal control problem that considers a congested network with a complex topology.

This problem is considered large-scale for existing unconstrained derivative-free

algorithms, where the most recent methods are limited to problems with around 200

variables (Conn et al.; 2009b), not to mention the added complexity of constraints

and stochasticity. Given the complexity of the underlying simulator, this problem is

also considered complex for simulation-based optimization algorithms.

2.4.2 Numerical Results

We compare the performance of the proposed metamodel with a traditional meta-

model method that consists only of a functional component, which is a quadratic

polynomial with diagonal second derivative matrix (i.e., the metamodel consists of φ,

defined in Equation (2.5)). In order to compare the two methods, we consider a tight
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computational budget, which is defined as a maximum of 150 simulation runs that

can be carried out.

We consider three different initial points (i.e., signal plans). These points are

uniformly drawn from the feasible space defined by Equations (2.19) and (2.20).

For each initial point, we run the SO algorithm five times, each time allowing for

150 simulation runs. Thus, for each method and each initial point, we derive five

“optimal” (or proposed) signal plans. We then use the simulator to evaluate in detail

the performance of the proposed signal plans. For each proposed plan signal, we run

50 replications. We compare the empirical cumulative distribution function (cdf) of

the average trip travel times obtained from these 50 replications.

Each plot of Figure 2-4 considers a different randomly drawn initial point. Each

curve of each plot displays the empirical cdf’s of a given signal plan. For each plot,

the x-axis displays the average trip travel time (ATTT). For a given x value, the

y-axis displays the proportion of simulation replications (out of the 50 replications)

that have ATTT values smaller than x. Hence, the more a cdf curve is located to the

left, the higher the proportion of small ATTT values; i.e., the better the performance

of the corresponding signal plan. The solid thick curve corresponds to the empirical

cdf of the initial signal plan (denoted x0), the dashed curves (resp. solid thin curves)

are the empirical cdf’s of signal plans proposed by the traditional metamodel, i.e.,

the polynomial φ, (resp. the proposed metamodel, m).

Figure 2-4(a) indicates that all five plans derived by both the proposed metamodel

and the traditional metamodel yield improved performance when compared to the

initial signal plan. All five plans derived by the proposed metamodel also have better

performance compared to those proposed by the traditional metamodel.

Figure 2-4(b) indicates that all five signal plans derived by the proposed meta-

model yield improved performance when compared to the initial plan. Four of them

outperform all five plans derived by the traditional metamodel. Two of the signal

plans derived by the traditional metamodel outperform the initial plan and the other

three have similar performance as the initial plan.

In Figure 2-4(c), all five plans derived by the proposed metamodel yield improve-
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Figure 2-4: Empirical cdf’s of the average trip travel times considering initial
random signal plans and allowing for 150 simulation runs
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ment compared to the initial plan, three of them outperform all five signal plans

proposed by the traditional metamodel. Two of the signal plans proposed by the

traditional metamodel have worse performance than the initial signal plan, one has

similar performance and two have improved performance.

For all three initial points, the proposed method systematically derives signal plans

with improved performance when compared to the initial plan, and most often, when

compared to the plans obtained from the traditional metamodel. Additionally, the

plans derived by the proposed method have good and very similar performance across

all SO runs and all initial points, whereas the performance of the plans proposed by

the traditional metamodel varies depending on both the initial point and the SO run.

This illustrates the robustness of the proposed method to both initial points and to

the stochasticity of the simulator.

We evaluate the performance of the proposed approach for larger sample sizes. We

run the SO algorithm once, and allow for a total of 1500 simulation runs. We choose

two random initial signal plans. We evaluate the performance of the signal plans

proposed at sample sizes 50, 150, 200, 400, 600, 800, 1000 and 1500. We evaluate

their performance just as before, i.e., for a given proposed plan we run 50 replications

of the simulator and plot the empirical cdf (over these 50 replications) of the average

trip travel times.

Figure 2-5(a) displays the corresponding cdf’s of the initial signal plan used in

Figure 2-4(a). The proposed approach identifies a signal plan with excellent perfor-

mance already at sample size 50 (cdf labeled m 50). The signal plan identified as of

sample size 150 remains the best up to sample size 1500. It has slightly improved

performance, and in particular reduced variability, compared to that of sample size

50.

The performance of the signal plans proposed by the traditional metamodel (dashed

curves) improves as the sample size increases. The traditional metamodel requires a

much larger sample size to identify signal plans with good performance.

We carry out a paired t-test to evaluate whether the difference in performance of

the signal plans proposed by each method at sample size 1500 is statistically signifi-
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Figure 2-5: Empirical cdf’s of the average trip travel times considering initial
random signal plans and allowing for 1500 simulation runs
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cant. We assume that the observed average trip travel times arise from a normal dis-

tribution with common but unknown variance. The null hypothesis assumes that the

expected travel time is the same for both methods, whereas the alternative hypothesis

assumes that they differ. The confidence level is 0.05, and there are 49 degrees of

freedom. The sample average and sample standard deviation of our proposed signal

plan (resp. that proposed by the polynomial metamodel) are 5.73 minutes and 0.51

minutes (resp. 5.95 minutes and 0.47 minutes). The critical value of the test is 1.96.

The difference is statistically significant (t-statistic of -2.38, p-value of 0.02).

Thus, at sample size 1500 the proposed method still outperforms its traditional

counterpart. That is, the signal plan identified by the proposed method as of sample

size 150 outperforms that identified by the traditional method at sample size 1500.

Figure 2-5(b) displays the results considering the initial plan used in Figure 2-

4(b). Similarly, the proposed approach identifies a signal plan with an excellent

performance even at sample size 50. The signal plan with best performance derived

by the proposed metamodel is obtained at sample size 150 and remains the same until

sample size 1500. It has similar performance to that of sample size 50.

For sample sizes smaller than 400 the traditional metamodel yields signal plans

with worse performance than the initial plan. Their performance significantly improve

with increasing sample size until size 400. The performance of the derived signal plans

with samples larger than 400 are similar. The signal plans proposed by the traditional

metamodel method for sample sizes 600 to 1500 are the same.

We carry out the same paired t-test as before in order to evaluate whether the

difference in performance of the signal plans proposed by each method at sample size

1500 is statistically significant. The sample average and sample standard deviation

of our proposed signal plan (resp. that proposed by the polynomial metamodel) are

6.25 minutes and 0.73 minutes (resp. 6.16 minutes and 0.50 minutes). The difference

is not statistically significant (t-statistic of 0.72, p-value of 0.48).

Figure 2-6 displays two instances of the Lausanne city map. The links are colored

based on average link travel times (averaged over the 50 replications). The left (resp.

right) map considers the average link travel times for the initial (resp. proposed)
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signal plan. Here the proposed plan is that obtained with the initial plan and sample

size of 150 of Figure 2-5(a). Green links have average travel times below 40 seconds,

yellow links have travel times between 40 and 80 seconds, while red links have travel

times greater than 80 seconds. This figure shows how the proposed plan yields city-

wide travel time improvements.

At each iteration of the SO algorithm, the two most computationally expensive

tasks are the evaluation of the simulator as well as the solution of the trust-region

subproblem (i.e., call of the fmincon routine). We consider the first initial plan (used

in Figures 2-4(a) and 2-5(a)), and account for all 5 runs. Figure 2-7 displays the cdf

of the simulation runs, and the TR subproblem runs. On average one simulation run

takes 1.3 minutes, it takes 1.9 minutes to solve the TR subproblem. The experiments

were run on a standard laptop (processor: 2.70GHz and 4 GB of RAM). Thus, the

metamodel can be used to efficiently solve the TR subproblem at each iteration of

the SO algorithm. Additionally, the structural information that it provides through

the queueing network model allows the SO algorithm to identify signal plans with

excellent performance under very tight computational budgets.

2.4.3 Comparison with a Signal Plan Derived by Commercial

Signal Control Software

In this section, we compare the performance of the signal plans derived by our ap-

proach to those derived by the mainstream, commercial, and widely used, traffic

signal control software Synchro (Trafficware; 2011, Synchro 8). Synchro is a traffic

signal control optimization software based on a macroscopic, deterministic and local

traffic model. It is widely used across the US (NYCDOT; 2012; Riniker et al.; 2009;

Abdel-Rahim and Dixon; 2007; ATAC; 2003). For details on the split optimization

technique within Synchro, we refer the reader to Chapter 14 of Trafficware (2011).

The Synchro version used does not allow for any fixed (i.e., exogenous) phase

durations. Hence, we solve a signal control problem without fixed phases. For each

intersection we take as cycle time its available (i.e., non-fixed) cycle time, ci−di. The
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(a)

(b)

Figure 2-6: Average link travel times using the initial signal plan (Figure 2-6(a))
and the signal plan proposed by the SO approach (Figure 2-6(b)). The averages (in

seconds) are taken over 50 simulation replications.
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Figure 2-7: Simulation and trust region subproblem run times

problem formulation is given by Equations (2.18)-(2.20) and by replacing the right-

hand side of Equation (2.19) by (ci − di)/(ci − di), which equals 1. Synchro and our

proposed SO method address this same problem. The corresponding TR subproblem

is given by Equations (2.21)-(2.27), and replacing the right-hand side of (2.22) by 1

and the right-hand side of (2.24) by zero.

The Lausanne network is coded in Synchro. All signal plan information needed

for Synchro (e.g., phase structure) is obtained from the existing Lausanne signal plan.

The minimum splits are set to 4 seconds as in Section 2.4.1. Lane saturation flows

(denoted s in Section 2.3.1) are set to 1800 vehicles per hour, following Swiss trans-

portation norms. Synchro also needs, as inputs, estimates of prevailing movement

flows. This was also needed when calibrating the analytical queueing model (e.g., to

obtain turning probabilities). Hence, we use the same estimates as those provided

to the queueing model. These are obtained from the simulator using the existing

Lausanne signal plan.

To initialize the proposed SO approach, we consider the same three random initial

signal plans as used in Figure 2-4. For each initial plan, we run the SO algorithm

once, each time allowing for 150 simulation runs. To evaluate the performance of a
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Figure 2-8: Empirical cdf’s of the average trip travel times of the signal plans
proposed by the SO approach and by Synchro.

plan, we use the simulator and proceed as described in Section 2.4.2.

Figure 2-8 presents the corresponding cdf curves. The three solid thin curves

correspond to the plans derived by our proposed metamodel approach (denoted m).

The dashed curves correspond to the three random initial signal plans (denoted x0).

The solid thick curve corresponds to the Synchro plan. All three plans derived by

the purposed metamodel approach yield improved performance when compared to all

three initial plans. All three plans derived by the SO approach also outperform the

plan proposed by Synchro. The Synchro plan has similar performance to two of the

three randomly drawn signal plans.

2.5 Conclusions

This chapter proposes a metamodel for large-scale simulation-based urban transporta-

tion optimization problems. It is a computationally efficient technique that identifies

trial points (e.g., signal plans) with improved performance under tight computational

budgets. This metamodel SO technique is based on the use of a tractable metamodel
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that combines a general-purpose component (a quadratic polynomial) with a physical

component (a tractable analytical stationary queueing network model).

We evaluate the performance of this approach by addressing a large-scale network-

wide fixed-time signal control problem for the Swiss city of Lausanne. This problem

considers a congested network (evening peak period demand) with an intricate topol-

ogy. We compare the performance of the proposed metamodel to that of a traditional

metamodel. The proposed method identifies signal plans that improve the distribu-

tion of average trip travel times compared to both the initial signal plans, and most

often, to the signal plans derived by the traditional method. This network-wide signal

control problem is considered high-dimensional for SO algorithms, for derivative-free

algorithms as well as for signal control algorithms. We also compare the performance

of the proposed approach to that of a widely-used signal control software, Synchro.

All proposed signal plans outperform the plan derived by Synchro.

In this chapter, random uniformly drawn signal plans are used as initial points for

the SO algorithm. The results illustrate the robustness of the proposed metamodel

method to initial points. This allows practitioners to use the method to address a

variety of signal control problems without requiring any field-knowledge to initialize

the method.

As part of ongoing research, we are investigating the use of the proposed method to

address a variety of generally constrained simulation-based transportation problems,

including microscopic model calibration, multi-modal traffic management, and multi-

modal network design problems.

We also investigate novel analytical traffic model formulations with increased ac-

curacy. The model used in this chapter is a stationary model. The next step of this

work is a time-dependent formulation based on the use of transient finite capacity

queueing theory, which will be introduced in Chapter 3.

We are also developing SO algorithms with improved short-term performance by

using information from analytical traffic models, such as the queueing network model

used in this chapter, to inform both sampling strategies and statistical tests.

53



54



Chapter 3

A Metamodel Simulation-based

Optimization Algorithm for

Large-scale Dynamic Urban

Transportation Problems

This chapter presents a novel computationally efficient optimization algorithm that

addresses simulation-based dynamic urban transportation problems with time-dependent

decision variables. In the previous chapter, we proposed a metamodel SO algorithm

that used an analytical stationary traffic model. In this chapter, we propose a meta-

model SO algorithm that formulates and uses an analytical transient traffic model.

The method of Chapter 3 has been published as: Chong, L. and Osorio, C. (forth-

coming). A simulation-based optimization algorithm for dynamic large-scale urban

transportation problems, Transportation Science. Forthcoming.

3.1 Introduction

In the field of urban transportation, dynamic optimization problems, i.e., optimiza-

tion problems with time-dependent decision vectors, have been addressed through

the use of analytical dynamic and, mostly deterministic, traffic models. Such models
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are based on an aggregate, i.e., low-resolution, description of traffic dynamics. They

are computationally efficient to evaluate, yet lack a detailed description of heteroge-

neous traveler behavior, of vehicle-infrastructure interactions, and thus of intricate

traffic dynamics observed in urban areas. A detailed description of these dynamics

is provided by a family of high-resolution simulation-based traffic models, known as

stochastic microscopic or mesoscopic traffic simulators. Nonetheless, these simulators

are computationally inefficient to evaluate. Hence, their use to address optimization

problems has been limited. To the best of our knowledge, they have not been used

to address dynamic transportation optimization problems; let alone large-scale dy-

namic problems. This chapter proposes a methodology that enables high-resolution

traffic simulators to be used, in a computationally efficient way, to address large-scale

dynamic transportation optimization problems.

This chapter focuses on optimization problems of the following form:

min
x1,...,xL

f(x, z; p) =
1

L

L
∑

ℓ=1

E[Fℓ(xℓ, zℓ; p)] (3.1)

gℓ(xℓ; p) = 0 ∀ℓ ∈ L. (3.2)

The time horizon is decomposed into a set of L disjoint time intervals L. Each time

interval ℓ considers a continuous decision vector xℓ (e.g., traffic signal plan), an objec-

tive function defined as the expectation of a network performance function Fℓ (e.g.,

trip travel time, network throughput within interval ℓ). The latter depends on a

vector of interval-dependent decision variables xℓ and endogenous variables zℓ (e.g.,

link travel times, traffic assignment), and a vector of interval-independent exogenous

parameters p (e.g., network topology). The decision vector for all time intervals is

denoted x = (x1, . . . , xL), similarly we denote z = (z1, . . . , zL). For time interval

ℓ, the feasible region is defined by a set of general analytical and differentiable con-

straints, gℓ. This precludes the use of simulation-based constraints (constraints that

need to be evaluated via simulation). This is why the function gℓ does not depend on

the endogenous simulation variables zℓ. A discussion on problems with simulation-
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based constraints is given in the conclusions of this chapter (Section 3.5). Note that

Constraint (3.2) is a general formulation for any type of constraint, i.e., inequality

constraints can be transformed and expressed as equality constraints of the form

(3.2). To summarize, Problem (3.1)-(3.2) considers a time-dependent decision vector

with a simulation-based objective function and general, analytical, differentiable con-

straints. Hereafter, Problem (3.1)-(3.2) is referred to as a dynamic simulation-based

optimization (SO) problem.

The focus of this chapter is to propose computationally efficient algorithms for

large-scale dynamic simulation-based problems, i.e., algorithms that can identify so-

lutions with significantly improved objective function values within a tight computa-

tional budget (e.g., few simulation runs).

The remainder of this section reviews past work on addressing dynamic SO prob-

lems, not limited to transportation applications. We conclude this section by stating

the main contributions of this chapter.

3.1.1 Literature Review

The field of supply chain logistics has extensively used detailed stochastic simula-

tors to describe intricate spatial-temporal processes within supply chain networks.

Schwartz et al. (2006) and Jung et al. (2004) both consider a dynamic inventory

management problem and resort to the use of gradient-based SO algorithms. In both

cases, the simulator is seen as a black-box. It is used to obtain objective function and

first-order derivative estimates. Nonetheless, no problem-specific analytical structural

information is provided to the optimization algorithm. Legato et al. (2008) address a

dynamic quay crane scheduling problem at a maritime container terminal. The simu-

lator, a stochastic queueing network model, is also used as a black-box to derive objec-

tive function estimates. An approach that addresses a dynamic supply chain problem,

and that indeed attempts to exploit problem-specific structure is proposed by Almeder

et al. (2009). Although it is not an SO approach, it is worth mentioning because it is

also motivated by the ideas of: (i) combining efficient optimization techniques with

computationally costly simulation models; and (ii) exploiting problem-specific struc-
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tural information. In the framework of Almeder et al. (2009): the following two steps

are carried out iteratively: (i) certain parameters of the analytical problems (linear

programs and mixed-integer programs) are estimated via simulation; (ii) given the

estimated parameters, the analytical problems are solved. The iterations are carried

out until the distance between consecutive solutions is below a threshold.

To the best of our knowledge, in past work in the field of dynamic SO, the stochas-

tic simulator has been seen as a black-box. It has been coupled with general-purpose

algorithms. This allows for flexibility since the proposed frameworks can be readily

extended to address a variety of problems. Nonetheless, the proposed methods are

not designed to address problems within tight computational budget. In other words,

the SO algorithms used are designed to achieve asymptotic performance guarantees

rather than good short-term performance. When using high-resolution computation-

ally expensive simulation models, the simulation run time significantly limits the scale

and complexity of the problems that can be addressed. Jung et al. (2004), for in-

stance, clearly state this limitation: “The key limitation of the overall approach lies

in the large computing times required to address problems of increasing scope.”

In the field of transportation, few SO methods that embed high-resolution sim-

ulators have been developed (see Chapter 2 Section 2.1.1 for a review). However,

these methods are designed to achieve suitable asymptotic properties (e.g., conver-

gence properties), rather than to identify points with good performance within few

simulation runs. In other words, they are not designed to be computationally effi-

cient. In addition, most of these methods focus on problems with time-independent

variables. However, in the field of traffic management, optimization problems with

time-dependent variables are common, such as time-dependent traffic control opti-

mization problems and dynamic toll optimization problems. Therefore, there is a

need to use develop computationally efficient SO algorithms to address these prob-

lems.
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Contributions

This chapter proposes an SO algorithm for large-scale networks with high-dimensional

time-dependent decision variables, i.e., we propose an SO algorithm for large-scale

dynamic transportation problems. The proposed approach is suitable to address a

variety of transportation problems that can be formulated as large-scale dynamic con-

tinuous simulation-based optimization problems with general analytical constraints.

• We propose a framework to address dynamic SO transportation problems of the

form (3.1)-(3.2). The framework couples information from the simulator with

analytical time-dependent problem-specific structural information. More specif-

ically, a time-dependent analytical traffic model is formulated and used to derive

an analytical description of the spatial-temporal congestion patterns observed

in the simulator. This analytical information is provided to the SO algorithm.

This coupling of information is achieved through the use of metamodel methods.

This combination leads to SO algorithms that are computationally efficient, i.e.,

they can identify solutions with good performance within few simulation runs.

• To the best of our knowledge, this is the first SO algorithm designed for dynamic

problems. It is also the first to enable dynamic transportation SO problems to be

addressed in a computationally efficient manner. Efficiency is achieved through

the formulation of a tractable transient analytical network model.

• The analytical network model is formulated as a simple system of equations.

The model complexity is linear in the number of links in the network and is

independent of the link space capacities. This makes it particularly suitable for

large-scale networks.

• Our past work has developed efficient SO algorithms for problems with time-

independent decision variables. Appendix B.1 summarizes the main methods,

results and insights of past work. It serves to motivate the ideas of this chapter.

This chapter is the first to design an efficient algorithm suitable for SO problems
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with time-dependent decision variables. In particular, in past work the analyt-

ical traffic models used are stationary models. They provide a description of

the spatial propagation of congestion, yet do not describe its temporal propa-

gation. The proposed model is a transient model. It describes both the spatial

and the temporal propagation of congestion. More specifically, it approximates

the temporal variations of the spillback probabilities of each lane. The use

of a transient, rather than a stationary, model is recommended for scenarios

where congestion varies substantially within each time period (e.g., congestion

build-up or dissipation periods). The case study of this chapter, indicates that

providing the SO algorithm with a temporal description of congestion propaga-

tion enables it to identify solutions that delay the onset and the propagation of

congestion. The proposed analytical model builds upon the stationary model

of Chapter 2. A description of their main differences is given in Section 3.2.3.

• The proposed algorithm is used to address a time-dependent traffic signal con-

trol problem. This problem controls the signal plans of 17 intersections dis-

tributed across a city with over 600 roads. This is considered large-scale for

urban traffic signal control problems (Aboudolas et al.; 2010, 2007; Dinopoulou

et al.; 2006). This problem is a constrained non-convex problem with a decision

vector of dimension 198; this is also considered a challenging and large-scale

problem in the field of SO. The case study indicates that the proposed method

identifies signal plans that outperform: (i) a signal plan prevailing in the field,

(ii) a signal plan derived by a commercial signal control software, and (iii)

signal plans derived by the SO method of Chapter 2, which is designed for

time-independent problems.

We present the proposed dynamic SO framework in Section 3.2. We then apply

the framework to address a traffic signal control problem for the city of Lausanne.

The optimization problem is formulated in Section 3.3, the Lausanne city case study

results are presented in Section 3.4. The main conclusions are presented in Section 3.5.
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3.2 Methodology

This chapter proposes a new metamodel formulation for SO problems with time-

dependent variables. This new formulation is then embedded within the SO algorithm

of Osorio and Bierlaire (2013) and is used to address a time-dependent signal control

problem. In Section 3.2.1, we summarize the main ideas of the metamodel SO algo-

rithm. Section 3.2.2 describes the proposed model. A summary of the methodology

is given in Section 3.2.3.

3.2.1 Metamodel SO Framework

The main idea of the metamodel SO algorithm is to approximate the unknown

simulation-based objective function (Equation (3.1)) with an analytical function

known as the metamodel. The chapter uses the same metamodel framework as de-

scribed in Chapter 2. As is detailed in Appendix B.1, past metamodel algorithms

have performed well for high-dimensional transportation problems with tight compu-

tational budgets. In this section, we briefly describe the key points of the metamodel

SO algorithm. We use the same notations as Chapter 2 to describe the algorithm.

For more details regarding this algorithm, we refer the reader to Chapter 2, Section

2.2.

The metamodel SO algorithm is an iterative method. At a given iteration k, the

functional form of the metamodel is given as follows:

mk(x, z; p, βk) = βk,0fA(x, z; p) + φ(x; βk,1, . . . , βk,D). (3.3)

As mentioned in Chapter 2, Section 2.2.1, this metamodel consists a problem-

specific component fA and a general-purpose component φ. In Chapter 2, fA rep-

resents the approximation of the objective function by the stationary macroscopic

traffic network model described in Section 2.2.3. In this chapter, we propose a tran-

sient network model to represent the approximation of the objective function fA.
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The problem solved at a given iteration k of the SO algorithm is of the form:

min
x1,...,xL

mk(x, z; p, βk) (3.4)

gℓ(xℓ; p) = 0 ∀ℓ ∈ L (3.5)

h(x, z; p) = 0. (3.6)

Metamodelmk of Equation (3.4) is the analytical approximation of the simulation-

based objective function described in Equation (3.1). Constraints (3.5) are equivalent

to the analytical constraints of the problem, i.e., Constraints (3.2). Constraint (3.6)

represents the proposed traffic model that is used to derive the physical metamodel

component (i.e., term fA of Equation (3.3)).

The proposed traffic model used in this chapter is a transient network model,

that is also analytical, differentiable and computationally efficient to evaluate. The

transient network model combines ideas from transient queueing theory, queueing

network theory and traffic flow theory. It is formulated as a system of nonlinear

equations. The model complexity is linear in the number of links in the network and

is independent of the individual link space capacities. Hence, it is a scalable model.

The proposed transient network model extends the high-scalable stationary net-

work model we proposed in Chapter 2, Section 2.2.3. In the transient network model,

traffic dynamics are described by combining transient queueing theoretic ideas in-

spired from the works of Morse (1958), Cohen (1982) and Odoni and Roth (1983).

These ideas are described in Section 3.2.2. Recently, link models that are both based

on transient queueing theory and are fully consistent with traditional deterministic

traffic flow theoretic link models have been proposed (e.g., Osorio et al.; 2011; Osorio

and Flötteröd; 2014). Their extension to full network models is a topic of ongoing

research.
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3.2.2 Transient Network Model

The proposed transient model builds upon the stationary model formulated in Chap-

ter 2, Section 2.2.3. The latter model combines ideas from finite capacity queueing

network theory, traffic flow theory and various national transportation norms.

The stationary model uses time-independent endogenous variables and parame-

ters. It does not provide any temporal information, and is therefore not suitable to

address dynamic optimization problems. In this chapter, we propose a transient net-

work model. This model is then used to approximate the physical component of the

metamodel, i.e., fA of Equation (3.3). The transient metamodel is used in Section 3.4

to address a dynamic SO problem.

This section formulates the transient network model. We discretize the time hori-

zon of interest into a set L of disjoint equal-length time intervals. In this section, we

present the model formulation for a given time interval ℓ, ℓ ∈ L.

Section 3.2.2 defines, for interval ℓ, a set of endogenous queueing variables. Sec-

tion 3.2.2 and 3.2.2 describe how these variables are used to derive time-dependent

spillback probabilities, which describe traffic dynamics throughout the network.

Interval-Specific Queueing Variables

The proposed transient model extends the stationary model proposed in Chapter 2,

Section 2.2.3 by accounting for the temporal variations of the spillback probability.

For a given time interval ℓ and queue i, we use the following notations to describe
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the model:

λ̂i,ℓ effective arrival rate;

ρ̂i,ℓ effective traffic intensity;

µi,ℓ service rate;

Pℓ(Ni = ki) stationary spillback probability;

γi external arrival rate;

ki upper bound of the queue length;

Ni total number of vehicles in queue i;

pij transition probability from queue i to queue j;

Di set of downstream queues of queue i.

In this model, λ̂i,ℓ, ρ̂i,ℓ, µi,ℓ and Pℓ(Ni = ki) are interval-specific variables. They

are defined by solving the following system of equations:











































λ̂i,ℓ = γi(1− Pℓ(Ni = ki)) +
∑

j

pjiλ̂j,ℓ (3.7a)

ρ̂i,ℓ =
λ̂i,ℓ
µi,ℓ

+

(

∑

j∈Di

pijPℓ(Nj = kj)

)(

∑

j∈Di

ρ̂j,ℓ

)

(3.7b)

Pℓ(Ni = ki) =
1− ρ̂i,ℓ

1− ρ̂ki+1
i,ℓ

ρ̂kii,ℓ. (3.7c)

This system of equations is the interval-specific version of the System of Equa-

tions (2.12) (in Chapter 2, Section 2.2.3). It assumes that the exogenous parameters

(γi, pij and ki) do not change across time intervals. This assumption can be easily

relaxed. By solving the above system of equations, we obtain interval-specific en-

dogenous variables for each queue: λ̂i,ℓ, ρ̂i,ℓ and Pℓ(Ni = ki). These variables may

vary from one time interval to the next, yet are assumed constant within a time in-

terval. This assumption significantly reduces model complexity and preserves model

tractability.

In the case study of this chapter, the decision vector consists of the green times of

the signalized lanes. There is a one-to-one mapping between the total green time of a
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lane and the service rate of the corresponding queue (denoted µi,ℓ). Given a specific

decision vector value (and hence a specific set of µi,ℓ values), the above System of

Equations (3.7) can be solved simultaneously for all queues, yet independently for each

time interval. Therefore, given a decision vector value, a set of L decoupled systems

of equations can be solved to obtain the endogenous variables for all time intervals.

The formulation of these variables as decoupled systems of equations contributes to

the tractability and scalability of the proposed formulation.

Consider a network with a total of n queues. For a given decision vector value

and a given time-interval ℓ, the System of Equations (3.7) consists of a total of 3n

variables, 3n equations: n linear (3.7a), n quadratic (3.7b) and n non-quadratic

convex (3.7c). The system can therefore be solved efficiently. For any feasible set of

demand and supply parameters, i.e., {γ ≥ 0, µ ≥ 0}, the system contains at least one

solution. In particular, the use of finite capacity queues ensures that for any positive

value of the traffic intensity (i.e., the ratio of the expected demand to the expected

supply) of each queue, there exists a stationary regime for the network of queues, and

hence the stationary probabilities are well-defined. If we had resorted to the use of

infinite capacity queues, then the traffic intensities would need to be strictly smaller

than 1 to ensure stationarity.

Observations from Existing Transient Queueing Models

The goal is to describe the temporal variations of the spillback probabilities. Such

time-dependent probabilities are referred to in queueing theory as transient proba-

bilities. In the field of transportation, models based on transient queueing theory

have focused on infinite capacity queues: Heidemann (2001); Peterson et al. (1995)

and Odoni and Roth (1983). More broadly, in the field of queueing network theory,

research has focused mostly on: (i) networks with infinite capacity queues, and (ii)

the analysis of the stationary regime. This is, arguably, because between-queue (i.e.,

spatial) dependencies are intricate to describe analytically, let alone their temporal

variations.
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The analytical transient analysis of a single isolated finite capacity queue is pre-

sented in the seminal work of Morse (1958) and Cohen (1982). The formulation of

the proposed transient network model builds upon ideas from these two works.

Morse (1958) considers an isolated M/M/1/k queue, with fixed arrival rate λ,

service rate µ, traffic intensity ρ = λ/µ, and a given queue-length distribution at the

beginning of a time interval (i.e., initial conditions). The latter is called the initial

queue-length distribution. We denote the beginning of the time interval by t0. Morse

(1958, Equation (6.13)) derives an exact closed-form expression for the transient

queue-length distribution. More specifically, t time units after t0, the probability of

observing a queue of length m is given by:































P (N = m, t) = P (N = m) + . . .

· · ·+ ρ
m
2

k
∑

s=1

Cs

[

sin

(

smπ

k + 1

)

−√
ρ sin

(

s(m+ 1)π

k + 1

)]

e−wst (3.8a)

ws = λ+ µ− 2
√

λµ cos

(

sπ

k + 1

)

. (3.8b)

The probability that the queue is of length m at time t is denoted P (N = m, t), which

is also known as the transient probability. The corresponding stationary probability

is denoted P (N = m). The coefficients Cs are determined by solving a linear system

of equations that ensure initial boundary conditions:

P (N = m, 0) = P 0(N = m), (3.9)

where P 0(N = m) denotes the given initial conditions, i.e., the probability that the

queue is of length m at time t0.

The System of Equations (3.8) could be used within a network setting in order to

approximate the marginal queue-length distribution of each queue in a network. The

main challenge of such an approach is that in order to compute the coefficients Cs,

the full queue-length distribution of each queue would need to be computed. In other

words, for each queue i, a set of ki + 1 probabilities would need to be computed, and

this for every time interval. This would lead to a model complexity that depends on
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the space capacity, ki, of each queue. For instance, in a network with n queues, and

a problem with L time intervals, the total number of probabilities to approximate

would be
∑n

i=1(ki+1)L. Such an approach would not scale well for large-scale urban

networks.

The factor 1/ws of Equation (3.8a) is known in queueing theory as the relaxation

time. It is the time needed for a given performance metric to reach its stationary

value. Equation (3.8a) states that the transient queue length distribution converges

exponentially to the stationary distribution. Seminal papers that have studied the

relaxation time of an isolated infinite capacity queue include Cohen (1982) and Odoni

and Roth (1983), where the exponential decay term is written as e−t/τ̃ , and τ̃ is the

relaxation time. Cohen (1982) considers an isolated M/M/1 queue and proposes:

τ̃ = 1/(µ(1−√
ρ)2). (3.10)

Odoni and Roth (1983) propose an approximation of τ̃ for an isolated G/G/1 queue.

For an M/M/1 queue, their approximation is similar to that of Cohen (1982) and is

given by: τ̃ = 2/(2.8µ(1−√
ρ)2).

These approximations share the following properties, which will be preserved in

our proposed relaxation time approximation.

• The relaxation time increases as congestion increases (for an infinite capacity

queue the stationary state is only defined if ρ < 1, and increasing congestion

corresponds to ρ→ 1).

• For a fixed traffic intensity ρ, the relaxation time should be proportional to the

time units of the queueing system parameters. In other words, it should be

inversely proportional to either the arrival or the service rates. For example, in

the above approximations, τ̃ is proportional to 1/µ.

Transient Queueing Model

This section formulates a transient queueing model that preserves the following prop-
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erties of the stationary queueing model described in Chapter 2, Section 2.2.3.

• The focus is on the approximation of the transient spillback probabilities. In

other words, for each time interval ℓ and each queue i, our objective is to ap-

proximate Pℓ(Ni = ki, t) rather than the full distribution. This leads to a model

complexity in the order of nL (instead of
∑n

i=1(ki+1)L). The model complexity

is linear in the number of queues, and more importantly, is independent of the

space capacities.

• The between-queue dependencies are captured through the queueing variables

(λ̂, ρ̂). Given these queueing variables, the spillback probability of a given queue

does not depend on any information from other queues. These variables de-

scribe, respectively, the expected demand and the ratio of expected demand to

expected supply. They capture problem structure, and are therefore referred to

as structural variables.

• The structural variables of the queues can be derived by solving a simple system

of equations.

Consider time interval ℓ that begins at time tℓ and a given queue i. The spillback

probability t time units after tℓ is approximated by:











Pℓ(Ni = ki, t) = Pℓ(Ni = ki) + (Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki))e
− t

τi,ℓ (3.11a)

τi,ℓ =
cρ̂i,ℓki

λ̂i,ℓ(1−
√

ρ̂i,ℓ)2
. (3.11b)

Equation (3.11a) is inspired from Equation (3.8a) in that the transient probability

of a queue is defined as the sum of its stationary probability (term Pℓ(Ni = ki)) and

a term that decays exponentially with time. The stationary probability is defined by

the System of Equations (3.7).

Equation (3.11b) is inspired from Equation (3.10) in that the relaxation time is:

(i) directly proportional to 1/(1 − √
ρ̂)2, and (ii) proportional to the service rate

term given by ρ̂/λ̂. Equation (3.11b) is inspired from (3.8b) in that the relaxation

time depends on the space capacity k. Note that the works of Cohen (1982) and of

68



Odoni and Roth (1983) consider infinite capacity queues, hence their relaxation time

approximations do not depend on space capacity. In Equation (3.11b), the term c is

an exogenous scaling parameter, that is fitted based on traffic simulation outputs.

For any set of feasible initial conditions, (i.e., 0 ≤ Pℓ(Ni = ki, tℓ) ≤ 1) Sys-

tem (3.11) converges asymptotically to Pℓ(Ni = ki). Convergence is guaranteed for

any positive value of the traffic intensity (even for values larger than 1).

3.2.3 Methodology Summary

Let us summarize the proposed methodology. A dynamic extension of the metamodel

SO framework of Chapter 2 is used. The metamodel is defined by Equation (3.3).

The key to developing a computationally efficient SO algorithm lies in the formu-

lation of an analytical and tractable problem-specific approximation (denoted fA in

Equation (3.3)) of the objective function (denoted f in Equation (3.1)). This chapter

proposes a transient queueing network model that yields a tractable approximation of

fA. The model considers, for each time interval ℓ, a set of endogenous queueing model

variables defined by the System of Equations (3.7). These variables approximate the

between-queue dependencies, e.g., how spillback at a given queue impacts the perfor-

mance of upstream queues. Given this set of variables, the spillback probability of

each queue varies across time, within time interval ℓ, following Equation (3.11). The

transient queueing network model is then used to derive the functional form of fA.

An example of the derivation of an expression for fA is given in Section 3.3.2 for a

traffic signal control problem.

An algorithmic summary of the transient network model is given in Algorithm 1.

For a network with L time intervals and n queues, the number of endogenous vari-

ables is 3nL. In other words, for each queue and each time interval, the endogenous

variables are: λ̂i,ℓ, ρ̂i,ℓ, and Pℓ(Ni = ki).

We now summarize the main differences between the proposed transient and the

stationary analytical network model of Chapter 2, Section 2.2.3. The stationary

model yields stationary (hence, time-independent) lane spillback probabilities, while

time-dependent probabilities are derived by the transient queueing model. Thus,
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Algorithm 1 Algorithm to evaluate the transient network model

Carry out each of the following steps for all queues i before proceeding to the
next step.

Steps:

1. Define the start of each time interval t1, t2, . . . , tL.

2. Define the exogenous parameters γi, ki, pij, µi,ℓ.

3. Define the initial condition of each queue: P (Ni = ki, t1).

4. Repeat the following for time intervals ℓ = 1, 2, . . . , L

(a) Solve the System of Equations (3.7) to obtain λ̂i,ℓ, ρ̂i,ℓ and Pℓ(Ni = ki).

(b) Compute the spillback probabilities at the end of the time interval accord-
ing to (3.11) with t = tℓ+1.

the proposed model provides a temporal description of congestion propagation. The

queueing variables that describe demand and supply (e.g., arrival rates, traffic inten-

sities) are time-independent for the stationary model, they are constant for the entire

time horizon. The transient model uses a set of variables for each time period, this

allows to describe temporal changes in demand and supply.

The proposed analytical model builds upon the stationary model of Chapter 2,

Section 2.2.3. For a network with n lanes and a set of L time intervals, the stationary

model consists of a system of 3n equations with 3n endogenous variables, while the

transient model consists of a system of L systems of equations that are solved sequen-

tially and each have a dimension 3n. The transient model consists of 3nL endogenous

variables. The complexity of the proposed model scales linearly with the number of

time intervals. Thus, it is less tractable than the stationary model. The complexity

of both models is linear in n and is independent of the link space capacities. This

makes both of them suitable for large-scale network analysis.
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3.3 Time-dependent Traffic Signal Control Problem

The proposed method is suitable to address a variety of simulation-based dynamic

transportation problems. In this section, we illustrate the computational efficiency of

the methodology by considering a large-scale traffic signal control problem with time-

dependent decision variables. Section 3.3.1 formulates the traffic control problem.

Section 3.3.2 presents the analytical expression for fA (of Equation (3.3)) for this

specific problem. Section 3.3.3 discusses implementation details.

3.3.1 Optimization Problem Formulation

A detailed review of traffic signal control terminology is given in Appendix A of

Osorio (2010) or in Lin (2011). We consider fixed-time (also called time of day or

pre-timed) signal control plans. They are determined offline. Unlike traffic-responsive

strategies, they do not respond to prevailing real-time traffic conditions. Congested

networks with complex traffic dynamics (e.g., grid topology, congested multi-modal

traffic) often resort to the use of fixed-time plans (Chen et al.; 2015).

We divide the time horizon of interest (e.g., evening peak period) into L time

intervals. For each time interval, we determine a fixed-time signal plan. The signal

plans for all intersections and all L time intervals are determined jointly.

This chapter focuses on the optimization of green splits, i.e., the decision variables

are the green splits of the signal controlled lanes. Cycle lengths and offsets are fixed.

All other signal plan variables (e.g., stage structure) are also assumed fixed.
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To formulate this problem we introduce the following notation:

ci cycle time of intersection i;

di fixed cycle time of intersection i;

xℓ vector of green splits for time interval ℓ;

xℓ(j) green split of signal phase j for time interval ℓ;

xLB vector of lower bounds for green splits;

I set of intersection indices;

PI(i) set of endogenous signal phase indices of intersection i.

The problem is formulated as follows:

min
x1,...,xL

f(x, z; p) =
1

L

L
∑

ℓ=1

E[Fℓ(xℓ, zℓ; p)] (3.12)

subject to

∑

j∈PI(i)

xℓ(j) =
ci − di
ci

, ∀i ∈ I , ℓ ∈ L (3.13)

xℓ ≥ xLB, ∀ℓ ∈ L. (3.14)

The decision vector x consists of the green splits of all signal phases in all L time inter-

vals. The objective is to minimize the expected trip travel time, where E[Fℓ(xℓ, zℓ; p)]

represents the expected trip travel time during time interval ℓ.

The linear constraints (3.13) ensure that, for each intersection, the sum of the

green times for each signal phase is equal to the available (i.e., non-fixed) cycle time.

Equation (3.14) ensures lower bounds for the green splits. These bounds may vary

according to the city, the time horizon of interest, and even the intersection.

3.3.2 Derivation of the Analytical Objective Function, fA

Recall that the transient network model of Section 3.2 is used to derive the analytical

approximation (fA of Equation (3.3)) of the simulation-based objective function (f
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of Equation (3.12)). We now derive the analytical expression for fA for the specific

objective function (3.12). More specifically, we derive the analytical approximation

of the term E[Fℓ(xℓ, zℓ; p)] in Equation (3.12). Let fA,ℓ denote this approximation.

For time interval ℓ, we can derive the expected time in the network per user by

applying Little’s law (Little; 1961) to the entire road network. This leads to:

fA,ℓ =

∑

iEℓ[Ni]
1

tℓ+1−tℓ

∫ tℓ+1

tℓ

∑

i γi(1− Pℓ(Ni = ki, t))dt
, (3.15)

where Eℓ[Ni] represents the expected number of vehicles in queue i during time inter-

val ℓ, tℓ denotes the start time of time interval ℓ, and tℓ+1 denotes the end time of time

interval ℓ. The numerator is the expected number of vehicles in the network during

time interval ℓ. The denominator is the effective external arrival rate to the network

during time interval ℓ. In the denominator, the term within the integral represents

the instantaneous effective external arrival rate to queue i at time t. The external

arrival rate γi is an exogenous parameter, and the transient spillback probability

Pℓ(Ni = ki, t) is given by Equation (3.11a).

We now derive the closed-form expression used to approximate the numerator

of Equation (3.15), we then derive a closed-form expression for the denominator.

The closed-form expression for Eℓ[Ni] of the numerator is derived as follows. For

an isolated queue i of the type M/M/1/ki, with traffic intensity ρi, the stationary

expected number of vehicles is given by:

E[Ni] = ρi(
1

1− ρi
− (ki + 1)ρi

ki

1− ρiki+1
). (3.16)

An analytical derivation of Equation (3.16) is given in Appendix A.1. We assume

this functional form holds within a given time interval, i.e., we use the following

approximation:

Eℓ[Ni] = ρi,ℓ(
1

1− ρi,ℓ
− (ki + 1)ρi,ℓ

ki

1− ρi,ℓki+1
). (3.17)

An analytical expression for ρi,ℓ is obtained as follows. The model we proposed in
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Chapter 2, Section 2.2.3 is formulated based on the effective traffic intensity ρ̂i, rather

than the traffic intensity ρi of a queue. The effective traffic intensity is related to the

traffic intensity ρi as follows: ρi = ρ̂i/(1 − P (Ni = ki)). We therefore approximate

the traffic intensity of queue i during time-interval ℓ by:

ρi,ℓ =
ρ̂i,ℓ

1
tℓ+1−tℓ

∫ tℓ+1

tℓ
(1− Pℓ(Ni = ki, t))dt

, (3.18)

where ρ̂i,ℓ is defined by Equation (3.7b). A closed-form expression for the integral in

the denominator of Equation (3.18) is obtained as follows. We insert the expression

for Pℓ(Ni = ki, t) given by Equation (3.11a) to obtain:

A =

∫ tℓ+1

tℓ

(1− Pℓ(Ni = ki, t)) dt (3.19)

=

∫ tℓ+1

tℓ

(

1−
[

Pℓ(Ni = ki) + (Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki)) e
− t

τi,ℓ

])

dt

(3.20)

=

∫ tℓ+1

tℓ

(1− Pℓ(Ni = ki)) dt− (Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki))

∫ tℓ+1

tℓ

e
− t

τi,ℓ dt

(3.21)

= (tℓ+1 − tℓ)(1− Pℓ(Ni = ki)) + . . .

· · ·+ τi,ℓ(Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki))(e
−

tℓ+1
τi,ℓ − e

−
tℓ
τi,ℓ ). (3.22)

In summary, the term Eℓ[Ni] of the numerator of Equation (3.15) is given by

Equations (3.17), (3.18) and (3.22).

The denominator of Equation (3.15) can be rewritten by interchanging the sum-

mation with the integral to obtain:

B =
1

tℓ+1 − tℓ

∫ tℓ+1

tℓ

∑

i

γi(1− Pℓ(Ni = ki, t))dt (3.23)

=
1

tℓ+1 − tℓ

∑

i

γi

∫ tℓ+1

tℓ

(1− Pℓ(Ni = ki, t))dt. (3.24)

A closed-form expression for the integral of Equation (3.24) is given by Equation (3.22).
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Note that the analytical expressions derived above allow us to approximate the

expected trip travel time (i.e., the objective function) based on the knowledge of

spillback probabilities Pℓ(Ni = ki, t) rather than the knowledge of full queue-length

distributions. This contributes to the tractability and scalability of the proposed

approach. This leads to a model complexity that is linear in the number of queues

and that is independent of the space capacity of each queue.

3.3.3 Implementation Notes

We implement the lower bound constraints (3.14) as nonlinear equality constraints

by introducing a new variable v and implementing:

xℓ = xLB + v2ℓ . (3.25)

In addition, we enforce the positivity of the endogenous variables ρ̂i,ℓ by introducing

a new variable ui,ℓ and adding the equalities:

ρ̂i,ℓ = u2i,ℓ. (3.26)

We do not enforce the positivity of the other endogenous variables, rather we check

a posteriori that all other endogenous variables are positive. In our numerous exper-

iments, all solutions to the system of equations obtained by the solver have consisted

of positive values.

Note that the green splits are related to the service rate of the underlying queue

i through the following equation:

µi,ℓ =



ei +
∑

j∈PI(i)

xℓ(j)



 s, (3.27)

where PI(i) represents the set of endogenous phase indices of the lane represented

by queue i, ei is the ratio of fixed green time to cycle time of signalized queue i, and

s is the saturation flow rate. We assume a common saturation flow for all signalized
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lanes. For each signalized queue, Equation (3.27) is inserted into Equation (3.7b), in

order to implement both constraints as a single constraint.

In order to further enhance tractability, for the large-scale case study of Sec-

tion 3.4, we approximate the arrival rate to each queue (denoted λ̂i,ℓ) as exogenous;

i.e., it does not vary with the decision vector values. The exogenous value is obtained

by considering the prevailing fixed-time signal plan of the city for the whole time hori-

zon, this yields a set of µi,ℓ values (through Equation (3.27)). Then the System of

Equations (3.7) is solved, and the corresponding λ̂i,ℓ values obtained are used as fixed

values throughout the optimization. This simplification enhances model tractability.

Nonetheless, the assumption of arrival patterns to the links independent of the signal

plans may lead to a misestimation of the link spillback probabilities. Appendix C

derives, as an example, the expression of the derivative of the objective function with

regard to an endogenous variable.

For a problem with L time intervals, n lanes (where each lane is modeled as a sin-

gle queue), where we determine r endogenous signal phases at a total of o signalized

intersections per time interval, our implementation leads to a total of (2n + r)L en-

dogenous variables. These consist of two endogenous queueing variables per queue per

time interval (ui,ℓ and Pℓ(Ni = ki)), and one green split variable (vl(j)) for each sig-

nal phase. The corresponding optimization problem (i.e., a trust region subproblem)

solved at every iteration of the SO algorithm consists of (2n+ o)L nonlinear equality

constraints and one nonlinear inequality constraint (which is the trust region con-

straint). Of the nonlinear equality constraints, 2nL correspond to Equations (3.7b)

and (3.7c), and oL correspond to Equation (3.13) (the latter becomes nonlinear since

vℓ is implemented instead of xℓ). The trust region (TR) subproblem, that is solved

at every iteration, is a variation of the signal control problem formulated in Section

3.3.1. The detailed formulation of the TR subproblem is described in Appendix B.2.
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3.4 Empirical Analysis: Lausanne City Case Study

This section addresses a traffic signal control problem for the city of Lausanne,

Switzerland. Section 3.4.1 describes the network. Section 3.4.2 benchmarks the pro-

posed transient metamodel SO method against the stationary metamodel SO method

proposed in Chapter 2. Sections 3.4.3 and 3.4.4, respectively, compare the perfor-

mance of a signal plan derived by the proposed method to that of an existing signal

plan for the city of Lausanne, and to that of a signal plan derived by a mainstream

commercial signal control software.

3.4.1 Lausanne City Network

We evaluate the performance of the proposed SO algorithm by considering a large-

scale signal control problem for the entire Swiss city of Lausanne. The city map is

displayed in Chapter 2, Figure 2-2, the considered area is delimited in white. We use

a microscopic traffic simulation model of the Lausanne city developed by Dumont

and Bert (2006). It is implemented with the Aimsun simulator (TSS; 2011), and is

calibrated for evening peak period demand. The modeled road network is displayed

in Figure 2-3. The road network consists of 603 links and 231 intersections.

We consider the first hour of the evening peak period: 5-6 pm. During this hour,

congestion gradually builds up. Hence, it is important to design a signal plan that

accounts for this temporal propagation of congestion. We use the proposed algorithm

to determine one signal plan for 5-5:30 pm and a second signal plan for 5:30-6 pm.

In other words, we decompose the hour into two 30-minute intervals, and determine

a signal plan for each of the two intervals.

The signals of 17 intersections are controlled in this case study. These 17 inter-

sections are depicted as filled squares in Figure 2-3. The signal control problem has

a total of 198 endogenous signal phase variables (99 signal phases per time interval),

i.e., the dimension of the decision vector is 198. The phase variable is defined as the

ratio of green time (i.e., the total duration of a phase) to cycle time.

The transient queueing model of this network consists of 902 queues. The trust
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Table 3.1: Traffic models used by each of the compared SO methods.

Microscopic Macroscopic
simulation-based analytical stationary analytical transient

Dynamic SO X X

Stationary SO X X

region (TR) subproblem solved at every iteration of the SO algorithm consists of 3806

endogenous variables with 3642 nonlinear equality constraints, and one trust region

inequality. The lower bounds of the green splits (Equation (3.14)) are set to 4 seconds

according to the Swiss transportation norm (VSS; 1992).

3.4.2 Comparison of the Dynamic SO Method with the Sta-

tionary SO Method

In order to benchmark the performance of the dynamic SO (DSO) method, we com-

pare its performance to that of an SO method that has been successfully used to

address large-scale SO problems. We benchmark the performance of the dynamic

SO method against the performance of the simulation-based stationary metamodel

method (SSO) proposed in Chapter 2. Both methods consider a metamodel defined

by Equation (3.3). They differ only in the physical component of the metamodel (fA

of Equation (3.3)). The proposed DSO method considers the transient network model

formulated in Section 3.2.2. The SSO method considers the stationary network model

defined by the System of Equations (2.12) described in Chapter 2, Section 2.2.3. All

other algorithmic details and parameters are identical in both methods. The dif-

ference between these two methods is also described in Table 3.1. This comparison

allows us to evaluate and quantify the added value of using transient analytical in-

formation in the metamodel (i.e., the added value of using a time-dependent network

model to derive fA of Equation (3.3)).

For both methods, we consider a tight computational budget, which is defined

as a maximum of 100 simulation runs that can be carried out. In other words, the

SO algorithm is initialized with no simulation observations available, and it stops

78



once a total of 100 simulation runs have been carried out. We refer the reader to

Chapter 2 for more information about the SSO algorithm, and for a comparison of

its performance to that of a traditional SO algorithm.

We consider four different initial points (i.e., initial signal plans) to initialize the

SO algorithms. These points are uniformly randomly drawn from the feasible space

defined by Equations (3.13) and (3.14). Thus, these points are uniformly sampled,

subject to linear equalities and non-negativity constraints. This uniform sampling is

carried out according to the code of Stafford (2006). For each initial point, we run

each SO method (i.e., SSO and DSO) three times, each time allowing for a total of

100 simulation runs. Thus, for each method and each initial point, we derive three

proposed signal plans. In order to evaluate the performance of a proposed signal plan,

we embed it within the traffic simulator and run 50 simulation replications. We then

compare the performance of the proposed signal plans both with statistical tests, and

by comparing the cumulative distribution function (cdf) of the objective function

realizations (i.e., the average trip travel times) obtained from these 50 simulation

replications.

Each plot of Figure 3-1 considers a different initial point. Each curve of each plot

displays the cdf of a given signal plan. For each plot, the x-axis displays the average

trip travel time (ATTT). For a given x value, the y-axis displays the proportion of

simulation replications (out of the 50 replications) that have ATTT values smaller

than x. Hence, the more a cdf curve is located to the left, the higher the proportion

of small ATTT values; i.e., the better the performance of the corresponding signal

plan.

For each plot, the solid thick curve corresponds to the cdf of the initial signal plan,

the solid thin curves are the cdf’s of signal plans proposed by DSO and the dashed

curves are the cdf’s of signal plans proposed by SSO.

For all four initial points (Figures 3-1(a)-3-1(d)), all three plans derived by both

DSO and SSO yield improved performance when compared to the initial signal plan.

For three of the four initial points (Figures 3-1(a)-3-1(c)), all three plans derived

by DSO outperform all three plans derived by SSO. For Figure 3-1(d), two out of
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(a) Initial point 1
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(b) Initial point 2
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(c) Initial point 3
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(d) Initial point 4

Figure 3-1: Cumulative distribution functions of the average travel times
considering different initial signal plans.

the three DSO plans outperform all three SSO plans. The third DSO plan performs

similarly to two of the SSO plans. It outperforms the third plan proposed by SSO.

In summary, for all four initial points, DSO systematically derives signal plans

with improved performance when compared to the initial plan, and most often, when

compared to the plans derived by SSO.

We study the robustness of the DSO solutions to the initial points. Figure 3-2

displays the cdf’s of the 12 solutions derived by DSO (solid thin curves) and all 4 initial

points (solid thick curves). In other words, all curves of all four plots of Figure 3-1

are displayed here in a single plot in Figure 3-2. The plot shows that: (i) the DSO

solutions systematically outperform the initial solutions, (ii) all DSO solutions have

similar performance. The DSO plans have good and consistent performance across all
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Figure 3-2: Cumulative distribution functions of the average travel times for all 4
initial points and all 12 proposed solutions

SO runs and all initial points. This illustrates the robustness of the proposed method

to both the initial points and to the stochasticity of the simulator.

In order to test whether the performance of DSO is statistically significantly better

than that of SSO, we carry out, for each initial point, a one-sided paired t-test. We

choose a performance metric that accounts for the overall performance of an SO

method over all three SO runs. The 50 simulation replications used to derive each of

the cdf curves of Figure 3-1 use the same 50 random seeds. Hence, we use a statistic

that aggregates the performance of a given SO method for a given random seed. For

a given SO method, let Xij denote the average travel time obtained under the jth

run (j ∈ {1, 2, 3}) and the ith simulation replication seed (i ∈ {1, 2, . . . , 50}). The

considered performance metric is defined as:

Yi =
1

3

3
∑

j=1

Xij, ∀i ∈ {1, 2, . . . , 50}. (3.28)

We treat Yi as the average algorithmic performance of an SO method (DSO or SSO)

under replication i.

We use a paired one-sided t-test that assumes that the simulation observations

are independent and arise from a normal distribution with common but unknown
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Table 3.2: Paired one-sided t-test results that compare the performance of DSO and
of SSO

Initial point T-statistic P-value Average Standard deviation
1 -4.23 5e− 5 -0.35 0.58
2 -9.31 1e− 12 -0.65 0.49
3 -3.92 1e− 4 -0.28 0.51
4 -4.01 1e− 4 -0.26 0.46

variance. We pair the observations with common random replication seeds. The null

hypothesis assumes equal expected trip travel times for both DSO and SSO (i.e.,

equal expected value of Y for each method). The alternative hypothesis assumes that

the expectation of the DSO method is lower than that of the SSO method.

The test significance level is 0.05. It has 49 degrees of freedom. The corresponding

critical value is -1.677. Table 3.2 summarizes the test statistics. Each row of the table

displays the result of the t-test for a given initial point (i.e., one test for each plot

of Figure 3-1). Columns 1 to 5 display, respectively, the initial point index, the t-

statistic, the p-value, the average paired difference and the standard deviation of the

paired differences.

All t-statistics (Column 2) are smaller than -1.677, hence the null hypothesis of all

four tests is rejected. In other words, for each initial point, the signal plans derived by

DSO lead to average travel times that are statistically significantly lower than those

of the signal plans derived by SSO.

Performance under Increasing Congestion Levels

We now analyze how the performance of the proposed signal plans varies over time.

The traffic simulation considers the first hour of peak period traffic (5-6 pm). Over

this hour, congestion gradually increases (for more details regarding the temporal

evolution of congestion in this network, see Osorio (2010, Chap. 4)). This tempo-

ral analysis allows us to understand how the proposed signal plans perform under

increasingly congested conditions.

For a given signal plan, we estimate the expected trip travel time in ten minute
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increments. In other words, we consider 6 time windows indexed, respectively, 1

through 6. The corresponding time windows are 5-5:10, 5-5:20, 5-5:30, 5-5:40, 5-5:50

and 5-6 pm.

In Figure 3-3, each plot displays the results considering the same initial plans

and the same proposed signal plans as in Figure 3-1. The x-axis corresponds to

the time window index. The y-axis represents the average trip travel time during the

corresponding time window. These are averages obtained over the same 50 simulation

replications used in the previous analysis. Each of the solid curves corresponds to one

of the three signal plans proposed by DSO. Each of the dashed curves corresponds

to one of the three signal plans proposed by SSO. In each curve, the dots represent

the average travel time during the corresponding time windows. The curves are

interpolated from the dots.

Note that the average travel time estimate for the last time window (time window

6) is the trip travel time averaged over all trips from 5-6 pm. This corresponds to an

estimate of the objective function of the optimization problem. This estimate also

equals the average of all 50 simulation replications points used to construct a given

cdf curve of Figure 3-1.

In Figures 3-3(a), 3-3(b) and 3-3(c), all three plans derived by DSO have better

performance compared to the three plans of SSO throughout all six time windows.

This holds for two of the three plans derived by DSO in Figure 3-3(d). In Figure 3-

3(d), the third plan derived by DSO has worse performance than the three SSO plans

for the first three time windows, and worse performance than two of the SSO plans

for the remaining three time windows. For all DSO plans of Figures 3-3(a), 3-3(b)

and 3-3(c), their performance seems stable for congested conditions (time windows

4-6). Overall, the difference in performance between the DSO plans and the SSO

plans seems to increase with increasing levels of congestion. This illustrates again

the added value of using an analytical model that is time-dependent, such that it

describes this temporal evolution of congestion within the time horizon of interest

(5-6 pm).

In order to test the statistical significance of the difference in performance over
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1 2 3 4 5 6
4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

Time window index

A
ve

ra
ge

 tr
ip

 tr
av

el
 ti

m
e 

[m
in

]
 

 

Dynamic SO (DSO)
Stationary SO (SSO)

(b) Initial point 2
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(c) Initial point 3
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(d) Initial point 4

Figure 3-3: Time-dependent average trip travel times for different initial signal plans
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Table 3.3: Paired one-sided t-tests that compare the time-dependent performance of
DSO and of SSO

(a) T-statistics

Time window index
1 2 3 4 5 6

In
it

ia
l

p
oi

n
t

1 -9.64 -8.95 -5.11 -4.36 -4.36 -4.23
2 -16.31 -13.42 -10.84 -9.56 -9.28 -9.31
3 -9.78 -7.97 -5.37 -4.33 -4.11 -3.92
4 0.38 -1.55 -1.83 -2.59 -3.58 -4.01

(b) P-values

Time window index
1 2 3 4 5 6

In
it

ia
l

p
oi

n
t

1 3e− 13 3e− 12 3e− 6 3e− 5 3e− 5 5e− 5
2 9e− 22 2e− 18 6e− 15 4e− 13 1e− 12 1e− 12
3 2e− 13 1e− 10 1e− 6 4e− 5 7e− 5 1e− 4
4 0.65 0.063 0.036 0.006 4e− 4 1e− 4

(c) Average paired differences

Time window index
1 2 3 4 5 6

In
it

ia
l

p
oi

n
t

1 -0.14 -0.25 -0.25 -0.29 -0.34 -0.35
2 -0.24 -0.37 -0.43 -0.50 -0.57 -0.65
3 -0.13 -0.21 -0.21 -0.23 -0.25 -0.28
4 -0.01 -0.04 -0.07 -0.13 -0.21 -0.26

(d) Standard deviation of paired differences

Time window index
1 2 3 4 5 6

In
it

ia
l

p
oi

n
t

1 0.1 0.19 0.35 0.47 0.55 0.58
2 0.1 0.2 0.28 0.37 0.43 0.49
3 0.1 0.19 0.28 0.37 0.44 0.51
4 0.11 0.18 0.25 0.35 0.42 0.46

time, we proceed as before: we carry out for each initial point and each time window

a paired one-sided t-test. For each t-test, the metric we use is the average algorithmic

performance of an SO method (DSO or SSO) during the corresponding time window.

Table 3.3 contains four subtables (a)-(d) that display, respectively, the correspond-

ing t-test statistics, the p-values, the average paired difference and the standard de-

viation of the paired differences. For a given table, a row corresponds to an initial

point, a column corresponds to a time window. As before, the test significance level

is 0.05, it has 49 degrees of freedom, and the critical t-value is -1.677.

Table 3.3(b) (or equivalently Table 3.3(a)) shows that for initial point 1, 2 and
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3, the null hypothesis of equal expectation for DSO and SSO is rejected for initial

points 1, 2 and 3, at all time windows. This means that as congestion increases (i.e.,

as time advances from 5 pm to 6 pm), the DSO signal plans consistently outperform

the SSO plans. For initial point 4, the null hypothesis is rejected for time windows

3-6, and not rejected for time windows 1 and 2. This means that for initial point

4 at low levels of congestion (i.e., the first 20 minutes of the peak hour), the DSO

plans do not outperform the SSO plans. Additionally, Table 3.3(c) shows that for a

given initial point (i.e., a given row), the average difference increases with the time

window index. This shows that the difference in performance between DSO and SSO

increases as congestion increases.

Computational Runtime of DSO

The steps of the DSO algorithm that are the most computationally demanding are: (i)

evaluating the simulator, and (ii) solving the trust region (TR) subproblem. Details

on the formulation and numerical solver used to solve the TR subproblem are given

in Appendix B.2. To illustrate the computational runtimes for each of these steps,

we consider the three SO runs of the DSO method carried out with initial point 2.

Each of the three SO runs allows for 100 simulation evaluations. We use a standard

laptop with an Inter(R) Core(TM) i7-2960XM 2.7 GHz processor and 8GB RAM. The

average runtime for one simulation replication is 1.2 minutes with a standard deviation

of 0.2 minutes. The average time to solve the TR subproblem is 5.5 minutes with a

standard deviation of 3.6 minutes. These runtimes are suitable for solving the problem

offline. In the future, we would like to improve to runtime of both steps, such that

they can be used to address real-time SO problems. For instance, we currently use the

standard Matlab routine for nonlinear constrained problems (fmincon) to solve the

TR subproblem. The use of a standard TR method would reduce the computational

runtime for solving the TR subproblem. For real-time SO methods, the main runtime

constraint remains the number of simulation runs that can be carried out in real-time.
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Figure 3-4: Comparison of the performance of a DSO signal plan and an existing
signal plan of the city of Lausanne

3.4.3 Comparison with an Existing Signal Plan of the City of

Lausanne

We now compare the performance of the best signal plan derived by DSO with that of

an existing signal plan for the city of Lausanne. The best DSO signal plan is defined

as the one (among the 12 DSO signal plans analyzed in the previous section) with

the lowest average travel time over the 50 simulation replications. This corresponds

to the left-most cdf curve of Figure 3-1(b), or equivalently the signal plan with the

smallest y-value at time window 6 of Figure 3-3(b). Figure 3-4 displays the cdf

of this DSO plan (solid line) and of the Lausanne plan (dashed line). The DSO

plan outperforms the Lausanne plan. In order to test whether these differences are

statistically significant, we carry out a paired one-sided t-test as before. The t-test

has, once again, a significance level of 0.05, 49 degrees of freedom, and a critical value

of -1.677. The average trip travel time (average over all 50 simulation replications) of

the DSO plan is 5.52 minutes, and that of Lausanne signal plan is 5.77 minutes. The

average paired difference is 0.25, the corresponding standard deviation is 0.94. This

leads to a t-statistic of -1.83, and a p-value of 0.037. The hull hypothesis is rejected.

Therefore, the DSO approach can derive signal plans that perform significantly better

than the Lausanne plan.
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We now compare the values of the signal plans of the best DSO plan, the best SSO

plan and the current Lausanne plan. The best DSO plan is defined as that with the

lowest average travel time over the 50 simulation replications. This corresponds to

the left-most cdf curve of Figure 3-1(b). Similarly, the best SSO plan is the left-most

dashed cdf curve in Figure 3-1(d).

The x-axis of Figure 3-5(a) displays, for each signal controlled lane at a time

interval, the total green time (in seconds), under the DSO plan. Since the DSO plan

yields two different plans for the two intervals, Figure 3-5(a) displays one point for

each of these two time intervals. The y-axis displays the total green time under the

SSO plan. The diagonal line y = x is also plotted. The points close to the diagonal

line indicate lanes that have similar green time values under both plans. Similarly,

Figure 3-5(b) displays the green times for the DSO plan (x-axis) and the Lausanne

plan (y-axis). The plots indicate that there are many lanes with significantly different

green times.

We have also studied the variations of the green times over time for the DSO plan,

but have not found any interesting temporal trends.

Figure 3-6(a) displays, for each of these 3 signal plans, the average trip travel

time as a function of time. Figure 3-6(b) displays the average link density of the 60

controlled links. For both plots, the x-axis corresponds to a time window index, and

for each estimate, the confidence intervals (obtained from the 50 simulation replica-

tions) are displayed. The trip travel time metric of Figure 3-6(a) is defined just as

that of Figure (3-3). Notice that the objective function corresponds to the average

travel time estimated at time interval 6 (i.e., it is the average travel time from 5-

6pm). Figure 3-6(b) displays the average link density of the 60 controlled links. For

time intervals 1 through 6, this average is computed during time 5:00-5:10, 5:10-5:20,

5:20-5:30, 5:30-5:40, 5:40-5:50 and 5:50-6:00, respectively. This figure illustrates the

impact of the signal plans on local (link-level) performance.

Figure 3-6(a) indicates that as congestion increases, so does the difference in

performance between the DSO plan and the two other plans. Figure 3-6(b) indicates

that the main difference between the DSO plan and the two other plans is that the
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(a) Comparison of the best DSO and the best SSO signal plans
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(b) Comparison of the best DSO and the Lausanne plans

Figure 3-5: Total green time (in seconds) per signalized lane for the best DSO, the
best SSO and the Lausanne signal plans
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DSO plan leads to significantly lower levels of congestion at the start of the peak-

period. As a consequence, it delays the onset and the propagation of congestion. This

is observed in Figure 3-6(a), where the travel times at 6pm under the DSO plan are

those observed under the Lausanne plan around 5:30pm, and under the SSO plan

around 5:40 pm. Figures 3-6(a) and 3-6(b) indicate that as congestion increases,

so does the variance of the estimators. This increased variance illustrates one of the

challenges of performing SO for congested scenarios, where the objective function

estimators tend to have high variance.

3.4.4 Comparison with a Signal Plan Derived by Commercial

Signal Control Software

We compare the performance of the best DSO signal plan with that of a signal plan

derived with the signal control software Synchro, which is a mainstream, commercial

and popular signal control software (Trafficware (2011)). It is widely used across the

United States. Major cities, such as New York, rely on it to design their signal plans

(NYCDOT; 2012). For details on Synchro’s green split optimization technique, we

refer the reader to Chapter 14 of Trafficware (2011). Synchro is based on a macro-

scopic, deterministic and local traffic model. We give Synchro the same input data

(e.g., network and traffic data) as for the DSO method. The details on the Synchro

input configuration used are given in Chapter 2, Section 2.4.3. As before, the best

DSO signal plan is that with the lowest average trip travel time among the 12 plans

derived by DSO (i.e., left-most cdf curve of Figure 3-1(b)). To evaluate the per-

formance of the Synchro and the DSO signal plans, we proceed as in Section 3.4.3.

Figure 3-7(a) displays the cdf of the average trip travel time of the DSO signal plan

(solid curve) and of the Synchro plan (dashed curve). The DSO plan yields a signif-

icant improvement in the average trip travel times. The average objective function

value, among the 50 simulation replications, is 5.5 minutes for the DSO plan and 7.3

minutes for the Synchro plan. The DSO plan yields a 25% reduction in the trip travel

times compared to the Synchro plan.
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(a) Time-dependent average trip travel time
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(b) Time-dependent average link density of the signal controlled links

Figure 3-6: Time-dependent congestion metrics of the best DSO, the best SSO and
the Lausanne plans
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Figure 3-7(b) evaluates the performance of the plans as a function of time. This

figure considers the same performance metrics as the plots of Figure 3-3, i.e., the

x-axis considers the 5pm-6pm period discretized in 10 minute time increments, and

the y-axis displays the average trip travel time. As a result, the best DSO plan

outperforms the Synchro plan for all the six time intervals. This figure indicates that,

as congestion increases, the DSO plan mitigates the increase in the travel times, while

the Synchro plan leads to higher travel times.

3.5 Conclusions

This chapter proposes a novel metamodel method that addresses large-scale simulation-

based urban transportation optimization problems with time-dependent decision vari-

ables. The proposed metamodel embeds a tractable transient network model that

accounts for the time variations of traffic flow and the temporal propagation of con-

gestion in the underlying road network. The transient network model is formulated

based on transient queueing theory. The proposed metamodel method is a compu-

tationally efficient technique that identifies good solutions (e.g., signal plans) under

tight computational budget.

We evaluate the performance of this approach by addressing a large-scale network-

wide time-dependent signal control problem for the Swiss city of Lausanne. This

problem considers a congested network (evening peak period demand) with an in-

tricate topology. We compare the performance of the proposed dynamic metamodel

SO method with that of a stationary metamodel SO method proposed in Chapter

2. The dynamic metamodel SO method identifies signal plans that outperform both

the initial signal plans, and most often, the signal plans derived by the stationary

metamodel SO method. The analysis of this chapter also illustrates that the best

DSO plan outperforms an existing signal plan for the city of Lausanne, as well as a

plan derived by Synchro.

The method of this chapter allows practitioners to use a computationally efficient

SO method to address a variety of dynamic large-scale transportation problems in a

92



4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x: average trip travel time [min]

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n:

 F
(x

)

 

 

Dynamic SO (DSO)
Synchro

(a) Comparison of the expected trip travel time of the best DSO signal plan and
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(b) Comparison of the time-dependent expected trip travel time of the best DSO
signal plan and the signal plan derived by Synchro

Figure 3-7: Comparison of the performance metric of the best DSO signal plan and
the signal plan derived by Synchro
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computational efficient way. In this chapter, the analytical transient network model

is used to approximate the simulation-based objective function. Of current interest

is the study of the use of this model to enhance other algorithmic steps, such as

sampling strategies and ranking and selection strategies to statistically compare the

performance of multiple points.

Discrete SO problems are another family of problems, where these metamodel

ideas could prove beneficial. There is a lack of efficient methods for such problems, yet

many network design problems, such as bike-sharing and car-sharing facility location

problems, are naturally formulated as discrete problems. As part of the ongoing work,

we are exploring ideas in this area.
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Chapter 4

Combining Problem-specific

Model-driven Methods with General

Purpose Data-driven methods for

Online Large-scale Urban

Transportation Problems

Chapter 2 and Chapter 3 focus on large-scale offline simulation-based optimization

problems. In this chapter, we focus on online large-scale optimization problems. We

propose a novel computationally efficient optimization framework that combines the

metamodel method proposed in Chapter 2 and a supervised machine learning method.

This framework allows the use of high-resolution yet computationally expensive traffic

simulators for addressing large-scale online problems.

4.1 Introduction

Today, real-time traffic information is collected by ubiquitous sensors, such as cell

phones, road side units and GPS equipments. This information allows the design of

traffic management strategies that are adaptive to real-time traffic conditions. These
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strategies can mitigate real-time congestion and provide en-route guidance to road

users. In this chapter, we formulate online optimization problems to derive these

strategies. In these problems, decision variables (e.g., management strategies) are

determined based on real-time data and can be implemented in real-time. To solve

this type of problem, we focus on two types of methods: 1) model-driven methods,

where problem-specific traffic models are used to derive solutions, and 2) data-driven

methods, where solutions are derived by generic models without the need of problem-

specific information such as network typology. Model-driven methods can use any

type of traffic models (e.g., urban traffic simulators) whereas data-driven methods

normally use generic machine learning methods, such as supervised classification or

regression methods. In this chapter, we propose a new optimization framework that

combines these two methods to address online transportation optimization problems

for large-scale networks. In particular, we use a model-driven simulation-based opti-

mization method and a generic supervised classification method to address a traffic

responsive signal control problem of the Swiss city of Lausanne.

Past research has either used model-driven methods or data-driven methods to

address online transportation optimization problems. Model-driven methods solve

these problems using problem-specific traffic models, such as analytical network mod-

els (e.g., Aboudolas et al. (2007)) or simulation models (known as traffic simulators),

which rely on many network modelling assumptions. On the other hand, data-driven

methods do not rely on these modelling assumptions. Rather, the solutions are de-

rived mainly based on data. In other words, data-driven methods do not require any

problem-specific information such as the topology, traffic demand or supply informa-

tion of networks. Model-driven methods and data-driven methods both use real-time

data, although for different proposes. As stated in Barros et al. (2015): “while data-

driven methods rely on the network’s history to predict its evolution, model-driven

methods require it in order to calibrate the parameters used in the traffic simula-

tion”. In what follows, we briefly review model-driven and data-driven methods in

transportation optimization problems.
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4.1.1 Literature Review: Model-driven Methods

Model-driven methods use traffic models to derive solutions of optimization problems.

These traffic models make many network modelling assumptions to describe real world

traffic conditions. As mentioned earlier, analytical traffic models and simulation

models are the main types of traffic models. Analytical traffic models are generally

low resolution models and are much simpler, whereas simulation-based models (e.g.,

AIMSUN (TSS; 2011)) are high-resolution models and are generally complex and less

computationally efficient to evaluate.

In this review, we focus on model-driven methods used for online (i.e., real-time)

traffic management problems such as responsive traffic signal control problems. A

review of these methods can be found in Aboudolas et al. (2010), Osorio (2010,

Apendix B). Since these methods are used to derive real-time feasible traffic manage-

ment strategies, they must be computationally efficient. As Aboudolas et al. (2010)

summarize, “any real-time feasible traffic signal control strategy design must include

some simplification, either in its modelling approach, or in its optimization algorithm,

or in its extent of network coverage”. In other words, if we want to use these meth-

ods to address large-scale problems, we should either use simple and computationally

inexpensive analytical models (such as Aboudolas et al. (2010) and Aboudolas et al.

(2007)), or use high-resolution models, such as microscopic simulators, with compu-

tationally efficient optimization algorithms.

In this chapter, we would like to choose the latter approach: deriving solutions us-

ing computationally efficient algorithms with high-resolution traffic simulators since

they can describe urban transportation systems in detail. These simulators, includ-

ing microscopic and mesoscopic simulators, embed various detailed models to take

into account many traveler behavior, such as departure time choice and traveller’s

response to en-route traffic information. Compared with most analytical traffic mod-

els, they provide more realistic representations of real traffic conditions but are more

computationally expensive.

In our past work, we developed a computationally efficient simulation-based algo-
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rithm (see Chapter 2) that uses these high-resolution yet computationally expensive

simulators to address a traffic control problem with 99 decision variables for a net-

work that has more than 600 links and 200 intersections. The problem was addressed

with 150 simulation runs. As mentioned in Chapter 2, Section 2.4.1, this problem is

considered to be large-scale in the field of traffic control.

Although this method is used to address an offline fixed-time traffic signal con-

trol problem, we believe the method can also be computationally efficient for online

problems. This is because the method identifies good solutions within few simulation

runs. Thus, it can potentially be used to address online optimization problems, where

simulation budgets are limited by design. Therefore, we use it as the model-driven

method in our proposed framework. In our future research, we would like to test the

performance of other model-driven methods.

4.1.2 Literature Review: Data-driven Methods

Data-driven methods use models that make no problem-specific structural assump-

tions and thus can be applied to a variety of problems, such as traffic estimation

and prediction problems. A detailed review of data-driven methods for traffic esti-

mation problems can be found in Antoniou et al. (2013). In the field of optimization,

however, studies are somewhat limited. Nonetheless, in most of these studies, op-

timization problems are formulated as estimation problems. In these studies (e.g.,

Anderson (2015, Chap.6)), standard direct optimization procedures (e.g., gradient-

based optimization procedure) are not used to derive solutions, rather, solutions are

derived by decision rules that are generalized from good solutions (e.g., good traffic

management strategies) of prevalent traffic conditions.

These data-driven methods normally consist of an offline step and an online step.

In the offline step, decision rules are generally developed in order to provide the

mapping between the data that represents a past condition with a solution (e.g.,

a traffic management strategy) that works well under the condition. These rules

are developed based on historical data, which contains, for instance, historical traffic

demand conditions and effective traffic management strategies under these conditions.
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Therefore, decision rules are generalizations of good solutions. In the online step,

given real-time data, decision rules are implemented in order to generate solutions.

Therefore, solutions are not derived from standard direct optimization procedure.

Rather, they are estimated by decision rules.

We group data-driven methods into three types: 1) rules-of-thumb, 2) unsuper-

vised learning and 3) supervised learning. Rules-of-thumb type of methods may set

decision rules by engineering judgements, without taking into account the impact of

the solutions on the objective functions of the underlying problems. This type of

method has been used in studies that address traffic control problems, such as in

Chiu and Chand (1993) and Nakamiti and Gomide (1996). For unsupervised learn-

ing methods, such as Srinivasan et al. (2006), and supervised learning methods, such

as Anderson (2015, Chap. 6), Liu et al. (2015), and Papageorgiou et al. (1995),

objective functions (or sometimes estimations of objective functions) are used to de-

velop decision rules. In Srinivasan et al. (2006), an unsupervised learning approach

(i.e., Q-learning approach) is used to develop a decision rule that learns from its

own past decisions: decisions that result in a good objective function value are re-

inforced and vice versa. For supervised learning methods, decision rules are trained

with supervised guidance: training data consists of prevalent traffic conditions and

good solutions (e.g., good traffic management strategies) under these conditions, and

decision rules are trained to establish the mapping between them. Several typical

types of supervised learning approaches include linear decision rules such as Liu et al.

(2015), neural networks such as Papageorgiou et al. (1995), classification methods

such as Anderson (2015, Chap. 6) and Abbas and Sharma (2006), and look-up tables

such as (Chen; 2014, Chap. 5).

It is difficult to compare the performance of these data-driven methods, since they

have been used to address different types of transportation optimization problems of

different networks with different decision variables. We choose the data-driven method

of Anderson (2015, Chap. 6) as the data-driven method in our framework, since it

is a scalable method and has been formulated for a traffic responsive signal control

problem like the one addressed in this chapter. We would like to test the performance
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Table 4.1: Realism, scalability, robustness and computational efficiency of the three
models

Model-driven methods Data-driven methods
Realism X

Scalability X

Robustness X

Computational efficiency X

of other data-driven methods in our future research.

4.1.3 Comparison between Model-driven Methods and Data-

driven Methods

In this section, we compare the advantages and disadvantages of model-driven meth-

ods and data-driven methods. We tabulate our summary in Table 4.1. For each

method, we look at four aspects: realism, scalability, robustness and computational

efficiency. Scalability is measured by the capability of a method to address problems

with high-dimensional data, high-dimensional decision variables, and large-scale net-

works. Robustness is measured by the performance of a method (i.e., the quality of

the solutions derived by the method) under a certain level of data quality, which can

be defined as a function of data accuracy and data sparsity (in terms of sparsity in

space and time). The robustness is also measured by the performance of a method

under different traffic patterns. Computational efficiency is measured by the compu-

tational time that a method needs to derive a solution. In what follows, we discuss

the advantages and disadvantage of these two types of methods in detail.

Model-driven methods use network modelling assumptions that might provide

valuable information of unobservable parts of networks. For instance, they can uti-

lize underlying network structural information to estimate traffic conditions of the

unobservable links. Therefore, when data is sparse in space, we believe model-driven

methods are more robust. In addition, since model-driven methods can be a simple

approximation of real-world traffic conditions, they can be scalable for optimiza-

tion problems with large-scale networks. For instance, the model-driven metamodel
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method proposed in Chapter 2 is scalable for large-scale networks.

However, we believe model-driven methods may not be as realistic as data-driven

methods since the network modelling assumptions used by them may not always

be accurate. Moreover, compared with data-driven methods, they normally require

an online optimization step, which might be computationally expensive. Therefore,

we believe this computationally efficiency issue poses a practical constraint on their

applicability to online problems.

Data-driven methods are more realistic since they are developed based mainly

on data. Therefore, they are expected to perform well when data is complete and

accurate. In addition, most data-driven methods do not include a computationally

expensive online optimization procedure to derive solutions. Rather, they just imple-

ment decisions rules that can generate solutions instantaneously, which make them

computationally efficient in general.

However, since decision rules of data-driven methods are trained by historical data,

if real-time data cannot be represented well by training data (e.g., real-time data is

out of the range of the training data), data-driven methods may not be able to find

good solutions. This is known as the extrapolation problem. In other words, data-

driven methods may not be robust to the quality of data. In addition, we believe that

data-driven models may not be scalable to deal with high-dimensional data. Although

standard dimension reduction techniques can be used to reduce the dimensionality

of data, the use of these techniques can potentially deteriorate the performance of

data-driven methods (in terms of solution quality) , as shown in Xu et al. (2012).

Therefore, although data-driven methods have shown some success in problems with

small or medium scale networks (e.g., in Liu et al. (2015)), their performance on

large-scale network problems has yet to be shown.

We believe there is a need to develop a novel optimization framework that com-

bines the use of these two types of methods. The framework has the potential of

taking advantage of each method, overcoming the limitations and achieving a trade-

off between realism, robustness, scalability and computational efficiency.

We propose a new optimization framework that embeds a model-driven method
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and a data-driven method. The framework allows the use of any model-driven meth-

ods and any data-driven methods, as long as they are real-time feasible. In this study,

as mentioned earlier, we use the simulation-based metamodel method proposed in

Chapter 2 as the model-driven method and a supervised classification method pro-

posed by Anderson (2015, Chap. 6) as the data-driven method.

Contributions

The contribution of this work is the novel online optimization framework that

combines the use of a model-driven method and a data-driven method. To the best

of our knowledge, this is the first time that these two types of methods are used jointly

to address online large-scale transportation optimization problems. In the case study,

we use the proposed framework to address a traffic responsive control problem for

Lausanne network. We compare the solutions (i.e., signal plans) of the framework

with the solutions derived by an optimization framework that only uses the model-

driven method and with the solutions derived by an optimization framework that only

uses the data-driven method. Our results show that the solutions of the proposed

framework outperform those of the two frameworks most of the time, which shows

the importance of combining these two methods in addressing online optimization

problems.

We present the proposed online optimization framework in Section 4.2. We use

the framework to address a traffic responsive control problem, formulated in Section

4.3. In Section 4.4 we illustrate the effectiveness of the framework with a case study

of solving a traffic responsive control problem of Lausanne. We also describe in detail

the implementation of the framework and the results. The main conclusions are

presented in Section 4.5.
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4.2 Methodology

4.2.1 Online Framework

In this chapter, the considered online problem consists of a number of equal length

disjoint time intervals. We use the proposed framework to derive the solution of each

interval. In other words, we run the framework iteratively until the end of the time

horizon of interest. We denote δ the length of each interval and t the index of an

interval. Interval t starts from time instant tδ and ends at (t+ 1)δ.

For an interval t, the problem of our interest can be formulated as follows:

min
xt

F (xt) (4.1)

gt(xt; p) = 0, (4.2)

where xt represents the solution of interval t (e.g., a signal plan). xt is implemented

during interval t, i.e., from tδ to (t + 1)δ. The objective function is a network per-

formance metric F (e.g., average link speed, average link density) during interval t.

We assume F can be directly measured from data. For time interval t, the feasible

region is defined by a set of general analytical and differentiable constraints, gt.

The proposed optimization framework uses real-time data to solve Problem (4.1)-

(4.2). The set of real-time data, denoted DAt, includes data from the beginning of

the time horizon until the start of interval t. Figure 4-1 displays the steps of this

framework.

Figure 4-1 shows that once real-time dataset DAt is available, the model-driven

method and the data-driven method are launched in parallel, and each method derives

its solution independently. Then, their solutions are compared in a solution selection

mechanism and the best solution is chosen as the solution of the problem.

In this work, the model-driven method is the simulation-based metamodel opti-

mization method proposed in Chapter 2. The data-driven method is a supervised

classification method proposed in Anderson (2015, Chap. 6). The selection mecha-

nism uses simulation to determine which solution (i.e., the solution derived by the
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t = t + 1

Figure 4-1: The proposed optimization framework for online problems

model-driven or data-driven method) to implement. The rest of this section intro-

duces the model-driven method, the data-driven method, and the solution selection

mechanism.

4.2.2 Model-driven Method: Simulation-based Metamodel

Method

In this method, the objective function Equation (4.1) is approximated by a micro-

scopic simulator. Thus, Problem (4.1)- (4.2) is formulated as a simulation-based

optimization problem with the goal of finding solutions that minimize the simulation-

based objective function. In Chapter 2, in order to solve this problem, we developed a

metamodel method where the simulation-based objective function is further approxi-

mated by an analytical model known as the metamodel. In this method, optimization

is carried out on the metamodel instead of the simulator. The metamodel is fitted it-

eratively, leading to an improved metamodel and potentially to points with improved

objective function estimates. We refer the reader to Chapter 2, Section 2.2 for more
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Algorithm 2 Model-driven method

Given real-time dataset DAt and the offline calibrated simulator set SM:

Steps:

1. Use dataset DAt to choose simulator SM(t).

2. Run the simulation-based metamodel method of Chapter 2 using simulator
SM(t) until the computational budget is depleted.

details regarding the metamodel method.

The metamodel method relies on the use of a microscopic traffic simulator to derive

solutions. In the context of addressing online problems, for a given time interval t,

a given simulator, denoted SM(t), should be used. To obtain SM(t), we can either

use DAt to solve an online real-time calibration problem to calibrate the demand

and supply parameters of the simulator (e.g., Antoniou (2004)), or we can use DAt

to choose a simulator from a set of pre-calibrated simulators. In this work, for the

sake of simplicity, we use the latter approach, although using the former approach is

entirely possible and desirable. We describe our proposed simulator selection method

in Appendix C.1.

Algorithm 2 describes the steps of the model-driven method to solve Problem

(4.1)- (4.2). In Step 1, we use real-time dataset DAt to choose which simulator to

use, i.e., SM(t), according to the selection method described in Appendix C.1. In

Step 2, we run the metamodel method of Chapter 2 to derive the solution using

simulator SM(t).

To represent the computational budget constraint, in the implementation of this

algorithm, we allow a maximum number of three metamodel iterations. Once three

iterations are finished, the solution, denoted xmodel
t , is derived. The performance of

xmodel
t will be evaluated in the solution selection mechanism of the proposed frame-

work.

For more details regarding the implementation of this algorithm for the case study

of this chapter, we refer the reader to Section 4.4.2 and Section 4.4.4.
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4.2.3 Data-driven Method: Supervised Classification Method

The data-driven method used in this work is a supervised classification method pro-

posed in Anderson (2015, Chap. 6). To address Problem (4.1)- (4.2), this method

selects a solution from a pre-determined fixed set. The choice depends on real-time

data DAt. This method has an offline step and an online step: the offline step trains

a decision rule whereas the online step implements the decision rule to select the

solution of the online problem.

In the offline step, a training set is created and then is used to train the decision

rule. To create the set, first a fixed-finite set of solutions, denoted D, is built. The

set, for instance in Anderson (2015, Chap. 6), consists of existing solutions (i.e.,

signal plans). Second, historical conditions (from the historic data) are associated

with solutions in set D. For each historical traffic condition, the solution with the

best performance is identified. The index of the solution is called the label of the

traffic condition. Once all traffic conditions are labelled, based on their labels, they

are grouped into several classes where traffic conditions with the same label (i.e.,

the same solution) are grouped into the same class. In classification terms, traffic

conditions that share the same solution form a class, and the index of the solution is

called the class label. Thus, the training data consists of historical traffic conditions

and their class labels. In the training step, the goal is to find a classification model

that selects the best solution (i.e., the correct class label) of a given traffic condition.

In Anderson (2015, Chap. 6), three classification models are used, i.e., decision trees,

random forest and k-nearest neighbors. We refer the reader to Anderson (2015, Chap.

6) for more details.

In addition, in both the offline and online steps, Anderson (2015, Chap. 6) pro-

poses a data preprocessing step to reduce data dimension and regularize data. There-

fore, the preprocessed data becomes the input of the classification models. In the

offline step, historical data is preprocessed and then used to train classification mod-

els; in the online step, real-time data is preprocessed and then used to select the

solution. We refer the reader to Appendix C.2 for more details regarding the prepro-
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Algorithm 3 Data-driven method

Given real-time dataset DAt:

Steps:

1. Preprocess data DAt.

2. According to a classification model, use the preprocessed data to determine the
class label and thus the solution.

cessing procedure.

Algorithm 3 summarizes the online step of Anderson (2015, Chap. 6). It uses

a subset of data DAt, i.e., data of interval t − 1, to choose the solution. Step 1 is

the preprocessing step. Firstly, a standard feature reduction technique, i.e., principle

component analysis (PCA) or linear discriminant analysis (LDA), is used to reduce

data dimension. Secondly, rounding and scaling techniques are used to regularize

and normalize these reduced dimensions. In Step 2, an offline trained classification

model is used to determine the class label based on the prepossessed data, and thus,

determines the solution.

In the case study of Anderson (2015, Chap. 6), the author uses two feature

reduction techniques (i.e., LDA and PCA) to preprocess training data and trains

three types of classification methods (i.e., decision trees, random forest and k-nearest

neighbors). This creates six classification models. The performance of these models

are compared, both in terms of misclassification errors and the performance of their

derived solutions (i.e., signal plans).

In the case study of this work, we use the same six models in the offline step. We

then compare their performance according to their misclassification rates, which are

calculated using the standard cross-validation procedure. In the online step, we use

the best three models to derive the proposed solution, denoted xdata
t . To do this, we

run Algorithm 3 three times, each with one model. This create three class labels,

with the label that is chosen by the majority of the three models becoming the label

of the solution xdata
t . This is known as the majority vote in classification terms. If

there is a tie between two models, we choose the solution identified by the model with
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the better performance. The performance of xdata
t will be evaluated in the solution

selection mechanism of the optimization framework.

4.2.4 Solution Selection Mechanism

Once the solution of the model-driven method and the solution of data-driven method

are derived, this mechanism is launched to compare their performance and chooses

the one with a better performance. In this framework, we use the offline calibrated

simulator SM(t) to evaluate the performance of the two solutions (xmodel
t and xdata

t ).

In the case study of this chapter, we implement solutions xmodel
t and xdata

t in SM(t),

run simulation replications, collect simulation outputs (i.e., simulated data) of each

replication and calculate their corresponding objective function values. We use the

average of the objective function values of these replications as the performance metric

of a solution. The solution that has a better performance metric is chosen as xt.

4.3 Traffic Responsive Control Problem

The proposed framework is suitable to address a variety of online transportation

optimization problems. In this chapter, we use the framework to address a traffic

responsive signal control problem. We formulate this problem in this section.

We consider a time horizon that consists of T disjoint time intervals. For each

time interval, we solve a traffic control problem, deriving a signal plan based on real-

time data DAt. The signal plans for the T intervals are derived sequentially. Within

the same interval, the signal plan is fixed and periodic.

A detailed review of traffic signal control terminology is given in Appendix A of

Osorio (2010). The common decision variables of signal control problems are cycle

lengths, green splits and offsets. This chapter focuses only on the optimization of the

green splits of a number of signalized control lanes at multiple intersections that are

distributed throughout in the network. The other signal plan variables, such as cycle

lengths and offsets, are fixed.
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To formulate this problem, we introduce the following notation:

ci cycle time of intersection i;

di fixed cycle time of intersection i;

xt vector of green splits of interval t;

xt(j) green split of signal phase j of interval t;

xLB vector of lower bounds of green splits;

I set of intersection indices;

PI(i) set of endogenous signal phase indices of intersection i.

For each interval t, the objective function of the traffic responsive control problem

is given as follows:

min
xt

F (xt) (4.3)

subject to

∑

j∈PI(i)

xt(j) =
ci − di
ci

, ∀i ∈ I (4.4)

xt ≥ xLB. (4.5)

The decision vector xt consists of the green splits of the controlled signal phases during

time interval t. The objective function F (xt) could be any performance metric that

can be directly calculated from data. In this work, we use the average of the expected

link travel time of the links with sensors during interval t as F (xt). The expected

travel time of a link during interval t is defined as the expected travel time of all the

vehicles that have traversed the link during interval t.
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4.4 Empirical Analysis: Lausanne City Case Study

In this section, we evaluate the effectiveness of the proposed framework by addressing

a traffic responsive control problem of Lausanne. Section 4.4.1 describes the Lausanne

signal control problem. The rest of the section describes the implementation details

of the framework and the experimental results. Section 4.4.2 describes the offline

step of the model-driven method. Section 4.4.3 describes the offline step of the data-

driven method. Section 4.4.4 describes the online step of solving the traffic responsive

control problem and the corresponding results.

4.4.1 Lausanne City Network

In this case study, we solve a traffic responsive signal control problem of the full

city of Lausanne. The network consists of over 600 links and 200 intersections. We

control the green splits of 99 signal phases that spread over 17 controlled intersections

throughout the network. The city map is displayed in Chapter 2, Figure 2-2, the

considered area is delimited in white. The time horizon of this study is from 5:00

pm- 6:30 pm during evening peak hours. We only optimize the signal plans for the

last hour, i.e., 5:30 pm -6:30 pm, during which congestion gradually builds up and

continues to grow. Hence, there is a need to design signal plans that are adaptive

to the growth of congestion. To do this, we divide this hour into four 15 minute

intervals. This gives us four intervals to optimize. In other words, for each interval,

we solve a traffic control problem with 99 decision variables.

We assume 60 links are deployed with sensors. These links are the inflow links

to the 17 intersections. These links consist of roughly ten percent of the links in the

network.
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4.4.2 Offline Experiment Design: Model-driven Method

Create Offline Simulator Set SM

We create set SM based on the simulation model of the Lausanne developed by Du-

mont and Bert (2006). This simulator has only one origin-destination (OD) demand

matrix calibrated for the evening peak hour. Therefore, in order to create simulators

with different demand scenarios, we create several new synthetic OD demand matri-

ces from the Lausanne OD demand matrix. These synthetic OD demand matrices

represent different levels of demand in the Lausanne network, from light traffic to

heavy traffic. In the rest of this section, the Lausanne OD demand matrix is referred

to as the base OD matrix.

We now describe the technique that generates different OD demand matrices from

the base matrix. This technique is similar to the synthetic demand generation tech-

nique, which can be found in Balakrishna (2002, Chap. 2), Antoniou (2004, Chap.

4), Liu et al. (2015), Cascetta et al. (1993), and Chen (2014, Chap. 5). The synthetic

OD demand matrices used by Balakrishna (2002, Chap. 2) and Antoniou (2004,

Chap. 4) are derived from historical data. When historical data is not available, such

as the case study of this work, two types of synthetic demand generation techniques

are used: scaling (such as in Chen (2014, Chap. 5) and resampling (such as in Liu

et al. (2015) and Cascetta et al. (1993)). The scaling technique uses a fixed scalar to

multiply a base OD demand matrix to create a new one. In the resampling technique,

a new synthetic OD demand matrix is randomly sampled from a known distribution

that can be specified from a base OD demand matrix. In the case study, we use both

techniques to create six synthetic OD demand matrices from the base OD demand

matrix (i.e., the Lausanne OD demand matrix). Five are scaled demand scenarios

and one is a randomly sampled demand from a multi-variate normal distribution with

expectation equal to that of the Lausanne OD demand matrix and with standard de-

viation set to ten percent of the expectation. Once the six demand scenarios are

defined, they are embedded in six simulators, respectively. Set SM consists of these

six simulators.
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4.4.3 Offline Experiment Design: Data-driven Method

As mentioned earlier in Section 4.2.3, the data-driven method uses offline-trained

classification models to select solutions online. In this section, we describe the offline

steps of the data-driven method. We summarize the main steps in Algorithm 4.

In Algorithm 4, step 1 summarizes the steps to create training data. Step 2

describes the steps to train the data-driven method. Note that the training steps we

use for this case study are different from those of Anderson (2015, Chap. 6), because

the data type and the solution set D are different. In what follows, we describe our

steps as well as the differences between our approach and Anderson’s approach.

Step 1 (a) builds demand scenarios under which training data is collected. In

Anderson (2015, Chap. 6), historical data collected from sensors is used. However,

since we have do not have historical data, we resort to the use of simulation. The

demand scenarios we use here are the same six demand scenarios that are used to

create the simulator set SM in the model-driven method.

Step 1 (b) builds set D that consists of the signal plans for the method to select

from. By design, each plan in set D needs to be the best plan of at least one demand

scenarios. In Anderson (2015, Chap. 6), three existing signal plans form the set,

where each plan in the set is indeed the best plan of at least one scenarios. However,

in our case study, the best plans under the six demand scenarios are not available to

us. Therefore, in this step, we first derive plans that perform well in the six scenarios

and then include a subset of these plans in set D. We refer the reader to Appendix

C.3 for more details.

Step 1 (c) matches demand scenarios created in Step 1 (a) with the signal plans in

set D. The goal of this step is to determine the class label of each demand scenario,

which is also the label of the signal plan (in D) that performs the best under the sce-

nario. In Anderson (2015, Chap. 6), this step involves the use of an analytical traffic

model, i.e., Webster’s method (Webster; 1958). In this work, we use the simulators

in set SM to evaluate the quality of signal plans. Once the match is established, we

generate the training data through simulation.
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Algorithm 4 Data-driven method offline step implementation

Steps:

1. Create training data

(a) Create demand scenarios.

(b) Create the signal plan set D.

(c) Match demand scenarios to signal plans in D and create training data.

2. Train the classification models of interest and test their performance.

Step 2 describes the training step. This step includes the standard training pro-

cedure of a classification model, which consists of: 1) separating training data into a

training set and a cross-validation set, 2) using k-fold cross-validation technique to

determine the best parameters of a model. Once a classification model is trained, we

evaluate its performance: we use the model to predict the class labels of the data in

the cross-validation set and calculate the misclassification rate.

As mentioned in Section 4.2.3, six classification models are considered but only

three models with low misclassification rates are used in the online step. They are

random forest with LDA (i.e., the LDA technique is used in the preprocessing step

and random forest is used as the classification method), k-nearest neighbors with LDA

and random forest with PCA. The solution of the traffic responsive control problem

is determined by the majority vote of these three models. We refer the reader to

Appendix C.4 for more details.

4.4.4 Online Experiments

In this section, we use three frameworks to address the traffic responsive control

problem of Lausanne: 1) an optimization framework that uses only model-driven

simulation-based metamodel method, denoted SO; 2) an optimization framework that

uses only the data-driven method, denoted DA; and 3) our proposed online optimiza-

tion framework that combines the model-driven method and the data-driven method,

denoted SOD. Note that the SO (resp. DA) framework is the SO (resp. DA) branch

of the SOD framework (see Figure 4-1).
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We test the performance of the three frameworks under two demand scenarios: 1)

the current Lausanne demand, denoted dR1, and 2) a synthetic Lausanne demand,

denoted dR2. We denote SR1 (resp. SR2) the simulator that embeds demand scenario

dR1 (resp. dR2). To create scenario 2), we sample from a multi-variate normal dis-

tribution as described previously. Both scenarios are different than the six scenarios

used in the offline step. For each demand scenario, we compare the performance of

signal plans derived by the three frameworks.

All three frameworks are responsive to real-time data: the model-driven method

in SO and SOD uses real-time data to select simulator SM(t) in order to run the

metamodel method, and the data-driven method in DA and SOD uses real-time data

as the input to the classification methods. However, because real-time data is not

available in this study, we generate real-time data by simulation.

Real-time Data Generation

Simulators SR1 and SR2 are stochastic simulators: the data generated by them

varies across simulation replications. Therefore, for each demand scenario, we can

create simulated data from different simulation replications and use them to test the

performance of a framework. In the rest of this section, we refer to these data from

different replications as different initial points. In this experiment, for each demand

scenario, we use four initial points.

To create data for each initial point, we run five simulation replications of the

corresponding simulator and use the average of the simulation data from these repli-

cations as the real-time data. For instance, to create real-time data of a link statistic

(e.g., the expected link travel time), we run the corresponding simulator five times

(each with one simulation replication) and take the average of the five link statis-

tics as the real link statistic. To avoid further confusion, we refer to the simulated

data generated from these two simulators as the real-time data. In this experiment,

real-time data consists of the expected link travel times of links with sensors.
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(d) Initial point 4

Figure 4-2: Time-dependent average link travel times of the links with sensors of the
four initial points under the Lausanne demand scenario

Experimental Results

Now we compare the performance of the three frameworks: 1) SO, 2)DA and 3) SOD.

For each demand scenario, we consider four initial points. For each initial point, we

run each framework once. For each run, we collect real-time data of the six fifteen

minute intervals from 5:00 pm to 6:30 pm. Note that since we only optimize signal

plans for the last four intervals (i.e., 5:30 pm to 6:30 pm), for each initial plan, the

differences in the performance of three frameworks are in the last four intervals.

Demand Scenario 1): Lausanne demand

Figure 4-2 plots the performance of the three frameworks for each of the four

initials points under demand scenario 1): the Lausanne demand. The x-axis shows
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the index of a time interval, i.e., time index 1 represents the time interval between

5:00 pm to 5:15 pm, 2 represents the interval between 5:15 pm and 5:30 pm, etc. The

y-axis represents the average link travel time (in minutes) of the links with sensors

during the corresponding time interval. In each figure of Figure 4-2, the solid thick

curve corresponds to the signal plans derived by SOD, the solid thin curve corresponds

to the signal plans derived by SO and the dashed curve corresponds to the signal plans

derived by DA. Each curve is obtained by interpolating six data points, where each

point represents the objective function value of each time interval. We also mark the

choices made by the selection mechanism of SOD on the SOD curve. Whenever SOD

chooses the signal plan derived by the model-driven method of an interval, we mark

a star at the corresponding interval. Whenever SOD chooses the plan derived by the

data-driven method, we mark a circle.

For the four plots of Figure 4-2, SOD performs the best for all intervals in Figure

4-2(a) and Figure 4-2(d). In Figure 4-2(b), SOD performs the best during interval

3, interval 5 and interval 6 and performs slightly worse than the best plan (i.e. the

plan derived by DA) during interval 4. In Figure 4-2(c), SOD performs the best in

interval 3 and interval 6 but performs the worst in interval 4 and interval 5.

Figure 4-2 shows that SO outperforms DA under some circumstances, and vice

versa. In other words, the model-driven method does not always outperform the data-

driven method and vice versa. This shows the need of combining these two methods

in an optimization framework, which has the potential to outperform each of them.

Note that in Figure 4-2(a), although SOD chooses the plan derived by model-

driven method at interval 3, the SOD curve does not overlap with SO curve at interval

3. This is because the model-driven method uses a stochastic simulator SM(t) to

derive signal plans, and thus, it is likely that the signal plans derived by model-driven

method in the SOD framework and the model-driven method in the SO framework

are different. This happens to be the case in the interval 3 of Figure 4-2(a).

Demand Scenario 2): a synthetic Lausanne demand

Figure 4-3 plots the performance of three frameworks of the four runs under de-

mand scenario 2): a synthetic Lausanne demand. In Figure 4-3(d), SOD performs the
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Figure 4-3: Time-dependent average link travel times of the links with sensors of the
four initial points under a synthetic Lausanne demand scenario
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best in all intervals. In Figure 4-3(a), Figure 4-3(b) and Figure 4-3(c), SOD performs

the best most of the time.

4.5 Conclusions

In this chapter, we propose a computationally efficient optimization framework for

large-scale online transportation optimization problems, where solutions of each time

interval of interest need to be found within limited computational budgets. For each

interval, the framework launches in parallel a model-driven method and a data-driven

method to derive the solution of the problem. In this work, the model-driven method

is a metamodel method proposed in Chapter 2 and the data-driven method is a su-

pervised classification method proposed by Anderson (2015, Chap. 6). Both methods

are responsive to real-time data. The framework uses a solution selection mechanism

to choose the better solution from the solutions derived by the two methods.

We evaluate the effectiveness of this online framework by addressing a large-scale

traffic responsive control for the Swiss city of Lausanne under two demand scenarios.

For each scenario, we compare the performance of the proposed optimization frame-

work (SOD) with that of a framework that includes only the metamodel method (SO)

and a framework that includes only the data-driven method (DA). The experimental

results show that SOD is able to derive signal plans that outperform those derived

by SO and DA most of the time. And this is true across different traffic conditions

under two different demand scenarios. This illustrates the value of combining both

methods in the online framework.

The proposed framework can be used by practitioners to address a variety of

online large-scale urban transportation problems. For instance, the framework allows

for a broad family of objective functions, such as minimizing network density. In

addition, the framework is quite general and can embed any type of real-time feasible

model-driven method and data-driven method.

In our future work, we would like to improve the design of the model-driven

method and the data-driven method in order to provide better solutions. As for
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the model-driven method (i.e., the metamodel method), we would like to develop

efficient offline sampling techniques to improve the goodness-of-fit of the metamodel,

such that the metamodel method is more likely to identify a good solution within

limited computational online budgets. In addition, to resolve the potential issue that

the simulator used in the metamodel method may not represent well real-time traffic

conditions, we would like to use online calibrated simulators to derive solutions. As

for the data-driven method, the supervised classification method that we use does

not generate new solutions, which may limit its potential. Therefore, in the future,

we would like to update the solution set according to real-time data. Last but not

least, we would like to improve the solution selection mechanism of the framework to

increase the chance of selecting solutions with better performance.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

This chapter concludes the main contents of this thesis, and also provides directions

for future research.

Chapter 2 proposes a simulation-based optimization algorithm, for problems with

high-dimensional decision variables, simulation-based stochastic objective functions

and general analytical differentiable constraints. The algorithm embeds a novel meta-

model method that combines the use of a scalable stationary macroscopic traffic model

with a microscopic simulator. It is a computationally efficient algorithm that iden-

tifies trial solutions (e.g., signal plans) with improved performance within limited

computational budgets. The performance of this algorithm is evaluated by address-

ing a fixed-time large-scale network wide signal control problem for the Swiss city of

Lausanne. The network is considered to be a congested network (evening peak period

demand) with an intricate topology. The performance of this algorithm is compared

with that of a traditional simulation-based optimization algorithm. The proposed

algorithm identifies signal plans that improve the distribution of average travel times

compared to the signal plans derived by the traditional algorithm. The performance

of the proposed algorithm is also compared to that of a widely-used signal control

software, Synchro. All proposed signal plans outperform the plan derived by Synchro.

Chapter 3 proposes a simulation-based optimization algorithm for large-scale dy-
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namic problems with high-dimensional time-dependent decision variables, simulation-

based objective functions and general analytical differentiable constraints. The algo-

rithm is designed for addressing dynamic simulation-based transportation optimiza-

tion problems. The algorithm uses a metamodel method that combines the use of

an analytical transient traffic model and a microscopic simulator. The proposed al-

gorithm is used to solve a time-dependent signal control problem of the entire city

of Lausanne with limited simulation budgets. The performance of the proposed al-

gorithm is compared with the performance of the algorithm proposed in Chapter 2,

under the same simulation budget. The latter uses a stationary traffic model as the

corresponding metamodel. As a result, the purposed algorithm of this chapter iden-

tifies signal plans that improve the distribution of average travel times compared to

initial signal plans, and most of the time, outperform the plans derived by the algo-

rithm proposed in Chapter 2. This shows the importance of using a dynamic traffic

model in the metamodel method. The best signal plan derived by the proposed algo-

rithm of the chapter outperforms the signal plan derived by the signal control software

Synchro, and an existing Lausanne signal plan.

Chapter 4 proposes a novel optimization framework for online transportation op-

timization problems. The framework consists of a model-driven method, i.e., the

simulation-based optimization algorithm proposed in Chapter 2, and a data-driven

method, i.e., a supervised classification method proposed by Anderson (2015, Chap.

6). Both methods use real-time data to derive solutions. We use the framework to

solve a traffic responsive signal control problem of the entire city of Lausanne under

two demand scenarios. We also compare the framework with a framework using only

the model-driven method and with a framework using only the data-driven method.

As a result, for both demand scenarios, the performance of the proposed framework,

in terms of the quality of the derived signal plans, outperforms the framework with

only the model-driven method and the framework with only the data-driven method.

This shows the added value of combining two types of methods in addressing online

optimization problems.
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5.2 Future Research Directions

This thesis research allows practitioners to use computationally efficient optimiza-

tion algorithms to address a variety of offline (Chapter 2 and Chapter 3) and online

(Chapter 4) problems. In the future, we would like to investigate the use of these al-

gorithms to address a variety of generally constrained transportation problems, such

as simulation model calibration, dynamic congestion pricing, and multi-modal traffic

management problems.

We believe the proposed optimization algorithms in this thesis have the potential

to be improved, both in terms of effectiveness and computational efficiency. For

instance, the effectiveness of the online optimization framework of Chapter 4 depends

on the accuracy of the selection mechanism, which relies on a microscopic simulator

that may not well represent real-time traffic conditions. In the future, we would

like to use real-time data to calibrate this simulator online to improve the selection

mechanism.

We would also like to improve the offline experimental design to improve the per-

formance of online optimization algorithms. In this work, we believe the performance

of the model-driven method is hindered by the limited simulation runs that are al-

lowed online. This leads to a small sample size to fit the metamodel, which may result

in the lack-of-fit issue. One way to improve the fit is to include information from of-

fline simulation samples, which can be generated from simulators that are calibrated

offline based on historical traffic conditions.

From a methodological perspective, we are interested in developing new simulation-

based optimization algorithms with improved short-term performance by using infor-

mation from analytical traffic models (such as the queueing network models used

in this thesis) to inform both sampling strategies, as well as ranking and selection

strategies to statistically compare the performance of multiple points.

Last but not least, this thesis only considers problems with analytical constraints.

In the future, we would like to extend our algorithms to address problems with

simulation-based (i.e., stochastic) constraints. These problems require evaluating
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the feasibility of a point via simulation, i.e., numerous simulation replications need

to be run in order to test for feasibility. For this reason, problems with simulation-

based constraints can be computationally more challenging to address. In the future,

we would like to explore the metamodel idea of this thesis to analytically approxi-

mate these stochastic constraints and thus potentially save multiple runs to test the

feasibility of a solution.
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Appendix A

Appendices of Chapter 2

A.1 Derivation of E[N ]

This appendix serves to describe how the analytical expression of the E[N ] is derived

by the proposed tractable stationary queueing network model described in 2.2.3. E[N ]

is introduced in Chapter 2, Section 2.2.4.

In this section we omit the index i that refers to a given queue. E[N ] is defined

as:

E[N ] =

k
∑

n=0

nP (N = n). (A.1)

The stationary queue-length probabilities for each queue, P (N = n), are given in

Bocharov et al. (2004) by:

P (N = n) =
1− ρ

1− ρk+1
ρn. (A.2)
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Inserting Equation (A.2) into (A.1), and then rearranging the terms yields

E[N ] =

k
∑

n=0

n
1− ρ

1− ρk+1
ρn, (A.3)

=
k
∑

n=1

n
1− ρ

1− ρk+1
ρn, (A.4)

=
1− ρ

1− ρk+1

k
∑

n=1

nρn, (A.5)

=
1− ρ

1− ρk+1
ρ

k
∑

n=1

nρn−1. (A.6)

We then derive an expression for the last summation as follows. For a geometric

series, such that ρ 6= 1, we have:

k
∑

n=0

ρn =
ρk+1 − 1

ρ− 1
. (A.7)

We differentiate this formula with respect to ρ and obtain:

k
∑

n=1

nρn−1 =
1− ρk+1

(1− ρ)2
− (k + 1)ρk

1− ρ
. (A.8)

Inserting the expression of Equation (A.8) into Equation (A.6), and rearranging the

terms gives:

E[N ] =
1− ρ

1− ρk+1
ρ

(

1− ρk+1

(1− ρ)2
− (k + 1)ρk

1− ρ

)

(A.9)

= ρ

(

1

1− ρ
− (k + 1)ρk

1− ρk+1

)

. (A.10)

A.2 SO Algorithm

This appendix serves to describe the SO algorithm introduced in Chapter 2, Section

2.2.5. This SO algorithm is formulated in detail in Osorio and Bierlaire (2013) and

is based on the derivative-free trust region algorithm of Conn et al. (2009a). The
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notation used is that of Osorio and Bierlaire (2013).

0. Initialization.

Define for a given iteration k: mk(x, z; βk, p) as the metamodel (denoted here-

after as mk(x)), xk as the iterate, ∆k as the trust region radius, νk = βk as

the vector of parameters of mk, nk as the total number of simulation runs car-

ried out up until and including iteration k, uk as the number of successive trial

points rejected, εk as the measure of stationarity (norm of the derivative of the

Lagrangian function of the trust region (TR) subproblem with regards to the

endogenous variables) evaluated at xk.

The constants η1, γ, γinc, εc, τ̄ , d̄, ū,∆max are given such that: 0 < η1 < 1, 0 <

γ < 1 < γinc, εc > 0, 0 < τ̄ < 1, 0 < d̄ < ∆max, ū ∈ N
∗. Set the total

number of simulation runs permitted (across all points) nmax, this determines

the computational budget. Set the number of simulation replications per point

r̃ (here we use r̃ = 1).

Set k = 0, n0 = 1, u0 = 0. Determine x0 and ∆0 (∆0 ∈ (0,∆max]).

Given the initial point x0, compute fA(x0) (analytical approximation of Equa-

tion (2.18)) and f̂(x0) (simulated estimate of Equation (2.18)), fit an initial

model m0 (i.e., compute ν0).

1. Criticality step. If εk ≤ εc, then switch to conservative mode.

2. Step calculation. Compute a step sk that reduces the model mk and such

that xk + sk (the trial point) is in the trust region (i.e. approximately solve the

TR subproblem).

3. Acceptance of the trial point. Compute f̂(xk + sk) and

ρk =
f̂(xk)− f̂(xk + sk)

mk(xk)−mk(xk + sk)
.

- If ρk ≥ η1, then accept the trial point: xk+1 = xk + sk, uk = 0.

- Otherwise, reject the trial point: xk+1 = xk, uk = uk + 1.
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Include the new observation in the set of sampled points (nk = nk + r̃), and fit

the new model mk+1.

4. Model improvement. Compute τk+1 =
‖νk+1−νk‖

‖νk‖
. If τk+1 < τ̄ , then improve

the model by simulating the performance of a new point x, which is uniformly

drawn from the feasible space. Evaluate fA and f̂ at x. Include this new

observation in the set of sampled points (nk = nk + r̃). Update mk+1.

5. Trust region radius update.

∆k+1 =



















min{γinc∆k,∆max} if ρk > η1

max{γ∆k, d̄} if ρk ≤ η1 and uk ≥ ū

∆k otherwise.

If ρk ≤ η1 and uk ≥ ū, then set uk = 0.

If ∆k+1 ≤ d̄, then switch to conservative mode.

Set nk+1 = nk, uk+1 = uk, k = k + 1.

If nk < nmax, then go to Step 1. Otherwise, stop.
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Appendix B

Appendices of Chapter 3

B.1 Metamodels for Transportation Problems

This appendix serves to provide a detailed review of past work that uses the simulation-

based metamodel algorithms mentioned in Chapter 3, Section 3.2.

In our past work, we have developed efficient SO algorithms for various transporta-

tion problems with case studies of Lausanne (Switzerland), Manhattan (NYC, USA)

and Berlin (Germany). We summarize here the main insights obtained from past

work. The formulation presented in this chapter is motivated by these insights. Ta-

ble B.1 summarizes the main features of the methods and case studies used for signal

control problems. The last row represents the method of Chapter 3. The second and

third columns indicate whether the SO method is designed for time-independent or

time-dependent problems. More specifically, these methods embed information from

analytical traffic models. Columns 2 and 3 indicate whether the analytical models are

stationary or transient, respectively. Columns 4-6 indicate whether the case studies

have benchmarked the derived signal plans versus signal plans that are: randomly

drawn, prevailing in the field or derived from the commercial signal control software

Synchro. Columns 7-9 indicate the number of roads, of intersections and of decision

variables of the case studies. For papers that include multiple case studies, the ta-

ble indicates the largest-scale case study. The last column indicates the objective

function.
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Table B.1: Summary of metamodel SO methods for signal control problems

Model Outperforms Number of Metamodel of
Stat. Trans. Random Field Synchro Roads Inter. Dec. var.

Osorio and Bierlaire (2013) X X X 48 15 51 Trip travel time
Osorio and Nanduri (2015a) X X 47 15 51 Fuel consumption and

trip travel time
Osorio and Nanduri (2015b) X X X 47 15 51 Pollutant emissions

and trip travel time
Osorio et al. (2014) X X X 134 32 64 Queue-lengths
Osorio et al. (2016) X X 603 231 99 Link travel time variance

and expectation
Osorio and Chong (2015)
(i.e., Chapter 2) X X X 603 231 99 Trip travel time
Chong and Osorio (forthcoming)
(i.e., Chapter 3) X X X X 603 231 198 Trip travel time

Column 2 indicates that Chapter 3 is the first to formulate a metamodel with a

transient (i.e., time-dependent) traffic model. This table indicates that formulations

for a variety of objective functions have been proposed and successfully used for

problems that are considered large-scale for both signal control and for SO.

Recall that in a metamodel framework, the objective function needs to be ap-

proximated analytically by the metamodel. For a specific objective function, the key

to designing a computationally efficient SO algorithm lies in the formulation of an

analytical traffic model that is both: (i) a good approximation of the unknown ob-

jective function, and (ii) is sufficiently tractable such that Problem (3.4)-(3.6) can be

solved efficiently. Column 10 of the table indicates that we have designed algorithms

for objective functions that are intricate to approximate analytically (e.g., vehicular

emissions, fuel consumption, travel time variability).

All these case studies include analysis with tight computational budgets, where

the simulation budget ranges from 50 to 150. Even for such tight budgets, the signal

plans identified by the metamodel methods outperform a variety of signal plans:

(i) randomly drawn plans, (ii) plans prevailing in the field, and (iii) plans derived

by mainstream widely used commercial software. The results of these various case

studies consistently indicate that the ability of these SO methods to identify good

solutions under tight budgets is due to the combination of simulation observations

with analytical traffic model information.

More specifically, the papers tabulated in Table B.1 (excluding Osorio et al.

(2014)) have benchmarked the metamodel of Equation (3.3) with a metamodel that
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does not include information from the analytical traffic model (i.e., m = φ in (3.3)).

All case studies have shown that by embeding information from analytical traffic

models, the following properties are achieved: (i) solutions with better performance

are identified, (ii) good quality solutions are identified within significantly fewer simu-

lation runs, and (iii) the algorithm becomes robust to the quality of the initial points.

Note that a metamodel approach with m = φ (i.e., with a local quadratic general-

purpose metamodel) is a traditional SO approach. It corresponds to an iterative

response-surface methodology, which is broadly and commonly used in the literature

and is often not referred to as a metamodel technique. For lower-dimensional problems

with larger computational budgets (i.e., easier problems to solve), the traditional ap-

proach and the metamodel with analytical traffic information identify solutions with

similar performance (see Osorio and Bierlaire (2013), for problems with: (i) 2 con-

trolled intersections, a decision vector of dimension 13 and a budget of 750, and (ii)

9 controlled intersections, a decision vector of dimension 51 and a budget of 3000).

Recent work has investigated what type of structural information provided by the

analytical traffic model is key to identifying signal plans that perform well for net-

works with high levels of congestion and intricate traffic patterns (Osorio et al.; 2014).

The latter work considered a Manhattan case study. It indicates that providing the

algorithm with an analytical description of between-link interactions or dependencies

is critical to identifying signal plans that can contribute to mitigate congestion. In

particular, the algorithms are particularly efficient when they are provided with an

analytical description of the occurrence and the impact of vehicular spillbacks. The

analytical traffic model formulated in Chapter 3 builds upon these insights. It pro-

poses a time-dependent description of spillback probabilities, and it accounts for the

impact of spillbacks on the underlying link’s flow capacity.

These metamodel ideas have been recently used to efficiently address two other

classes of optimization problems. First, metamodels have been formulated for an of-

fline demand calibration problem for the metropolitan area of Berlin (Zhang et al.;

2017). The formulated analytical traffic model is shown to provide an accurate ap-

proximation of the unknown simulation-based objective function. The time-dependent
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model formulated in Chapter 3 can be used to extend the ideas in Zhang et al. (2017)

for online calibration problems. This calibration work also illustrates the use of these

metamodel ideas for problems where the decision variables are demand, rather than

supply, variables. In particular, in that work the decision variables are coefficients of a

route choice model. Second, metamodels have been formulated to design multi-model

SO algorithms, where multiple simulators with different computational runtime costs

are jointly used (Osorio and Selvam; forthcoming).

This past work highlights that these metamodel ideas have been successfully used

to address problems with intricate objective functions, intricate traffic patterns (e.g.,

Manhattan), and very different demand-supply interactions. This encourages us to

design algorithms for real-time problems. The time-dependent formulation proposed

in Chapter 3 is a first-step towards this goal.

B.2 Trust Region Subproblem

The appendix serves to describe the formulation of the trust region (TR) problem

described in Chapter 3, Section 3.3.3. To formulate the trust region (TR) subproblem

132



that is solved at each iteration k of the SO algorithm, we use the following notation.

x vector of decision variables;

xℓ vector of green splits for time interval ℓ;

xℓ(j) green split of signal phase j for time interval ℓ;

xLB vector of lower bounds for green splits;

xk current iterate at iteration k;

µn,ℓ service rate of lane n for time interval ℓ;

z vector of endogenous variables;

p vector of exdogenous parameters;

βk vector of metamodel parameters at iteration k;

∆k trust region radius at iteration k;

ci cycle time for intersection i;

di fixed cycle time of intersection i;

en ratio of fixed green time to cycle time of signalized lane n;

s satuation flow rate;

N set of indices of the signalized lanes;

PN (n) set of endogenous phase indices of lane n;

I set of intersection indices;

PI(i) set of endogenous signal phase indices of intersection i.

The TR subproblem is formulated as follows:

min
x

mk(x, z; p, βk) (B.1)
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subject to

∑

j∈PI(i)

xℓ(j) =
ci − di
ci

∀i ∈ I , ℓ ∈ L (B.2)

h(x, z; p) = 0 (B.3)

µn,ℓ −
∑

j∈PN (n)

xℓ(j)s = ens, ∀n ∈ N , ℓ ∈ L (B.4)

‖x− xk‖2 ≤ ∆k (B.5)

z ≥ 0 (B.6)

xℓ ≥ xLB, ∀ℓ ∈ L. (B.7)

The objective function is the metamodel mk(x, z; βk, p). Equations (B.2) and

(B.7) are the signal control constraints, they correspond to Equations (3.13) and

(3.14). The function h of Equation (B.3) represents the transient network model.

It represents Equations (3.7a)-(3.7c). Equation (B.4) associates the green splits of

a phase with the flow capacity of the underlying lanes (i.e., the service rate of the

queues). Constraint (B.5) is the trust region constraint, where ∆k is the trust region

radius. The endogenous variables of the queueing model are subject to positivity con-

straints (Equation (B.6)). Thus, the TR subproblem consists of a nonlinear objective

function subject to nonlinear equalities, linear equalities, a nonlinear inequality and

bound constraints.

The TR subproblem is solved with the Matlab routine for constrained nonlinear

problems, fmincon, and its interior point programming method (Coleman and Li;

1996, 1994). We set the tolerance for relative change in the objective function to 10−3

and the tolerance for the maximum constraint violation to 10−3. For further details

on the TR subproblem formulation and its implementation, see Chapter 2, Section

2.3.2.
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B.3 Derivative of the Objective Function

This appendix serves to illustrate how the analytical expressions for the objective and

constraint functions of Problem (3.12)-(3.14) are derived. The problem is described

in Chapter 3, Section 3.3.

The example we provide is for the derivative of the objective function (denoted

fA,ℓ in Equation (3.15)) with regards to the variable ρ̂i,ℓ. The analytical form of

any other derivative with respect to any of the endogenous variables can be derived

following the same logic.

By definition, we have:

fA,ℓ =

∑

iEℓ[Ni]
1

tℓ−tℓ+1

∫ tℓ+1

tℓ

∑

i γi(1− Pℓ(Ni = ki, t))dt
. (B.8)

Let C denote the numerator and D denote the denominator. Following the quo-

tient rule, we obtain:

∂fA,ℓ

∂ρ̂i,ℓ
=

∂C
∂ρ̂i,ℓ

D
−

∂D
∂ρ̂i,ℓ

C

D2
. (B.9)

We first derive the analytical expression for ∂C
∂ρ̂i,ℓ

, then we derive that of ∂D
∂ρ̂i,ℓ

.

Using the chain rule, we have:

∂C

∂ρ̂i,ℓ
=

∂Eℓ[Ni]

∂ρi,ℓ

∂ρi,ℓ
∂ρ̂i,ℓ

. (B.10)

The analytical form of Eℓ[Ni] and ρi,l are given in Equations (3.17) and (3.18),

respectively.

Equation (3.17) can be rewritten as:

Eℓ[Ni] =
ρi,ℓ

1− ρi,ℓ
− (ki + 1)ρi,ℓ

ki+1

1− ρi,ℓki+1
, (B.11)
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and its derivative is given by:

∂Eℓ[Ni]

∂ρi,ℓ
=

1

(1− ρi,ℓ)2
− (ki + 1)2ρki

(1− ρki+1
i,ℓ )2

. (B.12)

Equation (3.18) can be rewritten as:

ρi,ℓ = (tℓ+1 − tℓ)
ρ̂i,ℓ
A
, (B.13)

where A is defined by Equation (3.19). This leads to:

∂ρi,ℓ
∂ρ̂i,ℓ

= (tℓ+1 − tℓ)(
1

A
− ρ̂i,ℓ
A2

∂A

∂ρ̂i,ℓ
). (B.14)

In order to derive an expression for ∂A
∂ρ̂i,ℓ

, we use the analytical expression of A

given by Equation (3.22), this leads to:

∂A

∂ρ̂i,ℓ
=
∂τi,ℓ
∂ρ̂i,ℓ

[

(Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki))(e
−

tℓ+1
τi,ℓ − e

−
tℓ
τi,ℓ )

]

+ . . .

· · ·+ τi,ℓ(Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki))





∂e
−

tℓ+1
τi,ℓ

∂ρ̂i,ℓ
− ∂e

−
tℓ
τi,ℓ

∂ρ̂i,ℓ



 (B.15)

=
∂τi,ℓ
∂ρ̂i,ℓ

[

(Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki))(e
−

tℓ+1
τi,ℓ − e

−
tℓ
τi,ℓ )

]

+ . . .

· · ·+ (Pℓ(Ni = ki, tℓ)− Pℓ(Ni = ki))

(

tℓ+1

τi,ℓ
e
−

tℓ+1
τi,ℓ

∂τi,ℓ
∂ρ̂i,ℓ

− tℓ
τi,ℓ

e
−

tℓ
τi,ℓ

∂τi,ℓ
∂ρ̂i,ℓ

)

.

(B.16)

Equation (B.15) is obtained by observing that the derivative of (tℓ+1−tℓ)(1−Pℓ(Ni =

ki)) with regards to ρ̂i,ℓ is zero. This is because the terms tℓ+1 and tℓ are constant, and

because ∂Pℓ(Ni=ki)
∂ρ̂i,ℓ

= 0, since both Pℓ(Ni = ki) and ρ̂i,ℓ are both endogenous variables.

And because Pℓ(Ni = ki, tℓ) is the initial spillback probably at interval ℓ and does not

depend on ρ̂i,ℓ,
∂Pℓ(Ni=ki,tℓ)

∂ρ̂i,ℓ
= 0.

In order to derive
∂τi,ℓ
∂ρ̂i,ℓ

, let us recall that τi,ℓ is defined in Equation (3.11b) by:

τi,ℓ =
cki

λ̂i,ℓ

ρ̂i,ℓ

(1−
√

ρ̂i,ℓ)2
. (B.17)
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Therefore,

∂τi,ℓ
∂ρ̂i,ℓ

=
cki

λ̂i,ℓ
∂(

ρ̂i,ℓ

(1 −
√

ρ̂i,ℓ)2
)/∂ρ̂i,ℓ (B.18)

=
cki

λ̂i,ℓ







1

(1−
√

ρ̂i,ℓ)2
−
ρ̂i,l

∂((1−
√

ρ̂i,ℓ)
2)

∂ρ̂i,ℓ

(1−
√

ρ̂i,ℓ)4






(B.19)

=
cki

λ̂i,ℓ

(

1

(1−
√

ρ̂i,ℓ)2
+

√

ρ̂i,ℓ

(1−
√

ρ̂i,ℓ)3

)

. (B.20)

Note that Equation (B.18) is derived by observing that
∂λ̂i,ℓ

∂ρ̂i,ℓ
= 0, since both

variables are endogenous.

Combining Equations (B.10), (B.12), (B.14), (B.16) and (B.20), we obtain the

analytical derivative of the numerator of the objective function, ∂C
∂ρ̂i,ℓ

.

In order to derive the derivative of the denominator D, note that it can be ex-

pressed as the following function of A:

D =
1

tℓ − tℓ+1

∑

i

γiA. (B.21)

Thus,

∂D

∂ρ̂i,ℓ
=

γi
(tℓ+1 − tℓ)

∂A

∂ρ̂i,ℓ
. (B.22)

The expression for ∂A
∂ρ̂i,ℓ

is given by Equation (B.16).
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Appendix C

Appendices of Chapter 4

C.1 Simulator Selection Method of the Model-driven

Method

This appendix serves to describe in detail the simulator selection method of the online

optimization framework introduced in Chapter 4, Section 4.2.2.

We denote SM the simulator set that consists of simulators with different syn-

thetic OD demand matrices. For each simulator, the simulation time horizon is one

time interval. The simulator used by the model-driven method for interval t, i.e.,

SM(t), is selected based on real-time dataset DAt. The selection method is given as

follows:

SM(t) = argmini∈SM|PMi − PMr|, (C.1)

where PMr represents a user defined performance metric measured from real-time

dataset DAt, PMi is the corresponding performance metric measured from the sim-

ulated data generated by simulator SMi, and |PMi − PMr| represents the absolute

difference between PMi and PMr. In the case study of Chapter 4, the performance

metric is defined as the average link travel time of the links with sensors.
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C.2 Preprocessing Procedure of Anderson’s Data-

driven Method

This appendix serves to describe in detail the preprocessing procedure of the data-

driven method of Anderson (2015, Chap. 6). This method is introduced in Chapter

4, Section 4.2.3.

As mentioned earlier, Anderson (2015, Chap. 6) uses only the data of interval

t− 1, denoted DAt−1, to derive the solution of interval t. DAt−1 is a subset of DAt.

In this section, DAt−1 is named as features, following the nomenclature convention of

the classification literature.

C.2.1 Preprocessing: Feature Dimension Reduction

In this step, features DAt−1 are transformed into reduced features, denoted DArd
t−1.

This step is considered as the feature dimension reduction step, where features that

have major impacts on final results are kept and features that have minor impacts

are excluded. This is done by using a projection matrix that linearly maps features

DAt−1 to the reduced features DArd
t−1. This process is described as follows:

DArd

t−1 = DAt−1φ, (C.2)

where φ is known as the projection matrix, which produces a linear mapping from

original data (original features) to reduced features. Anderson (2015, Chap. 6) uses

two types of feature reduction techniques: principle component analysis (PCA) and

linear discriminant analysis (LDA). We refer the reader to Anderson (2015, Chap. 6)

for a detailed description of these two techniques.

Note that the projection matrix φ maps a N dimensional feature to a K dimen-

sional feature (assuming N > K), where K is a user-defined dimension. For LDA,

K is strictly less than the number of classes. For PCA, the upper bound of K is N .

In the case study of the problem where the data-driven method is used to address a
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KC-class classification problem, we specify K to be KC − 1 for LDA and K to be

KC for PCA.

C.2.2 Preprocessing: Rounding and Scaling

In this step, Anderson (2015, Chap. 6) proposes a mapping function to transform

the reduced features DArd
t−1 to integer features DAint

t−1. This function uses normaliz-

ing, rounding and bounding techniques to transform continuous features to bounded

integer features. This function, denoted as ψ, is given as follows:

DAint(i) = ψ(DArd(i)) = min{max{int[
M

b(i)max − b(i)min
(DArd(i)+b(i)min)], 0},M},

(C.3)

where DAint(i) is the ith dimension of the integer feature DAint and DArd(i) is the

ith dimension of the reduced feature DArd. DAint(i) is transformed from DArd(i)

through function ψ. b(i)max and b(i)min are the maximum and minimum values of

the ith reduced feature DArd(i) of the training data, M is a user defined integer, and

int[.] is the rounding operator (to the nearest integer). We omit the time indices of

features DAint and DArd for the sake of simplicity.

Equation (C.3) ensures that continuous features are transformed into bounded

integer features that range from 0 to M . M is a case-specific calibration parameter.

In our case study, we use M = 32. A detailed description regarding the choice of M

can be found in Anderson (2015, Chap. 6).

Note that in Anderson (2015, Chap. 6), reduced features are referred to as com-

putational channel CC, and integer features are referred as plan selection parameters

PS.
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C.3 Creating the Solution Set D of the Data-driven

Method

This appendix serves to describe the procedure to create the solution set D of the

data-driven method in the case study described in Chapter 4, Section 4.4.3.

In our case study, since signal plans with good performance under the six demand

scenarios (i.e., the demand scenarios represented by simulator set SM) are not avail-

able, we first generate a number of signal plans that can potentially perform well

under these scenarios, named as candidate plans, and then choose a subset of these

plans to create set D. This is because D only includes best plans. Therefore, if a

candidate plan is not the best plan for any of the scenarios, it should not be included

in D.

In this work, we derive candidate plans using the simulation-based algorithm of

Chapter 2, although using other optimization methods is entirely possible. Then,

we use simulation to determine which candidate plan is the best under each demand

scenario. We now describe these steps in detail.

To derive the candidate plan for scenario di, denoted spi, we run the optimization

algorithm proposed in Chapter 2 (only once, with one initial point) using simulator

SMi, which is the simulator that corresponds to demand scenario di. We denote SP
the set that consists of all spis. For more information on this optimization algorithm,

we refer the reader to Chapter 2.

From set SP , we determine signal plans that perform the best under at least one

scenario. These plans are then included in set D. To find the best plan for demand

scenario di, we run simulator SMi to evaluate the performance of all signal plans in

set SP . Denote spopti the best plan of scenario di, which is given as:

spopti = argminj∈SPFSM(spj; di) (C.4)

where spopti represents the best signal plan for scenario di, j represents the index of a

signal plan in set SP and FSM(spi; di) represents the simulated performance metric
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of signal plan spj under demand scenario di.

The performance metric FSM(spj; di) should be calculated from data. In this

chapter, in order to be consistent with the objective function, we use the simulated

average link travel time of the links with sensors as the performance metric.

Once the performance of all signal plans of scenario di is obtained, we determine

the best signal plan under scenario di (i.e., spopti ) according to Equation (C.4). In

addition, we conduct paired t-tests to determine whether the performance of plan

spopti is statistically significantly better than the other plans in set SP . Plan sp
opt]
i is

then included in set D.

C.4 Classification Model Offline Training Procedure

and Results

The appendix serves to describe the offline training procedure and the training results

of the data-driven method illustrated in the case study described in Chapter 4, Section

4.4.3.

Once training data is obtained, we first preprocess training data following Equa-

tions (C.2) and (C.3). We then train the data-driven model with the preprocessed

data.

We use two feature reduction techniques (i.e., LDA nad PCA) in the preprocessing

step. This provides two projection matrices φ, (see Equation (C.2)) named as φLDA

and φPCA, respectively. For each reduction technique, same as Anderson (2015, Chap.

6), we use three classification methods, i.e., decision trees, random forest and k-

nearest neighbors. The leads to six classification models (three with LDA projection

and three with PCA projection). For a brief description of the three classification

models (decision trees, random forest and k-nearest neighbors), we refer the reader

to Anderson (2015, Chap. 6).

We then train these six classification models with the preprocessed data [DAint, Y ].

Firstly, we use cross-validation procedure to fine-tune parameters of each model and
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Table C.1: Misclassification error (percentage)

classification model LDA PCA
decision tree 14.0 29.3
random forest <5 <5

k-nearest neighbors 12.7 31.6

then create six classification models. Secondly, from the six models, we choose three

with low misclassification rates as the models to be used online.

We use standard five-fold cross-validation procedure to fine-tune the parameter(s)

of each model, i.e., the best leaf size for the decision tree, the best ensemble size for

the random forest and the best k value for the k-nearest neighbors. To determine the

best parameter(s) of each model, we use the misclassification rate of validation data as

the evaluation metric, which is defined as the percentage of wrong predictions in the

validation set made by a classification model. As a result, the best parameter value

can yield the minimum misclassification rate. Once these parameters are fine-tuned,

we use all the training data to build a classification model. The misclassification rate

of each model is shown in Table C.1.

Table C.1 shows that random forest method with LDA and random forest method

with PCA yield low misclassification rates (less than five percent). When comparing

between the two feature reduction techniques (comparing between two columns), LDA

is a better feature reduction technique. For instance, the decision tree and k-nearest

neighbors models with LDA perform better than their counterparts. This finding is

consistent with that of Anderson (2015, Chap. 6).

We use the best three models in the data-driven method: random forest method

with LDA, random forest method with PCA and k-nearest neighbors with LDA. As

mentioned in Chapter 4, Section 4.4.3, we use the majority vote of the three models

to decide the signal plan of a traffic scenario.
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